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Abstract: 
This paper describes our progress in the development of a 
behavior-based, stimulus-response robot control software 
architecture that is expressly designed to program and 
execute interactive tasks, including assembly, multi-robot 
collaborative manipulation, and exploration.  The system 
has been designed to assure stability and safety while 
maintaining flexibility and achieving expert performance. 
The architecture incorporates a reactive controller as a 
behavior server, and applications are written as client 
programs that can operate either locally or across a 
network. This organization has been demonstrated to be 
sufficiently open to support teleoperation tasks as well as 
human-guided supervisory control and full autonomous 
functionality. 
 
1. Introduction:  
Extending human reach and achieving sustainable 
presence in space will require dramatic advances in 
robotics.  Robots are expected to precede humans to 
Mars, where they would perform a variety of 
sophisticated tasks, including: preparing landing sites, 
constructing thermal and radiation barriers, assembling 
power systems and communications systems, prospecting 
for in situ resources (e.g. minerals containing extractable 
oxygen and hydrogen), assembling and operating 
factories for resource extraction, assembling habitats, and 
continuously performing inspection, maintenance and 
repair of facilities.  These tasks are currently beyond the 
capabilities of robots operating on Earth, much less in 
space.  In contrast, current Mars rovers operate by moving 
only centimeters per command, and each command has a 
time lag of approximately one hour between updates from 
human operators on Earth.  At these rates, no significant 
landing-site preparations could be performed within the 
lifetime of a robot.   
 
Achieving the required robot competence will depend on 
advances in robot autonomy.  Rather than expecting 
incremental motion commands from Earth, robots will 

have to receive much higher-level, more abstract goals.  
The robots will have to behave competently to achieve 
specified subgoals while simultaneously taking 
responsibility for self preservation as well as protection of 
critical and possibly delicate components and systems 
with which they interact.   
 
In pursuit of more autonomous and more competent robot 
behavior, we are constructing a behavior-based, stimulus-
response robot control software architecture that is 
expressly designed to program and execute interactive 
tasks, including assembly, multi-robot collaborative 
manipulation, and exploration.  This system is based on 
“schemas”, comprising collections of stimulus-response 
behaviors that are simultaneously relevant in some 
context.  Figure 1 shows an analogy between creature-like 
behavior and a behavior-based robot program.  In this 
analogy, a creature is engaged in an initial action, but it is 
simultaneously monitoring myriad conditions that may 
induce a switch to an appropriate new action.  In the 
analogous robot program, the initial action is to move 
towards a wall.  The “event” of sensing contact with the 
wall causes the robot to change its action to move along 
the wall.  During this operation, the robot controller 
should be monitoring and interpreting a variety of sensory 
conditions to select appropriate action sequences, to 
protect itself and objects in contact, to recognize and 
respond to abnormal conditions, and to guard against 
deadlock.   
 
While the desired behaviors could be programmed in 
conventional if-then-else constructs, such an approach is 
tedious and error prone, particularly as the number of 
conditions to be monitored within a given context grows.  
Instead, it is useful to think of a collection of state 
machines and event detectors, and to program via 
selection of a state machine appropriate to a given 
context, and specification of event-driven transitions 
among state machines.  The present work describes a 
system that supports programming in this manner.  
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2. Interaction Dynamics and Assembly: 
It is noteworthy that the competencies required of space 
exploration robots would also be of great value in 
conventional manufacturing.  At present, industrial robots 
are seldom utilized in tasks that require regulation of 
interaction dynamics, such as mechanical assembly, 
grinding, polishing, window-washing, and manipulation 
of fragile or elongated objects.  Further, reprogramming 
industrial robots is tedious and costly, which constitutes a 
barrier to greater robot employment.  Achieving higher 
robot autonomy, easy and effective reprogrammability 
from a distance, inherent self preservation and greater 
task-performance expertise would serve space exploration 
needs as well as open up new markets for terrestrial 
robots. 
 
In this presentation, we emphasize issues of compliant-
motion interaction dynamics, notably mechanical 
assembly.  Competence in mechanical assembly will be 
required for constructing, maintaining and repairing 
essential systems robotically. 
 
It has long been recognized that sensation of and 
responsiveness to contact forces is crucial in performing 
mechanical assembly tasks competently (see, e.g. [1]).  In 
some cases, the mapping from sensation of forces to 
physical response can be encoded mechanically, as in the 
successful “remote center of compliance” device [2].  
However, such a static mapping is limited to niche 
applications.  A more flexible, programmable stimulus-
response behavior is required for accomplishing 
mechanical assembly more generally. 
 
A variety of methods have been reported in this area of 
research, including use of fuzzy logic, neural nets, logic 
programming, and hybrid dynamical systems. These 
techniques may be employed within the context of 
behavior-based robotics (see [3] for an excellent 
overview). The approach most relevant to the present 
work is that of hybrid dynamical systems, as exemplified 
by McCarragher in [4]. 
 

In our previous research, collaborative between CWRU, 
Ford Motor Co., MicroDexterity Systems and the 
National Center for Manufacturing Sciences, we were 
able to demonstrate the capacity for an impedance-
controlled robot to perform relatively difficult mechanical 
assemblies—components of automotive transmissions 
(see, e.g. [5,6,7]).  These components could not be 
assembled by conventional position-controlled industrial 
robots.  In a laboratory setting, six assembly examples 
were performed robotically with results competitive with 
human manual assembly [7].   The use of force controlled 
robotic assembly systems is now increasing within Ford 
Motor Company.  There are currently four force-
controlled robotic applications and another planned for 
the immediate future [8].  This research demonstrated the 
capacity for compliantly-controlled robots to perform 
difficult mechanical assemblies, and it offers hope for 
addressing some of NASA’s daunting challenges. 

Fig 1: Analogy between creature behavior and the robot 
behavior-server architecture.  

 
While force-controlled robots are making inroads in 
industry, implementation efforts have also exposed a 
weakness: each application had to be painstakingly hand 
coded and tuned in a respective custom program.  The 
level of difficulty, software development expense and 
programming expertise required present obstacles to 
greater industrial utilization.  This weakness is an even 
greater barrier for robots acting remotely in unstructured 
environments, where they must be reprogrammed from a 
distance, and where programming errors may not become 
apparent on Earth before significant damage is done.  
 
A viable robot control architecture and programming 
interface should support encoding manipulation skills that 
exploit compliant-motion capability.  At the same time, 
the controller should be capable of achieving subgoals 
competently while assuring safe operation. Instead of 
communicating desired coordinates, an application 
program should invoke sequences of behaviors. 
 
3. Behavior-Based Control for Manipulation  
Compliant-motion control offers the possibility of making 
robots perform interaction tasks more like a creature than 
like a machine tool.  Force-control capability also 
introduces new safety and effectiveness concerns.  These 
include: joint or workspace constraints; contact 
force/moment constraints; velocity constraints; system 
fault detection and response; and stalling (failure to 
progress).   
 
For a conventional position-controlled system, joint and 
workspace limits may be evaluated by simulation prior to 
execution to assure constraints are not violated.  Also, 
excessive contact forces or system failures can be 
detected by monitoring servo errors in real time.  The 
conventional response to excessive servo errors is to 
automatically shut the system down.   
 
Under compliant-motion control, however, the actual 
trajectory of the robot is an emergent property of the 
situated agent, resulting from the interaction of virtual 

 



forces from the compliant attractor trajectory and physical 
forces from environment interaction.  Since the resulting 
joint and workspace excursions depend on the 
environment, advance simulation is inadequate; instead, 
joint and workspace constraints must be monitored at run 
time.  Similarly, endpoint forces and moments must be 
monitored directly, since large errors between a compliant 
attractor and the robot end effector may be intentional or 
emergent.  Under compliant motion control, unlike 
position control, the actual trajectory of the robot may 
also fail to progress (e.g., due to an unexpected 
obstruction that prevents the robot from reaching a goal 
state).  To prevent program deadlock, use of compliant 
motion should also incorporate watchdog timers to detect 
and respond to failure to progress. 
 
We thus see that the benefits of a behavior-based, 
compliantly-controlled interactive system also incur costs 
in terms of additional burdens to monitor safety and 
progress.   New interfaces should enable a programmer to 
exploit compliant-motion capability easily, should 
incorporate means to monitor safety and progress, and 
should be sufficiently flexible to accommodate timely and 
appropriate responsiveness to multiple stimuli.   
 
Our system consists of three layers of control, shown 
schematically in Fig 2. The lowest level is the impedance- 

  
 
control layer, which achieves gentle compliant motion 
with guaranteed interaction stability (see e.g. [9-12]). The 
second layer is a “schema server”, the heart of our system, 
which is responsible for accepting and encoding 
parameters of a reactive controller that interacts with the 

impedance-control layer.  The third layer is the 
deliberative layer, which incorporates the programmer’s 
logic and communicates incremental schemas to the 
schema server for nominally sequential execution of low-
level, event-driven reactive behaviors.   

4. Primitive Action Functions 
In constructing a reactive system, an essential issue is the 
definition of the building-block elements, including how 
to implement and interface to sensory processing and 
actuation. 
 
Our compliant-motion layer interface helps to frame the 
design problem for the stimulus-response layer of control.  
Specifically, a higher level must specify commands to the 
compliant-control layer in terms of impedance parameters 
and an attractor trajectory.  We have approached this 
problem by defining a set of action primitives, describable 
in these interface terms. 
 
To encode an assembly skill, we attempt to describe the 
skill as a collection of simpler action “primitives.”  To 
gain some insights into how to identify and organize such 
primitives, we have analyzed instrumented human 
demonstrations of assembly operations [13].  While no 
two instances of human demonstrations are identical, 
repetitions are subjectively similar.  In our interpretation 
of such data, in the spirit of Brooks [14], we presume that 
the complexity observed emerges as a result of a simple 
underlying strategy interacting with a complex 
environment.  In development, we propose and test simple 
action functions to evaluate if these candidate primitives 
are consistent with human performance.  Those primitives 
that are found to be useful are installed as options within 
the controller. 

                (higher levels)  

 
A trivial but useful action is “sleep” or “idle”.  This action 
maintains a constant command to the underlying 
impedance controller.  Idle may be persistent for a 
specified duration, e.g. while waiting for transient 
dynamic effects to decay before proceeding with a 
subsequent action.  Idle is also useful while waiting for 
satisfaction of preconditions before advancing to a 
subsequent action.  
 
Some action primitives are conceptually “atomic”, since 
they can be executed in the robot controller within a 
single iteration. Examples include: opening or closing a 
gripper (e.g., a one-shot digital output command to a 
solenoid); setting the virtual impedance values (spring 
and damper parameters) and relieving reaction forces (by 
immediately setting the attractor coordinates equal to the 
end-effector coordinates).  These actions are analogous to 
reflexes, since they do not persist beyond excitation of the 
stimulating event. 
 
More interesting action primitives correspond to fixed-
action patterns [15].  Such actions are commonly initiated 
by a transient sensory event, as is the case with a reflex 

Client program 

                   Schema server

         Impedance-control layer

                          Robot 

Robot s
and sensor
info 

tate 
 

tate 
 

Schema-
based 
commands 

Impedance 
parameters and 
attractor 
coordinates 

Robot s
and sensor
info 

                       Environment 

Joint torque 
commands 

Robot s
and sensor
info 

tate 
 

Reaction 
forces/moments 

Env. 
sensors 

End-effector 
motions 

       Fig 2: Behavioral Programming Architecture 

 



action, but the fixed-action pattern persists after the 
stimulus has ceased.  The pattern may persist for a fixed 
duration, or it may be terminated by another relevant 
sensory event.  To describe these primitive actions in our 
system, we design corresponding functions that may be 
called repetitively (at a relatively high, fixed frequency), 
producing incremental action updates resulting  in smooth 
evolution of robot states.  
 
A useful fixed-action pattern is to command motion of a 
soft attractor at a constant speed along a straight-line path 
(e.g., in 6-D for a typical robot arm).  For simplicity, we 
assume that the impedance parameters are held constant 
for the duration of each action-primitive function. We 
have found that the apparent manipulation skills utilized 
by humans in performing many useful assemblies can be 
adequately modeled with a coarse sequence of straight-
line attractor trajectories [13].  Note that while the 
attractor trajectory of an action primitive is linear, the 
corresponding motion of the robot itself may be much 
more complex, due to dynamic interaction with the 
environment (e.g., while complying with a kinematic 
constraint).   
 
The action function for a compliant-motion command  
requires specification of the instantaneous attractor 
coordinates, desired attractor speed, and desired attractor 
direction vector.  A call to the compliant-motion action 
function increments the soft attractor coordinates along 
the desired direction vector by a step size proportional to 
the desired speed and the update period. 
 
A slightly more complex action, the “blind search” has 
also been found to be useful [5,6,7], e.g. for vertical-stack 
assembly.  In this action, the robot applies a preload by 
pressing a grasped component against a work surface.  
The robot slides the part in a spiral search pattern while 
oscillating the part about a vector normal to the surface.  
This technique is frequently effective in hunting for 
insertion coordinates when the part grasp and sub-
assembly fixturing uncertainty exceeds the assembly 
clearance.  Such uncertainty is inevitable in unstructured 
environments, such as assembly in space or on remote 
planets. 
 
By constraining consideration to the above primitive 
action functions (a set which may be expanded, as 
necessary), we define a framework for encoding robot 
skills that consists of identifying and prescribing the 
following unknowns:  

• How many primitive actions to invoke and in 
what sequence 

• What parameters (e.g. direction, speed, and 
impedance values) to assign to each primitive-
action function 

• How to decide when to switch from action i to 
action j. 

 

Transitions among actions are invoked by recognition of 
sensory events; this is performed at the second layer, the 
“schema server” layer. 

5. The Schema Server 
Rumelhart et. al. [16] trace use of the term “schema” from 
Kant (1787), Bartlett (1932), Piaget (1952) to more 
modern usage.  Arkin [3] reviews additional historical 
usages, and adopts a working definition: “A schema is the 
basic unit of behavior from which complex actions can be 
constructed; it consist of the knowledge of how to act or 
perceive as well as the computational process by which it 
is enacted.” (see [3], pg 43).  This definition is consistent 
with our present usage. 
 
Our “schema server” processes behaviors encoded as sets 
of action primitives associated with sensory events.  
Simultaneously, the schema server constantly monitors 
safety and progress.  The schema server is instrumental in 
making the system reactive, but it does not incorporate 
strategic and deliberative processing (which occurs at 
higher levels).  The schema server refreshes and processes 
sets of stimulus-response pairs, as prescribed by a higher 
level.  In our system, only one schema is active at any 
instant.  However, each schema may include many 
stimulus-response pairs that are simultaneously pending. 
 
At the schema-server level, there is always a single 
schema in context.  Consistent with the current schema, 
there is always one and only one enabled primitive action 
(which may be the “idle” action).  This primitive action 
may be atomic or may be persistent.  This is in contrast to 
systems in which multiple actions from multiple 
simultaneous stimuli are blended (e.g. additively, as in 
superposition of potential functions). 
 
A prioritized list of stimulus-response pairs is contained 
within a schema specification, constituting a reaction 
table.  Each stimulus-response pair requires specification 
of: 

• How to process a sensory signal to determine if 
an event of interest has occurred 

• From where to fetch the relevant schema in 
response to an event trigger 

By default, we include a list of high-priority events 
responsible for monitoring safety and progress.  These 
include events that trigger when exceeding joint or 
workspace constraints, events that trigger when measured 
force or torque values exceed safety constraints, and an 
event corresponding to a watchdog timeout, indicating 
failure to progress.  The default response to these events 
is to halt the machine, relieve interaction forces, and 
appeal to a higher level for error recovery.   
 
By handling safety and progress concerns implicitly, the 
programmer may focus on specifying each intentional 
stimulus-response association for performing a specific 
task.  Typically, this will consist of a sequence of actions 
and expected sensory responses.  Each deliberate action is 

 



encoded within a separate schema.  The schema server 
processes each schema and advances to the next schema, 
as driven by the sensory events.  The source of the next 
schema is specified for each sensory event.  Sources 
include: pre-encoded schemas in memory (equivalent to 
innate reflexes and fixed-action patterns); an emergency 
communications channel (required for responding to 
conditions for which there are no pre-encoded 
contingencies); and a command buffer (which is fed from 
a higher level with schemas to be performed sequentially 
under normal conditions). 
 
Each time the schema server fetches a new schema, it 
installs a new current action (typically parameterized), a 
new focus of attention (sensors of interest), new alarm 
levels (conditions for sensors to trigger events), and new 
associations paired with sensory events (respective 
sources for a schema to be installed in response to the 
event). 
 
Given an installed schema (including a currently-active 
action primitive), the schema server loops, performing the 
following operations: 

1. Block (suspend) pending a timer signal 
2. Check high-priority channel and respond to any 

interrupts from higher levels. 
3. Read all sensors and update a table of sensor 

values and sensor interpretations 
4. Scan the list of sensor values of current interest, 

in order of importance, evaluating the highest-
priority sensory event (if any) that has occurred.  
(This is a “triggering event”) 

5. In response to the triggering event (if any), 
install a new schema from the source associated 
with the event. 

6. Perform one iteration of the current primitive 
action. 

7. Loop back to step (1) 
 
Step 1 establishes the repetition rate of the schema server, 
as regulated by a timer signal from the real-time operating 
system.  In our implementation, the schema server repeats 
its loop at 200Hz.   
 
Upon receiving the timer signal, the schema loop 
proceeds in step 2 to check for messages from a high-
priority communications channel (implemented as a Unix 
socket).  Via this channel, higher levels can exert 
commands such as E-stop, abort, or may respond to fault 
conditions.  This interrupt channel may also be used for 
direct human intervention.  The schema server interprets 
commands from this source as schemas, encoded in XML 
format.  If the schema server receives a schema packet via 
the high-priority channel, this new schema is immediately 
installed in the reaction table, overwriting the previously 
active schema.  Further processing within the schema 
server is subsequently under the control of this new 
schema. 
 

In step 3, the schema server samples all relevant sensors 
and updates the values of these sensors in a table.  Some 
of these sensors may be hard-wired to the robot controller, 
and others may interact as network services.  
Alternatively, the sensor-table refresh operation may be 
performed asynchronously by parallel processes, e.g. 
through shared memory.  Such processes may include 
relatively complex signal processing (e.g. pattern 
matching).  Regardless of implementation, the objective 
of this step is to update the interpretation of all sensors of 
interest. 
 
An unusual but useful event that may be included in a 
schema is the “one-shot” event.  The status of the one-
shot virtual sensor is initialized to FALSE upon 
installation of a new schema.  During step 3, the status of 
one-shot is changed to TRUE.  This event is useful for 
executing a schema that contains an atomic action 
primitive that should be performed once only. 
 
In step 4, the sensor-value table is evaluated to determine 
if any signal-processing results have satisfied triggering 
conditions (e.g., by exceeding respective specified 
thresholds).  All sensory events are prioritized.  If any 
events are observed to have occurred during the current 
execution cycle of the schema server, the highest-priority 
event is defined as the triggering event.   
 
In step 5, if there is a triggering event, the schema 
associated with that event is installed.  This step involves 
listing a new set of prioritized stimulus-response pairs, 
resetting all event flags, and installing a new current 
action function.  The response to a one-shot event is 
treated the same way; installing a new schema due to a 
one-shot event enforces only a single iteration of an 
atomic action. 
 
The source of the next schema to be installed is crucial in 
determining the behavior of the resulting system.  One 
may define the source of the next schema to be a location 
in memory where predefined schemas exist.  Sensory 
events described in these schemas may, in turn, point to 
other hard-coded schemas.  In this manner, one may 
encode arbitrarily complex finite-state machine behaviors.  
Alternatively, events may point to an input command 
buffer as the source of the next schema.  In that case, the 
robot controller would behave similar to a simple 
peripheral, executing commands sequentially as 
determined by some higher level “client.”   
 
Note that the schema server is never a complete slave to 
its client.  Although normal sensory events may point to 
the command buffer for new schemas, the schema server 
also continues to monitor its safety and progress 
conditions.  If one of these higher-priority events occurs, 
the schema server will redirect its actions per the 
associated schema sources.  For example, the force sensor 
may trip an excessive-force event.  We associate this 
event with a hard-coded schema that performs the atomic 
action of setting the attractor position equal to the end-

 



effector position.  This action causes the low-level 
controller to rapidly relieve the force between the robot 
and its environment.  The one-shot virtual sensor is listed 
within this emergency-recovery schema, and the schema 
source associated with the one-shot event is the high-
priority queue.  Thus, the system responds by ignoring 
pending schemas in the command queue, processing a 
schema that performs an emergency corrective action, 
then appealing to a higher level for further error-recovery 
instructions. 
 
Between these extremes (automaton vs slave peripheral), 
finite-length linked schemas may be pre-encoded and 
utilized.  An event may point to an “innate” schema 
(hard-coded in memory), and execution of this schema 
may invoke successive links through additional hard-
coded schemas, but ultimately point back to the command 
queue.  In this manner, one can encode a relatively 
complex skill consisting of a sequence of actions, and this 
skill may be invoked as part of a sequence within a 
strategy.  Such encoding is analogous to sophisticated but 
non-cognitive behaviors executed in the spinal cord or 
brain stem. 
 
In step 6, the schema server commands execution of one 
increment of the current action function.  This may be as 
simple as invoking an atomic action (e.g., open gripper or 
set impedance parameters), or it may advance the attractor 
incrementally along a specified vector. Note that a 
schema containing an atomic action would be installed in 
step 5, and execution of that action would occur in step 6.  
On the next iteration of the schema-server loop, the “one-
shot” virtual sensor would be set to TRUE, invoking an 
event leading to installation of a new schema in step 5.  
Using this processing logic, atomic and persistent actions 
may be encoded in a common schema format. 
 
As noted, the schema server may draw its commands 
from linked lists of pre-encoded schemas.  If these lists 
are constructed cleverly enough, the resulting reactive 
system may perform interesting and useful operations, 
potentially robustly.  However, a system consisting of a 
static set of linked schemas would be difficult to debug, 
inconvenient for implementing adaptation (learning) and 
inappropriate for performing higher-level processing (e.g. 
planning).  Higher-level layers are needed.   
 
6. The Deliberative Layer 
Our third layer (and final layer, in the current system) is 
implemented as a client of the schema server.  In our 
client/server construction, the client program may run 
within any computing environment, independent of 
operating system or programming language, provided it 
can connect to the server via internet protocol.  The 
deliberative-layer client communicates with the schema 
server by encoding and transmitting schemas in XML 
format.  The schema-server receives and processes 
schemas, and it transmits sensory and status data back to 
its client.  The client program may transmit schemas 
either to the server’s input command buffer, where they 

will be executed sequentially, or to the high-priority 
channel, where the server will execute each new schema 
immediately, pre-empting commands in the queue. 
 
Our client programs have been developed and executed 
on Windows-based PC’s.  Wrapper functions have been 
written to ease the task of converting schemas into XML 
format and transmitting the schemas to the schema server.   
A set of Application Programming Interface (API) 
functions for specifying common schemas eases program 
development.   
 
An example API function is: moveTo (pose) 
This function constructs and transmits a schema that 
causes the robot to move to the specified desired position.  
A default speed is assumed (which may be overridden), 
and the most recently imposed set of impedance 
parameters is used during the move.  In execution, the 
attractor is moved at constant speed from the robot’s 
initial position to the desired final position along a 
straight line in Cartesian/orientation space.  This is 
encoded as a persistent attractor speed along a specified 
vector.  The normal triggering event that terminates this 
action occurs when the attractor position passes a 
threshold value. 
 
This function typically behaves similar to the 
corresponding conventional position-controlled robot 
command.  However, its implementation differs in its 
reactive behavior.  The robot is attracted towards the goal 
pose, but it may be impeded by an obstruction.  If the 
obstruction is near the goal location, then the robot will 
respond by exerting a relatively low force against the 
obstruction.  If the reaction force exceeds a safe value, the 
schema-server will observe triggering of an excessive-
force event and will react appropriately.  Such error 
detection and reaction is implicit by default.  
 
A more obviously reactive API that is useful in 
compliant-motion programming is: 
  moveToTouch(dir_vec) 
This function encodes and transmits a schema that causes 
the robot to move compliantly from its current pose along 
the direction vector “dir_vec” until contact with the 
environment exceeds a threshold force.  The speed of 
approach and the threshold force are optional arguments 
with nominal default values. 
 
7. An Assembly Example 
Figure 3 shows the ParaDex robot and an assembly task.  
The task consists of inserting 6, 15mm-thick aluminum 
geometric shapes into corresponding recesses in a 
baseplate.  The assembly clearance for these parts was +/-
0.05mm, and the parts were not chamfered, making 
assembly challenging. 
 
The client program for inserting these shapes consists of 
repetitions of the following sequence of calls: 
 
 

 



 
 

Fig 3: The ParaDex Robot and Example Assembly Task 
 
moveTo(above_part);// approach part pick location from 

      //above 
moveToTouch(dir_down); // approach the part vertically  

         //from above; stop upon contact 
grasp(); // atomic command: grasp part 
moveTo(above_part); // depart vertically w/ part 
moveTo(above_assem_loc); // move to location above 
  // the approximate assembly location 
moveToTouch(dir_down); // approach the sub-assembly 
  // from above; stop on contact 
blind_search(); // with vertical pre-load, move part in a  
 // search pattern terminating when insertion is  
 // detected 
release(); // atomic command to release grasped part 
moveTo(above_assem_loc); // depart vertically; ready 
       // for next assembly command 
 
Each of these function calls within the client program 
results in the construction of a schema, its encoding in 
XML format, and its transmission to the schema server 
running on the robot controller.  Parameters may be 
altered to tune the assembly performance (e.g., as in 
[6,7]). 
 
The nominal part-acquisition location and approximate 
insertion coordinates may be pre-taught (if feeding and 
fixture coordinates are at least approximately known), or 
these coordinates may be obtained from sensors (e.g., 
machine vision). 
 
The above program was successful in assembling all 6 
geometric shapes.   Using a blind search, although 
successful, was relatively slow. With an initial error of 
0.3mm in translation and 0.02rad in rotation, blind-search 
assembly times averaged approximately 7 seconds for all 
parts.  As the uncertainty in assembly location increased, 
search times also increased, roughly doubling at 
1.2mm/0.05rad initial error. Using a more sophisticated 
strategy incorporating a sequence of 4 triggered 
behaviors, all parts were assembled with a mean time less 
than 3 seconds over the above range of uncertainties.  
This latter strategy was roughly 1 second slower than 
human assembly rates. 

8. Conclusions 
Although behavior-based robotics is often associated with 
basic research in artificial life, techniques from behavioral 
programming can be applied fruitfully to very pragmatic 
robot programming problems.  This paper has presented 
our approach to behavioral programming for exploitation 
of force control in constrained manipulation.  The system 
presented responds to the needs for safety, effectiveness 
and ease of programming.  Continued progress in this 
direction will help to move behavior-based robotics 
research into demanding applications. 
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