Aerodynamic and Aeroacoustic Properties of Flatback Airfoils

Dale E. Berg & Jose R. Zayas

Wind Energy Technology Dept. Sandia National Laboratories Albuquerque, NM USA

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Outline

- Project Goal & Objectives
- Blade Program Background
 - BSDS
 - Flatbacks
- Wind Tunnel
- Models
- Test Matrix & Objectives
- Preliminary Results
- Future Work
- Summary

Project Goal & Objectives

• **Goal:** Quantify the aerodynamic performance and aeroacoustic emission of a flatback airfoil relative to a conventional sharp trailing edge airfoil

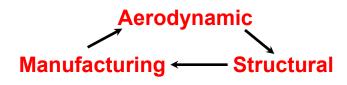
• Objectives:

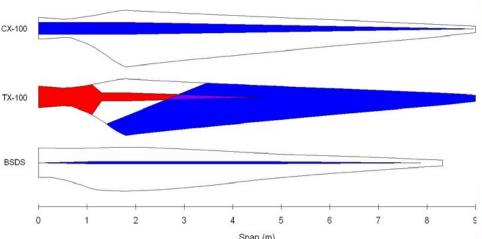
- Dirctly measure performance of a flatback airfoil
 - aerodynamic
 - aeroacoustic
- Directly compare to performance of a conventional airfoil
- Evaluate effect of simple trailing edge treatment

• Challenges:

- Large separation on blunt trailing edge
- Highly turbulent/highly 3-D flow

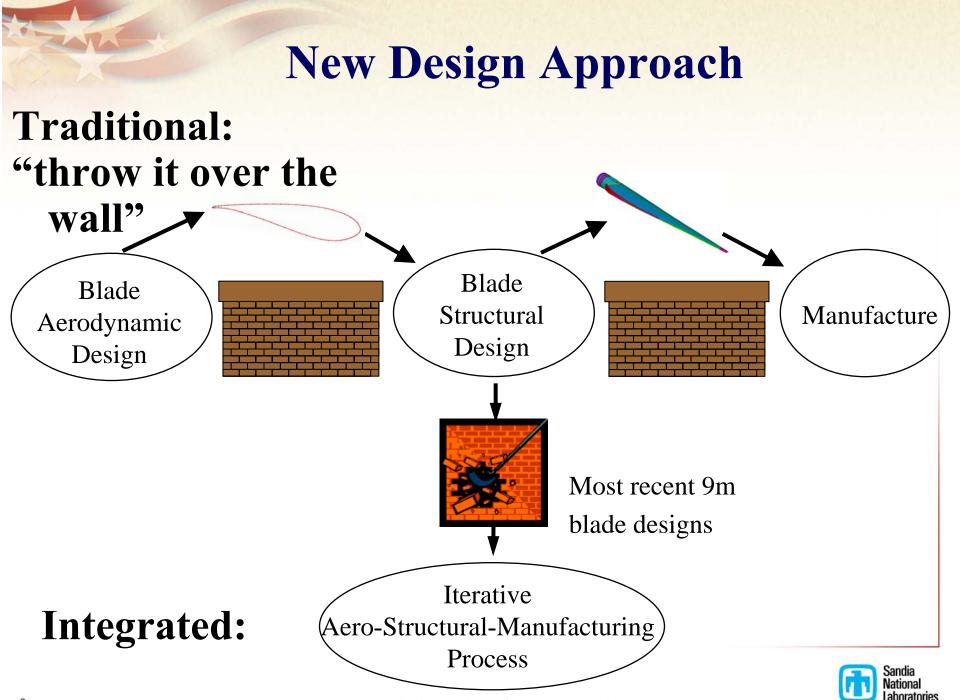
Blade Research at Sandia National Labs


- SNL initiated a blade research program in 2002 to investigate the use of carbon fiber and other advanced structural concepts in wind turbine blades
- Objective: build stronger, lighter blades
- Three 9 m blade designs have been produced
 - CX-100 (Carbon eXperimental 100 kW)
 - TX-100 (<u>T</u>wist-Bend coupled e<u>X</u>perimental <u>100</u> kW)
 - BSDS (<u>Blade System Design Study</u>)
- Laboratory and field tests have been conducted to evaluate the designs and to validate modeling tools



Applications of Blade Innovations

Prototype Sub-scale (9 meters) Blades Manufactured

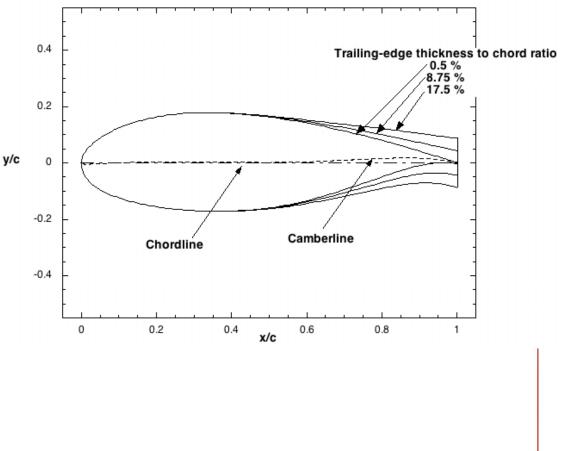

- **CX-100**
 - Carbon spar cap
 - Glass skin and shear web
- **TX-100**
 - Carbon triax in skin for bend-twist BSDS
 - Constant thickness glass spar cap
- BSDS
 - Flatback airfoils
 - Constant thickness carbon spar cap
 - High performance airfoils
 - Large scale architecture
 - Highly efficient structural design
 - Result of system design approach

ASME Wind Energy Symposium, January 9, 2008

Blade Structural Comparison

Property	ERS- 100	CX- 100	TX- 100	BSDS
Weight (lb)	426	383	361	289
% of Design Load at Failure	110%	105%	197%	310%
Root Failure Moment (kN-m)	122.8	117.0	121.4	203.9
Max. Carbon Tensile Strain at Failure(%)	NA	0.31%	0.59%	0.73%
Max. Carbon Compressive Strain at Failure(%)	NA	0.30%	0.73%	0.87%
Maximum Tip Displacement (m)	1.43	1.05	1.80	2.79

Integrated aero/structural design process resulted in lighter, less expensive, stronger blade

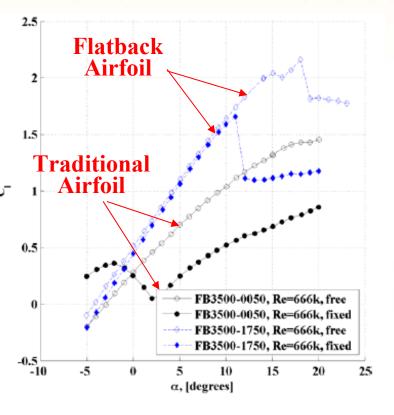

Flatback Airfoils

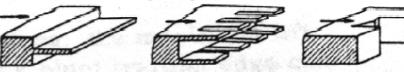
Creation of Flatback Airfoils

Airfoil maximum thickness to chord ratio = 35%

• Flatback airfoils are created by the symmetric addition of thickness about the camber line

- Different from truncated airfoils which "chop" off the trailing edge and thus lose camber
- This is one solution for increasing thickness. Others, such as thick airfoil families, exist.

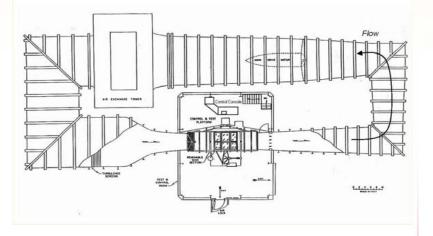

*Study of flatback airfoils performed in collaboration with UC Davis

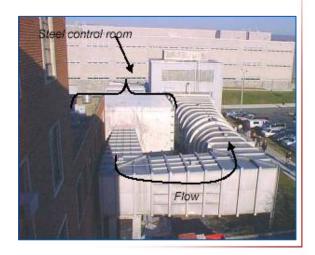

Flatback Airfoils

- Advantages
 - Structural:
 - Increased sectional area
 - Increased sectional moment of inerti
 - Shorter chord length
 - Aerodynamic:
 - Increased maximum lift coefficient
 - Reduced sensitivity to surface soiling
- Disadvantages
 - Increased drag
 - Unknown and complex 3D base flow
 - Greater aeroacoustic (noise) generatio

Experimental Data

Possible Trailing Edge Treatments to Reduce Drag




Source: Tanner (1973)

Virginia Tech Stability Wind Tunnel

- Continuous flow
- 6 ft X 6 ft test section
- 170 mph maximum velocity
- Modified for aeroacoustic testing
- Kevlar windows in test section
 - Confine flow/transmit sound
- Extensive efforts to quiet tunnel

Wind Tunnel Models

Flatback Model

- 36-in chord
- Steel frame, fiberglass surface
- 80 pressure taps per airfoil
 - Pressure and suction surfaces
- 3 Model configurations
 - 1.7% thick Trailing Edge ("sharp")
 - 10% thick Trailing Edge ("flatback")
 - Flatback with Splitter Plate
- Accuracy of profiles not yet established

Flatback model with Splitter Plate

Data Acquisition

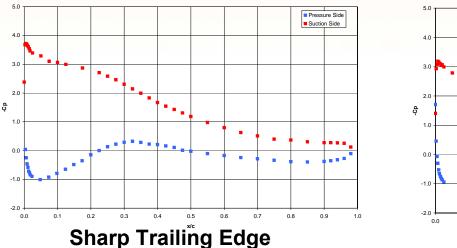
Kevlar Wall

- Model mounted vertically in test section
- Instrumentation
 - Surface pressures measured with scanivalve.
 - Wake pressures measured with traverse system.
 - Boundary layer velocity profiles measured with hot wire traverse system.
 - Boundary layer turbulence characteristics (specta) measured with hot wire.
- Noise data obtained with 63 microphone phased array

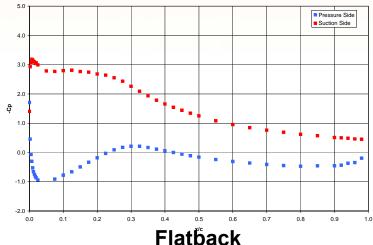
Model in Wind Tunnel

Measurement Conditions

- Define aerodynamic performance
 - $-C_d \min$
 - $-C_l/C_d$ max
 - C_l max
- Measure noise generation
- Clean surface
- Tripped boundary layer
 - 0.5 mm thick zig-zag tape
- Three Reynolds numbers (scaling of noise with velocity)


Measurements Obtained in Sandia Test										
DU97-W-300 Airfoil										
Configuration			Measurements							
Effective Angle of Attack	Boundary Layer Trip	Chord Reynolds Number	Phased Array Microphones	Model Pressure Distribution	Wake Pressure s	TE Hot-wire Bounday Layer Profile	TE Hot- wire Spectra			
4	None	1.6x10 ⁶								
4	None	2.4x10 ⁶	х	Х						
4	None	3.2x10 ⁶	х	Х	Х	х	Х			
8	None	1.6x10 ⁶	х	х	Х	Х	Х			
8	None	2.4x10 ⁶	х	х						
8	None	3.2x10 ⁶	х	Х	Х	х	Х			
12	None	1.6x10 ⁶								
12	None	3.2x10 ⁶	х	х		X	Х			
4	Tripped	1.6x10 ⁶								
4	Tripped	3.2x10 ⁶	Х							
8	Tripped	1.6x10 ⁶	х			Х	Х			
8	Tripped	2.4x10 ⁶	х	х						
8	Tripped	3.2x10 ⁶	х	х		Х	х			

Measurement Matrix for Sharp Airfoil

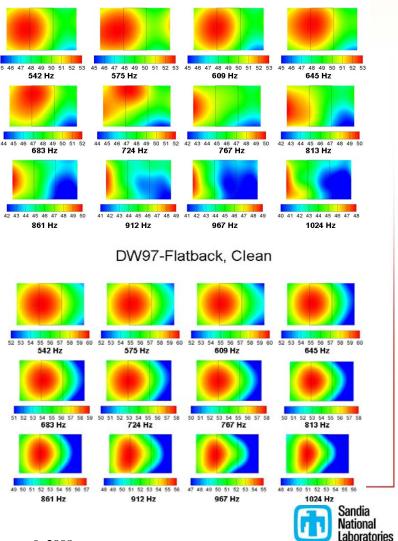


Preliminary Surface Pressure Results

 α = 12°, no boundary layer trip

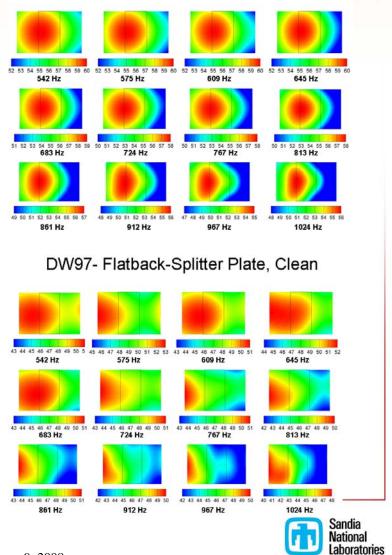
α = 10°, boundary layer trip

- Reynolds number = 3.2×10^6
- Pressure recovery for flatback occurs aft of trailing edge

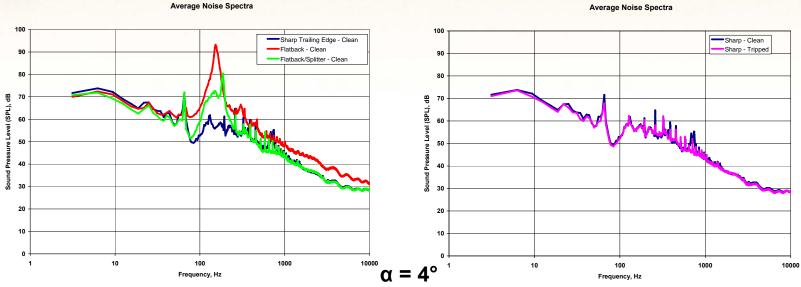

Beam Forming Data Reduction

- All microphones sampled simultaneously at 25,600 Hz
- Data split into blocks of 8192 samples
- FFT performed on each block to determine spectral content
- Microphone spacing and delay times required for sound to reach each microphone permits identification of noise sources

Preliminary Beam Forming Results


- Flow is from right to left
- LE and TE shown by vertical lines
- Highest noise level always in red
- Note changes in SPL levels for flatback
- Highest noise levels are at trailing edge

DW97-W-300, Tripped


Preliminary Beam Forming Results

- Flow is from right to left
- LE and TE shown by vertical lines
- Highest noise level always in red
- Note drop in SPL levels for splitter plate
- Highest noise levels are still at trailing edge, but not as intense

DW97-Flatback, Clean

Preliminary Noise Spectra

- Integrated spectra (average of 100 calculations) from single microphone
- Background tunnel noise still included
- Extraneous noise spikes still included

Airfoil	Sound Level
DU97-W-300	<u>74</u>
DU97 Flatback	<u>90</u>
Flatback w/ Splitter	<u>79</u>

Future Work

- Complete data validation and reduction
- Clean up noise data
- Compare experimental aerodynamic performance with CFD models and reconcile differences
- Use hot wire velocity and spectral data as initial conditions for computational aeroacoustic analysis
- Extend trailing edge bluntness noise generation correlation of Brooks, et al from 1% thick to 10% thick trailing edge
- Compare noise generated by blade with flatback sections to that generated by blade with only conventional sections
- Test other trailing edge treatments with noise reduction focus

Summary

- SNL Blade Research effort resulted in design innovations
 - Flatback airfoil
 - Structurally efficient
 - Reduced weight
- Flatback airfoils raise concerns
 - Aerodynamic performance
 - Noise generation
- Direct measurement shows
 - Flatback noise is much higher than sharp TE noise (90 dB vs 74 dB)
 - Splitter plate drops noise significantly (down to 79 dB)
- Only preliminary data is available at this time.
- Much additional data reduction & validation work remains.

Thank you

Questions??

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

