

DAO'S m m m Assim Arindo da Silva, SJ Lin, J. Joiner, D. Dee and The fvDAS Development Team Data Assimilation Office, NASA/GSFC AIRS Workshop, 16-17 May 2001

The fvDAS Development Team

- Arlindo da Silva
 - System design
 - Analyzer, observer, scripts
- S.-J. Lin
 - fvCCM, interface
- Joanna Joiner
 - iTOVS
- Jing Guo
 - PSAS library
- Dick Dee
 - QC, moisture/TPW analysis
- Genia Brin
 - SSM/I wind speed

- Meta Sienkiewicz
 - Thinner, NCEP Q/C
- Rob Lucchesi:
 - GFIO, pre-ops design
- Chris Redder
 - ODS library
- Sharon Nebuda
 - Interface, boundary conditions
- Tommy Owens:
 - Acquire
- Guang-Ping Lou
 - Digital filter, RUC

5/24/2001

Arlindo da Silva

- Introduction
- System Overview
 - Finite-volume CCM
 - Quality control
 - PSAS
- Results
- AIRS related activities at DAO
- Constituent and land surface data assimilation

- Finite-volume CCM (fvCCM3):
 - DAO's finite-volume dynamical core
 - NCAR's CCM 3 physics
- On-line Statistical Quality Control System (SQC):
 - Background and adaptive "buddy" check
- Physical-space Statistical Analysis System (PSAS)
- Carefully designed model-analysis interface:
 - Analysis increments produced on model levels
 - Unified surface/upper-air analysis
 - More accurate O-F computation from native fields

- Terrain following Lagrangian control-volume
- Basic conservation laws:
 - Mass
 - Momentum
 - Total energy
- 2D horizontal flux-form semi-Lagrangian discretization
 - Genuinely conservative
 - Gibbs oscillation free
 - Absolute vorticity consistently transported with mass dp.

5/24/2001

Arlindo da Silva

Quality Control

- NCEP's Complex Quality Control
 - radiosonde temperature and moisture observations
- Background Check
 - simple check of the observations against a background field
- Adaptive Buddy Check:
 - adjusts error bounds according to the flow of the day.
 - Check suspect observations against nearby observations (buddies)

Analysis Equation

The analysis is obtained by minimizing the functional:

$$J(x) = (x - x^{b})^{T} B^{-1} (x - x^{b}) + (y^{o} - \mathcal{H}(x))^{T} R^{-1} (y^{o} - \mathcal{H}(x))$$

where

\boldsymbol{x}	(analysis) state vector	$\in I\!\!R^n$
x^b	background state vector	$\in I\!\!R^n$
y^o	observation vector	$\in I\!\!R^p$
\mathcal{H}	observation operator	$\in I\!\!R^{p imes n}$
B_{-}	background error covariance	$\in I\!\!R^{n\times n}$
R	observation error covariance	$\in I\!\!R^{p imes p}$
	$n \sim 10^6$, $n \sim 10^5$	

Main assumptions: unbiased observations and background, normaly distributed errors.

PSAS: Physical-space Statistical Analysis System

Linearized Solution: Problem is solved in observation (dual) space in two steps:

(HBH^T + R)z = y^o - Hx^b (*)x^a = x^b + BH^Tz

The linear system (*) is solved globally with an iterative pre-conditioned Conjugate Gradient algorithm.

Pre-conditioner: sphere is divided in several regions and (*) is solved locally in each region.

Approximations: A compactly supported correlation function is assumed. Regions separated by more than a pre-determined distance (usually 6,000 km) are assumed not correlated.

Non-linear PSAS: involves sucessive linearizations (quasi-Newton iterations)

• In combination with a changing observing system, model bias will

induce spurious climate signals

• Many examples of manifestations in atmospheric reanalysis data sets

Arlindo da Silva

The analysis equation

$$w^a = w^f + K \left(w^o - H w^f \right)$$

has been derived under the assumption of no forecast bias. Defining,

$$e^a = w^a - w^t$$
, $e^f = w^f - w^t$, etc

It follows that

$$e^a = e^f + K\left(e^o - He^f\right)$$

If we assume that observations are unbiased ($\overline{e^{\circ}} = 0$), but not the forecast, it follows that the analysis will be biased:

 $\overline{e^a} = (I - KH)\overline{e^f}$

Dee and da Silva (1998) showed how to produce unbiased analysis when the forecast is biased.

The idea is to provide a running estimate of the bias to correct the forecast accordingly. The modified two-step algorithm is:

1. Forecast bias estimation:

$$b^{f} = b^{f} - L \left[w^{o} - \left(w^{f} - b^{f} \right) \right]$$

2. Unbiased analysis equation:

$$w^{a} = (w^{f} - b^{f}) + K [w^{o} - (w^{f} - b^{f})]$$

Water Vapor: Mean Obs - Analysis

Water Vapor Mixing Ratio Analysis Errors [g/kg] and Data Counts Jan1998 All 20S-20N Rawinsonde Station Data

- Land Surface observations: slp
- Ocean surface observations: slp, u & v
- Rawinsondes: h, u, v and q at mandatory levels
- Aircraft winds: u and v, conventional & ACARS
- Cloud track winds: u and v, visible, and IR
- SSM/I: wind speed and TPW
- Scatterometers: QSCAT and ERS

01Jan1999 12Z Surface data (6088 analyzed)

01Jan1999 12Z Radiosondes (20204 analyzed)

01Jan1999 12Z AIREP (1540 analyzed)

01Jan1999 12Z ACARS (1216 analyzed)

01Jan1999 12Z Cloud track winds (10812 analyzed)

01Jan1999 12Z SSM/I TPW (5119 analyzed)

Observation Locations

01Jan1999 12Z ERS (4948 analyzed)

01Aug1999 12Z QSCAT (4392 analyzed)

• DAOTOVS 1D-Var Assimilation of Radiances:

- Uses Level 1b data
- HIRS, SSU and AMSU radiances
- Variational cloud-clearing (Joiner and Rokke, 2000)
- Eigenvector FOV determination (AIRS ATBD)
- Physically-based tuning
- GLATOVS, MIT -> OPTRAN (NASA/NOAA collaboration)

01Jan1999 12Z iTOVS (44403 analyzed)

Resolution

- Model Horizontal Resolution:
 - 2x2.5 degrees
 - 1x1.25 degrees
- Model Vertical Resolution:
 - 55 layers
 - Top at 0.01 hPa
- Analysis Resolution:
 - Full or half model horizontal resolution
 - 25 layers, top 0.4 hPa

5/24/2001

Arlindo da Silva

O-F Statistics

- Fit to Rawinsonde & other observations
- Obs 6h Forecast
- Bias (time mean)
- Standard Deviations
- Globally (rms) averaged
- Regionally (rms) averaged

4

Toa aaipia

Forecast Skills

- Verification:
 - own analysis
- Climatology:
 - 1987-96 ECMWF operational analysis
 - Resolution: 2x2.5°
- Area averaging:
 - RMS: YES
 - Anomaly correlation: NO
- Number of cases:
 - fvDAS: ~30 cases
 - GEOS: ~10 cases

Arlindo da Silva

5/24/2001

Arlindo da Silva

Summary

- A fully featured fvDAS has been developed:
 - fvDAS runs much faster than current operational system
 - fvDAS has improved forecast skills and O-F statistics
 - fvDAS has a much improved stratospheric circulation
 - fvDAS has a competitive climate
- The system is under validation and is running in parallel mode (expected to become operational by Dec 2001)
- Work in progress:
 - Rapid update cycle (1 hour cycle)
 - Analysis bias estimation and correction
 - Precipitation assimilation

• DAO will be actively involved in AIRS validation:

- Early evaluation of AIRS imagery by synoptic group
- Radiance O-F monitoring
- Evaluate AIRS ozone with DAO's ozone assimilation system
- Assimilation of AIRS data. DAO will be evaluating the following products:
 - Statistical retrievals by Mitch Goldberg
 - Physical retrievals by AIRS team
 - Interactive 1D-VAR scheme (DAO AIRS)
 - Assimilation of Level 1b radiances with information content-based scheme (Joiner and da Silva 1998)
- The best performing product will be selected for use in DAO's operational system.

Retrieval errors can be formally written as (e.g., Rodgers 1995):

 $\epsilon^r = (I - A)\epsilon^p + D_y\epsilon^o$

where

 $\begin{array}{ll} A & \text{averaging kernel} \left(= D_y F_z \right) \\ (I - A) \epsilon^p & \text{smoothing error (prior error)} \\ D_y \epsilon^o & \text{detector noise and forward model errors} \end{array}$

In PSAS, retrieval error covariances are statistically modeled as

 $R = R_c + R_u$

where R_c/R_u are spatially correlated/uncorrelated components; background-retrieval cross-correlations are presently ignored.

Model parameters are estimated from O-F residuals using a maximum-likelihood/ bayesian approach (Dee and da Silva 1998; Purser and Parish 2000)

• The fvCCM has a built in tracer transport capability:

- Same Lin-Rood scheme widely used by several CTMs
- Tracers can be transported very accurately and efficiently
- PSAS can be used to produce constituent analysis
- Candidates for on-line assimilation:
 - Ozone (TOMS, SBUV)
 - CO (MOPPITT, AIRS?)
 - Aerosols: mineral dust, sea salt, sulfates and carbonaceous (TOMS, MODIS, MISR, OMI)
- In addition to 3D assimilated constituent fields, we will also have a real-time aerosol/constituent forecasting capability.

Land Surface Assimilation

Skin Temperature Assimilation

- Mosaic LSM driven off-line with GEOS forcing forming the Off-line Global Assimilation (OLGA) System
- Mosaic tiling approach captures subgrid scale heterogeneity
- PSAS assimilation of ISCCP skin temperature data
- Diurnal bias correction scheme applied every timestep, based on a timedependent bias model
- Resolution: 2° x 2.5°, Timestep: 5 min, Spinup: 10+ years, Focus: July 1992_{5/24/2001} Arlindo d

July 1992 Monthly Mean Diurnal Cycles for Experiments and ISCCP Observations

