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THE OVERFITTING PRINCIPLES SUPPORTING AIC 

DAVID F. FINDLEY 
Bureau of the Census 

Washington, DC 202334200 

ABSTRACT 

In the context of statistical model estimation and selection, what is “over-fit”? 

. What is “overparameterization”? When is a “principle of parsimony” appropriate? 

Suggestive answers are usually given to such questions, rather than precise definitions 

and cathematical statistical results. In this article, we investigate some relations 

that yield asymptotic equality between a variate which is the natural measure of 

overfit due to parameter estimation and one which is a natural measure of the 

accuracy loss that occurs when the estimated model is applied to an independent 

replicate of the data used for estimation. Relations connecting overfit with accuracy 

loss are what we call overfitting principles. The principles we consider yield a 

theoretical framework in which questions like those posed above can be answered with 

some precision and with allowance for the possibility that the model family does not 

contain the true model. One of the relations is shown to be conditionally equivalent 

to the bias-correction property used by Akaike to motivate the definition of AIC. 

Our results establishing this principle also provide the first complete verifications of 

AIC’s bias-correction property for general exponential families for i.i.d. data and for 

invertible Gaussian ARMA time series models. 

KEY WORDS: Principle of Parsimony; Minimax Likelihood Principle; Exponential 

families; ARMA models. 
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1. INTRODUCTION 

Broadly useful methods like Akaike’s minimum AIC criterion for model 

comparison (MAIC) usually rest on one or more deeper theoretical principles of 

considerable interest. In the case of MAIC, two kinds of principles have been 

identified. First, Akaike (1973, 1977, 1985) stressed the role of AIC’s bias-correction 

property in the search for the estimated model with the maximal expected 

loglikelihood (Kullback-Leibler-entropy maximization principle). Linhart and others, 

see Linhart and Zucchini (1986), have considered extensions of this approach to a 

*variety of expected discrepancy functions different from Kullback-Leibler entropy. 

Second, Shibata (1980, 1981) discovered a predictive efficiency characterization of 

MAIC*in both stochastic and fixed regression contexts. An analog of this predictive 

efficiency property has been shown to be a useful benchmark for bandwidth selection 

in nonparametric regression, see H&dle and Marron (1985). 

In this note, we focus on the approximation relation which underlies the 

bias-correction point of view and on a second which is closely related. Both are 

interpreted as “overfit ting principles”, because they assert that the natural measure of 

overfit defined by the criterion optimized for parameter estimation approximates the 

average loss of fit which occurs whenever the model determined by the estimated 

parameters is applied to an independent replicate of the data set used for estimation. 

These principles make it possible to give precise formulations and analyses of the 

fundamental but usually vague concepts of “over&” and “overparameterization”, as 

well as of the “principle of parsimony”. They show how “overfitting” is a general 

and undesirable phenomenon and that “overparameterization” is a somewhat 

problematic concept except in special situations involving the comparison of nested 

models. The “principle of parsimony” is similarly limited. 
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2. The Overfitting Principles and Some Examples to Which They Apply 

For the sake of explicitness, our initial discussion will be in terms of maximum 

likelihood estimation. Let xl,“‘,xN be observed variates whose log density function 

L&rue ( = LirUe(x,,,xN)) has finite expectation EirUe q &{Lp} < 00. Let 

LN[“] (= LN[~(xl’--’ xN)), 8 E @ denote a parametric family of loglikelihood 

functions which is intended to provide an approximation to Lp, even if this log 

density does not belong to the family. The parameter set 0 will be a subset of 

space IRS of s-dimensional real column vectors. Thus dim0 = s. We assume that 

-the parameterization is unique: LN[O’J # LN[q if B # 8. Further, both LN[fl and 

the expected log likelihood jimction, 
I 

EN[ti = E{LN[% 

must be twice continuously differentiable on 0 and have matimizers over this set, 

denoted &, respectively, ON. 

The “over-fitting principles” referred to earlier are approximation relations of the 

form 

Such relations will be shown to be naturally interpretable as 

W) “overfit” A “accuracy loss with independent replicates”. 

Different measures of approximation define the different principles discussed below. 
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2.1 Three Examples Classes 

Before discussing the various relations, we introduce the three model classes in 

which all overfitting principles will be verified, sometimes after further restricting the 

parameter set. The first class is an elementary one, involving linear regression, 

chosen for its illustrative value. 

Example I. Suppose the observation xn are independent, scalar variates having a 

mean function pn = Exn which can vary with n, but having a constant variance vx 

. and a constant fourth moment for en q xn - ~111. Let zn be any scalar regressor 

sequence which satisfies the two conditions CTzl zi = 00 and 
I 

SupN N-l{ ii /hi - ( iii Z2)-l( ii /.L Z )2} < 00. 

n=l n=l n n=l n n 

The latter holds, for example, if sup, ] pn ] <oo, or if pn = Pozn for some Do. With 

eT denoting transpose of 0, set 0 z ([v flT: 0 < v < co, --co < @ < 00) and 

Then 

EN[v,fl = - t IO@m - & (NvX •t- .;I (Pn - &J21. 
= 

s, T The maxim.izerS 8N = [vN ON] and ON = [vN @N] T are given by BN = 

& ’ ‘i=l zn&/E~=l ‘i 
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N 
’ (Pn - @NZn) 

2 

n=l 

the sequence vN is bounded. This need not be true of the sequence PN. For 

example, if pn = p # 0 and if zn = nBr with 0 < r < 0.5, then PN ---t 00 at the 

rate Nr (and vN + vx + p2) as N ---t 00 . 

Ezampk 2. Consider loglikelihoods for independent and identicauy distributed variates 

xn being modeled via an s-dimensional minimal exponential famiZy of densities (with 
. 

respect to some measure v). Thus, 

L,[fi = - N~[dj + n:llogb(xn) + oTn;It(xn), 
= - 

and 

E~[fl = N{--IE[~] + flogb(xn) + ST&t(x)}, 

where rc[q is an infinitely differentiable and strictly convex function of 8 in the 

interior of the natural parameter set 

o* = {e: sx eeTt(x)b(x)dy < 00). 

The interior of O*, denoted IntO*, is the set of 8 E O* for which there is an 

s-dimensional ball of positive radius centered at 0 which is entirely contained in O*. 

See Chapters 7-8 of Barndorff-Nielsen (1978) for information about such families. 

(Regular families, with O* = IntO*, include multivariate normal, Poisson, logarithmic 
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and Hardy-Weinberg distributions, as well as multinomials and negative multinomials. 

See Barndorff-Nielsen (1970) for complete details.) It follows that LN[ 8] and EN[q 

are infinitely differentiable and strictly concave on IntO*. So their maximizers, if 

they are in IntO*, will be unique. The maximizer of EN[q does not depend on N, 

because EN[fl = NE1[O’J. (This always happens when the xn are identically 

distributed, and LN[q = Er=I h(x,) for some h(x)). For this example, we assume 

that EN[q has a maximizer dco E IntO* and that &t(xl)Tt(xl) < 00, conditions 

which are certainly satisfied if LirUe = LNIBoo] with 0m E IntO. 

. 

Ezample 8. Let xl,“‘,xN be successive observations from a covariance stationary 

time Teries with mean 0. Suppose we wish to model their autocovariance structure 

with models which can be defined by spectral density functions r[q(X). Set ~j q 

&⌧ ⌧ n n-j and 

Yj[q E !TT VlWoW~ 
(j = 0, fl, . . . ). 

Define the NxN matrices lYN E [r. ] j-k 11 j,k<N’ $[q = [Yj&[BlIl<j,k<N> and the vector 
XN = [xl . . . XN] T. Then the Gaussian loglikelihood family 

LN[q - - ; l”g2d r,[l 1 - i Xi I'N[e]-'XN 

has the expected loglikelihood function 

EN[q = - t log%]rN[q] - i trrN[q+N, 
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where tr denotes trace. Our strongest assertion, (2.3) below, will hold when the time 

series xn is Gaussian, 0 is convex and compact, and the LN[fl are loglikelihoods of 

invertible ARMA models, with LirUe = LN[6,] for some dW E IntO, see Section 6. 

In Examples 2 and 3, explicit formulas for the maximizers 3N and 6N are 

available only in special cases. 

2.2 The Overfitting Principles 

. For SeqUences of random variables uN and vN, We Write UN NP vN if uN - vN 

converges to zero in probability as N -+ oo (alternatively, uN - v N -+p 0). If 

E{“N*- VN) + 9, we write uN “& vN’ Finally, we write uN NmabS vN for mean 

absolute convergence, &I uN - vN ] ----) 9. Since ] &UN - &vN ] 5 &] uN - vN ] , this 

condition implies uN “& vN as well as u N ~~ vN, see Theorem 4.1.4 Of Chung (1968, 

p. 64), for example. This paper is concerned with the interpretation and verification 

of the two asymptotic relations 

* ,. 
LN[eNl - LN[eNl NP EN[eNl - EN[eNl 

and 

LN[aNl - LN[eNl “& EN[eNl - E&’ 

(24 

(2.4 

and with some of their consequences. 

The relation (2.1) certainly suggests (2.2), but (2.2) is normally much harder to 

verify, especially when no explicit formula is available for $N. Section 6 presents the 

first complete results for this situation. Instead of obtaining (2.2) directly, we shall 



verify the stronger result 

2.3 Interpretation of (2.1) and (2.2) 

Let Xl,...,XN be an independent replicate of xlj”“xN’ Denote its log density 

true - 
LN (X1’... 

-true 
>+ by LN - Set LN[Ol E LN[Ol(xl,...,xN). The expression on the 

right in (2.1) and (2.2) is non-negative and can be rewritten as a difference of 

- Kullback-Leibler discrepancies (which are quasi-distance measures, see Csiszar (1975)), 

* 
EN[eN] - EN[ aN] = (Ep - EN[aN]} - {Ep - EN[eN]}. (2.4 

The first expression on the right in (2.4) is the discrepancy between (the 

distributions defined by) LirUe and LN[BN]. The second is the smallest possible 

discrepancy between Lpe and any LN[q, 6 E 0, because eN maximizes EN[q. By 

Jensen’s inequality, or the inequality of Kullback and Leibler (1951), these quantities 
A -true 

are positive unless L&] = LN ) respectively, 

probability one, a qualifying statement we omit henceforth), the latter occurring if 

and only if Lirue belongs to the parametric family. The variate (2.4) is thus the 

excess discrepancy (above the minimum) arising from the fact that the best 

approximator, LN[eN] is not known but must be estimated. It is an unavoidable cost 

of estimation. 

Analogously, LN[eN] is a best approximation to LirUe, and maximization of 

LNIOj leads to the larger-than-ideal variate LN[hN]. (This is the most natural 

meaning of the statement “$N is overfitting”.) Under (2.1), its excess LN[?IN] - 

L&] above LN[eN] approximates the excess Kullback-Leibler discrepancy (2.4) 
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associated with 8N. Under this approximation therefore, LN[aN] - LN[eN] can be 

naturally reinterpreted as a cost of overfitting. The second asymptotic relation (2.2) 

makes a similar statement in terms of averages. Thus, if we call the variate on the 

left in (2.1)-(2.3) the overfit and the variate on the right the loss of accuracy, these 

relations provide instances of the statement (OP) given at the beginning of this 

subsection. This is why they are called overfitting principles. As the counterexample 

of Section 7 demonstrates, they are not universally valid. 

In familiar situations, both sides of (2.1) have a limiting distribution which a 

-second-degree Taylor expansion argument shows to be the distribution of a linear 

combination of s = dim6 independent &i-square variates, each with 1 degree of 

freedtm, having nonnegative coefficients, 

If the true log density is contained in the parametric family, then usually e= 1 for 

i=l,...,s. In general, therefore, overfit is a random quantity which varies from 

realization to realization of the observed sample. In the special situation in which 

p2 i = 1 for all i, overfit depends, asymptotically, only on the number of parameters 

estimated. 

Finally, we note that it follows from (2.1) that if eN and gN are distinct 

maximizers of EN[fl, then L&] -p LN[BN]. 

2.4 Connections with AIC 

From the discussion above, it is clear that the quantity EN[aN] would be a 

natural performance measure to apply to competing model families for purposes of 
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model selection if enough information about its value could be obtained from the 

observed quantity LN[aN]. To have an asymptotically unbiased estimator, it is clear 

from the identity 

E~[Ql = LpJQl + IE~[&J - L~[e,lI 

that an estimate of E{EN[^BN] - LN[ $1) is what is needed. It follows from 

E{LN[flNII = EN[eN] and 

- 

E& - LN[8N] = iE~La~l - E~[e~lI * 
+ {EN[Q - LN[eNIl + GN[eNl - LN[aNII 

that the overfitting principle (2.2) is equivalent to 

E& - LN[8N] “& - -2(LN[eNl - LN[eNII - 

(2.6) 

(2.7) 

(2.8) 

The conditions we utilize in Theorem 3.2 below to derive (2.2) and (2.3) also 

yield, via (2.5), that the bias approximator on the right in (2.8) satisfies 

W$JQ - LN[flNII NE !, g * - 

Given (2.9), it follows from (2.8) that (2.2) is equivalent to 

(2-g) 

(2.10) 
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This is noteworthy because, when the true log density belongs to the model family, 

resulting in # = , ( . ) 1 2 10 can be rewritten as the bias relation used in Akaike 

(1973) to motivate the definition of MC, which, in our notation, is 

-2EN[aN] “‘E AICN z -2LN[tiN] + 2dim6 . (2.11) 

That is, in this situation, (2.2) and (2.11) are equivalent. 

It is clear from (2.6) that AICN[?IN] does not estimate -2EN[aN] in any other 

-probabilistic sense, because the mean zero term EN[6N] - LN[6N] on the right in 

(2.7) will generally be of order N1/2 in probability and will dominate the other 

terms: which are bounded in probability, by (2.5): consider, for example, the case in 

which x1,...,xN are i.i.d., LN[fl = CfZl logf[B](x,), and logf[6m](x) has finite 

variance v 00’ Then N -1’2~EN[eml - LN[ewl) converges in distribution to K(O,voo) 

and so is bounded in probability. Hence, -2EN[$] - AICN[aN] is of order N ‘I2 in 

probability. 

The fact that AICN[aN] approximates -2EN[ $N] only in the mean sense was 

originally made clear in Shimizu (1978), where the first complete published statement 

and proof of (2.1) can be found, for the case of overparameterized Gaussian 

autoregressions estimated by least squares. Shimizu does not mention the 

interpretation of (2.1) as an overfitting principle given in the preceding subsection. 

At least in the case in which Lp belongs to the parametric family, (2.1) and 

(2.2) are now part of the lore of AIC. The relation (2.1) is suggested in Figure 4.2 

of Sakamoto, Ishiguro and Kitagawa (1986, p. 68), which is presented in the course 

of their informal derivation of AIC for i.i.d. observations. (Our development of 

(2.10) is similar in outline to their derivation of (2.11)). It will be seen in the next 

section that second-rder Taylor expansions easily suggest (2.1) and (2.2). What 
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have been lacking are complete verifications of (2.2) and (2.9), and a general 

formulation and derivation of (2.1). 

Remark. Shibata (1989) discusses estimators of the term XI=1 # in (2.10) given 

independent observations, including the first such estimator, proposed by Takeuchi 

(1976), for a special case. He also considers the situation in which maximum 

penalized likelihood estimators are used. More generally, Ishiguro et al. (1991) 

successfully utilize a bootstrap estimator of the bias term E{EN[ hN] - LN[?IN]} for 

-estimators tiN which need not Satisfy (2.1). 

3. THEOREMS AFFIRMING (2.1)-(2.3) 

The theorems of this section do not require that LN[fl be a loglikelihood 

function. They thereby cover alternative situations considered by Linhard and 

Zucchini (1986). For example, sums of squared errors from linear or nonlinear least 

squares regressions can satisfy the conditions we impose. The basic requirements are 

that LN[q = LN[6](xl,..., xN) and its expected value function EN[q E E(LN[q} be 

twice continuously differentiable on the convex set spanned by 0, that Q have 

nonempty interior in IRS, and that LN[q # LN[q with positive probability whenever 6 

# 8 (identifiability). We use LN[ 8] to denote the gradient vector aLN[q/@ and 

LN’[6] to denote the Hessian matrix 8%N[6j/a6a6Ts Similarly for EN[q and 

EN’ [e]. Our derivations focus on the analysis of the difference of two second-degree 
1 A 1 

Taylor eXpanSiOnS, Of LN[ 6N] - LN[ 6N] about 6N, and Of E[ 8] - E[6N] about ON, 

elaborated by the insertion of a nonsingular normalizing matrix BN, 
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teN - a~)~$[ aN] - ( aN - eN)TE&N] 

where aN and 8N have the form CyNflN + (~-ON) $N with aN a random variable 

satisfying 0 < o!N < 1, and where BN -’ denotes (Bg)-l. Often BN is N112 times 

the identity matrix of order dime, but, for Example 1, BN E 

- diag(N1j2, (EN n=l zi)li2) is appropriate. We now present an easy and general 

result for (2.1) and a more restricted theorem affirming (2.3). The assumptions have 

been Chosen to accommodate some situations in which the sequence BN does not 

converge, as in the special case discussed for Example 1. 

Theorem 3.1. Suppose that the sequences $N = aN(xl,...,xN) and 6N satisb (Pl) 

below. Assume also that there is a sequence of nowingzllar matrices BN such that the 

T eigenvalues of BNBN tend to 00 as N + 00, and such that conditions (P2)-(P3) hold: 

w 6) El;[e,l = 0 for all N > No, for some No. 

(ii) There iS a K > 0 such that if (tiN - 6N)T(aN - 6N) < K, &?I 
* 

$pN] = 0. 

(P2) The sequence BN(6N - 6N) is bounded in probability. 

WI 6) -T BN {E&6N} - &‘[6N]}B$ --+p 0. 



satisbing 0 < aN < 1, we have 

(ii) 

and 

(iii) 

-T I’ * 

BN jLN [s, 1 - Ll;‘ieNl}Bil -p ‘, 

* BiT{Ei’[eN ] - E&‘pN]}Bil --+p 0. 

Then (2.1) holds. 
* 

Proof: We must show that the terms on the right in (3.1) converge to 0 in 

probability. For the second derivative expression, this follows immediately from (P2) 

and( P3), because BiT{Li’ [aN] - Ei’ [$N]}BG1 is a linear combination of 

expressions of the kind considered in (P3). The E&N] term is ultimately 0, by 

(Pli). Finally, because of the assumption on the eigenvalues of B$BN, (P2) implies 

^BN - 6N +p 0. Hence, by (Plii), the probability that (?IN - 6N)TL&N] is 0 

tends to one. This completes the proof. 

To obtain (2.3) from (2.1), and (2.9) from (2.5), we will use the following 

standard result, see Chung (1968, p. 452)). 

Lemma 3.1. If the sequence of variates zN satisfies zN hdist z for some z, and if . 

supN EIzNI’ < 00 for some p > 1, then EIzNI + EIzI, and &zN + &z . 
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For p > 0 and for random z, consider the p-norm 1 z 1 p q {E I z I } p ‘lp. To 

verify the Lemma’s moment boundedness assumption, we will utilize a simple variant 

of Hijlder’s inequality: if the positive numbers pl, p2, p3 are such that pT1 + pi1 

+ Pi1 = p -l, then #uvwap 5 u4P1uvIP2bAP31 see Hardy, Littlewood and Polya 

(1952, p. 44), for example. In particular, for (Y > 0, 

. 
We partition the integers j = l,..., s into the (possibly empty) subset J of 

indices j such that 8LN[aN]/aej = 0 holds with probability 1 for N 2 No for some 
* 

No, and its complementary subset, denoted J (possibly empty). 

Theorem 3.2. Let the hypotheses of Theorem 3.1 be satisfied and also (El) - (E3) 

below: 

(El). 
,. . 

For Some cW>o, supNIl ( eN - eN)TB$N( eN - BN> #2(l+a) < 0 . 

(W For any j in the complementary subset j of coordinate indices defined 

above, BN,j = N112, and BN ij = 0 if i#j, i = l,..., s. Further, 
> 

SupN u&L,[e,]/a6j~2 < 00 . 

(W For every sequence 6; of the sort considered in (P3), 

* 
(i) supN [ tr(BiTE1;‘[6N]B;1) I2 < 00 , 

* 
(ii) SUPN [ tr(B~TL~‘[6N]B~1) 1 2 < 00 . 
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Then (2.3) is satisfied. Further, if LN[aN] - L&] converges in distribution to a 

variate z with a finite mean, then 

bmN-oo E{LN[BN] - LN[6N]} = &z = limNhW &{EN[flN] - EN[aN]}’ (3.5) 

Proof: By the Lemma and (2.1), it suffices to establish the 1 + a/(2+a)-norm 

boundedness of the Taylor expansion terms on the right in (3.1). For the second 

degree terms, this follows from (El) and (E3) via (3.4). The term 
,. 

- (‘N - eN)TEr;[eNl is eventually zero by (Pli). 

It remains to consider terms involving 8LN[e,]asj with jcj. Let A(N) denote 

the e;ent {( tiN - 6N)T( )N - 6N) > K}, pr(A(N)) its probability, and lA(N) the 

variate which is 1 if this event is true and zero otherwise. By (P2ii), for each jcJ, 

8. * 

(‘N,j - eN,j)aLN[eNl/aej = jN 
l/2 - 

('N,j - N,j e )}{‘-1aLN[~NI/“j}{N1’21A(N~} - 

Therefore, by (3.4) and (El) - (E2), the boundedness result we are after can be 

obtained by verifying 

s”PN {N 2(1+“)pr(A(N))} 1’4(1+a’ ( = SupN [N1’21~(~)~4(l+a)) < 00 . 

This follows easily from Chebyshev’s inequality (Chung (1976, p. 46)): 

s”PN N 2(1+o!)pr(A(N)) 5 K -2(1+a)supN N 

= K-2(1+(y) SUPN &(N( 8N - 6N)T(tiN - 6N))2(1+a) < 00 ) 
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the finiteness resulting from (El). 

There are numerous results available in the literature for verifying (P2) and 

(P3). Some references are given in Section 5 below. The situation is quite different 

with (El) - (E3). Precise results are given in Section 6 to establish their validity in 

cases of Examples l-3. 

4. MINIMAX LIKELIHOOD PRINCIPLES, PARSIMONY, AND ANTIPARSHbfONY 

. The left hand side of (2.1) is not an observable quantity because eN is 

unknown. We can only observe differences of LN[$N]-values from competing models. 

Under the conditions described in this section, such differences approximate the 

difference in overfitting costs of the estimated models. As in Section 2, we assume 

that eN and 8N are maximizers of EN[OI and LN[q, respectively. 

Suppose we have two competing families for approximating LArUe, namely 

L$)[a(‘)], 8) E O(i) c Rs(i), i = 1,2 . The relations 

L&‘)[&‘)] - LA2)[$i2)] N 
P 

Ek2)[$&2)] - E&l)[a&l)] (44 

and 

@[ $l)] _ LA2)[ $A2)] NE Ei2)[$&2)] - $)[ $&‘)I (4.2) 

follow immediately from (2.1) and (4.3) - (4.4) below, respectively, (2.2) and (4.4): 

(4.3) 
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Ep[ep] - Ep[ep] --t 0. 

Note that (4.3) and (4.4) both hold if 

r$)[e&l)] = L&2J[e&2)11 N 2 No . 

(4.4). 

(4.5). 

If L t rue belongs to both families, then LN [6N 6) (i) 
N ] = Lkrue, i = 1,2 as we 

explained in Section 2.2, and (4.5) is satisfied. 

. The left-hand side of (4.4) is the difference of the Kullback-Leibler 

discrepancies of the best models from the true model, Ep - E#)[O#)], i = 1,2. 

Thus*(4.4) requires these best models to be asymptotically equidistant from the 

(1) (1) truth. Usually, when (4.4) fails, EN [ON ] - El&2)[Ol$2)] has order N. Then the 

costs of overfit, ENIBr(J1)] - EN[a&‘)], i - - 1,2, which are bounded (in probability) 

by (2.5), will be of negligible importance for model selection, for large enough N. 

The condition (4.3) requires that the best models be asymptotically coincident. 

In many situations where (4.3) holds, both sides of (4.1) have a limiting distribution 

which is the distribution of a linear combination of independent chisquare variates 

with 1 d.f., 

L&‘)[ep(r’)] - Ll$2)[$l$2)], E&2)[$l$2)] - Er(rl)[$‘)] +dist : &(l). 
. j=l J J (4.6) 

In (4.6), both positive and negative coefficients ~j can occur unless the models are 

nested, see Theorem 4.3 of Vuong (1989, p. 313) for the i.i.d. case and Proposition 

7.3 of Findley and Wei (1989) for the case of stochastic regression models. 
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4.1 Minimax Likelihood Principles 

To help interpret (4.1), we note that it has the following consequence. Suppose 

that for some 6 > 0, the events 

BN(6) = {Li’)[@)] - L&.2)[8’i2)] > s) 

have a probability which is ultimately positive, limNdoo pr(BN(6)) > 0 . Then for 

- any 0 < S* < 6, it follows from (4.1) that the conditional probability under BN(6) 

that Ek2)[8A2)] - E&‘)[$‘)] > S* holds will converge to 1, 
* 

limNhoo pr( EA2)[ 8k2)] - E&‘)[$$‘)] > s* I B N (6)) = 1 > 

because this probability is bounded below by 

pr( I {E&2)[8(2)] - Eh’)[ 8(l)]} - {L&l)[aA1)] - Li2)[&2)]} I < SS* I BN(6)). 

( 1) - ( 1) In this sense in particular, the value of LN [6N ] - Li2)[ a&2)] is indicative of the 

t rue value of {EN _ E&+)&l)]} _ {Ekrue _ E1$2)[?IA2)]}. Thus, in the case of 

loglikelihood functions, (4.1) embodies a minimax likelihood principle: among models 

which are asymptotically equivalent in the sense that (4.3) and (4.4) hold, the model 

with smaller maximum likelihood is to be preferred, because it has a lower cost of 

overfit, in the sense discussed in Section 2.3, by approximately the amount 

p[~o] - [L(2)[@)]1 
N N N N ’ 

The relation (4.2) expresses an analogous mean minimax Zaglikelihood principle 

concerning mean over&. 



20 

4.2 Nested Models: Overparameterization and the Parsimony Principle 

We say that LN [ ( 2, 801 d2) E Cd21 is nested in L&‘)[e(‘)], 6(l) E Q(l) if, for , 

each h2) E C3(2), there is a 8(l) E O(l) such that Ll$2)[6(2)] = L&‘)[e(l)] holds for 

all N. Because of our identifiability requirement, this SC) ’ is unique, and the 

function g defined by g( 6(2)) = 8(l) has the property that g(b2)) # g(&2)) if 

d2) # d2! A ssuming that (2) dim6 < dim&l), we say that the e(l)-family is 

overparameterized relative to the smaller d2)-family if the EN-functions ultimately 

have the same maximum value, 

Ep[ ep] = Ee)[ Br(r2)] (N 2 No) . (4.7) 

In other words, the best models in both classes become equidistant from LF in 

the Kullback-Leibler sense. (1) Assuming that the maximizer ON of E&l)[e(l)] is 

unique when N _> No, it follows from (4 7) that g( 8( 2)) . N = 8( ‘) for N > N N - 0’ and 

hence that (4.5) holds. Then, if (2.1) and (2.2) hold for the two families, so do 

(4.1) and (4.2). Since L&‘)[&‘)] - LA2)[ai2)] is nonnegative, the limiting 

distribution in (4.6) will be positive with probability one. Therefore, the mean 

* ( 2L minimax principle will prefer the nested 6N model when N is sufficiently large, and 

the minimax principle will also prefer this more parsimonious model with probability 

approaching one, as N + 00. In these senses, overparameterization is undesirable. 

These two asymptotic arguments in favor of the model with fewer parameters 

when (4.7) holds constitute precise, mathematical derivations of two principles of 

(parameter) parsimony, derivations which avoid the assumption that LFue is 

contained in the nested family. Somewhat surprisingly perhaps, no similarly general 

principle holds for non-nested models comparisons, as we now explain. 
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4.3 Non-Nested Models: Parsimony and Antiparsimony 

With non-nested models satisfying (4.5) which are not close to the correct 

model, it can happen that the mean of the distribution of the right hand side of 

(4.6) is such that the mean minimax loglikelihood principle favors the family with 

more estimated parameters, and so is antiparsimonious, see the second example of 

Findley (1991). On the other hand, if both families contain Lp and if, say, 

timd2) < dirndl), then (4.6) usually takes the form 

. Z{Li’)[$&‘)] - LA2)[ $k2)]}, 2{EL2)[ aA2)] - El&l)[ al&‘)]} +dist A(m,d), . 

(4.8) * 

with A(m,d) z X2(m+d) - x2(d), a difference of independent chi-square variates with 

degrees of freedom d+m and m, where d : dim dl) - dim&2), and m = timd2) - 

&md1j2), with &m(l(1,2) denoting the largest dimension of a family nested in both 

the d ‘)- and ec2) -families, see Proposition 7.2 of Findley and Wei (1989), for 

example. Then, under the assumptions of Theorem 3.2, we obtain 

Ei2)[&2)] - EA1)[ hi’)] NE ; d, (4-g) 

which shows that, in this case, the mean minimax loglikelihood principle selects the 

more parsimoniovs (2L 6 model when N is sufficiently large. This is a weaker 

principle of parsimony for nonnested modeki which overparameterize the true model. 

However, since 

limN+co pr( Ek2)[ hk2)] - El&l)[ hi’)] > 0) = pr(A(m,d) > 0) 
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is less than one, it follows that there is always a nonzero probability that A(m,d) is 

negative. For this event, the minimax likelihood principle selects the less 

80 1 parsimonious - model, because it has less overfit, for large enough N. Table 1 

below gives these probabilities of antiparsimony for a range of values of m and d. 

Table 1 

The probability pr(A(m,d) < 0 
R 

that the m.1.e. model with d additional parameters is 
less overfitting asymptoticauy t an the more parsimonious model, when the dimension 
of the intersection of the two competing loglikelihood families is m less than the 

- dimension of the more parsimonious family. It is assumed that the true log density 
belongs to both families. 

* 

m\d 1 2 6 12 18 00 

1 .29 .18 .03 .oo .oo 
E .35 .42 .25 .35 .06 .14 .Ol .03 .Ol .oo i 

12 .44 .39 .21 .07 .02 i 
18 .45 .41 .25 .lO .04 0 

00 .50 .50 .50 .50 .50 0 

Let us now consider the performance of MAIC under (4.8). Assuming (4.1) and (4.2) also 

hold, the difference of AIC values, 

AI($t2) s -2(I$)[ i&l)] - Lh2)[ aA2)]} + 2d 

is an asymptotically unbiased estimate of -2{E&l)[ al&‘)] - E(2)[&2)]}, but does not estimate 

this quantity in any stronger sense, being, in fact, a consistent estimator of 

-2(EA2)[ $A2)] - E&+&l)]} + 2d, 
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by (4.1). The derivation of AIC given in Subsection 2.3 makes it clear that the minimum AIC 

procedure is focused on selecting the model with smaller mean overfitting cost, which is the more 

parsimonious d) 2 -model. How well does it succeed? Under (4.8), the limiting probability of 

selection of the 80 2 -model by MAIC is given by 

limN-oo pr( AICl$112) > 0) = pr(A(m,d) < 2d) . 

Table 2 gives these values for several choices of m and d. The values associated with m=O are for 

- the nested case. The tabled values show that MAIC achieves its goal best when dim d1bmd2) 

is large relative to the parameter excess in the intersection of the families. 
* 

Table 2 

Asymptotic probability that the minimum AIC procedure chooses the more 
parsimonious model under (4.8) for a range of m and d values. 

m\d 2 6 12 18 00 

0 .84 .87 .94 .98 .99 1.00 
1 .74 .81 .92 .98 .99 1.00 
2 .68 .77 .90 .97 .99 1.00 
6 .59 .67 .85 .95 .98 1.00 
12 .56 .62 .79 .92 .97 1.00 
18 .55 .59 .75 .89 .95 1.00 

00 .50 .50 .50 .50 .50 

We note, finally, that since A(m,d) < 0 excludes A(m,d) > 2, the limiting probability is 

zero that MAIC selects the less parsimonious model when this is the model preferred by minimax 

loglikelihood principle. 
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Remark. The derivation of (4.8) given in Findley and Wei (1989) is for stochastic regression 

models, but, using the notion of orthogonal parameters, see Cox and Reid (1987), it is easy to see 

how to carry out generalizations to other situations, such as that of Theorem 3.3 of Vuong (1989). 

5. VERIFICATION OF (Pl) - (P3) OF THEOREM 3.1 

Consider first the situation (appropriate for Examples 2 and 3) in which )N and @N 

converge into a compact set in the interior of 0, as happens, for example, if #N - Boo E Int 0 and 

(P2) holds. Then (Pl) is satisfied, and (P3) will follow from Uniform Laws of Large Numbers and 

. their analogues, ensuring uniform convergence in probability of BiT{Li’ [0j - Ei’ [Oj}Bil, and 

from uniform equicontinuity of BiTEi’[6’jBi1, on compact sets: see Pijtscher and Prucha 

(1991:) for very general results and examples related to dynamic nonlinear regression and also 

covering the i.i.d. case. Of course, in the case of our Example 2, where N -lL& [ 8] and 

N-lEi’ [ 8] coincide with the continuous matrix function --K’ I [e], such results are automatic. 

The remaining condition (P2) is satisfied if BN( 8N - ON) has a limiting distribution. 

Results establishing asymptotic normality are given in Berk (1972) for exponential families and in 

Pijtscher and Prucha (1991b) for dynamic regression models as well as i.i.d. models, for which a 

quite general discussion has also been given by Bryant (1991). 

Finally, let us consider Example 1, where 6N can be unbounded. Here (Pl) is satisfied 

because Li[$N] = 0 = E&N]. For (P2) - (P3), consider the formulas 

( !l z2)1/2(BN -pN) = ( ; z2)-lj2 
N 

n=l n n=l n 
c znen > 

n=l 
(5.1) 

N112(;, -vN) = N -112 E (eH-vX) 
n=l 

- N-1/2 (nilz;)(a, - /3N)2 
= 
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+ 2N -1’2 ’ bn - pNzn)en , 
n=l 

and, as representatives of the second derivative formulas, 

2N -1 a2 N 2 
2 LN[v,fl = Vq2- 2vB3{~pq+N-1(F~~)2 nclznI 2 

= 

2N -1 a2 N 2 
2 EN[v,fl = VB2- 2v-3{vN+N-1(~&)2 nflZn} . 

- 

(5.2) 

(5.3) 

(5.4) 

*From (5.1), we see that (C~Z1z~)-1/2 (BN - BN) is bounded in probability because its 

mean square is bounded (equal to v”). Similarly for the first term on the right in (5.2), because 

en has a finite fourth moment, and for the third term, since N -’ N Cncl (,!J - oNzn)2 is bounded. n 

Consequently, (P2) holds. The way in which (P3) is also satisfied is now clear from expressions 

like (5.3) and (5.4), because the terms explicitly involving fl*, tend to zero in probability, as does 
* 

VN - VN. 

6. VERIFICATION OF (El) - (E3) OF THEOREM 3.2 

Not surprisingly, we have to impose more restrictions on the model families to obtain (2.3). 

We will often need the parameter set 0 to be compact, usually a compact subset of a noncompact 

“natural” parameter set. Also, when no explicit formula is available for $, we will assume that 

the true model is in the family, at some Om E Int 8. 

6.1 When 8N is a Linear Least Squares Estimate. 

We focus mainly on Example 1. Here the deepest problem is the difficulty of verifying 

(E3) caused by the negative powers of vi in Li’[vi, &] and Ei’[vg, /$I, see (5.3) - (5.4). 
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Note that since vN 2 vx, only the event iN < VP; < vN is problematic. Hence it suffices to 

establish 

SUPN>N(~) El+NI-P < 00 (p = 1,2,3,...) . (6.1) 

In general, this requires strong assumptions. We consider two possibilities. 

6.1.1. Unrestricted 0. 

. Assume that xn is Gaussian and that pn = pozn. In this case, iN has a x2(N-1) 

distribution, and (6.1) holds for all p > 1 with N(p) = 2p+l, see Lemma 2 of Sriram and Bose 

(1988jfor a general result. Clearly (E3) follows easily in this case, as do (El) (5 is void) and 

(W 

Findley and Wei (1989) established the analogues of (6.1) and (2.3) for Gaussian vector 

autoregressions. Bhansali and Papangelou (1992) improved upon their results in the case of 

univariate autoregressions. Findley and Wei (1993) give a very general result for non-Gaussian 

vector autoregressions. 

6.1.2. Restricted v: 0 = {[v AT: v <v<oo,- o 00 < p < 00) for some 0 < vo<vx. 

Assume that supN El en 1 8(1+cu) < co, and that the regressors zn satisfy 

limN+ o. (nilz:)4(1+u)n!l 1 zn 1 8(1+a) = 0, 
= = 

and 

s”PN N -l nil~pn-/3Nzn14(1+a) fDoo<oo, 
= 

(64 

(6.3) 



27 

for some (Y > 0. It is easy to check that (6.2) is satisfied if pn = p # 0 and zn = nmr, 

O<r<0.25( 1+*)-l. So is (6.3), because then N 
-1 4(l+cz)BN 

@N n =l ] zn ] 4(1+cu) has order 

N-lN4(1+(‘)rN14(l+a)r = 1. 

The formula given earlier for the maximizing va.bre vN in the case of unrestricted 8 

remains valid, because vN 2 vx > vo. But now the iN maximizing LN[v, BN] has the formula 

+N = max{vo, N -1DN 
n =lcXN - &zn)2) ’ (64 

- If ] iN ] < 0.5(vx - v,), then iN > vx and Li[GN, bN] = 0 . Hence (Plii) holds. 

The condition (6.2) is exactly what is required to obtain the convergence of 

@% +I N 
w+4 to &I z 1 w+4, with Z N K(0, vx), see Corollary 2 of Chow and Teicher 

(1988, p. 410). Hence these moments are bounded. 

On the other hand, a standard moment inequality for sums of independent variates, see 

Lemma 111.3.1 of Ibragimov and Has’minskii (1981, p. 186), asserts that Doe in (6.3) is 

proportional to an upper bound of the absolute 4(1+a)-moments of the final term on the right of 

the identity (5.2) for N -1/2(N-1gN (x - 
n=l n - &‘n) 2 - vN)’ That is, (6.3) yields 

s”PN IN -1’2 ~~=1(111n-PN”n)en~4(l+a) < 00 . 

Under (6.4), since vN > vo, we have 

1 N112(i N - VN) 1 < 1 N1’2( fzl(xn - 8N”n)2 - VN I. 

Thus (6.2) and (6.3) together imply, via (5.2), that SUpNlN 
l/2 A 

(vN - vN)(14(l+*) < co. 

Therefore (El) holds. As is clear from (5.3) - (5.4), these results, and the fact that Gil < vil, 

are enough to establish (E2) and (E3). 
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6.2 No Explicit Formula for $: I.I.D. Case (Example 2) 

The only source of difficulty in verifying the conditions of Theorem 3.2 for general minimal 

exponential family models is the verification of (El). We begin with a general result for (El). 

Suppose that the xn, n = 1,2,... are independent and identically distributed, and that 

f[Oj(x), 6 E 0 is a family of density functions (with respect to a &mite measure v on the sample 

space X) containing the true density of the xn, true(x) = f[Boo](x) with So0 E IntQ. We need a 

set of conditions involving only 0 and the r[14 which yields (El). The main such result in the 

literature is Theorem III. 3.2 of Ibragimov and Has’minskii (1981). Theorem 6.1 below is a 

- conveniently stated special case, some of whose hypotheses we now describe in advance. 

We consider only the case where 0 is compact set in IRS with nonempty interior and without 

isoZat;d points (every point on the boundary is a limit of points in the interior). As always, r[q(x) 

and f[q(x) are required to define distinct distributions if 6#$. Also, f[Oj(x) must be differentiable 

at every 6 E 0 for I/--almost all x, and f112[fl(x)inogf[8j(x)/&Y must be v-square integrable. 

Further, at each 6 E 0, the “information” matrix 

WI q /⌧ {aogf☯Bj(⌧)l~s)~aogfI~(⌧)/~e}TfI~(⌧)d~ 

must be nonsingular. Then, under the assumptions of Theorem 6.1 below, I[4 is a continuous 

function of 6, see Theorem 1.7.1 of Ibragimov and Has’minskii (1981). As a consequence, its 

eigenvalues are bounded and bounded away from zero on 8. Finally, if s > 1, we also require that 

for some r>s, 

Recall that a family g[Oj(x), 0 E 0 is called LE-continuous on 0 if 
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lim- e+ e/x ld~~-d8)12dv=0 (6.6) 

holds for all 6 E 0. (8 is restricted to lie in 0). 

Theorem 6.1 (Ibragimov and Has’minskii). Suppose that the conditions stated above apply and, 

also, that f112 [6j and 8f1/2[6j/A9i, i = l,...,s are LE-continuous. Then the maximum likelihood 

estimate8 aN 8ati8h 

N1’2($ - eoo) -dist K(O, l[emi-l) , 

and, f;r eve y p 1 1, 

s”PN Ei N(hN - em)T(aN - em) i PI2 < 00 . 

(6.7) 

(6.8) 

We utilize this result in the proof of the following theorem, which verifies the 

bias-correction property of AIC for exponential family variates. 

Theorem 6.2. Let xn, n = l,..., be i.i.d. variates with an exponential family distribution which is 

specified in terms of a minimal sufficient statistic t(x,) of dimension s by means of a dewity 

f[6J(xn) = b(xn)exp{ 6zt(xn) - ~[0j} (with respect to a a-finite measure Y), with 6m in the 

interior of the natural parameter space Q*. Let 0 denote any compact set in IntQ* containing 6m 

in its interior, and having no isolated points. Then (2.3) holds, for arbitrary cy > 0, as does (2.11) 

for the maximizer aN of LN[q E N-l cf=1 logf[fl(xn) over 0. 

Proof: We will verify the conditions of Theorem 3.2 with BN = Nq1j21. Because Boo defines the 

true density, it is the maximizer of EN[fl, and since Boo E IntQ*, the condition (Pli) holds with 
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NO=l. We have N-lLi[q = N-l Cf=l t(x,) - ~[9j. Thus the validity of (E2) follows from 

the fact that tc’[$j is continuous on 0, so its entries are bounded on this set. The remaining 

conditions follow from N-lLi’ [ 8] = N-lEi’ [B] = --IE’ ’ [e] and from verifying the hypotheses of 

Theorem 6.1. This will establish (El) and also (2.5) with # = 1, i 5 i 3 s, since, for example, 

,. A 
LN[eNl - LN[eml = (N/2)(eN - em) Tn”[e$( $ - em), 

and we will have N 1’2(i)N - 6 00 ) -dist K(0, t~“[t’~]-‘), from (6.7). 

. 

It remains, therefore, to verify the Lz-continuity off 112 [q(x) and its gradient, and the 

condi;on (6.5). The required continuity off 112 [q(x) is apparent from 

jx {f1j2[$j(x) - f1/2[0’J(x)}2dy = j{r[q + r[q - 2f1/2[i!@2[0j}d, 

= 2 - 2exp{- (@I + rc[BJ)/2} lx exp {(3+8)Tt(x)/2}dv 

= 2 - 2exp{K[(3+6)/2] -(@I + 44)/2} , (6.9) 

because of the continuity of K[ e]. Now consider the derivatives 

(6.10) 

for i = 1, . . . . s. The LE-continuity of the final term in (6.10) follows from that off 112 [q and the 

continuity of K; [GJ. The LE-continuity of af 112 [6’j(x)/8ei is therefore an immediate consequence 

of the formula 
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Ix tf(x){f112[fl -f1/2[Oj}2d~ = K;# + ~;;[@j 

which is derived by a calculation analogous to (6.9), using the fact that 

2 
‘iilI611 = /X ti(x)fIq(x)dv* 

. 

It remains to establish (6.5) for WogflOj/N = t(x) - ~‘[t?j. Since K’[O~ is bounded on 

compict sets, by continuity, this can be accomplished by verifying 

suPQ !X 1 t(x)Tt(x) 1 qflq(x)dv < O” (6.11) 

for some integer q such that 2q > s. For this, we only have to recall that 2q-th moments can be 

written as polynomials in cumulants of order 2q and less, which, for t(x), are the partial 

derivatives of K[ B] of order 2q and less. Since these are bounded on 8, (6.11) follows. 

6.3 No Explicit Formula For &: Gaussian AR.MA Case (Example 3) 

Maliukevicius (1988) was able to build on the results of Chapter III Ibragimov and 

Has’minskii (1981) to obtain an analogue of Theorem 6.1 for Gaussian time series. The theorem 

below is a simply-stated special case of his Theorems 2.1 and 2.2. 

Let xn be a Gaussian, mean zero, invertible ARMA time series with spectral density 

ftrue(x). Let r[q(X), B E 0, be a parametric family of invertible ARMA spectral densities such 

that 0 is convex and compact, and f( 6) # r[Oj if 6 # 6. Then r[fl(X) is differentiable on 0 and it is 
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known, see Poskitt and Tremayne (1981, pp. 976-977), and also Hosoya and Taniguchi (1982, 

p. 138), that the matrix 

is nonsingular for all 8 E 0 . This is an essential condition for 

Theorem 6.2. (Maliukevicius) If ftrue( A) = f[eW]( A) for some Bcoc IntQ, then under the 

- assumptions made above, we have 

and 

SUPNEiN(~N-e~)T(~N-e~)i PI2 < 00 > 

(6.11) 

(6.12) 

for allp 2 1. 

To verify the conditions of Theorem 3.2 under the assumptions of this theorem, we first 

note that N ‘j2(6N - 8,) ---+ 0 holds, as explained in Remark 2.1 of Findley (1985), so that (Pl), 

(El), and (2.5) with 6 = 1, 1 5 i 5 s follow from (6.11) - (6.12). Then, utilizing (6.12), the 

arguments used to establish (3.8) - (3.10) of Findley (1985) immediately yield (P3) and (E2) - 

(E3). Hence, by Theorem 3.2, the relations (2.3) and (2.11) are valid for these models. 
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Remark. In Findley (1985), this conclusion was obtained by assuming the validity of (El) and by 

making a stronger assumption than (Plii), essentially that $ E IntQ with probability one. The 

latter condition is too strong: as the situation analyzed in Section 6.1.2 illustrates, for each N, $N 

can be expected to be on the boundary with positive probability, because the innovation variance 

parameter is not naturally bounded away from zero. 

7. A COUNTEREXAMPLE TO (2.1) AND (2.2) 

For a sequence en of independent Gaussian variates each with mean zero and variance 1, 

- let xn be the random walk process defined by x0 E 0 and by xn : Cf=l et for n 2 1. With 

-oo < 6 < 00, consider 
I 

Since &xnxn-1 = &xi-l = n-l if n 2 1, it follows that the expected-value function EN[q has the 

formula 

EN[6’1 =-; 
N 
c {Ed: + (8 - 2e)t7x2s1 

n=l 
} = - ;{N + ( C1)2N(N-1)/2} . 

N N Hence its maximizer is ON = 1. For 8N = En-l xnxn-l/En=1 xi 1 we have - -> 

and 
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. A 

EN[l] EN[6N] (N(N-q/2)( - . 

variates the are to different distributions, Example of 

and (1982) Corollary of and (1988), example. (2.1) to 

Concerning David has the with following obtained 

well-tested to asymptotic values confirmed 

Monte estimates the on left, 

. lim N ----) o. E(LN[aNl- LN[ll) ’ 1.1, 

lim N ----) m E(EN[l] - EN[hN]} A 6.2. 

Thus, not surprisingly, (2.2) also fails. 
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