

A Client/Server Approach to Open-Architecture,
Behavior-Based Robot Programming

Wyatt Newman, Adam Covitch and Ryan May
Department of Electrical Engineering and Computer Science

Case Western Reserve University
Cleveland, Ohio 44106
wnewman@case.edu

Abstract:
This paper describes our progress in the development of a
behavior-based, stimulus-response robot control software
architecture that is expressly designed to program and
execute interactive tasks, including assembly, multi-robot
collaborative manipulation, and exploration. The system
has been designed to assure stability and safety while
maintaining flexibility and achieving expert performance.
The architecture incorporates a reactive controller as a
behavior server, and applications are written as client
programs that can operate either locally or across a
network. This organization has been demonstrated to be
sufficiently open to support teleoperation tasks as well as
human-guided supervisory control and full autonomous
functionality.

1. Introduction:
Extending human reach and achieving sustainable
presence in space will require dramatic advances in
robotics. Robots are expected to precede humans to
Mars, where they would perform a variety of
sophisticated tasks, including: preparing landing sites,
constructing thermal and radiation barriers, assembling
power systems and communications systems, prospecting
for in situ resources (e.g. minerals containing extractable
oxygen and hydrogen), assembling and operating
factories for resource extraction, assembling habitats, and
continuously performing inspection, maintenance and
repair of facilities. These tasks are currently beyond the
capabilities of robots operating on Earth, much less in
space. In contrast, current Mars rovers operate by moving
only centimeters per command, and each command has a
time lag of approximately one hour between updates from
human operators on Earth. At these rates, no significant
landing-site preparations could be performed within the
lifetime of a robot.

Achieving the required robot competence will depend on
advances in robot autonomy. Rather than expecting
incremental motion commands from Earth, robots will

have to receive much higher-level, more abstract goals.
The robots will have to behave competently to achieve
specified subgoals while simultaneously taking
responsibility for self preservation as well as protection of
critical and possibly delicate components and systems
with which they interact.

In pursuit of more autonomous and more competent robot
behavior, we are constructing a behavior-based, stimulus-
response robot control software architecture that is
expressly designed to program and execute interactive
tasks, including assembly, multi-robot collaborative
manipulation, and exploration. This system is based on
“schemas”, comprising collections of stimulus-response
behaviors that are simultaneously relevant in some
context. Figure 1 shows an analogy between creature-like
behavior and a behavior-based robot program. In this
analogy, a creature is engaged in an initial action, but it is
simultaneously monitoring myriad conditions that may
induce a switch to an appropriate new action. In the
analogous robot program, the initial action is to move
towards a wall. The “event” of sensing contact with the
wall causes the robot to change its action to move along
the wall. During this operation, the robot controller
should be monitoring and interpreting a variety of sensory
conditions to select appropriate action sequences, to
protect itself and objects in contact, to recognize and
respond to abnormal conditions, and to guard against
deadlock.

While the desired behaviors could be programmed in
conventional if-then-else constructs, such an approach is
tedious and error prone, particularly as the number of
conditions to be monitored within a given context grows.
Instead, it is useful to think of a collection of state
machines and event detectors, and to program via
selection of a state machine appropriate to a given
context, and specification of event-driven transitions
among state machines. The present work describes a
system that supports programming in this manner.

klittle
Note
#24 - Didn't fix

Event Triggers:
See a predator

New Action:
om predatorFlee fr

Initial Action:
cornEat an a

Initial Action:
oward wallMove t

Event Triggers:
ontact forceFeel a c

New Ac
Move al

tion:
ong wall

Event Triggers:
datorSee a pre

New Action:
om predatorFlee fr

Initial Action:
cornEat an a

Event Triggers:
datorSee a pre

Event Triggers:
datorSee a pre

New Action:
om predatorFlee fr

New Action:
om predatorFlee fr

Initial Action:
cornEat an a

Initial Action:
cornEat an a

Initial Action:
oward wallMove t

Event Triggers:
ontact forceFeel a c

New Ac
Move al

tion:
ong wall

Initial Action:
oward wallMove t

Initial Action:
oward wallMove t

Event Triggers:
ontact forceFeel a c

Event Triggers:
ontact forceFeel a c

New Ac
Move al

tion:
ong wall

New Ac
Move al

tion:
ong wall

2. Interaction Dynamics and Assembly:
It is noteworthy that the competencies required of space
exploration robots would also be of great value in
conventional manufacturing. At present, industrial robots
are seldom utilized in tasks that require regulation of
interaction dynamics, such as mechanical assembly,
grinding, polishing, window-washing, and manipulation
of fragile or elongated objects. Further, reprogramming
industrial robots is tedious and costly, which constitutes a
barrier to greater robot employment. Achieving higher
robot autonomy, easy and effective reprogrammability
from a distance, inherent self preservation and greater
task-performance expertise would serve space exploration
needs as well as open up new markets for terrestrial
robots.

In this presentation, we emphasize issues of compliant-
motion interaction dynamics, notably mechanical
assembly. Competence in mechanical assembly will be
required for constructing, maintaining and repairing
essential systems robotically.

It has long been recognized that sensation of and
responsiveness to contact forces is crucial in performing
mechanical assembly tasks competently (see, e.g. [1]). In
some cases, the mapping from sensation of forces to
physical response can be encoded mechanically, as in the
successful “remote center of compliance” device [2].
However, such a static mapping is limited to niche
applications. A more flexible, programmable stimulus-
response behavior is required for accomplishing
mechanical assembly more generally.

A variety of methods have been reported in this area of
research, including use of fuzzy logic, neural nets, logic
programming, and hybrid dynamical systems. These
techniques may be employed within the context of
behavior-based robotics (see [3] for an excellent
overview). The approach most relevant to the present
work is that of hybrid dynamical systems, as exemplified
by McCarragher in [4].

In our previous research, collaborative between CWRU,
Ford Motor Co., MicroDexterity Systems and the
National Center for Manufacturing Sciences, we were
able to demonstrate the capacity for an impedance-
controlled robot to perform relatively difficult mechanical
assemblies—components of automotive transmissions
(see, e.g. [5,6,7]). These components could not be
assembled by conventional position-controlled industrial
robots. In a laboratory setting, six assembly examples
were performed robotically with results competitive with
human manual assembly [7]. The use of force controlled
robotic assembly systems is now increasing within Ford
Motor Company. There are currently four force-
controlled robotic applications and another planned for
the immediate future [8]. This research demonstrated the
capacity for compliantly-controlled robots to perform
difficult mechanical assemblies, and it offers hope for
addressing some of NASA’s daunting challenges.

Fig 1: Analogy between creature behavior and the robot
behavior-server architecture.

While force-controlled robots are making inroads in
industry, implementation efforts have also exposed a
weakness: each application had to be painstakingly hand
coded and tuned in a respective custom program. The
level of difficulty, software development expense and
programming expertise required present obstacles to
greater industrial utilization. This weakness is an even
greater barrier for robots acting remotely in unstructured
environments, where they must be reprogrammed from a
distance, and where programming errors may not become
apparent on Earth before significant damage is done.

A viable robot control architecture and programming
interface should support encoding manipulation skills that
exploit compliant-motion capability. At the same time,
the controller should be capable of achieving subgoals
competently while assuring safe operation. Instead of
communicating desired coordinates, an application
program should invoke sequences of behaviors.

3. Behavior-Based Control for Manipulation
Compliant-motion control offers the possibility of making
robots perform interaction tasks more like a creature than
like a machine tool. Force-control capability also
introduces new safety and effectiveness concerns. These
include: joint or workspace constraints; contact
force/moment constraints; velocity constraints; system
fault detection and response; and stalling (failure to
progress).

For a conventional position-controlled system, joint and
workspace limits may be evaluated by simulation prior to
execution to assure constraints are not violated. Also,
excessive contact forces or system failures can be
detected by monitoring servo errors in real time. The
conventional response to excessive servo errors is to
automatically shut the system down.

Under compliant-motion control, however, the actual
trajectory of the robot is an emergent property of the
situated agent, resulting from the interaction of virtual

forces from the compliant attractor trajectory and physical
forces from environment interaction. Since the resulting
joint and workspace excursions depend on the
environment, advance simulation is inadequate; instead,
joint and workspace constraints must be monitored at run
time. Similarly, endpoint forces and moments must be
monitored directly, since large errors between a compliant
attractor and the robot end effector may be intentional or
emergent. Under compliant motion control, unlike
position control, the actual trajectory of the robot may
also fail to progress (e.g., due to an unexpected
obstruction that prevents the robot from reaching a goal
state). To prevent program deadlock, use of compliant
motion should also incorporate watchdog timers to detect
and respond to failure to progress.

We thus see that the benefits of a behavior-based,
compliantly-controlled interactive system also incur costs
in terms of additional burdens to monitor safety and
progress. New interfaces should enable a programmer to
exploit compliant-motion capability easily, should
incorporate means to monitor safety and progress, and
should be sufficiently flexible to accommodate timely and
appropriate responsiveness to multiple stimuli.

Our system consists of three layers of control, shown
schematically in Fig 2. The lowest level is the impedance-

control layer, which achieves gentle compliant motion
with guaranteed interaction stability (see e.g. [9-12]). The
second layer is a “schema server”, the heart of our system,
which is responsible for accepting and encoding
parameters of a reactive controller that interacts with the

impedance-control layer. The third layer is the
deliberative layer, which incorporates the programmer’s
logic and communicates incremental schemas to the
schema server for nominally sequential execution of low-
level, event-driven reactive behaviors.

4. Primitive Action Functions
In constructing a reactive system, an essential issue is the
definition of the building-block elements, including how
to implement and interface to sensory processing and
actuation.

Our compliant-motion layer interface helps to frame the
design problem for the stimulus-response layer of control.
Specifically, a higher level must specify commands to the
compliant-control layer in terms of impedance parameters
and an attractor trajectory. We have approached this
problem by defining a set of action primitives, describable
in these interface terms.

To encode an assembly skill, we attempt to describe the
skill as a collection of simpler action “primitives.” To
gain some insights into how to identify and organize such
primitives, we have analyzed instrumented human
demonstrations of assembly operations [13]. While no
two instances of human demonstrations are identical,
repetitions are subjectively similar. In our interpretation
of such data, in the spirit of Brooks [14], we presume that
the complexity observed emerges as a result of a simple
underlying strategy interacting with a complex
environment. In development, we propose and test simple
action functions to evaluate if these candidate primitives
are consistent with human performance. Those primitives
that are found to be useful are installed as options within
the controller.

 (higher levels)

A trivial but useful action is “sleep” or “idle”. This action
maintains a constant command to the underlying
impedance controller. Idle may be persistent for a
specified duration, e.g. while waiting for transient
dynamic effects to decay before proceeding with a
subsequent action. Idle is also useful while waiting for
satisfaction of preconditions before advancing to a
subsequent action.

Some action primitives are conceptually “atomic”, since
they can be executed in the robot controller within a
single iteration. Examples include: opening or closing a
gripper (e.g., a one-shot digital output command to a
solenoid); setting the virtual impedance values (spring
and damper parameters) and relieving reaction forces (by
immediately setting the attractor coordinates equal to the
end-effector coordinates). These actions are analogous to
reflexes, since they do not persist beyond excitation of the
stimulating event.

More interesting action primitives correspond to fixed-
action patterns [15]. Such actions are commonly initiated
by a transient sensory event, as is the case with a reflex

Client program

 Schema server

 Impedance-control layer

 Robot

Robot s
and sensor
info

tate

tate

Schema-
based
commands

Impedance
parameters and
attractor
coordinates

Robot s
and sensor
info

 Environment

Joint torque
commands

Robot s
and sensor
info

tate

Reaction
forces/moments

Env.
sensors

End-effector
motions

 Fig 2: Behavioral Programming Architecture

action, but the fixed-action pattern persists after the
stimulus has ceased. The pattern may persist for a fixed
duration, or it may be terminated by another relevant
sensory event. To describe these primitive actions in our
system, we design corresponding functions that may be
called repetitively (at a relatively high, fixed frequency),
producing incremental action updates resulting in smooth
evolution of robot states.

A useful fixed-action pattern is to command motion of a
soft attractor at a constant speed along a straight-line path
(e.g., in 6-D for a typical robot arm). For simplicity, we
assume that the impedance parameters are held constant
for the duration of each action-primitive function. We
have found that the apparent manipulation skills utilized
by humans in performing many useful assemblies can be
adequately modeled with a coarse sequence of straight-
line attractor trajectories [13]. Note that while the
attractor trajectory of an action primitive is linear, the
corresponding motion of the robot itself may be much
more complex, due to dynamic interaction with the
environment (e.g., while complying with a kinematic
constraint).

The action function for a compliant-motion command
requires specification of the instantaneous attractor
coordinates, desired attractor speed, and desired attractor
direction vector. A call to the compliant-motion action
function increments the soft attractor coordinates along
the desired direction vector by a step size proportional to
the desired speed and the update period.

A slightly more complex action, the “blind search” has
also been found to be useful [5,6,7], e.g. for vertical-stack
assembly. In this action, the robot applies a preload by
pressing a grasped component against a work surface.
The robot slides the part in a spiral search pattern while
oscillating the part about a vector normal to the surface.
This technique is frequently effective in hunting for
insertion coordinates when the part grasp and sub-
assembly fixturing uncertainty exceeds the assembly
clearance. Such uncertainty is inevitable in unstructured
environments, such as assembly in space or on remote
planets.

By constraining consideration to the above primitive
action functions (a set which may be expanded, as
necessary), we define a framework for encoding robot
skills that consists of identifying and prescribing the
following unknowns:

• How many primitive actions to invoke and in
what sequence

• What parameters (e.g. direction, speed, and
impedance values) to assign to each primitive-
action function

• How to decide when to switch from action i to
action j.

Transitions among actions are invoked by recognition of
sensory events; this is performed at the second layer, the
“schema server” layer.

5. The Schema Server
Rumelhart et. al. [16] trace use of the term “schema” from
Kant (1787), Bartlett (1932), Piaget (1952) to more
modern usage. Arkin [3] reviews additional historical
usages, and adopts a working definition: “A schema is the
basic unit of behavior from which complex actions can be
constructed; it consist of the knowledge of how to act or
perceive as well as the computational process by which it
is enacted.” (see [3], pg 43). This definition is consistent
with our present usage.

Our “schema server” processes behaviors encoded as sets
of action primitives associated with sensory events.
Simultaneously, the schema server constantly monitors
safety and progress. The schema server is instrumental in
making the system reactive, but it does not incorporate
strategic and deliberative processing (which occurs at
higher levels). The schema server refreshes and processes
sets of stimulus-response pairs, as prescribed by a higher
level. In our system, only one schema is active at any
instant. However, each schema may include many
stimulus-response pairs that are simultaneously pending.

At the schema-server level, there is always a single
schema in context. Consistent with the current schema,
there is always one and only one enabled primitive action
(which may be the “idle” action). This primitive action
may be atomic or may be persistent. This is in contrast to
systems in which multiple actions from multiple
simultaneous stimuli are blended (e.g. additively, as in
superposition of potential functions).

A prioritized list of stimulus-response pairs is contained
within a schema specification, constituting a reaction
table. Each stimulus-response pair requires specification
of:

• How to process a sensory signal to determine if
an event of interest has occurred

• From where to fetch the relevant schema in
response to an event trigger

By default, we include a list of high-priority events
responsible for monitoring safety and progress. These
include events that trigger when exceeding joint or
workspace constraints, events that trigger when measured
force or torque values exceed safety constraints, and an
event corresponding to a watchdog timeout, indicating
failure to progress. The default response to these events
is to halt the machine, relieve interaction forces, and
appeal to a higher level for error recovery.

By handling safety and progress concerns implicitly, the
programmer may focus on specifying each intentional
stimulus-response association for performing a specific
task. Typically, this will consist of a sequence of actions
and expected sensory responses. Each deliberate action is

encoded within a separate schema. The schema server
processes each schema and advances to the next schema,
as driven by the sensory events. The source of the next
schema is specified for each sensory event. Sources
include: pre-encoded schemas in memory (equivalent to
innate reflexes and fixed-action patterns); an emergency
communications channel (required for responding to
conditions for which there are no pre-encoded
contingencies); and a command buffer (which is fed from
a higher level with schemas to be performed sequentially
under normal conditions).

Each time the schema server fetches a new schema, it
installs a new current action (typically parameterized), a
new focus of attention (sensors of interest), new alarm
levels (conditions for sensors to trigger events), and new
associations paired with sensory events (respective
sources for a schema to be installed in response to the
event).

Given an installed schema (including a currently-active
action primitive), the schema server loops, performing the
following operations:

1. Block (suspend) pending a timer signal
2. Check high-priority channel and respond to any

interrupts from higher levels.
3. Read all sensors and update a table of sensor

values and sensor interpretations
4. Scan the list of sensor values of current interest,

in order of importance, evaluating the highest-
priority sensory event (if any) that has occurred.
(This is a “triggering event”)

5. In response to the triggering event (if any),
install a new schema from the source associated
with the event.

6. Perform one iteration of the current primitive
action.

7. Loop back to step (1)

Step 1 establishes the repetition rate of the schema server,
as regulated by a timer signal from the real-time operating
system. In our implementation, the schema server repeats
its loop at 200Hz.

Upon receiving the timer signal, the schema loop
proceeds in step 2 to check for messages from a high-
priority communications channel (implemented as a Unix
socket). Via this channel, higher levels can exert
commands such as E-stop, abort, or may respond to fault
conditions. This interrupt channel may also be used for
direct human intervention. The schema server interprets
commands from this source as schemas, encoded in XML
format. If the schema server receives a schema packet via
the high-priority channel, this new schema is immediately
installed in the reaction table, overwriting the previously
active schema. Further processing within the schema
server is subsequently under the control of this new
schema.

In step 3, the schema server samples all relevant sensors
and updates the values of these sensors in a table. Some
of these sensors may be hard-wired to the robot controller,
and others may interact as network services.
Alternatively, the sensor-table refresh operation may be
performed asynchronously by parallel processes, e.g.
through shared memory. Such processes may include
relatively complex signal processing (e.g. pattern
matching). Regardless of implementation, the objective
of this step is to update the interpretation of all sensors of
interest.

An unusual but useful event that may be included in a
schema is the “one-shot” event. The status of the one-
shot virtual sensor is initialized to FALSE upon
installation of a new schema. During step 3, the status of
one-shot is changed to TRUE. This event is useful for
executing a schema that contains an atomic action
primitive that should be performed once only.

In step 4, the sensor-value table is evaluated to determine
if any signal-processing results have satisfied triggering
conditions (e.g., by exceeding respective specified
thresholds). All sensory events are prioritized. If any
events are observed to have occurred during the current
execution cycle of the schema server, the highest-priority
event is defined as the triggering event.

In step 5, if there is a triggering event, the schema
associated with that event is installed. This step involves
listing a new set of prioritized stimulus-response pairs,
resetting all event flags, and installing a new current
action function. The response to a one-shot event is
treated the same way; installing a new schema due to a
one-shot event enforces only a single iteration of an
atomic action.

The source of the next schema to be installed is crucial in
determining the behavior of the resulting system. One
may define the source of the next schema to be a location
in memory where predefined schemas exist. Sensory
events described in these schemas may, in turn, point to
other hard-coded schemas. In this manner, one may
encode arbitrarily complex finite-state machine behaviors.
Alternatively, events may point to an input command
buffer as the source of the next schema. In that case, the
robot controller would behave similar to a simple
peripheral, executing commands sequentially as
determined by some higher level “client.”

Note that the schema server is never a complete slave to
its client. Although normal sensory events may point to
the command buffer for new schemas, the schema server
also continues to monitor its safety and progress
conditions. If one of these higher-priority events occurs,
the schema server will redirect its actions per the
associated schema sources. For example, the force sensor
may trip an excessive-force event. We associate this
event with a hard-coded schema that performs the atomic
action of setting the attractor position equal to the end-

effector position. This action causes the low-level
controller to rapidly relieve the force between the robot
and its environment. The one-shot virtual sensor is listed
within this emergency-recovery schema, and the schema
source associated with the one-shot event is the high-
priority queue. Thus, the system responds by ignoring
pending schemas in the command queue, processing a
schema that performs an emergency corrective action,
then appealing to a higher level for further error-recovery
instructions.

Between these extremes (automaton vs slave peripheral),
finite-length linked schemas may be pre-encoded and
utilized. An event may point to an “innate” schema
(hard-coded in memory), and execution of this schema
may invoke successive links through additional hard-
coded schemas, but ultimately point back to the command
queue. In this manner, one can encode a relatively
complex skill consisting of a sequence of actions, and this
skill may be invoked as part of a sequence within a
strategy. Such encoding is analogous to sophisticated but
non-cognitive behaviors executed in the spinal cord or
brain stem.

In step 6, the schema server commands execution of one
increment of the current action function. This may be as
simple as invoking an atomic action (e.g., open gripper or
set impedance parameters), or it may advance the attractor
incrementally along a specified vector. Note that a
schema containing an atomic action would be installed in
step 5, and execution of that action would occur in step 6.
On the next iteration of the schema-server loop, the “one-
shot” virtual sensor would be set to TRUE, invoking an
event leading to installation of a new schema in step 5.
Using this processing logic, atomic and persistent actions
may be encoded in a common schema format.

As noted, the schema server may draw its commands
from linked lists of pre-encoded schemas. If these lists
are constructed cleverly enough, the resulting reactive
system may perform interesting and useful operations,
potentially robustly. However, a system consisting of a
static set of linked schemas would be difficult to debug,
inconvenient for implementing adaptation (learning) and
inappropriate for performing higher-level processing (e.g.
planning). Higher-level layers are needed.

6. The Deliberative Layer
Our third layer (and final layer, in the current system) is
implemented as a client of the schema server. In our
client/server construction, the client program may run
within any computing environment, independent of
operating system or programming language, provided it
can connect to the server via internet protocol. The
deliberative-layer client communicates with the schema
server by encoding and transmitting schemas in XML
format. The schema-server receives and processes
schemas, and it transmits sensory and status data back to
its client. The client program may transmit schemas
either to the server’s input command buffer, where they

will be executed sequentially, or to the high-priority
channel, where the server will execute each new schema
immediately, pre-empting commands in the queue.

Our client programs have been developed and executed
on Windows-based PC’s. Wrapper functions have been
written to ease the task of converting schemas into XML
format and transmitting the schemas to the schema server.
A set of Application Programming Interface (API)
functions for specifying common schemas eases program
development.

An example API function is: moveTo (pose)
This function constructs and transmits a schema that
causes the robot to move to the specified desired position.
A default speed is assumed (which may be overridden),
and the most recently imposed set of impedance
parameters is used during the move. In execution, the
attractor is moved at constant speed from the robot’s
initial position to the desired final position along a
straight line in Cartesian/orientation space. This is
encoded as a persistent attractor speed along a specified
vector. The normal triggering event that terminates this
action occurs when the attractor position passes a
threshold value.

This function typically behaves similar to the
corresponding conventional position-controlled robot
command. However, its implementation differs in its
reactive behavior. The robot is attracted towards the goal
pose, but it may be impeded by an obstruction. If the
obstruction is near the goal location, then the robot will
respond by exerting a relatively low force against the
obstruction. If the reaction force exceeds a safe value, the
schema-server will observe triggering of an excessive-
force event and will react appropriately. Such error
detection and reaction is implicit by default.

A more obviously reactive API that is useful in
compliant-motion programming is:
 moveToTouch(dir_vec)
This function encodes and transmits a schema that causes
the robot to move compliantly from its current pose along
the direction vector “dir_vec” until contact with the
environment exceeds a threshold force. The speed of
approach and the threshold force are optional arguments
with nominal default values.

7. An Assembly Example
Figure 3 shows the ParaDex robot and an assembly task.
The task consists of inserting 6, 15mm-thick aluminum
geometric shapes into corresponding recesses in a
baseplate. The assembly clearance for these parts was +/-
0.05mm, and the parts were not chamfered, making
assembly challenging.

The client program for inserting these shapes consists of
repetitions of the following sequence of calls:

Fig 3: The ParaDex Robot and Example Assembly Task

moveTo(above_part);// approach part pick location from

 //above
moveToTouch(dir_down); // approach the part vertically

 //from above; stop upon contact
grasp(); // atomic command: grasp part
moveTo(above_part); // depart vertically w/ part
moveTo(above_assem_loc); // move to location above
 // the approximate assembly location
moveToTouch(dir_down); // approach the sub-assembly
 // from above; stop on contact
blind_search(); // with vertical pre-load, move part in a
 // search pattern terminating when insertion is
 // detected
release(); // atomic command to release grasped part
moveTo(above_assem_loc); // depart vertically; ready
 // for next assembly command

Each of these function calls within the client program
results in the construction of a schema, its encoding in
XML format, and its transmission to the schema server
running on the robot controller. Parameters may be
altered to tune the assembly performance (e.g., as in
[6,7]).

The nominal part-acquisition location and approximate
insertion coordinates may be pre-taught (if feeding and
fixture coordinates are at least approximately known), or
these coordinates may be obtained from sensors (e.g.,
machine vision).

The above program was successful in assembling all 6
geometric shapes. Using a blind search, although
successful, was relatively slow. With an initial error of
0.3mm in translation and 0.02rad in rotation, blind-search
assembly times averaged approximately 7 seconds for all
parts. As the uncertainty in assembly location increased,
search times also increased, roughly doubling at
1.2mm/0.05rad initial error. Using a more sophisticated
strategy incorporating a sequence of 4 triggered
behaviors, all parts were assembled with a mean time less
than 3 seconds over the above range of uncertainties.
This latter strategy was roughly 1 second slower than
human assembly rates.

8. Conclusions
Although behavior-based robotics is often associated with
basic research in artificial life, techniques from behavioral
programming can be applied fruitfully to very pragmatic
robot programming problems. This paper has presented
our approach to behavioral programming for exploitation
of force control in constrained manipulation. The system
presented responds to the needs for safety, effectiveness
and ease of programming. Continued progress in this
direction will help to move behavior-based robotics
research into demanding applications.

Acknowledgments: This work was supported by ABB
Inc., US Corporate Research Center and by NASA Glenn
Research Center under grants NAG3-2578, NAG3-2799
and NNC4AA12A. Experimental work on the ParaDex
manipulator was made possible through equipment loans
from Ford Motor Co.

References:
1. Whitney, D. E., "Historical Perspective and State of

the Art in Robot Force Control," Int. J. of Robotics
Research, Vol 6, No 1, Spring 1987, pp 3-14.

2. Whitney, D.E., “Quasi-Static Assembly of
Compliantly Supported Rigid Parts,” J. Dyn. Sys.
Measurement and Control, V104, 1982, pp62-77.

3. Arkin, R. C., Behavior-Based Robotics, MIT Press,
Cambridge, MA, 1999.

4. McCarragher, B.J.; "Force sensing from human
demonstration using a hybrid dynamical model and
qualitative reasoning", ICRA ’94, pp 557 -563 vol.1

5. Hebbar, R., W. Newman, et al., Flexible Robotic
Assembly for Powertrain Applications; ICRA 2002
video proceedings. (best video award)

6. Morris, D.M.; Hebbar, R.; Newman, W.S. Force
guided assemblies using a novel parallel
manipulator, ICRA 2001, Page(s): 325 -330 vol.1

7. Wei, Jing and Newman, W. S., Improving robotic
assembly performance through autonomous
exploration, ICRA 2002,Page(s): 3303 -3308.

8. personal communication w/ David Gravel, Ford
Motor Co., AMTDC, 8/29/04

9. Newman, W. S., and Zhang, Y., “Stable Interaction
Control and Coulomb Friction Compensation Using
Natural Admittance Control,” Journal of Robotic
Systems, Vol. 11, No. 1, pp. 3 - 11, 1994.

10. Newman, W. S., “Stability and Performance Limits
of Interaction Controllers,” Transactions of the
ASME Journal of Dynamic Systems, Measurement,
and Control, Vol. 114, No. 4, pp. 563-570, 1992.

11. Dohring, M.; Newman, W., Admittance enhancement
in force feedback of dynamic systems, ICRA '02,
pp638-643.

12. Hebbar, R. and Newman, W. S., Passivity Analysis of
Sampled-Data Interactive System, ICRA 2003 pp
3309-3314.

13. Newman,W.; Birkhimer,C.; Hebbar,R.; Towards
automatic transfer of human skills for robotic
assembly IROS 2003,Pages:2528 – 2533

14. Brooks, R. A., Cambrian Intelligence, MIT Press,
Cambridge, MA, 1999.

15. Smith, W. J. The Behavior of Communicating: An
Ethological Approach, Harvard University Press,
Cambridge, Ma, 1977.

16. Rumelhart, D.E. et. al., “Schemata and Sequential
Thought Processes in PDP Models”, in Parallel
Distributed Processing, Vol 2, MIT Press, Cambridge
Ma, 1986.

