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Outline

* What is Environmental Science?

* Introduction to synchrotron x-ray physics and synchrotron
techniques

° Introduction to biogeochemistry

* Examples of the use of hard synchrotron x-rays to investigate
biogeochemical systems
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What is Environmental Science?

Oceans?
Microbes?
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“X-ray Physics 101"
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The Advanced Photon Source,
Argonne National laboratory
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Why use hard x-rays for investigating
environmental systems?

Hard x-rays (i.e. greater than ~2 keV) interact
“weakly” with matter (relative to charge particle
probes) and enable the investigation of hydrated
and/or buried samples.

Hard x-rays enable highly sensitive elemental
analysis on extremely small objects.

High sensitivity of x-rays enables x-ray absorption
spectroscopy (i.e. interrogation of chemistry)

Examples in this presentation will span 9-12 orders
of magnitude in length.
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X-ray-Absorption Fine Structure
(XAFS)
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X-ray Absorption Near Edge Structure-(XANES)
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* Position of edge depends on valence state of
absorbing atoms

* UVl for All U-biomass samples
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Extended X-ray Absorption Fine Structure-
(EXAFS)

Scattered Photoel ectron
Fourier Analysis 10
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Fourier Transform of y(k)

1 I 1 I 1 I 1 I 1 I 1
O

=

Mag FT [ (K) * K°]

o

* Like an atomic radial distribution function
- Distance
- Number
- Type
- Structural disorder
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Why are microbes/bacteria important in
Environmental Science?

* Microbes make up ~1% of human biomass but are responsible
for ~90% of digestion.

°* Microbes can transform poisons (heavy metals) into harmless
compounds, or repackage them so they are physiologically
unavailable (bioremediation).

°* Microbes degrade organic pollutants, restore key nutrients to
depleted soil, or act as a sink for greenhouse gases (CO2),
from the atmosphere.

°* Microbial processes can have a profound effect on major
societal issues such as groundwater quality, environmental
contamination, the loss of productive agricultural lands, and
global warming.

* *“Geobiology: Exploring the interface between the biosphere
and the geosphere,” American Academy of Microbiology
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Thermodynamics:
The Chemical Fuels and Oxidants of Life
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I nvestigation of the Spatial Distributions and
Transfor mations of Contaminant lons
at the Bacteria-Geosur face | nterface
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Mineral Surface
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An oversimplified view of uranium in the
subsurface

=l aboratory and field studies have demonstrated that bacterial cell
walls and mineral surfaces efficiently adsorb a variety of aqueous
metal cations like uranium.

»Because bacteria and minerals are abundant in near-surface
geologic systems, adsorption reactions to these constituents may
significantly affect the mobility of metals in agueous systems.

*The extent of adsorption of agueous metals onto bacterial and
mineral surfaces can vary markedly with changing conditions such
as pH, ionic strength, and fluid composition.

*Changes to the oxidation state of uranium [i.e. from U(VI) to
U(1V)] can drastically reduce its solubility and hence its mobility.

[EnY
o

A\
)



Uranium Adsorption to B. subtilis

100

e data 1.5g bacteria/L
m data 1.0g bacteria/L
e data 0.5g bacteria/L
model

D.A. Fowle, JB. Fein, and A.M. Martin
(2000) Experimental Study of Uranyl
Adsorption onto Bacillus subtilis.

ol ] Environ. Sci. Technol. 34(17), 3737.

80 —

60 —

40 —

% U adsorbed

20 —

pH

The surface complexation model is used to quantify U adsorption
= acid/base titrations determine acidity constants of functional groups
= metal adsorption experiments yield site-specific stability constants

These batch adsorption measurements, provide only circumstantial

evidence regarding the mechanism of adsorption and the stoichiometry of
the adsorption reaction.

Successful application of a surface complexation model requires detailed
understanding of the binding mechanism.

provided directly by XAFS spectroscopy
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Bacterial Cell Wall

Bacterial cell walls display pH dependent charging and acid-base
characteristics.

@
Uranyl

%!

Phospé)'ryl ligand

Cd, Cu, Pb, Co Ni. Zn and Sr have negligible adsorption by Bacillus subtilis
Under low-pH conditions, however above pH 3.0 adsorption increases with
increasing pH as the surface functional groups successively deprotonate.
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Models for U-biomass data

Hydrated Uranyl — hydroxyl Uranyl Phosphate — phosphoryl

Uranyl Acetate — carboxyl
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Comparison of U-Biomass Data
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Adsorption Sites for U(VI)

| Carboxyl
PO B N

3
U
phory

Phosph

Some mixing of phosphoryl and
carboxyl groups

Or 50% of Uranyl with 2
phosphoryl groups and 50% of
Uranyl with 2 carboxyl groups
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Conclusions

XAFS Results

- U-biomass data clearly indicates U(VI) added to the biomass samples
was not reduced.

- Uranyl adsorbs primarily to phosphoryl functional groups at the lowest
pH value (1.67).

- Anincrease in uranyl adsorption to carboxyl functional groups with
increasing pH (3.20 and 4.80).

The XAFS results are consistent with the surface complexation models
proposed by Fein et al. and Fowle et al.

These results demonstrate the complementary roles of XAFS
spectroscopy and bulk adsorption measurements in determining metal
distribution behaviors in the environment.

Fein, et. al., Geochim. Cosmochim. Acta, 1997, 61 33.19
Fowle, et. al., Environ. Sci. Technol., 2000, 34, 3737.
Kelly et al., Geochim. Cosmochim. Acta, 2002, 66 3855.
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I nvestigation of the Spatial Distributions and
Transformations of Contaminant lons
at the Bacteria-Geosurface | nterface
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Midnight Mine
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U XANES for U-Pit 3 sediment
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U EXAFS for U- Plt 3 sedlment

O 9 O 8 | Ib) | 1 | 1 | 1 | 1 | 1 ] _

- e U-Pit 3 data -

& o Fit —

< 0.6 T

n n

(@)

a (D)

- 0.3 4

0.0
0 3 5 6
R (A)
o
0.8 Distance o2
Path Ndegen (A) (x10-2 AZ)
Ny 0.4 1= U—>Oax 05£0.1 1.77 £0.01 21
- -
X~ 00 U—01 74+10 2.3440.01 12+1
N’
x -
0.4 U-C 2.6+0.8 2.92+0.01 1+4
B Uu-02 7.0+5.7 3.85+0.05 19+ 15
_O 8 1 |
0 U->u 56+4.0 3.80+£0.02 19+ 10
;p ﬁ%
g 5 T T T
:i‘%_., . ﬁ-“;ﬁ,fg”;g_ sl

== = ecnnology



TEM Image of UO, Nanoparticles

A

A. Desulfosporosinus sp.
Isolate and associated
flocculated UO,
nanoparticles

©. High-resolutions lattice
fringe images of
iIndividual particles

C. Cell surface coated with
~ 1.5-2.5 nm diameter
UO, nanoparticles

J.F. Banfield and Y. Suzuki
Department of Geology and Geophysics
University of Wisconsin-Madison
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Particle size from number of near neighbors

Surface volume depth is
equal to U-U distance.

In the interior the of
particle, each U has 12
neighboring U atoms.

Assume that the particle is a sphere of
uniform U density given by the XAFS
result for the U-U distance, with one
layer of surface U atoms with 4-8
neighbors. Then the average number
of neighboring U atoms is equal to the
percent of interior volume multiplied
by 12 plus the percent of surface

volume multiplied by 4-8.

Pienaaring
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I nvestigation of the Spatial Distributions and
Transformations of Contaminant lons
at the Bacteria-Geosurface | nterface

e
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Differences between planktonic and surface-
adhered bacteria to heavy metal exposure

Attachment of cells to surfaces during biofilm formation leads
to major changes in metabolism, resistance, and survivability.

Although microbes appear to be able to catalyze almost any
reaction from which energy can be obtained, it is difficult to
determine the mechanisms whereby catalysis occurs at the
microbe-substrate interface.

It is difficult to quantify the concentrations of metals, their
cellular locations, and their redox states.

Can XRF microscopy identify differences in
planktonic and surface-adhered bacteria upon

exposure to heavy metals?
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XRM with Fresnel zone plates:

X-RAY MICROPROBE BEAMLINE AT APS
(2-1D-D/E)

Monochr omatic
X-Ray Beam . ) 0
Order Sorting L UXy.z
Aperture
Vv
X-Ray Zone Plate
Energy Dispersive
Horizontal and Detec%r (gje)
Vertical dits

X-Ray Scintillator

and Lens System CCD Detector
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2-D X-ray Fluorescence Imaging of Individual
hydrated Bacterium with Zone Plates at the APS

A

Pioneering
Science and
Technology

«—— 5microns —

I ntensity

X-ray

Zone
Plate

Fluorescent X-ray Energy

Atomic Species

What can it

do for me?

Spatially resolve (150 nm):
Distribution
Valence state
Chemical speciation

of elements

K. M. Kemner, K. H. Nealson*, B. Lali
J. Maser, Z. Cai, D. Legnini, P. llinski
M. A. Schneegurt**, C. F. Kulpa, Jr.**
Argonne National Laboratory

* Caltech/Jet Propulsion Laboratory
**University of Notre Dame
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What istherole of the physiological state of a microbe (planktonic
ver sus surface-adhered) on itstolerance to heavy metals?

P. fluorescens 1000 ppm Cr(VI)

\ /

Elementsrequired for life: H, C, N, O, P, Ca, S, Fe, Ni, Cu....

These e ements should be in cells.
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Elemental distribution in mjgm

B

PS Cl_K Ca- Cr Fe Nl

5 microns

Concentration
5 m
Low High

Fig. 1



Elemental distribution in surface-adhered

P. flugrescens w/ and w/out addition of Cr(VI)

5 microns
Concentration

| ]
Low High

Fig. 2
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Results of quantitative XRF elemental
analysis of single cells

[P] [S] [Cl] [K] [Ca] [Cr] [Mn]  [Fe] [Co] [Ni] [Cu]  [Zn]
Planktonic 1 0is 6625 8421 3604 3815 9 22 156 190 120 201 1175
BG)  (2446) (1117) (2628) (1173) (392 %) 4 @ @) (¥ (4 (176)
Planktonic
+Cr(v) 6156 3719 3908 2201 673 949 22 58 13 26 105 94
© (0 (516 (1814) (6 () (B @ » (1@ 1 (© @
Surface-
Adhered 661,032  * * * 570,855 32 40 360 14 26 0 25
@  (12416) @831) (10 () (1 () (10 (14 (13
Surface-
Adhered
419,034  * * * 427987 24 23 36 12 18 2 15
+Cr(Vl)  (362,728) (147,983)  (15) ® @ @O ©O 6 (7)
(10)
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Spatial distribution and valence state of Cr relative to
Surface-adhered cells
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X-ray & electron microscopy investigations of

sulfate-reducina biomineralization products
) 10° 2%ray microprobe analysis
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X-ray and electron micro(spectro)scopy investigations of
Internal biomineralization products

M. Boyanov?, S. Glasauer?, B. Lail, K. Kemner!, T. Beveridge?

1Argonne National Laboratory, Argonne, IL 60439, U.S.A. 2 Univ of Guelph, Ontario, Ontario N1G 2W1, Canada

-

-

-

Electron acceptor: HFO (S oneldensis, 16 and 24 days)




Optical, Electron, and X-ray Fluorescence imaging of DMRB

TEM X12,000

Optical X50




Fe X-ray Absorption Microspectroscopy Analysis of
Biomineralization Products Produced by DMRB

A )
(A) Extra-cellular Fe particles v 7 V'
Extra-cellular y b o
Fe material (B) Cellular Fe —~_ "’ -‘?-3‘.; <
‘ | (©) ntraceliuiar Fe e W
precipitate T~ _#+%>, ([ v
| \
(© —Q— Hematite Fe(+3)
% (8)
call Fe(0) \
/- Magnetite Fe(+2,+3)

*(A) Fe valence state of extracellular precipitate near cell
consistent with magnetite

*(B) Fe valence state associated with cell consistent with
highly reduced Fe
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Other usesfor spatially resolved x-ray
fluor escence elemental analysis

Plant root, Banded Fe formationg/life on Mars?,
Beethoven' s hair, Metalloproteins on 1 dimensional
electrophoretic gel

/

Incoming x-ray beam

e

Fluorescent
X-rays
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3-1> Imaging
X-Ray Microtomography

Incomming X-Ray

heam
3
e 1024 X 1024
$i Chip CCD Camera
r=232 gm/ecm3 __ -
“ )

Whalt can it do lor me?
3-) information of materal's electron density

{pore space)
Future:

Combine X AS to get 3-D

elemental and chemical speciation mformation
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Investigations of Soil Porosity

Tomographic Reconstruction of Virgin Soil
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Summary

The integration of new techniques/tools such as the Advanced
Photon Source with multiple scientific disciplines provides
new and exciting opportunities for addressing a variety of
highly relevant Environmental Science issues.

Hard x-ray (micro)(spectro)(scopy)(tomography)offers many
exciting possibilities for future environmental/biogeochemical
Investigations.

The integration of the strengths of both x-ray and electron
microscopies to investigate geomicrobiological systems is
especially promising.

A
ViR



	The Advanced Photon Source: How it can Aid in Environmental Studies
	Outline
	What is Environmental Science?
	Acknowledgements
	“X-ray Physics 101”
	Why use hard x-rays for investigating environmental systems?
	X-ray-Absorption Fine Structure(XAFS)
	X-ray Absorption Near Edge Structure-(XANES)
	Extended X-ray Absorption Fine Structure-(EXAFS)
	Fourier Transform of ?(k)
	Why are microbes/bacteria important in Environmental Science?
	An oversimplified view of uranium in the subsurface
	Uranium Adsorption to B. subtilis
	Bacterial Cell Wall
	Models for U-biomass data
	Comparison of U-Biomass Data
	Adsorption Sites for U(VI)
	Conclusions
	Midnight Mine
	U XANES for U-Pit 3 sediment
	U EXAFS for U-Pit 3 sediment
	TEM Image of UO2 Nanoparticles
	Differences between planktonic and surface-adhered bacteria to heavy metal exposure
	XRM with Fresnel zone plates:
	Summary

