
Quantitative high-throughput screening:
A titration-based approach that efficiently identifies
biological activities in large chemical libraries
James Inglese*, Douglas S. Auld, Ajit Jadhav, Ronald L. Johnson, Anton Simeonov, Adam Yasgar, Wei Zheng,
and Christopher P. Austin

NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-3370

Communicated by Francis S. Collins, National Institutes of Health, Bethesda, MD, May 31, 2006 (received for review April 12, 2006)

High-throughput screening (HTS) of chemical compounds to iden-
tify modulators of molecular targets is a mainstay of pharmaceu-
tical development. Increasingly, HTS is being used to identify
chemical probes of gene, pathway, and cell functions, with the
ultimate goal of comprehensively delineating relationships be-
tween chemical structures and biological activities. Achieving this
goal will require methodologies that efficiently generate pharma-
cological data from the primary screen and reliably profile the
range of biological activities associated with large chemical librar-
ies. Traditional HTS, which tests compounds at a single concentra-
tion, is not suited to this task, because HTS is burdened by frequent
false positives and false negatives and requires extensive fol-
low-up testing. We have developed a paradigm, quantitative HTS
(qHTS), tested with the enzyme pyruvate kinase, to generate
concentration–response curves for >60,000 compounds in a single
experiment. We show that this method is precise, refractory to
variations in sample preparation, and identifies compounds with a
wide range of activities. Concentration–response curves were
classified to rapidly identify pyruvate kinase activators and inhib-
itors with a variety of potencies and efficacies and elucidate
structure–activity relationships directly from the primary screen.
Comparison of qHTS with traditional single-concentration HTS
revealed a high prevalence of false negatives in the single-point
screen. This study demonstrates the feasibility of qHTS for accu-
rately profiling every compound in large chemical libraries (>105

compounds). qHTS produces rich data sets that can be immediately
mined for reliable biological activities, thereby providing a plat-
form for chemical genomics and accelerating the identification of
leads for drug discovery.

1,536-well � chemical genomics � enzyme assay � PubChem �
pyruvate kinase

The first description of biological effect versus chemical com-
pound concentration was made by Paracelsus ca. 1534 and

quantified by A. V. Hill in 1910 (1). The basis of these observations
is that ligands affecting biological systems have optimal ranges of
activity (EC50), and give rise to concentration–effect relationships
that can be complex, varying in potency, efficacy, and steepness of
response. Far below an EC50, no effect may be seen (referred to as
the no observable effect level or NOEL), and much above it, toxic
or ‘‘off-target’’ effects may be observed. This well known behavior
of chemical compounds in biological systems requires a specific
dose of a compound to achieve a desired biological effect, whether
in basic or clinical applications (2, 3).

Historically, new compounds with medicinal qualities were dis-
covered through laborious testing of samples using low-throughput
assays including animal and isolated tissue models. In the early
1990s, the advent of combinatorial chemistry and commercial
consolidation of small molecule collections resulted in a tremen-
dous increase in compound numbers, requiring the development of
high-throughput screening (HTS) (4). In addition, sensitive in vitro
assays became readily available with the advancement of techniques

to produce recombinant proteins and engineered cell lines. Screen-
ing large chemical libraries was sufficiently technically demanding
that the methodology focused on assaying a single concentration of
each compound. Although this technology enabled the screening of
collections exceeding one million small molecules, it has been
burdened by high numbers of false positives and putative false
negatives (5) as well as the inability to identify subtle complex
pharmacology, such as partial agonism or antagonism.

To address these limitations of traditional HTS, we used ad-
vanced screening technologies, such as low-volume dispensing,
high-sensitivity detectors, and robotic plate handling, to develop a
titration-based screening approach. To demonstrate this process,
we used an enzymatic assay designed to detect both activators and
inhibitors in a homogenous format. A procedure was developed to
plate compounds at seven or more concentrations in 1,536-well
plate format to screen the assay against �60,000 compounds in
compound-titration series. Rapid fitting and classification of the
concentration–response curves were developed to enhance and
weigh appropriately the structure–activity relationship (SAR) re-
vealed from the screen. By using this quantitative HTS (qHTS)
methodology, enzyme modulators with a variety of pharmacologies
were detected and clear SAR delineated directly from the primary
screen.

These results demonstrate the ability of qHTS to rapidly identify
new in vitro chemical probes and produce comprehensive library-
bioactivity information suitable for initiation of medicinal chemis-
try for both in vivo chemical probes and drug development (6). By
providing reliable measures of compound behavior across biolog-
ical processes, qHTS generates data sets that can be compared to
identify compounds with narrow or wide spectra of bioactivity as
well as activities not modulated by current libraries, thus guiding
compound library expansion into novel chemical space. In so doing,
qHTS provides a platform for building a high-quality publicly
available (7) chemical genomic data set, with broad utility for
deriving the general principles governing interactions of small
molecules with their targets.

Results
Preparation of 1,536-Well Plate-Titration Plates. Quantitative HTS
requires a chemical library prepared as a titration series. To
establish a concentration–response series, we prepared at least
seven 5-fold dilutions that resulted in a concentration range of
approximately four orders of magnitude. To maximize flexibility,
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titrations were done between plates, producing a replicate of the
entire library at seven different concentrations. For the majority of
the compound collection, the resulting concentrations in the source
plates ranged from 640 nM to 10 mM. After pin tool transfer into
an assay volume of 4 �l, the final compound concentrations ranged
from 3.7 nM to 57 �M.

Pyruvate Kinase (PK) qHTS. To test the qHTS paradigm, we assayed
PK, a well characterized enzyme that is allosterically regulated (8,
9). PK regenerates ATP in glycolysis by catalyzing phosphoryl
transfer from phosphoenol pyruvate to ADP to yield pyruvate and
ATP. PK-mediated generation of ATP was assayed indirectly
through the coupling to luciferase activity. Luciferase catalyzes the
oxidation of luciferin in an ATP-dependent manner, yielding a
luminescence signal. The assay was designed to detect both inhib-
itors and activators of PK activity. In addition, ribose-5-phosphate
(R5P), a known allosteric activator of PK (8), and luteolin, a
flavonoid that we identified as a PK inhibitor, were used as activator
and inhibitor controls respectively.

We initially tested the reproducibility of the concentration–
response curves by screening the Prestwick collection (1,120 sam-
ples) in triplicate. Curve fits were generated, and half-maximal
activity concentration (AC50) values were calculated for the 104
active compounds. Comparison of 58 actives with �60 �M AC50,
the highest tested concentration, from the three runs showed
excellent agreement, suggesting that the liquid-handling and com-
pound-transfer procedure was precise. Both weak and potent AC50
values were reproducible (Fig. 1a), and inactive compounds were
consistently inactive in all replicate runs (Fig. 1b). Furthermore, a

comparison of the AC50 values between each of the runs revealed
a tight correlation, as measured by linear regression (r2 � 0.98, Fig.
1c). Collectively, these results demonstrated that the qHTS meth-
odology yielded highly accurate and precise data.

To test our process on a larger scale, we screened the PK assay
against 60,793 compounds as concentration–response titrations
(Fig. 2a). A total of 368 plates containing 565,248 wells were
screened in automated format over a continuous 30-h period. The
assay performed well over the entire course of the screen; control
wells for each plate averaged a signal�background ratio of 9.6, and
the Z� (10), a standard statistical measure of assay quality for
single-concentration-based screening, averaged 0.87. The Z score
of the experimental wells was 0.75 after correction for systematic
artifacts. The concentration–response curves for the control acti-
vator R5P and the control inhibitor luteolin, included on every
screening plate, were remarkably consistent, with median minimum
significance ratio (MSR) (11) values of 1.7 and 1.2, respectively
(Fig. 2b).

We examined the effect of sample preparation on qHTS repro-
ducibility by evaluating concentration–response curves of 22 active
compounds that were acquired independently from different sup-
pliers. These duplicate samples were components of distinct librar-
ies that were plated on separate occasions and resided in different
plates. The AC50 correlation plot for these ‘‘intervendor duplicates’’
showed a lower correlation (r2 � 0.81) compared with the inter-
screen replicates, with approximately half of the compounds having
significantly different AC50 values (Fig. 2c). This result shows the
degree of variability of independently acquired samples. Sample
inconsistency, because of differences in compound preparation or

Fig. 1. Reproducibility of PK qHTS. Interscreen data from triplicate qHTS runs of the Prestwick collection. (a) Data for 104 compounds fitting concentration–
response curves with inhibitory (blue) or stimulatory (red) activity are shown. Lines connect the data points for each compound titration and replicate. (b) Data
for 1,016 compounds did not fit to a concentration–response curve. (c) Representative correlation plot of compounds with AC50 �60 �M identified from runs
1 and 2 (r2 � 0.98; n � 58; median MSR � 1.1). For runs 1 vs. 3 and 2 vs. 3, r2 � 0.99 and 0.98, respectively.

Fig. 2. qHTS of PK. (a) A 3D scatter plot of qHTS data lacking (blue) or showing (red) concentration–response relationships were obtained for all 60,793 samples.
(b) All 368 intraplate titration curves for the control activator R5P (red) and the control inhibitor luteolin (blue) are shown. Lines connect the data for each
titration. (c) Correlation plot of duplicate actives with AC50 �60 �M (r2 � 0.81; n � 22; median MSR � 4). (d) Titration of independent resveratrol samples derived
from the screen.
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stability, for example, is a particularly important consideration for
traditional HTS, where actives are identified outside a defined
threshold value. When this threshold is near the inflection point of
the concentration–response curve, a small change in sample prep-
aration could result in a compound no longer being classified as
active, an important concern in traditional HTS (12). For example,
resveratrol would be identified as active at 2.3 �M in one sample but
inactive in the other, when a 50% threshold is used (Fig. 2d), despite
having closely related concentration–response curves. By using
qHTS, the entire concentration–response curve is obtained, and
such potential false negatives are eliminated.

Concentration–Response Analysis. Automated analysis of qHTS data
revealed a wide variety of concentration–response curves. To
broadly define and encompass the diversity of these curves, we
devised criteria to classify curves based on the quality of curve fit
to the data (r2), the magnitude of the response (efficacy), and the
number of asymptotes to the calculated curve.

Based on this analysis, curves were organized into four catego-
ries, defined as follows (Table 1 and Fig. 3). Class 1a curves were
well fit (r2 � 0.9), showed a full response (efficacy �80%), and
exhibited upper and lower asymptotes. Class 1b curves were the
same as Class 1a except the efficacy value (30–80%) indicated a full
but shallow curve. The 30% threshold for efficacy was derived from
three SD above the mean activity of all samples at their highest
tested concentration. Class 2 curves were incomplete; they con-
tained only one asymptote and were divided into two subclasses.
Class 2a had a good fit (r2 � 0.9) and a sufficient response (efficacy
�80%) to calculate an inflection point, whereas Class 2b charac-
terized a weaker response (efficacy �80% and r2 � 0.9). Class 3
curves displayed activity only at the highest tested concentration
and efficacy �30%. Class 4 assignments were titrations with

insufficient (efficacy �30%) or no response and are hereafter
referred to as inactive (Fig 7, which is published as supporting
information on the PNAS web site). Hence, the library in its entirety
was defined as either active (Class 1–3) or inactive (Class 4).

By using these criteria, 5,480 of 60,793 compounds (9.0%)
comprising Classes 1–3 were classified as active, whereas the
remaining 91% were inactive (Fig. 4a). The identified actives
consisted of 79% inhibitors and 21% activators and included the
ATP competitive inhibitors apigenin and indirubin-3�-monoxime
as well as the PK activator AMP (8), thus demonstrating the
biological relevance of the screen. Of the active compounds, 9%
(0.8% of the library) showed complete titration–response curves of
full (4% Class 1a) or partial (5% Class 1b) activity, 30% were
incomplete curves (8% and 22% Class 2a and -b, respectively), and
61% displayed activity mostly at the highest tested concentration
(Class 3). Subdivision of actives into classes that reflect the curve-fit
quality (r2) of the concentration–response curves allowed us to
consider pharmacological parameters in subsequent analysis.

The potency of the actives spanned three orders of magnitude,
with AC50 values ranging from 55 nM to �100 �M. When actives
were binned by potency, 4 compounds were �0.1 �M, 62 were from
0.1 to 1 �M, 595 were from 1 to 10 �M, and 4,819 were �10 �M.
Class 1 curves spanned most of this range, from 55 nM to 51 �M,
indicating that well fit, complete curves could be obtained from
compounds of widely varying potency (Fig. 4b). Most of Class 2a
curves had AC50 values between 1 and 10 �M, whereas the majority
of Class 2b curves were �10 �M, consistent with their classification
as incomplete curves. The AC50 values of Class 3 curves were
extrapolated beyond the tested concentration range, indicating
much lower potencies of uncertain accuracy. However, Class 3
curve fits were largely reproducible, as inferred from the triplicate
Prestwick screen, where 74% of the 85 Class 3 actives were fit in all
three runs, and an additional 16% fit in two of the three runs.

Interestingly, the Class 1b curves, those with lower efficacy,
displayed a lower potency distribution compared with Class 1a. This
observation suggests that compounds corresponding to Class 1b
may have limited solubility and, therefore, decreased apparent
potency. However, ALog P, a calculated property to estimate
compound solubility, did not correlate with efficacy (Fig. 8, which
is published as supporting information on the PNAS web site).
Furthermore, this observation may be attributed to compounds
selectively interacting with an enzyme subpopulation such as that
seen in uncompetitive inhibition (13).

Comparison to Single-Concentration Screening Data Sets. To mea-
sure the frequency of false positives and false negatives observed in
a traditional single-concentration screen, we undertook a retro-
spective analysis comparing the full concentration–response data
set to the 11 �M titration point. When screening at one concen-
tration, the probability of designating a certain compound as active

Table 1. Curve classification criteria

Curve
class Description Efficacy r2 Asymptotes Inflection

1* Complete
response (a)

�80% (a) �0.9 (a) 2 Yes

Partial �80% (b) �0.9 (b) 2 Yes
response (b)

2† Incomplete
curve

�80% (a)
�80% (b)

�0.9 (a)
�0.9 (b)

1 Yes

3 Single point
activity

�Min‡ NA 1 No

4 Inactive NA NA 0 No

*AC50 derived from data.
†AC50 extrapolated from data.
‡Minimum (Min) is �3 SD from the mean activity of the sample field at the
highest tested concentration.

Fig. 3. Classes of titration curves obtained from the qHTS. Lines connecting titration data corresponding to inhibitory and stimulatory compounds are shown.
(a) Classes 1a (blue) and 1b (teal) inhibitors display full and partial activity, respectively. (b) Classes 1a (blue) and 1b (teal) activators. (c) Incomplete curves for
inhibitors and activators having AC50 values within and beyond the tested titration range are Classes 2a (blue) and 2b (teal), respectively. (d) Incomplete inhibitory
(blue) and stimulatory (red) curves that show weak activity and poor fits are Class 3. Curve classes are defined further in Table 1.
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is determined by the chosen screening concentration, the threshold
value used to select the positives, and the potency of the compound
(14). Determining where the threshold is set frequently depends on
the library size, follow-up capacity (e.g., cherry-picking capacity, the
nature of secondary assays), and the project-specific considerations
(e.g., priority of target, desired potency). We applied two commonly
applied thresholds, three and six SD from the mean activity of the
screened compounds (�30% and 60% of the 11 �M data set,
respectively).

By using these limits, false positives and false negatives were
enumerated for the 11 �M data set. False positives were com-
pounds identified as active at the 11 �M concentration but classified
as inactive (Class 4) by qHTS. False negatives were compounds
identified as inactive at the 11 �M concentration but categorized as
active (Class 1 or 2) by qHTS. Of the 5,480 actives identified by
qHTS, only 1,461 were designated as active when a three-SD
threshold was used. Twenty-seven percent corresponded to Class 1,
71% were Classes 2 and 3, and 2.0% comprised inactives and were
therefore false positives (Fig. 5). At a more stringent threshold of
six SD, 539 compounds were designated as active, of which 49%
were Class 1, 50% were Classes 2 and 3, and 1.0% were inactive.
Although a six-SD threshold increased the number of actives with
Class 1 curves by 20% and decreased the number of false positives

by half, 63% of the actives were eliminated. Hence, raising the
threshold stringency decreased the number of positives and did little
to recover additional Class 1 actives.

Whereas false positives can be detected with follow-up testing,
false negatives cannot be identified by traditional HTS, and, hence,
little is known about their frequency. Using our retrospective
analysis, we looked for compounds that showed Class 1 and 2 curves
that did not score as positive when the 11 �M data set and a three-
or six-SD threshold were used. Class 3 curves were not included
because they represented activities at only the highest concentra-
tion. Above three SD, 845 (40%) compounds were not identified.
Because these compounds were associated with concentration–
response curves, they were false negatives. Above the six-SD
threshold, the number of false negatives increased to 1,602, or 75%
of the Class 1 and 2 curves (Fig. 5). These numbers of false negatives
were quite high, especially in light of the excellent performance of
the assay and low false positives (�2%). These results indicate that
single-concentration screening followed by analysis using thresh-
olds and scatter plots does not score compound activity dependably
(Fig. 5).

Derivation of SAR. qHTS fully characterizes the potency and efficacy
of the entire library, enabling derivation of SAR directly from the
primary screen. To identify active scaffolds, compounds associated
with Class 1a, 1b, and 2a curves were used for hierarchical clustering
using Leadscope (Columbus, OH) fingerprints to yield a primary
data set of 55 clusters. Maximal common substructures (MCSs)
were extracted from each cluster and then used to search the entire
screening collection to find all analogs, including inactives. This
process provided a comprehensive set of SAR series with a high
degree of confidence, because the extraction of MCSs was based on
compounds having complete titration curves that were subse-
quently used to find weak and inactive analogs. Each series can be
further refined by using other functions such as potency, Hill slope,
or efficacy to provide biological context.

An SAR analysis yielded 40 series composed of 4–25 active
analogs. Four series are shown in Fig. 6. The first cluster, a flavonoid
scaffold, contained 56 analogs of 0.19–89 �M potency as well as 20
inactive compounds (Fig. 6a). This family of natural products is
known to interact with protein kinases such as Src (15). Series 2, an
imidazo thiazole scaffold, contained four analogs, including the
most potent (55 nM) compound identified in the screen (Fig. 6b).
Series 3, a quinazoline scaffold from a 1,000-member combinatorial
library, contained 83 analogs of low potency, indicating that this
series is refractory to improvements of potency (Fig. 6c). Series 4,
a tert-butyl pyrazolo pyrimidinone scaffold, was composed of eight
active analogs, including both an inhibitor and an activator associ-
ated with Class 1 curves (Fig. 6d). R group analysis showed that
benzyl substitutions were stimulatory, whereas benzyl ester and

Fig. 4. Pharmacological profile of library
activity. (a) Number and percentage of acti-
vators and inhibitors in each curve class. (In-
set) Distribution of activators (light gray), in-
hibitors (dark gray), and inactives identified
from the qHTS. (b) AC50 distribution of acti-
vators and inhibitors in each curve class. Re-
gions 1, 2, and 3 indicate concentration
ranges of absent, observed, and extrapo-
lated potencies, respectively. The shaded
area indicates the concentration range
tested. Arrow a indicates the enzyme con-
centration (10 nM) at which the lowest AC50

can be observed, whereas arrow b is the no
observable effect level (NOEL). To represent
the range and average activity of a series, a
normal distribution fit was calculated by us-
ing Origin software based on the maximum,
minimum, and mean of the activity data.

Fig. 5. Analysis of single-concentration screening data at 11 �M. A scatter plot
of the 11 �M data, with the right half colored by the curve class as follows: Class
1a (red), Class 1b (green), Class 2a (dark blue), Class 2b (light blue), Class 3
(orange), and Class 4 inactives (gray). The thresholds for three and six SD are
indicated. Analysis based exclusively on a three and six SD activity selection
threshold (i.e., without the aid of curve classification, left side of the figure)
results in confirmed positives, false positives, and false negatives of 1,431 (98%),
30 (2%), and 845 (40%), 534 (99%), 5 (1%), and 1,602 (75%), respectively.
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benzyl amide substitutions were inhibitory (Fig. 9, which is pub-
lished as supporting information on the PNAS web site).

Discussion
The qHTS method presented here addresses many of the funda-
mental issues of data quality that are required for a reliable and
useful public database of compounds and associated biological
activities. This approach eliminated false positives and false nega-
tives common to traditional HTS, was highly reproducible, and
yielded comprehensive SAR.

Underpinning qHTS is the use of interplate titrations and assay
miniaturization. Interplate titrations allow customization of the
screening concentrations depending on the availability of reagents
or assay design. For example, an equilibrium binding assay between
weakly interacting components present at micromolar concentra-
tions limits the AC50 to the micromolar range, obviating compound
titrations below this level. Whereas we chose a minimum of seven
5-fold dilutions for the titration series to cover a broad concentra-
tion range, any number, dilution, or variation can be used. For
instance, asymmetric titrations targeting more points per decade at
higher concentrations than the lower ones may improve the con-
fidence in curve fit for lower-potency compounds (e.g., Class 2 and
3). However, the minimum number of titration points depends on
the nature and variability of the assay. Whereas reliable AC50
determinations from two points (1 and 10 �M) have been dem-
onstrated by using constrained fitting (slope and upper and lower
asymptotes held constant), seven points produce reliable uncon-
strained concentration–response curves when modeled for a range
of response error (16, 17). Additionally, because each titration
series is screened from low to high concentration, carryover of
active compounds is easily identified because they appear as reverse
titrations. Furthermore, the distributed nature of interplate titra-
tions reduces the effect of failures that may affect a plate within a
series; if a single plate is lost, activity curves can still be generated
from the remaining plates of the titration. Finally, all compound
concentrations are assayed at the same well position in the plate
series, which minimizes the variations caused by positional effects.

Miniaturization is required for the efficiency and cost-
effectiveness of titration-based screening. For example, a qHTS
using a seven-point titration series in 1,536-well plate format results
in only 1.75-fold additional plates handled compared with a screen

at single concentration in 384-well format. The reagent volumes
consumed are unchanged, whereas compound use is reduced.† This
additional plate handling is compensated by eliminating the need to
cherry pick and retest compounds in separate experiments, thereby
conserving time and compound.

qHTS shifts the analysis of screening data from a statistical to a
pharmacological process. This method prevents assigning com-
pounds as active or inactive based on stochastic variation, a com-
mon occurrence with traditional HTS and a major factor necessi-
tating the cherry-picking process. Compounds having partial
activity or low efficacy can represent important modulators of
biological activity and are particularly difficult to recognize via
traditional HTS, but easily identifiable with qHTS. For example, in
a recent cellular assay to identify stabilizers of I�B�, we observed
a potent (20 nM) but partial (25% of control activity) effect of
hydrocortisone that reproduced accurately upon retesting (D.S.A.,
unpublished results). Additionally, a compound’s potency and
efficacy often depends on assay design. For example, choice of cell
type and endpoint can affect the apparent potency of a compound,
in some cases leading to a significant rightward shift in AC50 (2, 18,
19). In single-concentration screening, the identification of a com-
pound depends highly on assay design. In contrast, qHTS is resilient
to variations in assay sensitivity.

Using qHTS, we retrospectively enumerated the false-positive
and -negative burden from a single-concentration screen (see
Fig. 5; and see Table 2, which is published as supporting information
on the PNAS web site). Two percent of the actives scored as false
positives, and 40% of the Class 1 to 2 actives were false negatives
when the 11 �M screening concentration‡ and a three SD threshold
(Fig. 5) were used. The high precision of the PK assay
(Z� � 0.87) resulted, in large part, from a luminescence signal and
large signal�background ratio. Assays with higher intrinsic variabil-
ity, such as those using cell-based reporter or phenotypic outputs,
are expected to have greater assignment error, with false positives

†Calculations are based on 30- and 4-�l well volumes for 384- and 1,536-well plates,
respectively.

‡Additional analysis comparing qHTS with the maximal concentrations screened is given in
supporting information.

Fig. 6. Pharmacological profile of four
analog series. (a–d) Potency and curve class
distribution of four representative scaf-
folds. Curves corresponding to Class 1a
(red), Class 1b (green), Class 2 (blue), Class 3
(orange), and inactive (gray) are depicted
in the bar charts. Curve Classes 1–3 (white)
and Class 4 (light gray) are indicated in the
pie charts. (c) Additional inactives contain-
ing a quinazoline core but lacking a phenyl
substituent at position R1 (dark gray) are
shown in the pie chart. Normal distribution
was calculated as described in Fig. 4.
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as high as 90% (20). We are now using qHTS to analyze cell-based
assays to quantitate the extent of false positives and false negatives.

Traditional HTS limits the accurate assessment of a compound’s
activity because the screens are conducted at micromolar concen-
trations, whereas the AC50 values for small molecules range broadly
from picomolar to millimolar. Given this range in compound
potency represented in large compound libraries, screening at a
single concentration necessarily tests some compounds at well
below their AC50 where no effect is detected and others at well
above their AC50 where cellular toxicity or other adventitious
effects are observed. For instance, flavonoids have been identified
as promiscuous inhibitors at 10 �M (21); however, in our qHTS
study, we found a series of flavonoids that selectively inhibited PK
or luciferase (PubChem Assay ID 361 and 411), indicating a
pharmacological basis for their activity.

Highly focused libraries, such as those derived from combinato-
rial chemistry (CC) are particularly confounding when screened at
a single concentration point, because they contain large numbers of
highly related structural analogs, resulting in a ‘‘leveling effect,’’
where many compounds are scored as active, but their relative
activity is obscured, thereby limiting the usefulness of CC libraries.
In contrast, qHTS can distinguish the potencies and efficacies of
closely related analogs in CC libraries. We have observed such a
series from a qHTS of cytochrome P450 1A2, where a quinazoline
scaffold containing 98 analogs displayed a potency range of 32 nM
to 10 �M, indicating broad SAR over a narrow structural field
(PubChem Assay ID 410).

The primary goal of HTS development to date has been to
increase screening throughput. However, despite the many new
statistical methods developed to analyze the data (22), this focus on
throughput has lead to the generation of large but frequently
uninformative data sets because of the persistence of false positives,
false negatives, or ineffective screening concentrations. Experimen-
tally, the use of replicates in single-concentration screening has
been implemented in some cases to increase the confidence of
selecting biologically active compounds. However, limitations re-
main, because the relationship of replicates is solely statistical not
pharmacological, as the dose is not varied. By changing the exper-
imental design to titration-based screening, an overreliance on the
statistical treatment of noisy data is alleviated. Broad adoption of
this paradigm should move HTS into the realm of high-throughput
pharmacology, providing robust databases of structure–activity

relationships suitable for both improving the early phase drug
discovery process and enabling the longer-term establishment of a
chemical genomic database.

Materials and Methods
Preparation of Compound Titration Plates. The 60,793-member li-
brary was prepared as DMSO solutions at compound concentra-
tions ranging between 2 and 10 mM. Plate-to-plate dilutions were
performed in 384-well plates by using an Evolution P3 system
(PerkinElmer, Wellesley, MA) equipped with a 384-well head.
Compression of 384-well plates to 1,536-well plates was also per-
formed by using the Evolution P3 system.

PK qHTS. Three microliters per well of buffered substrate was
added to 1,536-well plates by using a solenoid-based dispenser.
Compound was transferred to the assay plates by using a 23-nl
1,536-pin array. After transfer, 1 �l per well of enzyme mix was
added. The plates were centrifuged at 157 � g for 30 s and
incubated for 2 h at ambient temperature, followed by addition
of 3 �l per well of detection and kinase stop solution. After a
10-min incubation, luminescence was detected by a CCD-based
plate reader. All screening operations were performed by using
a fully integrated robotic system (Kalypsys, San Diego, CA)
containing one RX-130 and two RX-90 anthropomorphic ro-
botic arms (Staübli, Duncan, SC).

Data Analysis. Screening data were corrected and normalized and
concentration–effect relationships derived by using the GeneData
Screener software package. Concentration–effect relationships
were categorized according to fit quality (r2), response magnitude,
and degree of measured activity. Active compounds were clustered
according to structural similarity and curve classifications by using
Leadscope software. Complete SARs were determined by using all
members structurally related to active core scaffolds.

Supporting Text. For details on the preparation of the compound
titration plates, PK qHTS, and data analysis, see Supporting Text,
which is published as supporting information on the PNAS web site.
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