EPRI (2004) CEUS Ground Motion Model

Martin McCann¹, Robert Youngs², and James Marrone³

Presented at USGS Workshop on National Seismic Hazard Maps May 9-10, 2006 Cambridge Mass

¹Jack R. Benjamin and Assoc., ²Geomatrix Consult., ³Bechtel

EPRI CEUS Ground Motion Project

- Objective was to develop a representation of earthquake ground motion and its uncertainty for use in PSHA calculations for Early Site Permit (ESP) applications to hard rock sites in the CEUS
 - Update of EPRI-SOG (1989)
 - Focus on 1, 2.5, 5, and 10 Hz spectral accelerations
 - Range of application 0.5 to 100 Hz
- Build representation from existing CEUS Models
- Apply a SSHAC (1997) Level 3 process
 - Assessments made by one "entity", the Technical Integrator (TI)
 - Guidance provided by a panel of experts through a series of workshops and document reviews
- Develop a reproducible process

Project Participants

<u>Technical</u> Integrator

- Marty McCann
- Bob Youngs
- Jim Marrone

Peer Review

- Carl Stepp
- Allin Cornell

Expert Panel

- Gail Atkinson
- Ken Campbell
- Richard Lee
- Walt Silva
- Paul Somerville
- Gabriel Toro

Model for Median Ground Motions and Their Epistemic Uncertainty

- Collect the set of existing usable ground motion models
 - "usable" means can provide ground motions for the range of magnitudes, distances and frequencies of interest to PSHA for ESP applications
- Group models into clusters based on similarity of modeling approach
- Develop intra-cluster weights based on fit to existing ground motion data

Median Ground Motion Models

No.	Model	Туре
1	Abrahamson and Silva (2002)	Hybrid ¹
2	Atkinson & Boore (1995) ^{2,4}	Spectral, Double-Corner
3	Atkinson (2001) using Sadigh et al. (1997)	Hybrid
4	Campbell (2003)	Hybrid
5	Frankel et al. (1996) ^{3,4}	Spectral, Single-Corner
6	Hwang & Huo (1997)	Spectral, Single-Corner
7	Silva et al. (2002) – SC-CS⁵	Spectral, Single-Corner
8	Silva et al. (2002) – SC-CS-S⁵	Spectral, Single-Corner
9	Silva et al. (2002) – SC-VS⁵	Spectral, Single-Corner
10	Silva et al. (2002) DC ⁵	Spectral, Double-Corner
11	Silva et al. (2002) DC-S ⁵	Spectral, Double-Corner
12	Somerville et al. (2001)	Finite Source/Greens Function
13	Toro et al. (1997)	Spectral, Single-Corner

¹ Hybrid refers to models that are derived from attenuation relationships in one region (e.g., western U.S.) and transformed, using seismological principles to obtain relationships for a target region.

² A parametric form of the Atkinson & Boore model was fit to ground motion values provided by the authors in their lookup table.

³ A parametric form of the USGS model was fit to ground motion values provided by Art Frankel (Frankel, 2002).

⁴Models adjusted to Joyner-Boore distance (R_{JB}) using magnitude-dependent point-source depth distributions from Silva et al (2002).

⁵SC – single corner, DC – double corner, CS – constant stress drop, VS – magnitude-dependent stress drop, CS-S – constant stress drop with saturation

CEUS Ground Motion Data

Date	Earthquake	Μ	Date	Earthquake	Μ
3/1/1925	Charlevoix, Quebec, CAN	6.4	1/31/1986	Painesville, OH	4.8
11/1/1935	Timiskaming, CAN	6.2	7/12/1986	St. Marys, OH	4.5
9/5/1944	Cornwall (CAN) - Massena, NY	5.8	11/23/1988	Saguenay, CAN (F1)	4.2
3/25/1976	New Madrid, MO	4.6	11/25/1988	Saguenay, CAN	5.8
1/19/1982	Franklin Falls, NH	4.3	4/27/1989	New Madrid, MO	4.7
3/31/1982	New Brunswick (A13)	4.0	9/26/1990	Cape Girardeau	4.7
10/7/1983	Goodnow, NY	5.0	10/19/1990	Mount-Laurier Quebec, CAN	4.5
11/9/1985	Nahani, CAN (F1)	4.6	5/4/1991	New Madrid, MO	4.4
			1/1/2000	Temiscamingue Region, Ouebec, CAN	4.7
12/23/1985	Nahani, CAN	6.7			
12/25/1985	Nahani, CAN (A1)	5.0			

CEUS Ground Motion Data Distribution

10

Measure of Fit of Individual Models to CEUS Ground Motion Data

11

Measure of Fit of Individual Models to CEUS Ground Motion Data

Intra-cluster Weights Based on Variance Between Model and Data Averaged over 1, 2.5, 5, and 10 Hz

_ 2	. 2	· <u> </u>
\mathbf{O}_{Fit}	$= \mu_{\text{Re sidual}}$	$+ \mathbf{O}_{\text{Residual}}$

Cluster No.	Model Type	Models	Weight s ¹
1	Spectral, Single Corner	Hwang & Huo (1997)	0.037
		Silva et al. (2002) – SC-CS	0.192
		Silva et al. (2002) – SC-CS-S	0.148
		<i>Silva et al.</i> $(2002) - SC-VS^{1}$	0.560
		Toro et al. (1997)	0.029
		Frankel et al. (1996)	0.034
2	Spectral, Double Corner	Atkinson & Boore (1995)	0.714
		Silva et al. (2002) DC	0.154
		Silva et al. (2002) DC-S	0.132
3	Hybrid	Abrahamson & Silva (2002)	0.336
		Atkinson (2001) & Sadigh et al. (1997)	0.363
		Campbell (2003)	0.301
4	Finite Source/Greens Function	Somerville et al. $(2001)^{1}$	1.0

Median Ground Motions (cont'd)

- Use intra-cluster weights to develop "cluster median" ground motions and initial estimate of intra-cluster epistemic uncertainty
- Incorporate additional epistemic uncertainty not represented by the set of models in a cluster
- Fit the cluster median and 5th and 95th percentiles using a representative functional form
- Develop a set of inter-cluster weights

Additional Epistemic Uncertainty

Uncertainty Component	Cluster 1	Cluster 2	Cluster 3	Cluster 4
Intra-cluster variability	Represented by Cluster	Represented by Cluster	Represented by Cluster	0
Source uncertainty	Added Additional Uncertainty	Added Additional Uncertainty	Added Additional Uncertainty	Added Additional Uncertainty
Path uncertainty	Represented by Cluster	Represented by Cluster	Represented by Cluster	Added Additional Uncertainty
Median fit uncertainty	Included	Included	Included	0

Examples for Cluster 1

M 8.0

Examples for Cluster 4

M 8.0

Example of Fitted Relationships for Cluster 2

f11

18

Inter-Cluster Weights for Median Models

- Consistency with CEUS ground motion data (relative weight between cluster medians)
- Cluster Modeling Principles
 - Degree of incorporation of "seismological principals"
 - Degree of incorporation of epistemic uncertainty

Inter-Cluster Weighting

	Seismological Principles			
Consideration of Uncertainty	High	Medium	Low	
Explicit Modeling of Epistemic Uncertainty	10	8	3	
Model only Parametric Variability	7	5	1	
No Consideration of Uncertainty	4	3	1	

	Importan		
	0.25		
Cluster	Consistency With Data	Modeling Principles	Composite Weight
1	0.3639	0.245	0.275
2	0.5869	0.221	0.312
3	0.0135	0.257	0.196
4	0.0357	0.277	0.217

		Clusters			
		1	2	3	4
	Seismological Principles	Medium	Medium	Medium	High
>	Explicit Modeling of				
, it	Epistemic Uncertainty	0.40	0.20	0.50	0.00
'tai Jex	Only Parametric Variability	0.60	0.80	0.50	1.00
۵ ۲	No Consideration	0.0	0.0	0.0	0.00
-					
	Relative Score	6.2	5.6	6.5	7
	Final Weight	0.245	0.221	0.257	0.277

Comparison of 1 Hz Model with Individual Relationships

Application Guidance

- Twelve models to represent the uncertainty in median ground motions
- Recommend not using Cluster 4 for seismic sources where hazard is dominated by M < 6 events
- Provided adjustments to median models for use in the Gulf Coast region

Aleatory Uncertainty Models

- Developed independently from median models
- Based on existing models
- Two sets of estimates
 - Empirical WUS translated to CEUS
 - Parametric combined with modeling

Aleatory Variability Models

Model	Basis
Abrahamson and Silva (2002)	Empirical WUS, Adjusted
Atkinson & Boore (1995)	Empirical CEUS
Atkinson (2001) using Sadigh et al. (1997)	Empirical WUS
Campbell (2003)	Empirical WUS, Adjusted
Frankel et al. (1996)	Direct Assessment
Hwang & Huo (1997)	Parametric
Savy et al. (2002) – "TIP"	Demonstration SSHAC Assessment
Silva et al. (2002)	Parametric plus Modeling
Somerville et al. (2001)	Parametric plus Modeling
Toro et al. (1997) with updated modeling	Parametric plus Modeling

Aleatory Variability - 100 Hz SA

Aleatory Variability - 5 Hz SA

Aleatory Variability - 1 Hz SA

Aleatory Models

- Model 1 based on WUS empirical (Abrahamson and Silva, 2002)
- Model 2 based on Toro et al. (1997) with updated modeling component
- Model 3 based on Savy (2002)
- Model 4 based in Silva et al. (2002)

Adjustments for Use in CEUS PSHA

- Distance measure was treated as closest distance to rupture or closest distance to surface projection of rupture (Joyner-Boore distance)
 - Distance adjustment needed when modeling earthquakes as spatially distributed epicenters in PSHA
 - Additional magnitude and distance dependent aleatory variability added for random orientation of ruptures about epicenters
 - Alternatively, include representation of rupture distributions directly in the PSHA calculation
- Additional aleatory variability added to account for "point source" depth distribution effects at short distances for models using Joyner-Boore distance (e.g. Toro et al.,1997)

Adjustments for Epicenter Representations of Earthquakes in PSHA

Aleatory Variability Due to Point-Source Depth Distribution used with Joyner-Boore Distances

