### Algal Model Systems

#### Stephen Mayfield Department of Cell Biology and The Skaggs Institute for Chemical Biology The Scripps Research Institute



## Alga: Latin "Seaweed"

- Aquatic *eukaryotic* organisms that contain chlorophyll and other pigments and can carry on photosynthesis
  - Range from microscopic single cells to very large multicellular structures resembling stems and leaves
  - Further categorized as brown algae, red algae, green algae, also dinoflagellates and diatoms
  - Some prokaryotes are incorrectly called blue-green algae

### Why algae as a biofuel platform?



Cost

Scalability

**Sustainability** 

**Superior Fuels** 

### A few numbers to consider for biofuel production from algae

- 140 billion gallons/year of liquid fuel consumed in US
- If algae can produce 50 tons biomass or 1,600 gallon/acre-year
- 90 million acres needed to fill liquid fuel requirements
  - $\bullet$  90 million in corn (\$52 B) and 67 million in soybeans (\$26 B) in 2008
- Cost of algae oil estimated between \$6 and \$60 /gallon

# What should an algal biofuel solution look like?

- Sunlight energy converted directly to fuel
- No use of agricultural land or products
- Highly scalable process to meet demand
- Commodity energy prices
- Carbon neutral process

# Sunlight is the original source of crude oil and all biofuels



# Challenges of producing fuels from algae



## Biofuels produced by algae

Biodiesel, triglycerides and fatty acids Lipids, long chain hydrocarbons - botryococcene

Carbohydates: sugars and starches Ethanol or other alcohols Cellulose or other biomass

Production of each of these is likely form a different species

# Guesses\* about how to realize biofuel production from algae

- Identify strains with desired traits
  - one strain unlikely to have everything we want
  - one strain unlikely to grow ever where we need it to
- Need to modify those strains
  - to produce high levels of desired molecule
  - to fit harvest and fuel recovery requirements
  - Probably not naturally occurring traits

 Require genetic modification on an accelerated time frame

# Need an accelerated time frame for "domestication" of algae

Corn Domesticated 4000 B.C. Steel plow, large scale agriculture 1837 Corn "varieties" 1863 Green Revolution 1944 Genetically modified corn 2000

• Need the same for algae only quicker

## What do we need to achieve rapid domestication of algae for biofuels?

- We need a much bigger and better knowledge base on algae
- We need to identify and characterize a large number of diverse algal species
  - Genomic, proteomic and metabolic profiles
- We need to develop genetic tools for breeding
- We need to develop molecular tools for engineering
- We need to develop agricultural practices for algal growth, harvesting and processing

### Domestication will require source genes, engineering and hosts strains



**Production strains** 

### What do we have so far?

- We have many species identified with limited characterization, but showing the potential
- We know how to grow algae at a modest scale
- We have a few algal genomes sequenced and annotated
- We have nuclear and chloroplast transformation for a handful of species

### Phylogenetic tree



#### gracilis huxleyi gracilis sp. Chaetoceros Phaeodactylum Emiliania species pyrifera Nannochloropsis genus Macrocystis gracilis Naviculales Isochrysidales Chaetocerotales Eustigmatales order 142 uglen Bacillariophyceae Prymnesiophyceae Coscinodiscophyceae Laminariales Eustigmatophyceae class Phaeophyceae Bacillariophy Ochrophyta kingdom Chromista uglenales Euglenophyceae Eukaryota 3 Cyanidiophyceae Prasinophyceae Chlorophyceae Trebouxiophyceae **Cvanidiales** Volvocales 1 Chlorodendrales 11 Chlorococcales Chlorellales carter Chlamydomona Cvanidioschyzon 367 occus Haemato raselmis 27 Dunaliella reinhardtii Neochloris otryococcus merolae pluvialis Chlorella cenedesmu chuii salinas 33 oleoabundans sudeticus obliquus /ulgari:

### Algae are the most diverse organisms in the world

### Completely sequenced chloroplast genomes (as of 10/07)

|                       | organism          |                | strain                   | GenBank  | size (bp) |
|-----------------------|-------------------|----------------|--------------------------|----------|-----------|
| chlorophyta           | Chlamvdomonas     | reinhardtii    |                          | BK000554 | 203828    |
| chlorophyta           | Chlorella         | vulgaris       | C-27                     | AB001684 | 150613    |
| rhodophyta            | Cvanidioschzon    | merolae        | 10D                      | AY286123 | 149987    |
| rhodophyta            | Cyanidium         | caldarium      | RK1                      | AF022186 | 164921    |
| glaucocystophyceae    | Cyanophora        | paradoxa       | Pringsheim strain LB 555 | CPU30821 | 135599    |
| haptophyceae          | Emiliania         | huxleyi        | CCMP 373                 | AY741371 | 105309    |
| euglenozoa            | Euglena           | gracilis       | Pringsheim strain Z      | X70810   | 143171    |
| rhodophyta            | Gracilaria        | tenuistipitata | liui                     | AY673996 | 183883    |
| chlorophyta           | Leptosira         | terrestris     | UTEX 333                 | EF506945 | 195081    |
| chlorophyta           | Mesostigma        | viride         |                          | AF166114 | 118360    |
| chlorophyta           | NephroseImis      | olivacea       |                          | AF137379 | 200799    |
| stramenophiles/diatom | Odontella         | sinensis       |                          | Z67753   | 119704    |
| chlorophyta           | Oltmannsiellopsis | viridis        |                          | DQ291132 | 151933    |
| chlorophyta           | Ostreococcus      | tauri          |                          | CR954199 | 71666     |
| stramenophiles/diatom | Phaeodactylum     | tricornutum    |                          | EF067920 | 117369    |
| rhodophyta            | Porphyra          | purpurea       | avonport                 | U38804   | 191028    |
| rhodophyta            | Porphyra          | yezoensis      |                          | AP006715 | 191952    |
| chlorophyta           | Pseudendoclonium  | akinetum       |                          | AY835431 | 195867    |
| cryptophyta           | Rhodomonas        | salina         | CCMP1319                 | EF508371 | 135854    |
| chlorophyta           | Scenedesmus       | obliquus       | UTEX 393                 | DQ396875 | 161452    |
| chlorophyta           | Stigeoclonium     | helveticum     | UTEX 441                 | DQ630521 | 223902    |
| stramenophiles/diatom | Thalassiosira     | pseudonana     |                          | EF067921 | 128814    |
|                       |                   |                |                          |          |           |

## How do we choose the species to isolate the source genes



### Oil content of selected algae species

| Species                                                   | Oil<br>content<br>(% dw) | Reference                                                                                                                                                                                              |
|-----------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ankistrodesmus TR-87                                      | 28-40                    | Ben-Amotz and Tornabene (1985)                                                                                                                                                                         |
| Botryococcus braunii                                      | 29-75                    | Sheehan et al. (1998); Banerjee et al.<br>(2002); Metzger and Largeau (2005)                                                                                                                           |
| Chlorella sp.                                             | 29                       | Sheehan et al. (1998)                                                                                                                                                                                  |
| Chlorella protothecoides<br>(autotrophic/ heterothrophic) | 15-55                    | Xu et al. (2006)                                                                                                                                                                                       |
| Cyclotella DI-35                                          | 42                       | Sheehan et al. (1996)                                                                                                                                                                                  |
| Dunaliella tertiolecta                                    | 36-42                    | Kishimoto et al. (1994); Tsukahara and<br>Sawayama (2005)                                                                                                                                              |
| Hantzschia DI-160                                         | 66                       | Sheehan et al. (1998)                                                                                                                                                                                  |
| lsochrysis sp.                                            | 7-33                     | Sheehan et al. (1998); Valenzuela-<br>Espinoza et al. (2002)                                                                                                                                           |
| Nannochloris                                              | 31<br>(6-63)             | Ben-Amotz and Tornabene (1985);<br>Negoro et al. (1991); Sheehan et al.<br>(1998)                                                                                                                      |
| Nannochloropsis                                           | 46<br>(31-68)            | Sheehan et al. (1998); Hu et al. (2006)                                                                                                                                                                |
| Nitzschia TR-114                                          | 28-50                    | Kyle DJ, Gladue RM (1991)<br>Eicosapentaenoic acids and methods for<br>their production. International Patent<br>Application, Patent Cooperation Treaty<br>Publication WO 91/14427, 3 October<br>1991. |
| Phaeodactylum tricomutum                                  | 31                       | Sheehan et al. (1996)                                                                                                                                                                                  |
| Scenedesmus TR-84                                         | 45                       | Sheehan et al. (1996)                                                                                                                                                                                  |
| Stichococcus                                              | 33<br>(9-59)             | Sheehan et al. (1998)                                                                                                                                                                                  |
| Tetraselmis suecica                                       | 15-32                    | Sheehan et al. (1998); Zittelli et al. (2006);<br>Chisti (2007)                                                                                                                                        |
| Thalassiosira pseudonana                                  | (21-31)                  | Brown et al. (1996)                                                                                                                                                                                    |

### Photosynthetic efficiency and yield

| Plant system                                                                    | Photosynthetic<br>efficiency of<br>PAR (%) | Typical<br>productivity<br>range<br>(g m <sup>-2</sup> day <sup>-1</sup> ) | Typical<br>productivity<br>(t ha <sup>-1</sup> y <sup>-1</sup> )<br>(Maximum) | Comment                                                                             | Reference                                                                                                                            |  |
|---------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--|
| Land plants                                                                     |                                            |                                                                            |                                                                               |                                                                                     |                                                                                                                                      |  |
| C3 land plants                                                                  | < 6.6 (theor.)                             | Not applicable                                                             | 10 - 18 (24)<br>8 -10 (30)                                                    | Sugarbeet (temperate<br>climate)<br>Willow (max. on test plots)                     | Kenter et al. (2006)<br>Keoleian and Volk (2005)                                                                                     |  |
| C4 land plants                                                                  | < 13.4 (theor.)                            | Not applicable                                                             | 10 - 30 (72)<br>10 - 20 (50)<br>15 - 20 (40)                                  | Sugarcane<br>Sorghum<br>Miscanthus                                                  | Muchow et al. (1994),<br>Samson et al. (2005)<br>Habyarimana et al. (2004),<br>Clifton-Brown et al. (2001),<br>Heaton et al. (2004), |  |
| Macro-algae                                                                     |                                            |                                                                            |                                                                               | Biomass yield difficult to<br>determine in the absence<br>of sustained harvests     |                                                                                                                                      |  |
| Laminaria<br>offshore                                                           | Not reported                               | 1-5                                                                        | 7 - 16                                                                        | Natural populations and<br>commercial harvesting                                    | Mann (1973); Chynoweth (2002), page 39                                                                                               |  |
| Macrocystis,<br>Gracilaria,<br>Laminaria and<br>Chondrus in<br>culture chambers | Not reported                               | 3 10                                                                       | 10 - 34 (127)                                                                 | "probably not achievable<br>on a commercial scale"<br>(Chynoweth 2002)              | Chynoweth (2002), page<br>11-15                                                                                                      |  |
| Laminaria in<br>offshore farm                                                   | Not reported                               | Not reported                                                               | 28 – 46<br>(expected<br>values,<br>prevented by<br>storm!)                    | High values can only be<br>obtained by supplying<br>nutrients at excessive<br>costs | Brinkhuis and Levin (1987)                                                                                                           |  |
| Uncultivated<br>brown algae                                                     | Not reported                               | Not reported                                                               | 10 - 36                                                                       | Review                                                                              | Gao and McKinley (1994)                                                                                                              |  |
| Micro-algae in o                                                                | pen ponds                                  |                                                                            |                                                                               |                                                                                     |                                                                                                                                      |  |
| Micro-algae in<br>commercial<br>raceway ponds                                   | Not reported                               | 3-8                                                                        | 10 <b>- 3</b> 0                                                               | Chlorella, Arthrospira, and<br>Dunaliella sp.                                       | Jimenez et al. (2003)                                                                                                                |  |
| Algae in<br>experimental<br>raceway ponds<br>(Aquatic Biomass<br>Program)       | < 10                                       | 3 – 40 (winter<br>to summer)                                               | 30 - 50                                                                       | Summary of ABP-program<br>run from 1978 – 1996                                      | Benemann and Oswald<br>(1996); Sheehan et al.<br>(1998)                                                                              |  |
| Heamatococcus<br>pluvialis                                                      | 3-4.4                                      | 10 - 15<br>(uncorrected)                                                   | 20 – <mark>3</mark> 0                                                         | Annual yield corrected for<br>space occupied by PBRs                                | Huntley and Redalje<br>(2007)                                                                                                        |  |
| Arthrospira<br>(Spirulina)                                                      | Not reported                               | 2 - 15                                                                     | 30                                                                            | 450 m <sup>2</sup>                                                                  | Jimenez et al. (2003)                                                                                                                |  |

Outputs from the EPOBIO project September 2007 Prepared by A Carlsson, J van Beilen, R Moller and D Clayton

### Photosynthetic efficiency and yield

#### Table 4 continued.

| Plant system                | Plant system Photosynthetic<br>efficiency of<br>PAR (%) |                                                                                            | Typical<br>productivity<br>(t ha 'y')<br>(Maximum) | Comment                                                                                              | Reference                                                                             |  |  |
|-----------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--|--|
| Dunaliella salina           | Not reported                                            | 2                                                                                          | Not reported                                       | Small outdoor photo-<br>bioreactor, 55I, 2.2 m <sup>2</sup>                                          | García-González et al.<br>(2005)                                                      |  |  |
| Pieurochrysis<br>carterae   | Not reported                                            | 3 – 33 (winter<br>to summer)                                                               | 60                                                 | Small system (1 m <sup>2</sup> ), 13<br>months<br>21.9 t/ha/y lipids<br>5.5 t/ha/y CaCO <sub>0</sub> | Moheimani and Borowitzka<br>(2006) (see Table 3 for a<br>list of similar experiments) |  |  |
| Scenedesmus<br>obliquus     | Not reported                                            | 48 (3 months<br>in summer)                                                                 | Not applicable                                     | 20 m <sup>2</sup> raceway pond<br>unpublished results                                                | Grobbelaar (2000)                                                                     |  |  |
| Tetraselmis<br>suecica      | 6 – 7 average<br>13 – 18 max                            | 20 Not applicabl<br>60 - 70                                                                |                                                    | Duration less than 1 month<br>Single day result                                                      | Laws et al. (1986)                                                                    |  |  |
| Micro-algae in ph           | otobioreactors                                          |                                                                                            |                                                    |                                                                                                      |                                                                                       |  |  |
| Chlorella vulgaris          | Not reported                                            | Not reported                                                                               | 130 - 150<br>(claimed)                             | Tubular PBR (700 m <sup>3</sup> ) in<br>1.2 hectare greenhouse                                       | Moore (2001); Pulz (2001)                                                             |  |  |
| Phaeodactylum<br>tricomutum | 15 - 20                                                 | 61 – 73<br>(depending on<br>tube<br>diameter)<br>14 – 17<br>(calculated for<br>total area) | Not applicable                                     | PBR with optimised dilution<br>rates, extrapolated yields                                            | Acien Fernandez et al.<br>(1998)                                                      |  |  |
| Chlorella vulgaris          | 5.1 - 6.4                                               | 0.57 - 0.97                                                                                | Not applicable                                     | Helical bioreactor, artificial<br>light                                                              | Scragg et al. (2002)                                                                  |  |  |
| Chlorella sp.               | 7.1                                                     | 43                                                                                         | Not applicable                                     | Low level artificial light<br>Turbulent culture                                                      | Tamiya (1957)                                                                         |  |  |
| Chlorella sp.               | < 47                                                    | Not reported Not applicable                                                                |                                                    | Value obtained under<br>extremely low light with<br>alternative photosystems                         | Pirt et al. (1980);<br>Richmond (2000)                                                |  |  |
| Arthrospira<br>(Spirulina)  | 5.45                                                    | 5.44                                                                                       | Not applicable                                     | Helical bioreactor, artificial<br>light                                                              | Watanabe et al. (1995)                                                                |  |  |
| Arthrospira<br>(Spirulina)  | 2 - 5                                                   | 7 – 25                                                                                     | 33                                                 | 215 days outdoor<br>cultivation period in central<br>Italy                                           | Torzillo et al. (1986)                                                                |  |  |

2

20

## What are essential criteria for selecting hosts strains?



Kelp

### Should commercial algae be the host species

| Species/group                                               | Product                     | Application<br>areas                                      | Prod.<br>facilities                            | References                                                                |
|-------------------------------------------------------------|-----------------------------|-----------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|
| Spirulina<br>(Arthrospira<br>platensis) /<br>Cyanobacteria) | Phycocyanin,<br>biomass     | Health food,<br>cosmetics                                 | Open<br>ponds,<br>natural<br>lakes             | Lee (2001);<br>Costa et al.<br>(2003)                                     |
| Chlorella<br>vulgaris /<br>Chlorophyta                      | Biomass                     | Health food,<br>food<br>supplement,<br>feed<br>surrogates | Open<br>ponds,<br>basins,<br>glass-tube<br>PBR | Lee (2001)                                                                |
| <i>Dunaliella salina</i><br>/ Chlorophyta                   | Carotenoids,<br>β-carotene  | Health food,<br>food<br>supplement,<br>feed               | Open<br>ponds,<br>lagoons                      | Jin and Melis<br>(2003); Del<br>Campo et al.<br>(2007)                    |
| Haematococcus<br>pluvialis /<br>Chlorophyta                 | Carotenoids,<br>astaxanthin | Health food,<br>pharmaceutic<br>als, feed<br>additives    | Open<br>ponds,<br>PBR                          | Del Campo et<br>al. (2007)                                                |
| Odontella aurita<br>/ Bacillariophyta                       | Fatty acids                 | Pharmaceuti-<br>cals,<br>cosmetics,<br>baby food          | Open<br>ponds                                  | Pulz and Groß<br>(2004)                                                   |
| Porphyridium<br>cruentum /<br>Rhodophyta                    | Polysac-<br>charides        | Pharmaceuti-<br>cals,<br>cosmetics,<br>nutrition          | Tubular<br>PBR                                 | Fuentes et al.<br>(1999)                                                  |
| Isochrysis<br>galbana /<br>Chlorophyta                      | Fatty acids                 | Animal<br>nutrition                                       | Open<br>ponds,<br>PBR                          | Molina Grima<br>et al. (1994);<br>Pulz and Gross<br>(2004)                |
| Phaedactylum<br>tricornutum /<br>Bacillariohyta             | Lipids, fatty<br>acids      | Nutrition, fuel production                                | Open<br>ponds,<br>basins,<br>PBR               | Yongmanitchai<br>and Ward<br>(1991); Acien-<br>Fernandez et<br>al. (2003) |
| Lyngbya<br>majuscule /<br>Cyanobacteria                     | Immune<br>modulators        | Pharmaceuti-<br>cals, nutrition                           |                                                | Singh et al.<br>(2005)                                                    |
| <i>Muriellopsis sp.</i><br>/Chlorophyta                     | Carotenoids,<br>Lutein      | Health food,<br>food<br>supplement,<br>feed               | Open<br>ponds,<br>PBR                          | Blanco et al.<br>(2007); Del<br>Campo et al.<br>(2007)                    |

### Could macro-algae be a host species

| Seaweed genus | Remarks                                                                                                                 |
|---------------|-------------------------------------------------------------------------------------------------------------------------|
| Alaria        | Possesses floating structure, occurs in arctic waters                                                                   |
| Corallina     | Calcareous, spread widely, small, can possibly be grown<br>together with other species                                  |
| Cystoseira    | Moderate climate zone, floating reproduction structures                                                                 |
| Ecklonia      | Subtropical and moderate climate zone, one floating species                                                             |
| Egregia       | Moderate climate zone, floating structure, very robust species                                                          |
| Eucheumia     | Already cultivated in tropical areas, relatively small size                                                             |
| Gracillaria   | Widely occurring, often cultivated, high productivity                                                                   |
| Laminaria     | Extensively grown in moderate climate zones                                                                             |
| Macrocystis   | In semi-culture, seasonal harvest, moderate climate zone                                                                |
| Pterygophora  | Moderate climate zone, very robust species                                                                              |
| Sargassum     | Widely occurring (including Sargasso Sea), many species,<br>floating structures, in moderate and tropical climate zones |

### What model species for engineering?

Do we take one strain and devote substantial resources to develop it faster? The *E. coli* paradigm

Do we bet on several horses and see who wins?

Do we already have the model organisms we need?

### Model Algal Species by Citation

| Genus species             | Nuclear<br>Genome | Chloroplast<br>Genome | Transformation | Papers |
|---------------------------|-------------------|-----------------------|----------------|--------|
| Chlamydomonas reinhardtii | complete          | complete              | Nuc/Ct (269)   | 4611   |
| Chorella vulgaris         | in progress       | complete              | Nuc (1)        | 2901   |
| Euglena gracilis          | In progress       | complete              | Ct (1)         | 2291   |
| Scenedesmus obliquus      | none              | complete              |                | 642    |
| Laminaria japonica        | none              | complete              | Nuc (1)        | 623    |
| Dunaliella salina         | minimal           | partial               | Nuc (3)        | 499    |
| Volvox carteri            | draft             | complete              | Nuc (8)        | 257    |
| Porphyra sp.              | none              | complete              | Nuc (1)        | 221    |
| Phaeodactylum tricornutum | minimal           | complete              | Nuc (3)        | 192    |
| Porphyridium sp.          | minimal           | minimal               | Ct (1)         | 184    |
| Thalassiosira pseudonana  | complete          | complete              | Nuc (1)        | 158    |
| Cyanidium caldarium       | none              | complete              |                | 155    |
| Cyanophora sp.            | none              | complete              |                | 129    |
| Haematococcus pluvialis   | some              | minimal               | Nuc (1)        | 119    |
| Tetraselmis chuii         | minimal           | minimal               |                | 93     |
| Isochrysis galbana        | none              | none                  |                | 90     |
| Cyanidioschyzon merolae   | complete          | complete              | Nuc (1)        | 71     |
| Emiliania huxleyi         | complete          | complete              |                | 70     |
| Chaetoceros gracilis      | minimal           | minimal               |                | 67     |
| Nannochloropsis sp.       | minimal           | minimal               |                | 48     |
| Macrocystis pyrifera      | none              | none                  |                | 56     |
| Rhodomonas sp.            | none              | complete              |                | 40     |
| Botryococcus braunii      | minimal           | minimal               |                | 36     |
| Ostreococcus tauri        | draft             | complete              |                | 33     |
| Nannochloris oculata      | minimal           | minimal               |                | 29     |
| Odontella sinensis        | none              | complete              |                | 18     |
| Leptosira sp.             | none              | complete              |                | 4      |
| Neochloris oleoabundans   | none              | none                  |                | 3      |
|                           |                   |                       |                |        |
| Arabidopsis               | complete          | complete              | 880            | 23564  |
| Saccharomyces             | complete          |                       | 3077           | 84960  |
| E. coli                   | complete          |                       | 7407           | 220222 |

### Developing the tool for algal engineering

Biofuels are all made in the chloroplast from photosynthesis - most of enzymes responsible are nuclear encoded



Genetic transformation of algae is relatively easy Although you need selectable markers for each species



## Chloroplast transformation proceeds by homologous recombination



- need promoter and UTRs flanking region of homology
- recombinant proteins can accumulate to very high levels
- chloroplast can express complex proteins
- less sophisticated gene regulation in plastids

## Nuclear transformation proceeds by random integration



- Need more transformation events to get good expression
- Gene expression more complex, regulation potential greater
- Can target proteins to plastids, cytoplasm or export
- Gene silencing is presently a limiting factor



### **Chloroplast Genome**



- Complete set of genetic material
- Simple prokaryotic promoters
- Stable uncapped non-polyA mRNAs
- Bacteria-like ribosomes
- Easily transformed

### Expression of recombinant protein in *C. reinhardtii* chloroplasts



### Synthetic codon optimize chloroplast GFP gene

GFP Codon Alignment

| ct<br>ncb | ATG<br>ATG | GCT<br>AGT | AAA<br>AAA | GGT | gaa<br>gaa | gaa<br>gaa | TTA<br>CTT | TTC<br>TTC | ACA<br>ACT | GGT<br>GGA | GTT<br>GTT | GTA        | CCT<br>CCA | ATT<br>ATT | TTA<br>CTT | GTA<br>GTT | GAA<br>GAA |      |
|-----------|------------|------------|------------|-----|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------|
|           | м          | A*         | ĸ          | G   | E          | E          | L          | F          | T          | G          | v          | V          | P          | I          | L          | V          | Е          | 17   |
| ct        | TTA        | GAC        | GGT        | GAT | GTA        | AAC        | GGT        | CAC        | AAA        | TTT        | TCA        | GTT        | TCT        | GGT        | GAA        | GGT        | gaa        |      |
| ncb       | TTA        | GAT        | GGT        | GAT | GTT        | AAT        | GGG        | CAC        | AAA        | TTT        | TCT        | GTC        | AGT        | GGA        | GAG        | GGT        | GAA        | 2.4  |
| -         | L          | D          | G          | D   | V          | N          | G          | H          | K          | F          | S          | V<br>TTC   | S          | G          | E          | G          | E          | 34   |
| Ct<br>nch | CCT        | GAC        | GCA        | ACI | TRI        | GGT        | AAA        | CTT        | ACC        | CTT        |            | TTTT       | ΔΤΤ        | TGC        | ACT        | ACT        | GGA        |      |
| nco       | GGI        | D          | A          | T   | Y          | G          | K          | L          | T          | L          | K          | F          | I          | C          | T          | T          | G          | 51   |
| ct        | AAA        | TTA        | CCA        | GTA | CCT        | TGG        | CCA        | ACT        | TTA        | GTT        | ACA        | ACT        | TTT        | ACA        | TAC        | GGT        | GTA        |      |
| ncb       | AAA        | CTA        | CCT        | GTT | CCA        | TGG        | CCA        | ACA        | CTT        | GTC        | ACT        | ACT        | TTC        | TCT        | TAT        | GGT        | GTT        | J    |
|           | K          | L          | P          | V   | P          | W          | P          | T          | L          | V          | Т          | T          | F          | T*         | Y          | G          | V          | 68   |
| ct        | CAA        | TGT        | TTC        | AGT | CGT        | TAC        | CCT        | GAT        | CAC        | ATG        | AAA        | CAA        | CAT        | GAC        | mmm        | mmc        | AAA        |      |
| ncb       | CAA        | C          | F          | S   | R          | Y          | P          | D          | H          | M          | K          | 0          | H          | D          | F          | F          | K          | 85   |
| ct        | TCT        | GCT        | ATG        | CCA | GAA        | GGT        | TAT        | GTT        | CAA        | GAA        | CGT        | ACT        | ATT        | TTT        | TTC        | AAA        | GAT        |      |
| ncb       | AGT        | GCC        | ATG        | CCC | GAA        | GGT        | TAT        | GTA        | CAG        | GAA        | AGA        | ACT        | ATA        | TTT        | TTC        | AAA        | GAT        |      |
|           | S          | A          | м          | P   | E          | G          | Y          | v          | Q          | E          | R          | т          | I          | F          | F          | K          | D          | 10,2 |
| ct        | GAC        | GGT        | AAT        | TAT | AAA        | ACA        | CGT        | GCT        | GAA        | GTA        | AAA        | TTT        | GAA        | GGT        | GAT        | ACT        | TTA        |      |
| ncb       | GAC        | GGG        | AAC        | TAC | AAG        | ACA        | CGT        | GCT        | GAA        | GIC        | AAG        | TTT        | GAA        | GGT        | GAT        | ACC        | CTT        | 110  |
| -         | D          | G          | N          | Y   | K          | T          | R          | A          | E          | V          | K          | F          | CDD        | G          | D          | T          | L          | 119  |
| ct        | GTT        | AAC        | DCD        | ATT | GAA        | TIA        | AAA        | GGT        | ATT        | GAU        | TTT        | AAA        | GAA        | GAT        | GGA        | AAL        | ATT        |      |
| nco       | V          | N          | R          | I   | E          | L          | K          | G          | I          | D          | F          | K          | E          | D          | G          | N          | ï          | 136  |
| ct        | TTA        | GGT        | CAC        | AAA | CTT        | GAA        | TAT        | AAC        | TAC        | AAT        | TCA        | CAT        | AAC        | GTA        | TAT        | ATT        | ATG        |      |
| ncþ       | CTT        | GGA        | CAC        | AAA | TTG        | GAA        | TAC        | AAC        | TAT        | AAC        | TCA        | CAC        | AAT        | GTA        | TAC        | ATC        | ATG        |      |
| - *       | L          | G          | H          | K   | L          | E          | Y          | N          | Y          | N          | S          | H          | N          | V          | Y          | I          | M          | 153  |
| ct        | GCA        | GAC        | AAA        | CAA | AAA        | AAT        | GGT        | ATT        | AAA        | GTA        | AAC        | 111<br>TTC | AAA        | ATT        | AGA        | CAC        | AAI        |      |
| nco       | A          | D          | K          | 0   | K          | N          | G          | I          | K          | v          | N          | F          | K          | I          | R          | H          | N          | 170  |
| ct        | ATC        | GAG        | GAT        | GGT | TCT        | GTA        | CAA        | TTA        | GCT        | GAC        | CAC        | TAT        | CAA        | CAA        | AAC        | ACA        | CCA        |      |
| ncb       | ATT        | GAA        | GAT        | GGA | AGC        | GTT        | CAA        | CTA        | GCA        | GAC        | CAT        | TAT        | CAA        | CAA        | AAT        | ACT        | CCA        |      |
|           | I          | E          | D          | G   | S          | v          | Q          | L          | A          | D          | Н          | Y          | Q          | Q          | N          | Т          | P          | 187  |
| ct .      | ATT        | GGT        | GAT        | GGT | CCT        | GTT        | TTA        | CTT        | CCA        | GAC        | AAT        | CAT        | TAT        | TTA        | AGT        | ACT        | CAA        |      |
| ncb       | ATT        | GGC        | GAT        | GGC | CCT        | GTC        | CTT        | TTA        | CCA        | GAC        | AAC        | CAT        | TAC        | CTG        | TCC        | ACA        | CAA        | 204  |
| ot        | I mom      | G          | D<br>mm a  | G   | ر<br>ممر ا | CAT        | COM        |            | CDD        | 333        | N          | H<br>CAC   | CAC        | ATC.       | CTDA       | T          | CTT        | 204  |
| nch       | TCT        | GCC        | CTT        | TCG | AAA        | GAT        | CCC        | AAC        | GAA        | AAG        | AGA        | GAC        | CAC        | ATG        | GTC        | CTT        | CTT        |      |
| 1100      | s          | A          | L          | S   | K          | D          | P          | N          | E          | K          | R          | D          | Н          | M          | V          | L          | L          | 221  |
| ct        | GAA        | TTT        | GTT        | ACA | GCA        | GCT        | GGT        | ATT        | ACT        | CAC        | GGT        | ATG        | GAT        | GAA        | TTA        | TAC        | AAA        |      |
| ncb       | GAG        | TTT        | GTA        | ACA | GCT        | GCT        | GGG        | ATT        | ACA        | CAT        | GGC        | ATG        | GAT        | GAA        | CTA        | TAC        | AAA        |      |
|           | E          | F          | v          | т   | A          | A          | G          | I          | т          | н          | G          | М          | D          | E          | L          | Ϋ́         | K          | 238  |
| ct        | TAA        |            |            |     |            |            |            |            |            |            |            |            |            |            |            |            |            |      |
| nco       | Och        |            |            |     |            |            |            |            |            |            |            |            |            |            |            |            |            |      |

### Analysis of codon optimized gfp expression in transgenic chloroplast



### Promoter and UTR combinations for increased chloroplast expression



## Accumulation of chimeric gfp mRNAs in *C. reinhardtii* chloroplast



### GFP accumulation in transgenic lines



### Gene replacement vector for improved Recombinant protein expression



### Expression of SAA from psbA KO vector



Wt total Saa-22 Sol Wt Sol SAA-22 mem

Coomassie stain gel

Western anti-SAA3

### Robust expression of recombinant proteins in a photosynthetic strain /psbA /psbA $\triangleleft$ 1/4 SAA22-psbD/psbA I/2 SAA22-psbD/psbA

| mw    | Wt | SAA22 | SAA22-psbD/psb | SAA22-psbA/psb | 1/2 SAA22-psbD/ | 1/4 SAA22-psbD/ | Wt | SAA22 | SAA22-psbD/psbA |  |
|-------|----|-------|----------------|----------------|-----------------|-----------------|----|-------|-----------------|--|
| 115 — | 1  |       |                |                |                 | -               |    |       |                 |  |
| 60 —  | -  |       |                |                |                 |                 |    |       |                 |  |

SAA22-psbA/psbA

Stain gel

39

19

10 —

Western anti-SAA

### C. reinhardtii and E. coli mRNA binding site



### Where do we go from here?



- We need a national center for algal research
- Develop the knowledge base of algal
- Develop the molecular tools to make algae a biotechnology platform
- Develop strains of algae for economic biofuel production
- Develop industrial practices for growth harvest and recovery of biofuel