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Kinetic extensions of the nucleation theorem~KNT! are derived using the law of mass action and
detailed balance. Results are obtained for the first- and higher-order derivatives of the nucleation
rate,J, with change in supersaturation,S, in terms of the cumulants,kn , of a molecular distribution
of reciprocal equilibrium cluster growth rates. At constant temperature we findd ln J/d ln S5k1

11, an exact formulation of the nucleation theorem in terms of nucleation rate, and the extension
dn ln J/d(ln S)n5(21)n11kn for the higher-order derivatives (n>2). The casen52 is related to the
Kelvin relation. Analysis of recent water vapor nucleation rates@Wölk and Strey, J. Phys. Chem. B
105, 11683~2001!# provides molecular-based estimates fork1 andk2 suitable for comparison with
the predictions of classical nucleation theory. The KNT is applied to ion-induced nucleation from
the gas phase, by a sequence of reversible chemical reactions, and extensions to multistep kinetics
and multicomponent nucleation are presented. Nucleation theorems enable one to deduce
molecular-level properties directly from macroscopic rate measurements. Here we show these
properties are not those of a single cluster, the critical nucleus, as approximate forms of the theorems
would suggest, but instead are averages over a weighted distribution of clusters near critical size.
© 2003 American Institute of Physics.@DOI: 10.1063/1.1565098#
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I. INTRODUCTION

A very useful result that has come to be called t
‘‘nucleation theorem’’ is the following relationship betwee
the height of the barrier to nucleation,W* , and the nucleus
size:1,2

S ]W*

]Dm D
T

5S ]W* /kT

] ln S D
T

52Dg* . ~1.1a!

The derivative is taken at constant temperature andDg*
5g* 2nv* is the excess number of molecules in the critic
cluster (g* is the number of molecules in the cluster andnv*
is the number of vapor molecules displaced by the clu
volume!. S is the saturation ratio andDm5kT ln S is the free
energy difference between the vapor and the bulk conden
phase driving the phase change. For nucleation from a d
vapor the displacement term is negligible andDg* 'g* .

The nucleation theorem, as given in Eq.~1.1a!, is a ther-
modynamic relation that has been obtained on fundame
grounds by several approaches including a statistical
chanical derivation by Viisanenet al.3,4 and a Gibbs dividing
surface analysis by Oxtoby and Kashchiev.2 In addition to
aiding the interpretation of experimental measurements~see
the following!, the nucleation theorem has been used as
analytical tool and guide for introducing a molecular basis
phenomenological nucleation theories.5 Recent studies hav
focused on the range of validity of the nucleation theore
on related equalities, and on applications to fields other t
nucleation.6,7

a!Electronic mail: rlm@bnl.gov
9330021-9606/2003/118(20)/9337/11/$20.00
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Nonisothermal versions of the nucleation theorem ha
also been investigated.2,8 For the temperature derivative a
constant lnS, Ford gives the following result, which has bee
called the second nucleation theorem:8

S ]W* /kT

]T D
ln S

52
Eg* 2g* E1

b

kT2 , ~1.1b!

whereEg* is the critical cluster energy andE1
b is the energy

per molecule in the bulk liquid phase.
An obvious limitation of Eqs.~1.1a! and ~1.1b! is that

W* and Eg* are not directly observable quantities. Th
practical applications require going beyond Eqs.~1.1a! and
~1.1b! in order to make contact with experimental measu
ments of the steady-state nucleation rate~J!. Here the argu-
ments have been less fundamental. The usual approac
sumes thatJ has the prefactor-exponent form:

J5J0 exp~2W* /kT!, ~1.2!

where J0 is the kinetic prefactor,k is the Boltzmann con-
stant, andT is absolute temperature. Combining Eqs.~1! and
~2! gives the relative sensitivity ofJ to changes inS:9

S

J

dJ

dS
5

d ln J

d ln S
5

d ln J0

d ln S
1Dg* . ~1.3!

The lead term on the right-hand side~rhs! is typically a small
constant value or zero, depending on model. For class
nucleation theory~CNT! d ln J0 /d ln S52. Taking into ac-
count the 1/S prefactor correction of Courtney10 changes this
to d ln J0 /d ln S51 and Eq.~1.3! becomes2
7 © 2003 American Institute of Physics
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d ln J

d ln S
511Dg* . ~1.4!

A more complete expression for the left-hand side of E
~1.4! was obtained by Ford11 by differentiating the Becker–
Döring expression for the nucleation rate. We refer to t
new kind of result, which depends on the kinetics as wel
on the thermodynamics of the nucleation process, as a
netic nucleation theorem~KNT!. Kinetic nucleation theo-
rems predict change in the nucleation rate itself, rather t
in the barrier height whose interpretation through experim
is at best indirect.

In this paper we obtain new KNTs for the higher-ord
derivatives,dn ln J/d(ln S)n, and apply these to the interpret
tion of recent measurements for the homogeneous nuclea
rate of water vapor. Theoretical foundation for the KNT
presented in Sec. II based on the physiochemical princi
of mass action and detailed balance. Similar results are
plied in Sec. III to nucleation from the gas phase by a reve
ible sequence of chemical reactions. These results show
the isothermal rate sensitivity depends only on reaction
ichiometry and not on molecular bonding condition or loc
tion within the cluster. Section IV initiates the extension
KNTs to multicomponent nucleation. Formulations of t
theorem are obtained for binary nucleation in special s
tems, such as sulfuric acid–water mixtures, and for mu
component systems having a quadratic free-energy surfac
matrix approach suitable for numerical calculation of the r
sensitivity for general multistep and multicomponent nuc
ation processes is also described. Section V gives a summ
and discussion of results. In particular, we conclude t
measurements ofdn ln J/d(ln S)n provide direct molecular-
level information, which is averaged over certain distrib
tions of clusters near critical size and not specific to
critical cluster itself.

II. DERIVATION OF KINETIC NUCLEATION
THEOREMS FROM THE LAW OF MASS ACTION
AND DETAILED BALANCE

This section introduces a fundamental approach
evaluating the left-hand side of Eq.~1.4! and higher-order
derivatives, through application of the law of mass act
and detailed balance. The approximations that underlie
~1.2! are bypassed and the evaluation ofd ln J/d ln S is car-
ried out directly on the kinetic sequence of monom
addition/loss steps that govern the nucleation rate. Deta
balance is incorporated by working directly with th
Becker–Do¨ring summation for the steady state nucleati
rate:12

J5S (
g

1

bgng
D 21

5S (
g

4

c1sgn1ng
D 21

. ~2.1!

Hereng is the constrained equilibrium concentration~see the
following! of clusters of sizeg ~clusters containingg mono-
meric units! andbg is the rate constant for monomer additio
to clusters of this size:

bg[
c1

4
sgf 15S kT

2pm1
D 1/2

sgf 15S kT

2pm1
D 1/2

sgn1 , ~2.2!
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wheresg is the surface area of ag cluster andc1 is the mean-
molecular speed of a molecule of massm1 . The last equality
uses the monomer boundary conditionf 1 /n15112 wheren1

and f 1 are the constrained equilibrium and actual concen
tions of monomer in the vapor phase. ‘‘Constrained equil
rium’’ refers to the imposition of a formal constraint, such
the disallowance of large clusters, so as to maintain a re
ence condition of zero nucleation current and persistenc
the metastable supersaturated phase.

The constrained equilibrium concentrations,ng (cm23),
are related through the reversible chemistryAg211A15Ag

according to the law of mass action:

Kg
eq~T!5

@Ag#

@A1#@Ag21#
'

ng

n1ng21
, ~2.3!

whereAg denotes a cluster containingg monomers,@Ag# is
the activity of these clusters, andKg

eq(T) is a function of
temperature alone.13 The last equality, the law of mass ac
tion, applies to an ideal mixture of clusters for which activi
is proportional to number concentration. The vapor ph
monomer versus bulk free energy difference is

Dm5kT ln S5kT ln~n1!2kT ln~n1
eq!, ~2.4!

whereS is the saturation ratio of monomer (A1) and n1
eq is

the number concentration of monomer in equilibrium w
the saturated liquid. The latter is constant at constant t
perature, as we neglect any effect of pressure change on
vapor pressure of the bulk liquid. Equations~2.1!–~2.4! are
sufficient to derive the kinetic extension of the nucleati
theorem. For obtaining the nucleation theorem from the eq
librium law of mass action, a key property of Eq.~2.3! is
employed, specifically, that the population ratio,ng /ng21 is
directly proportional ton1 . From this follows the proportion-
ality ng}n1

g , yielding a convenient intermediate result fo
differentiating the product terms on the rhs of Eq.~2.1!:

d~n1ng!

d ln S
5~g11!n1ng . ~2.5!

A. Isothermal kinetics

The detailed balance condition for the reaction describ
by Eq.~2.3! gives a relation between the forward and reve
monomer addition rates in terms of the cluster populat
under constrained equilibrium conditions:

bgng5gg11ng11 . ~2.6!

Together, the law of mass action and the detailed bala
condition imply only thatbg /gg11 is proportional ton1 .
Equation ~2.2! implies a more specific kinetic model fo
which all of the monomer dependence is in the condensa
rate and the evaporation rate is independent of mono
concentration, a condition sufficient but not necessary for
law of mass action to apply. A KNT incorporating both d
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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FIG. 1. Homogeneous nucleation of water vapor. Da
points are measurements atT5250 K from Table 2 of
Wölk and Strey~Ref. 15!. Superimposed on these mea
surements are fits to the data from the Taylor expansi
Eq. ~2.9b!, about the reference pointS0510 ~gray ver-
tical line!. The solid curve is a quadratic fit to the da
in powers of log10(S) yielding log10@J(S0)#58.762
~gray horizontal line!. Truncating the expansion afte
the linear term produces the dashed line and the fi
cumulant,k1529.86. This line is tangent to the solid
curve at the point of intersection of the gray lines. Th
quadratic fit~solid curve! yields the second cumulant
k2549.42. See the text for the comparison of the
model-free results with the predictions of classic
nucleation theory.
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tailed balance and mass action follows from Eqs.~2.1! and
~2.5!. On using the chain rule for differentiation of Eq.~2.1!
at constant temperature, the result is

d ln J

d ln S
511ḡ>11g* , ~2.7!

where the overbar signifies the following cluster avera
with respect to the distribution 1/(bgng),

ȳ[

(g

1

bgng
y~g!

(g

1

bgng

5(
g

P~g!y~g!. ~2.8!

The last equality defines the normalized 1/(bgng) distribu-
tion, P(g). The present derivation applies to cluster form
tion from a dilute vapor or solution for which, as in th
derivation of Eq.~2.1!, the subtraction of displaced monom
can be neglected. Equations~2.7! and ~2.8! are the more
complete expressions for the lhs of Eq.~1.4! obtained by
Ford.11

Higher order derivatives can also be obtained and m
be expressed remarkably simply in terms of the cumula
kn of P(g). Together with the previous results from abo
these are~see the Appendix!

d ln J

d ln S
5ḡ115k111,

d2 ln J

d~ ln S!2 52~g22ḡ2!52k2 ,

d3 ln J

d~ ln S!3 5k3 ,

~2.9a!
d4 ln J

d~ ln S!4 52k4 ,

]

dn ln J

d~ ln S!n 5~21!n11kn .
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Equation~2.9a! has a structure that arises not only fro
the statistical properties of cumulants, although these play
important role, but from the physiochemical properties
cluster equilibria and kinetics embodied in the laws of ma
action and detailed balance@see, for example, Eq.~A1!#. The
second equation of Eq.~2.9a!, or its equivalent relation
dk1 /d ln S52k2 from Eq. ~A6!, implies that the curvature
on a plot of lnJ versus lnSalso has a direct interpretation i
terms of molecular properties, specifically in terms of t
variance of the 1/(bgng) distribution. The frequent observa
tion that plots of lnJ versus lnS1 tend to be nearly linear is
seen here as a consequence of a narrow 1/(bgng) distribu-
tion. For a continuous Gaussian distribution, the cumula
will vanish14 for indexn.2 resulting in early termination o
Eq. ~2.9! and a lnJ that is quadratic in lnS. Rooted in mass
action and detailed balance, these results have general v
ity independent of any cluster model.

An application of Eq.~2.9a! to the interpretation of re-
cent rate measurements for the homogeneous nucleatio
water vapor is shown in Fig. 1. The data points are the
ported nucleation rates for H2O atT5250 K from Table 2 of
Wölk and Strey.15 Equation~2.9a! suggests a fit using a Tay
lor expansion of the form:

log10@J~S!#5 log10@J~S0!#1~ ḡ11!S0
log10S S

S0
D

2 1
2 ~k2!S0F log10S S

S0
D G2

1¯ , ~2.9b!

where the switch to common logarithms for both lnJ and lnS
leaves Eq.~2.9a! unchanged. The solid curve in the figure
a quadratic fit to the data in powers of log10S yielding ḡ
11530.86 andk25g22(ḡ)2549.42 evaluated at the refe
ence supersaturationS0510 ~gray vertical line!. This same
fit yields the value log10@J(S0)#58.762 ~gray horizontal
line!. The dashed line shows the result of cutting off t
Taylor expansion after the linear term whereas the so
curve uses both the linear and quadratic terms, showing
effect of curvature.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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FIG. 2. Top: nucleation barrier obtained using the ca
illary drop model from classical nucleation theory. R
sults for the homogeneous nucleation of water vapor
250 K and reference supersaturation from Fig. 1,S
510. Bottom: corresponding normalized distribution
solid curve,P(g) from Eq.~2.8!; dotted curve, the nor-
malized 1/ng distribution discussed below Eq.~2.10!.
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It is useful to compare these parameters, derived fr
measurement, with the expected results from classical nu
ation theory. The top panel of Fig. 2 shows the class
barrier profile,WCNT(g)/kT52g ln S1ag2/3/kT, for homo-
geneous nucleation of water vapor under the conditionS
510 andT5250 K, corresponding to the reference con
tions used in Fig. 1. Herea5(4p)1/3(3/r l)

2/3g` whereg` is
the surface tension for a flat interface andr l is the molecular
number density in the bulk condensed phase. The CNT
rier calculation of Fig. 2 uses the same physiochemical pr
erties for H2O as in Wölk and Strey.15 A good indication of
P(g), the cumulants of which are related to the observa
sensitivitiesdn ln J/d(ln S)n through Eqs.~2.9a! and ~2.9b!
can be had by inspecting its CNT-approximate for
PCNT(g), under these typical nucleation conditions. This
indicated by the solid curve in the lower panel of Fig. 2. T
width of this distribution is, from Eqs.~2.7! and ~2.8!, an
indication of the extent to which measurements
dn ln J/d(ln S)n yield weighted-average properties over ma
near-critical clusters, and are not specific to the critical cl
ter itself. The CNT calculations yieldg* (CNT)530 ~nearest
integer! and the moments:ḡ(CNT)529.96; k2(CNT)
539.04. The classicalḡ(CNT)11530.96 is in remarkably
good agreement with the determination,ḡ11530.86, from
the experimental fit. The CNT prediction fork2 is lower than
the experimental determination~see the caption! by about
Downloaded 24 Aug 2005 to 130.199.3.2. Redistribution subject to AIP
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20%; however data scatter and strong background linea
on the experimental log–log plot makes this parameter inh
ently more difficult to estimate. Nevertheless the sign of
curvature@which from ~Eq. 2.9a! must be negative# is cor-
rect, and its magnitude in rough agreement with the pred
tion of classical nucleation theory. Equations~2.9a! and
~2.9b! provide information on the general shape of the lo
log rate plots, seen here to be in very good agreement w
the predictions of CNT, but not on their displacement,
absolute value of the nucleation rate. Application of t
Becker–Do¨ring summation@Eq. ~2.1!# gives log10JCNT(S0)
59.49, yielding a predicted nucleation rate about a factor
5 higher than the experimental value, in agreement with
finding of Wölk and Strey.15

The second equality of Eq.~2.9a! is closely related to the
Kelvin relation, giving as it does the change in critical clus
size with supersaturation:

dḡ

d ln S
52~g22ḡ2!'

dg*

d ln S
. ~2.10!

To move closer to the spirit of the Kelvin relation, which is
thermodynamic result, we take averages in terms of the 1ng

distribution~i.e., without the kinetic part,bg , which cancels
if assumedg-independent in the region of critical cluste
size! and find a similar exact result:d^g&/d ln S52(^g2&
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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9341J. Chem. Phys., Vol. 118, No. 20, 22 May 2003 Kinetic extensions of the nucleation theorem
2^g&2). The angular brackets are averages with respect to
normalized 1/ng distribution, shown in the lower panel o
Fig. 2 ~dotted curve!, which is only slightly shifted from
PCNT(g). The classical Kelvin relation for the critica
nucleus size isg* 5(8/27)a3(kT ln S)23. Thus the change in
nucleus size with supersaturation is

dg*

d ln S
52 8

9 ~a/kT!3~ ln S!24. ~2.11!

The connection to the general result, Eq.~2.10!, follows
a demonstration that the negative variance of the 1/ng distri-
bution, as obtained from the capillary drop model dist
bution of the classical theory, is identical to the right-ha
side @of Eq. ~2.11!#. Here ng}exp(2g ln S1ag2/3/kT)
[exp@2WCNT(g)/kT#. Expanding the exponent in a Taylo
series through the quadratic term aboutg* gives

WCNT~g!

kT
'

WCNT~g* !

kT
2

9

16S kT

a D 3

~ ln S!4~g2g* !2.

~2.12!

Equation~2.12! yields a Gaussian distribution for 1/ng with
^g&5g* and variances25(8/9)(a/kT)3(ln S)2452dg* /
d ln S, where the last equality is Eq.~2.11!. This demon-
strates the reduction of Eq.~2.10! to the classical Kelvin
relation for the capillarity drop approximation of classic
nucleation theory.

B. Temperature variation

Next we obtain the weighted cluster energy distributi
appearing in an exact expression for the temperature de
dence of the nucleation rate. Taking the temperature der
tive of lnJ from Eq. ~2.1! gives

d ln J

dT
5

d ln$c1sgn1ng/4%

dT
. ~2.13!

To evaluate the rhs of Eq.~2.13!, we use

d ln c1

dT
5

1

2T
~2.14!

from Eq. ~2.2!, and assume that the cluster surface area,sg ,
is independent ofT. This leaves only the derivative
d ln(n1ng)/dT, which will now be evaluated using the Gibbs
Helmholtz relation.13

Returning to Eq.~2.3!, we form the equilibrium rate con
stant for the association ofg monomers to form a molecula
cluster of sizeg:

K~T!5Kg
eqKg21

eq 3¯3K2
eq5

ng

n1
g . ~2.15!

Applying the Gibbs–Helmholtz relation to the rhs, recallin
that ng has units of concentration, gives

d ln K~T!

dT
5

Eg2gE1

kT2 , ~2.16!

whereEg is cluster energy. Consider the following derivativ
with respect to temperature at constantS1 :
Downloaded 24 Aug 2005 to 130.199.3.2. Redistribution subject to AIP
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S ] ln n1

]T D
S1

5S ] ln n1
eq

]T D
S1

5
d ln n1

eq

dT
, ~2.17!

wheren1
eq is the monomer concentration in the vapor at eq

librium over bulk liquid (n15n1
eqS1). Similarly, from Eq.

~2.15!, ng5K(T)(n1)g5K(T)S1
g(n1

eq)g and ng
eq5K(T)

3(n1
eq)g to give ng5ng

eqS1
g . From these results we obtain

S ] ln ng

]T D
S1

5
d ln ng

eq

dT
5

d ln K~T!

dT
1g

d ln n1
eq

dT
. ~2.18!

The last term in Eq.~2.18! is readily evaluated from the
Clapeyron relation:

d ln n1
eq

dT
5

E12E1
b

kT2 , ~2.19!

whereE1
b is the energy per molecule in the bulk liquid. Com

bining Eqs.~2.16!–~2.19! gives the derivative that we hav
been seeking:

S ] ln~n1ng!

]T D
ln S1

5
d ln n1

eq

dT
1

d ln ng
eq

dT

5
Eg2gE1

b

kT2 1
E12E1

b

kT2 . ~2.20!

This expression together with Eqs.~2.13! and ~2.14! gives
the final result:

S ] ln J

]T D
ln S1

5
1

2T
1

Ēg2ḡE1
b

kT2 1
E12E1

b

kT2 , ~2.21!

where the overbar indicates averaging as in Eq.~2.8!. The
present derivation includes kinetics and shows explicitly
underlying physics as contained in the law of mass acti
detailed balance, and the Gibbs–Helmholtz relation. Eq
tion ~2.21! differs from the thermodynamic result of For
@Eq. ~48! of Ref. 11# by the leading term on the rhs@origi-
nating from Eq.~2.14!#, and by averaging overP(g), as
signified here by the overbar, to rigorously include the kin
ics contained in the Becker–Do¨ring summation forJ. It
should be mentioned that Ford also used a distribution o
P(g), as described here, but for simplicity took this to
Gaussian.

Equation~2.21! can be used to evaluate differences b
tween the cluster energies inferred from experimental nu
ation rate measurements and those obtained using the c
lary drop model of CNT. Rewriting Eq.~2.21! for CNT and
differencing gives

S ] ln J/JCNT

]T D
ln S1

5
Ēg2Ēg~CNT!

kT2 2
@ ḡ2ḡ~CNT!#E1

b

kT2 .

~2.22!

Application of Eq. ~2.22! is complicated by fact that the
averages are over two different cluster distributions: the t
molecular distributionP(g), for ḡ and Ēg , and the drop-
model distribution PCNT(g) of CNT, for ḡ(CNT) and
Ēg(CNT). On the other hand, there are widespread obse
tions that the ratioJ/JCNT is a function of temperature alon
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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~see, e.g., Ref. 16!. Such observations imply that the Kelvi
relation is satisfied and that the true nucleation barrie
uniformly shifted in energy from the CNT barrier by
temperature-dependent amount.5,17 These properties greatl
simplify the final result. Specifically, in the approximatio
that the barrier is uniformly shifted, the critical cluster siz
the cluster ratios (ng /ng* ), andP(g) all have the same val
ues as in CNT. Assuming identical molecular addition rat
bg , and settingP(g)5PCNT(g), Eq. ~2.22! simplifies to

d ln~J/JCNT!

dT
5

Ēg2Ēg~CNT!

kT2 '
Eg* 2Eg* ~CNT!

kT2 ,

~2.23!

where the first equality holds for the case thatJ/JCNT is a
function of temperature alone. The weighting for both t
molecular and CNT cluster energies in the numerator is
CNT distribution, PCNT(g). Measurements ofJ/JCNT ~see,
e.g., Refs. 16 and 18! provide, through Eq.~2.23!, direct
information about the excess~with respect to CNT! cluster
energies, which can be compared directly to phenomenol
cal cluster models and calculations based on molec
theory.

III. APPLICATION TO NUCLEATION FROM
THE GAS PHASE BY A REVERSIBLE SEQUENCE
OF CHEMICAL REACTIONS

The kinetic nucleation theorem is next illustrated for
different kind of one-step process; one for which neither
kinetic prefactor nor the nucleation work are well define
Consider nucleation from the gas phase by the revers
sequence of chemical reactions studied by Girshick.19 This
sequence is initiated by reaction of SiH4 with the ‘‘seed’’ ion
SiH3

2 ,

SiH3
21SiH45Si2H5

21H2 ~3.1a!

followed by growth steps:

Si2H5
21SiH45Si3H7

21H2,
~3.1b!

Sim21H2m21
2 1SiH45SimH2m11

2 1H2,

leading to the formation of cluster ions of larger size. W
the seed requirement, Eqs.~3.1a! and ~3.1b! are formally
equivalent to a heterogeneous or ion-induced nucleation
cess. Equation~2.3! is replaced by the equilibrium constan

Km~T!5
@SimH2m11

2 #@H2#m21

@SiH3
2#@SiH4#m21

>
n~SimH2m11

2 !$n~H2!%m21

n~SiH3
2!$n~SiH4!%m21 , ~3.2!

where@A# andn(A) are the activity and number concentr
tion, respectively, of speciesA under a~constrained! equilib-
rium condition. As with the monomer boundary conditio
used previously,n(SiH4), n(H2), andn(SiH3

2) are equated
to the actual concentrations of these precursor species in
gas phase. Detailed balance considerations lead to an ov
rate analogous to Eq.~2.1!:19
Downloaded 24 Aug 2005 to 130.199.3.2. Redistribution subject to AIP
is

,

,

e

i-
ar

e
.
le

o-

he
rall

J5S (
m

1

kmn~SiH4!n~SimH2m11
2 ! D 21

, ~3.3!

where km is the forward bimolecular rate constant for th
reaction of SimH2m11

2 with SiH4 . Differentiation of lnJ is
similar to derivation of Eq.~2.7!. For brevity we give only
the results:

] ln J

] ln@SiH4#
5

(m

m

kmn~SimH2m11
2 !

(m

1

kmn~SimH2m11
2 !

[m̄'m* , ~3.4a!

] ln J

] ln@H2#
52

(m

~m21!

kmn~SimH2m11
2 !

(m

1

kmn~SimH2m11
2 !

[2~m̄21!

'2~m* 21!. ~3.4b!

The partial derivatives signify that the concentrations
remaining precursor species, as well as temperature, are
constant. The approximate equalities apply only in ca
where there exists a critical ion-cluster size and the sum
tions are dominated by terms near this size.m* is the num-
ber of Si molecules in the critical ion-cluster of whichm*
21 derive from the growth species SiH4 with the release of
m* 21 molecules of H2 . Note, however, that the true equal
ties of Eqs.~3.4a! and ~3.4b! apply even to activationles
processes with no barrier or critical cluster size. The se
tivity on seed concentration is] ln J/] ln@SiH3

2#51. These
results demonstrate the application of nucleation theorem
a reversible sequence of chemical reactions. Finally, E
~3.4a! and ~3.4b! exhibit an important general feature o
nucleation theorems; namely, dependence of the isothe
rate sensitivity on reaction stoichiometry and not on lo
bonding condition or location~e.g., surface or interior! of
species within the cluster.

IV. EXTENSIONS TO BINARY AND MULTICOMPONENT
NUCLEATION

The kinetic nucleation theorem is applied in this secti
to two models of binary nucleation for which analytic sol
tions can be obtained. The theorem will be demonstrated
for the Shugard–Heist–Reiss~SHR! binary nucleation
model,20 which has been tested with great success thro
comparisons with a fully two-dimensional kinetic model
binary nucleation in sulfuric acid-mixtures.21 Next we
present an extension of the kinetic nucleation theorem
multicomponent systems for which the thermodynamic b
rier can be approximated by a quadratic free-energy surf
Finally we initiate the development of a matrix method f
evaluation of d ln J/d ln S in more complicated kinetic
schemes, including multistep and multicomponent nuclea
processes, for which simple analytic solutions cannot
obtained.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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A. Application to the Shugard–Heist–Reiss model

The Shugard–Heist–Reiss~SHR! model is a specializa
tion of the full binary nucleation kinetics to the case th
nucleation occurs primarily through stepwise additions o
single component~e.g., sulfuric acid!, with rapid equilibra-
tion along the orthogonal coordinate~e.g., water evaporation
and growth!. The SHR steady-state nucleation rate takes
double summation closed form:20

J5H(
j

F(
i

ba~ i , j !n~ i , j !G21J 21

, ~4.1a!

where ba( i , j )[cas( i , j ) f (0,1)/45cas( i , j )n(0,1)/4, ca is
the mean molecular speed of an acid molecule, andf (0,1)
5n(0,1) is the number concentration of acid molecules
the vapor.n( i , j ) is the constrained equilibrium number co
centration of clusters containingi molecules of water andj
molecules of acid ands( i , j ) is the surface area of one suc
cluster. In the derivation of Eq.~4.1! the approximation is
made that the nucleation flux occurs solely in the direct
parallel to the acid~j! coordinate. Thus we could have wri
ten the overall current, instead, as a sum of noninterac
parallel currents along thej coordinate:

J5(
i

Ji5(
i

S (
j

1

ba~ i , j !n~ i , j ! D 21

, ~4.1b!

where the inner summation has the same form as in
~2.1!. Although Eqs.~4.1a! and ~4.1b! are not equivalent al-
gebraically, they must give very nearly the same result un
the condition that the flux occurs predominately along thj
coordinate.

Letting S1 andS2 denote the saturation ratios for wat
and acid, respectively, we obtain from Eq.~4.1a!:

] ln J

] ln S2
5

( j~ j 11!Rj

( jRj
[(

j
~ j 11!Pb~ j !51

1(
j

(
i

jPT~ i , j !' j * 11, ~4.2a!

] ln J

] ln S1
5

( j^ i & jRj

( jRj
5(

j
(

i
iPT~ i , j !' i * , ~4.2b!

whereRj[@( iba( i , j )n( i , j )#21 and (i * , j * ) is the compo-
sition at the saddle point. In Eq.~4.2b!, the quantity^ i & j

defines a different kind of average:

^ i & j[
( i iba~ i , j !n~ i , j !

( iba~ i , j !n~ i , j !
[(

i
iQb~ i , j !. ~4.3a!

Equations~4.2! and ~4.3! introduce the normalized distribu
tions Pb( j ) andQb( i , j ), with subscript ‘‘b’’ for binary case,
and the normalized product distributionPT( i , j )
5Pb( j )Qb( i , j ). Another interpretation of Eq.~4.3a! follows
from the j-coordinate flux condition:

^ i & j5(
i

iQb~ i , j !5(
i

iQb~ i !5
( i iJ i

J
[^ i & ~4.3b!

showing that this flux condition implies thatQb is indepen-
dent of j and that^i& is a flux-weighted average over th
water coordinate that is independent ofj. Unlike the average
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of Eq. 2.8,^i& will be dominated by those clusters near t
minimumin a slice of the binary free-energy surface havi
fixed acid occupation numberj. The approximate equalitie
of Eqs. ~4.2a! and ~4.2b!, yielding results in terms of the
nucleus composition, compare favorably with Eqs.~18! and
~19! of Ref. 4 derived assuming a prefactor-exponent fo
for the binary nucleation rate. Higher-order derivatives
ln J are obtained as flux (Ji)-weighted averages over the on
dimensional steady-state nucleation currents as is evi
from Eqs.~4.1b! and ~4.3b! ~see the Appendix!.

B. Application to a quadratic free-energy surface

The approximation that the free-energy surface is q
dratic in the saddle point region presents an interesting c
amenable to exact solution. Figure 3 shows a quadratic
face in the original cluster~i, j! coordinates and in the prin
cipal coordinates~j, h! centered on the critical nucleu
( i * , j * ). In principal coordinates, the surface takes the se
rable form:

W~j,h!

kT
5

W~0,0!

kT
2aj21bh2, ~4.4!

wherea and b are positive quantities, resulting in a sadd
point atj5h50. Figure 3 shows a surface fora51 andb
52. The solid~hyperbolic! curves are contours of consta
W for W5W* , W* 6kT, andW* 62kT. Equation~4.4! im-
plies an equilibrium cluster population satisfying the Bolt
mann relation,n( i , j )5n( i * , j * )exp@aj2(i,j)2bh2(i,j)#.

Distribution functions similar to those introduced earli
for the SHR model are obtained along the reactive and
thogonal coordinatesj and h, respectively. If one neglect
the size dependence of the kinetic coefficientsb1( i , j )
5c1s( i , j )n(1,0)/4'b1 , b2( i , j )5c2s( i , j )n(0,1)/4'b2 in
the region of critical cluster size, these distributions a
Gaussian and separable in the quadratic free-energy su
model. Assuming continuous size coordinates and carry
out the integrations yields the normalized distributions:

FIG. 3. Quadratic free-energy surface for a binary mixure showing conto
~solid curves! for W* , W* 6kT, andW* 62kT. The principal coordinate
axesj andh and lines of constantF ~dashed lines andF values! are also
shown. Superimposed on the figure is a schematic depiction of the dist
tion of nucleation current~arrows! for the case that the ratio of monome
addition rates for the two species is unity. See the text for explanation o
elliptical probability curves.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Pb~j!5Aa

p
exp~2aj2! ~4.5a!

and

Qb~h!5Ab

p
exp~2bh2!. ~4.5b!

The dashed~elliptical! contours of Fig. 3 depict thes and 2s
surfaces~1 and 2 standard deviations, respectively! for the
bivariate Gaussian distributionPT(j,h)5Pb(j)Qb(h). The
disposition of these elliptical surfaces with respect to
critical cluster size depends only on the coefficients of
variate products~ii, jj, ij ! in the cluster coordinate expansio
for W( i , j ). Specifically, the squared lengths of the princip
axes, which are proportional to the principal values~vari-
ances!, and orientation with respect to the original coordina
axes are independent of the gas phase species supers
tions,S1 andS2 , as the latter appear only in the coefficien
of terms linear ini and j.

Separation of variables in the principal frame@Eqs.~4.4!
and ~4.5!# conveys special properties to the surfaces of c
stant f ( i , j )/n( i , j ), where f ( i , j ) is the steady state concen
tration of clusters of size~i, j!. These ‘‘F’’ contours
(F( i , j )5 f ( i , j )/n( i , j )) have been studied for binary mix
tures and show interesting tendencies toward quasiunive
behavior.22–24 It is not difficult to show that two of the mos
significant of these tendencies, linearity and insensitivity
the activities of gas phase species, hold rigorously for a q
dratic free-energy surface. Linearity follows from the sep
ration of variables in Eqs.~4.5a! and ~4.5b! resulting in an
analytic solution for the gradients ofF:

¹jF~j,h!52Pb~j!; ¹hF~j,h!50, ~4.6!

subject to the boundary conditionsF(j,h)51 (F(j,h)
50) for small~large! values ofj. Thus the constantF con-
tours~dashed lines in Fig. 3! are linear and parallel to theh
axes, withF(0,0)51/2 at the critical cluster size. The solu
tion given by Eq. ~4.6! is based on the factorizatio
PT(j,h)5Pb(j)Qb(h) and applies even when the comp
nent distributions are non-Gaussian.

Insensitivity of theF contours to gas phase species a
tivity is not surprising given the preceding demonstrati
that the probability distributionsPb(j) and Qb(h), and
therefore theF contours, areindependentof supersaturation
in the quadratic surface model. This insensitivity is also c
sistent with the vanishing of third-order cumulants for t
Gaussian distribution; implying, from Eq.~A6!, that the vari-
ance of, for example,Pb(j), which determines theF con-
tour spacing, is independent ofS2 . Superimposed on the
figure is a schematic depiction of the distribution of nuc
ation current~arrows!. The nucleation flux will in general no
be orthogonal to theF contours as depicted in Fig. 3; but
cannot be parallel to them. LettingJx( i , j ) andJy( i , j ) denote
the local currents in the horizontal~i! and vertical~j! direc-
tions, respectively, the full result is22,24

Jy~ i , j !

Jx~ i , j !
5

b2~ i , j !

b1~ i , j !
tan~v!'

b2

b1
tan~v!, ~4.7!
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wherev is the angle between theF gradient and thei axes
and the last equality applies under the approximation that
monomer addition rates are constant. Figure 3 depicts
special case that the ratio of monomer addition rates for
two species is unity.

Li and Nishioka obtained steady-state nucleation fl
profiles in binary systems under the assumptions:~1! v may
be treated as constant in a local region, and~2! the F con-
tours are linear.24 The preceding analysis shows that the
conditions hold rigorously for the quadratic free-energy s
face. Accordingly, the analysis of Li and Nishioka carri
over to this special case, and their methods can be use
obtain analytic expressions for the nucleation flux profile a
steady-state nucleation rate. Apart from the change to c
tinuous variables, the resulting rate is similar to that of t
SHR model, for whichF contours also satisfy the Li an
Nishioka conditions and a double integration here, rat
than summation, gives the rate. Substituting forn( i , j ) and
integrating over the Gaussian distributions gives the ex
result:

J5n~ i * , j * !Aa

b
~b2 sinv1b1 cosv!. ~4.8!

For the sensitivities we obtain

] ln J

] ln S2
5E E ~ j * 1j!PT~j,h!dj dh

1
~b2 /b1!tan~v!

11~b2 /b1!tan~v!

5 j * 1
~b2 /b1!tan~v!

11~b2 /b1!tan~v!
,

~4.9!
] ln J

] ln S1
5E E ~ i * 1h!PT~j,h!dj dh

1
1

11~b2 /b1!tan~v!

5 i * 1
1

11~b2 /b1!tan~v!

showing similar dependence onPT as in Eqs.~4.2a! and
~4.2b!, but with vanishing mean values ofj and h at the
saddle point composition. Forv5p/2, the F contours are
oriented as in the SHR model and Eq. 4.9 reduces to

] ln J

] ln S2
5 j * 11,

] ln J

] ln S1
5 i *

showing that, apart from the distinction between continuo
and discrete cluster coordinates, the approximate equal
in Eqs.~4.2a! and ~4.2b! become exact for a quadratic free
energy surface. The third- and higher-order derivatives v
ish due to the fact thatPT is Gaussian~see the Appendix!.
Thus for a quadratic free-energy surface, the logarithm of
nucleation rate is rigorously a quadratic function of the g
phase supersaturations$ ln Si%. The quadratic surface mode
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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described here is readily extendable to multidimensio
saddle points for systems having more than two compon
involved in the nucleation process.

C. Matrix method

For binary systems with strong deviations from ideali
the potential surfaces can be considerably m
complicated.25 Furthermore the major nucleation flux ma
even bypass the saddle point completely.21,25 For these more
complex situations a matrix method can be useful for eva
ation of d ln J/d ln S. Developed in Refs. 26 and 27, the a
proach applies both to multistep processes~i.e., to the growth
of clusters through addition and subtraction of dimers, tri
ers and higher-order clusters, as well as monomer! and mul-
ticomponent nucleation. These processes are related u
the method, which maps the multicomponent compositio
grid point by point to a line, which can then be treated f
mally as a multistep single component process. In either c
the nucleation rate can be written in the form:

J5~aTU21a!21, ~4.10!

where aT5$1,1,...,1% is the unit row vector andU
5( r 51

l U (r ). Each U (r ) contains only contributions from
r-step transitions and factors asU (r )5@F (r )#TG(r )@F (r )#
whereF (r ) is a constant rectangular lower triangular mat
having elements either zero or unity andG(r ) is a square
diagonal matrix having elementsGgg

(r )5bg2r 11
(r ) ng2r 11 . As

b (r ) is the forward rate constant forr-step transitions, it is
proportional tonr for a multistep single component proces
or to a b i in a multicomponent process; thus the matrixU
depends only on the constrained equilibrium cluster gro
rates. For a one-component and one-step process (l 51), Eq.
~4.10! reduces to Eq.~2.1!. Equation~4.10! is a useful start-
ing point for extending the kinetic nucleation theorem
multistep and multicomponent nucleation processes. Dif
entiation gives a matrix expression for] ln J/] ln Si whereSi

is the saturation ratio of speciesi in a multicomponent sys
tem:

] ln J

] ln Si
5

aT@U21~]U/] ln Si !#U
21a

aTU21a

5pT~]U/] ln Si !U
21a, ~4.11!

where to calculate the derivatives of lnJ we employ the iden-
tities dJ52J2dJ21 and dU2152U21dUU21. The last
equality is a rewriting in terms of the column vectorp
5JU21a, which is the analog of the probabilityP(g) in
unary nucleation. From the structure ofU it is readily seen
that differentiation of the rhs of Eq.~4.11! reduces to differ-
entiation of the diagonal elements ofG(r ). Returning to the
single-component one-step process,U itself is diagonal, the
term in brackets is @U21(dU/d ln S1)#gg5(g11), and
(U21a)g51/(bgng). Thus, noting that premultiplication b
the row vectoraT is equivalent to summation, it is seen th
Eq. ~4.11! reduces to Eq.~2.7! for this special case. Differ-
entiation of Eq.~4.11!, in turn, yields the second-order ra
sensitivities:
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]2 ln J

]~ ln Si !]~ ln Sj !
5pT

]2U

]~ ln Si !]~ ln Sj !
U21a

1S pT
]U

] ln Si
U21aD S pT

]U

] ln Sj
U21aD

2S pT
]U

] ln Si
U21

]U

] ln Sj
U21a

1pT
]U

] ln Sj
U21

]U

] ln Si
U21aD . ~4.12!

Equations~4.11! and~4.12! present a general framework fo
computing the sensitivity of lnJ with respect to variations in
the lnSi , but one that requires further development for int
pretation of measurements. Further development of the
trix method and its application to KNTs for binary and mu
ticomponent nucleation will be presented in a futu
publication.

V. SUMMARY AND DISCUSSION

In this paper we derived an exact relation for the obse
able sensitivitiesdn ln J/d(ln S)n in terms of cumulants ove
the molecular distribution of reciprocal cluster growth rate
The case having indexn51 is the usual nucleation theorem
and the casen52 was shown to provide an interestin
molecular-level reformulation of the Kelvin relation. Thes
results apply under conditions that the law of mass act
and detailed balance are maintained. In particular, the c
ters must be noninteracting for the law of mass action to
valid. A significant finding is that measurements
dn ln J/d(ln S)n reflect the properties of a distribution of clus
ters near critical size and not those of a single cluster, as
more approximate forms of the nucleation theorem descri
in Sec. I would suggest. A similar result applies to the te
perature derivative, demonstrating thatd ln J/dT also de-
pends on a weighted average of cluster energies for clus
near critical size. Extensions of the kinetic nucleation the
rem were obtained for binary and multicomponent nucleat
under the assumption that the multivariate cluster fr
energy surface has quadratic form and for a class of bin
nucleation systems, such as sulfuric acid–water mixtures
which the SHR model20 is a valid approximation. Finally we
initiated the development of a matrix method for compu
tion of d ln J/d ln S for cases involving more complicated k
netic schemes, including multistep and multicompon
nucleation processes, for which simple analytic solutio
cannot be obtained.

Inspection of the kinetic nucleation theorem suggest
number of distinctions from thermodynamic results@Eq.
~1.4!#. First, the unit term appearing in Eq.~2.7! arises natu-
rally from the law of mass action@cf. Eq. ~2.5!#. Consistency
of Eq. ~1.4! with mass action, on the other hand, requir
d ln J0 /d ln S51, and for this result it was necessary to em
ploy both the prefactor-exponent form of Eq.~1.2! and the
prefactor correction of Courtney. The present derivation
been achieved without any requirements placed on either
cluster formation energyW(g) or the kinetic prefactorJ0 .
The expression forJ on which the present derivation i
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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based, Eq.~2.1!, is obtained under assumed removal of clu
ters beyond a certain maximum size and a steady-s
current;12 however no barrier need be present. Thus
equality of 2.7 applies, for example, to the activationle
monomer addition processesA11A1→A21A1→A31¯

even with no barrier or critical cluster size. In the limit th
the forward rate strongly dominates,ḡ>1 andd ln J/d ln S1

>2, which is the expected result from chemical kinetics. T
thermodynamic result, Eq.~1.4!, on the other hand is mor
limited as it is derived under the presumption that there
critical cluster size controlling the rate, which is of cour
problematic when there is no relative maximum in the fr
energy of cluster formation. Finally the appearance in
~2.7! of g* ~instead ofDg* ) is a consequence of assumin
an ideal cluster mixture consistent with the law of mass
tion.
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APPENDIX: DERIVATION OF EQS. „2.9a… AND „2.9b…

Define the average as before:ȳ5(gy(g)P(g) and note
with a small amount of algebra that

eg ln S5
J

n1
S (

g
4/c1sgng

eqD , ~A1!

where ng
eq5e2g ln Sng is the concentration ofg clusters in

equilibrium with a flat surface andJ is the steady state nucle
ation rate. The expression in parentheses on the rhs of
~A1! is independent of lnS. Thus

d ln eg ln S

d ln S
5

d ln J

d ln S
2

d ln n1

d ln S
5ḡ11215ḡ, ~A2!

where Eq.~2.7! has been used.
Consider the moment expansion obtained by expand

the exponent on the left-hand side of Eq.~A1! in powers of
g ln S:

eg ln S511ḡ ln S1 1
2g

2~ ln S!21 1
6 g3~ ln S!31¯ . ~A3!

The corresponding cumulant expansion is

ln eg ln S5k1 ln S1 1
2k2~ ln S!21 1

6k3~ ln S!31¯ , ~A4!

where, in terms of the central moments,k15ḡ, k2

5(g2ḡ)2, k35(g2ḡ)3, k45(g2ḡ)423(k2)2, k5

5(g2ḡ)5210k3k2 , etc., are the cumulants ofP(g).14 In
conventional probability theory, Eqs.~A3! and ~A4! are the
standard moment and cumulant generating functions, res
tively, for the distributionP(g). The present analysis differ
in that the moment and cumulant coefficients, and indeed
distribution itself, all depend on lnS. Here, the lhs of Eq.
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~A2! is evaluated using the expansion from Eq.~A4!, keep-
ing in mind that the cumulants are dependent on lnS, to
obtain

d ln eg ln S

d ln S
5k11S k21

dk1

d ln SD ln S

1
1

2 S k31
dk2

d ln SD ~ ln S!21¯ . ~A5!

Comparison of the rhs of Eqs.~A2! and ~A5! gives

S kn111
dkn

d ln SD50 ~A6!

for all n. All of the equalities of Eq.~2.11!, with the excep-
tion of the first, which is derived independently in Sec.
follow immediately from this result.

Similar analysis can be carried out for binary nucleati
for factorablePT ~for notation see Sec. IV!. For example, a
pair of equations similar to Eq.~A1! can be constructed fo
the SHR model:

^ej ln S2&PT
5

J

n~0,1!
3~ terms independent ofS2!,

~A7a!

^e2 i ln S1&PT
5^e2 i ln S1&Ji /J

5J213~ terms independent ofS1!, ~A7b!

where ^ f ( i , j )&PT
5( i( j f ( i , j )PT( i , j ) and the middle term

of Eq. ~A7b! averages over the steady state current distri
tion. Thus from Eqs.~4.2a! and ~4.2b!:

] ln^ej ln S2&PT

] ln S2
5

] ln J

] ln S2
2

] ln n~0,1!

d ln S2

5^ j &PT
11215^ j &PT

, ~A8a!

] ln^e2 i ln S1&PT

] ln S1
52

] ln J

] ln S1
52^ i &PT

, ~A8b!

where the partial derivative indicates constant tempera
and supersaturation of the remaining component. The cu
lant expansion for Eq.~A8a! is

ln^ej ln S2&PT
5^ j &PT

ln S21 1
2 ^~ j 2^ j &!2&PT

~ ln S2!21¯

~A9!

and continuing as in Eqs.~A5!, ~A6!, and~2.9! gives

]2 ln J

]~ ln S2!2 5
]^ j &PT

] ln S2
52^~ j 2^ j &!2&PT

~A10a!

and similarly to Eqs.~A6! and ~2.9! for the higher-order
cumulants and higher-order partial derivatives of lnJ. Equa-
tion ~A7b! yields somewhat different expressions f
the higher-order derivatives with respect to the orthogo
coordinate:
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] ln J

] ln S1
5^ i &Ji /J[k18 ,

]2 ln J

]~ ln S1!2 5^~ i 2^ i &!2&Ji /J5k28 , ~A10b!

]3 ln J

]~ ln S1!3 5k38 ,

etc., wherek l8 is the l th cumulant of the current distribution
Ji /J. Note that the even-order derivatives differ in sign fro
the previous result. In particular̂i &' i * increases, rathe
than decreases, with increase in lnS1. Similar results, in prin-
cipal coordinates, are obtained for the quadratic free-ene
surface model. Here the third- and higher-order cumula
vanish becausePT(j,h) is Gaussian inj andh.
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