pmc logo imageJournal ListSearchpmc logo image
Logo of jcinvestCurrent issueArchiveSubscribe to the JCIAbout the JCIThe Journal of Clinical Investigation
J Clin Invest. 1997 December 1; 100(11): 2744–2751.
doi: 10.1172/JCI119820.
PMCID: PMC508478
Activation of the prolactin receptor but not the growth hormone receptor is important for induction of mammary tumors in transgenic mice.
H Wennbo, M Gebre-Medhin, A Gritli-Linde, C Ohlsson, O G Isaksson, and J Törnell
Department of Physiology, Research Centre for Endocrinology and Metabolism, Göteborg University Medicinaregatan 1F S-413 90 Göteborg, Sweden.
Abstract
Transgenic mice overexpressing the human growth hormone gene develop mammary carcinomas. Since human growth hormone gene can activate both the growth hormone receptor (GHR) and the prolactin (PRL) receptor (PRLR), it is not clear which receptor system is responsible for the malignant transformation. To clarify the receptor specificity, we created transgenic mice with two different genes: (a) transgenic mice overexpressing the bovine growth hormone (bGH) gene having high levels of bGH only activating the GHR and also high serum levels of IGF-I; and (b) transgenic mice overexpressing the rat PRL (rPRL) gene that have elevated levels of PRL (one line 150 ng/ml and one line 13 ng/ml) only binding to the PRLR and with normal IGF-I levels. When analyzed histologically, all of the PRL transgenic female mice developed mammary carcinomas at 11-15 mo of age. Only normal mammary tissue was observed among the bGH transgenic animals and the controls. Cell lines established from a tumor produced rPRL and expressed PRLR. In organ culture experiments, an auto/paracrine effect of rPRL was demonstrated. In conclusion, activation of the PRLR is sufficient for induction of mammary carcinomas in mice, while activation of the GHR is not sufficient for mammary tumor formation.
Full Text
The Full Text of this article is available as a PDF (717K).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
  • Ben-Jonathan, N; Mershon, JL; Allen, DL; Steinmetz, RW. Extrapituitary prolactin: distribution, regulation, functions, and clinical aspects. Endocr Rev. 1996 Dec;17(6):639–669. [PubMed]
  • Ormandy, CJ; Camus, A; Barra, J; Damotte, D; Lucas, B; Buteau, H; Edery, M; Brousse, N; Babinet, C; Binart, N; Kelly, PA. Null mutation of the prolactin receptor gene produces multiple reproductive defects in the mouse. Genes Dev. 1997 Jan 15;11(2):167–178. [PubMed]
  • Bonneterre, J; Peyrat, JP; Beuscart, R; Lefebvre, J; Demaille, A. Prognostic significance of prolactin receptors in human breast cancer. Cancer Res. 1987 Sep 1;47(17):4724–4728. [PubMed]
  • Murphy, LJ; Murphy, LC; Vrhovsek, E; Sutherland, RL; Lazarus, L. Correlation of lactogenic receptor concentration in human breast cancer with estrogen receptor concentration. Cancer Res. 1984 May;44(5):1963–1968. [PubMed]
  • Biswas, R; Vonderhaar, BK. Role of serum in the prolactin responsiveness of MCF-7 human breast cancer cells in long-term tissue culture. Cancer Res. 1987 Jul 1;47(13):3509–3514. [PubMed]
  • Manni, A; Wright, C; Davis, G; Glenn, J; Joehl, R; Feil, P. Promotion by prolactin of the growth of human breast neoplasms cultured in vitro in the soft agar clonogenic assay. Cancer Res. 1986 Apr;46(4 Pt 1):1669–1672. [PubMed]
  • Shiu, RP. Prolactin receptors in human breast cancer cells in long-term tissue culture. Cancer Res. 1979 Nov;39(11):4381–4386. [PubMed]
  • Fuh, G; Wells, JA. Prolactin receptor antagonists that inhibit the growth of breast cancer cell lines. J Biol Chem. 1995 Jun 2;270(22):13133–13137. [PubMed]
  • Matsuzawa, A. Hormone dependence and independence of mammary tumors in mice. Int Rev Cytol. 1986;103:303–340. [PubMed]
  • Goffin, V; Shiverick, KT; Kelly, PA; Martial, JA. Sequence-function relationships within the expanding family of prolactin, growth hormone, placental lactogen, and related proteins in mammals. Endocr Rev. 1996 Aug;17(4):385–410. [PubMed]
  • Bazan, JF. A novel family of growth factor receptors: a common binding domain in the growth hormone, prolactin, erythropoietin and IL-6 receptors, and the p75 IL-2 receptor beta-chain. Biochem Biophys Res Commun. 1989 Oct 31;164(2):788–795. [PubMed]
  • Alexander, L; Appleton, D; Hall, R; Ross, WM; Wilkinson, R. Epidemiology of acromegaly in the Newcastle region. Clin Endocrinol (Oxf). 1980 Jan;12(1):71–79. [PubMed]
  • Bengtsson, BA; Edén, S; Ernest, I; Odén, A; Sjögren, B. Epidemiology and long-term survival in acromegaly. A study of 166 cases diagnosed between 1955 and 1984. Acta Med Scand. 1988;223(4):327–335. [PubMed]
  • Ituarte, EA; Petrini, J; Hershman, JM. Acromegaly and colon cancer. Ann Intern Med. 1984 Nov;101(5):627–628. [PubMed]
  • Decouvelaere, C; Peyrat, JP; Bonneterre, J; Djiane, J; Jammes, H. Presence of the two growth hormone receptor messenger RNA isoforms in human breast cancer. Cell Growth Differ. 1995 Apr;6(4):477–483. [PubMed]
  • Törnell, J; Rymo, L; Isaksson, OG. Induction of mammary adenocarcinomas in metallothionein promoter-human growth hormone transgenic mice. Int J Cancer. 1991 Aug 19;49(1):114–117. [PubMed]
  • Bartke, A; Cecim, M; Tang, K; Steger, RW; Chandrashekar, V; Turyn, D. Neuroendocrine and reproductive consequences of overexpression of growth hormone in transgenic mice. Proc Soc Exp Biol Med. 1994 Sep;206(4):345–359. [PubMed]
  • Törnell, J; Carlsson, B; Pohjanen, P; Wennbo, H; Rymo, L; Isaksson, O. High frequency of mammary adenocarcinomas in metallothionein promoter-human growth hormone transgenic mice created from two different strains of mice. J Steroid Biochem Mol Biol. 1992 Sep;43(1-3):237–242. [PubMed]
  • D'Ercole, AJ; Stiles, AD; Underwood, LE. Tissue concentrations of somatomedin C: further evidence for multiple sites of synthesis and paracrine or autocrine mechanisms of action. Proc Natl Acad Sci U S A. 1984 Feb;81(3):935–939. [PubMed]
  • Mathews, LS; Norstedt, G; Palmiter, RD. Regulation of insulin-like growth factor I gene expression by growth hormone. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9343–9347. [PubMed]
  • Yee, D; Paik, S; Lebovic, GS; Marcus, RR; Favoni, RE; Cullen, KJ; Lippman, ME; Rosen, N. Analysis of insulin-like growth factor I gene expression in malignancy: evidence for a paracrine role in human breast cancer. Mol Endocrinol. 1989 Mar;3(3):509–517. [PubMed]
  • Cullen, KJ; Yee, D; Sly, WS; Perdue, J; Hampton, B; Lippman, ME; Rosen, N. Insulin-like growth factor receptor expression and function in human breast cancer. Cancer Res. 1990 Jan 1;50(1):48–53. [PubMed]
  • Huff, KK; Kaufman, D; Gabbay, KH; Spencer, EM; Lippman, ME; Dickson, RB. Secretion of an insulin-like growth factor-I-related protein by human breast cancer cells. Cancer Res. 1986 Sep;46(9):4613–4619. [PubMed]
  • Karey, KP; Sirbasku, DA. Differential responsiveness of human breast cancer cell lines MCF-7 and T47D to growth factors and 17 beta-estradiol. Cancer Res. 1988 Jul 15;48(14):4083–4092. [PubMed]
  • Mathews, LS; Hammer, RE; Behringer, RR; D'Ercole, AJ; Bell, GI; Brinster, RL; Palmiter, RD. Growth enhancement of transgenic mice expressing human insulin-like growth factor I. Endocrinology. 1988 Dec;123(6):2827–2833. [PubMed]
  • Neuenschwander, S; Schwartz, A; Wood, TL; Roberts, CT, Jr; Hennighausen, L; LeRoith, D. Involution of the lactating mammary gland is inhibited by the IGF system in a transgenic mouse model. J Clin Invest. 1996 May 15;97(10):2225–2232. [PubMed]
  • Hadsell, DL; Greenberg, NM; Fligger, JM; Baumrucker, CR; Rosen, JM. Targeted expression of des(1-3) human insulin-like growth factor I in transgenic mice influences mammary gland development and IGF-binding protein expression. Endocrinology. 1996 Jan;137(1):321–330. [PubMed]
  • Bates, P; Fisher, R; Ward, A; Richardson, L; Hill, DJ; Graham, CF. Mammary cancer in transgenic mice expressing insulin-like growth factor II (IGF-II). Br J Cancer. 1995 Nov;72(5):1189–1193. [PubMed]
  • Mathews, LS; Hammer, RE; Brinster, RL; Palmiter, RD. Expression of insulin-like growth factor I in transgenic mice with elevated levels of growth hormone is correlated with growth. Endocrinology. 1988 Jul;123(1):433–437. [PubMed]
  • Cooke, NE; Baxter, JD. Structural analysis of the prolactin gene suggests a separate origin for its 5' end. Nature. 1982 Jun 17;297(5867):603–606. [PubMed]
  • Palmiter, RD; Brinster, RL; Hammer, RE; Trumbauer, ME; Rosenfeld, MG; Birnberg, NC; Evans, RM. Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature. 1982 Dec 16;300(5893):611–615. [PubMed]
  • Ofverstedt, LG; Hammarström, K; Balgobin, N; Hjertén, S; Pettersson, U; Chattopadhyaya, J. Rapid and quantitative recovery of DNA fragments from gels by displacement electrophoresis (isotachophoresis). Biochim Biophys Acta. 1984 Jun 16;782(2):120–126. [PubMed]
  • Hammer, RE; Brinster, RL; Palmiter, RD. Use of gene transfer to increase animal growth. Cold Spring Harb Symp Quant Biol. 1985;50:379–387. [PubMed]
  • Chomczynski, P; Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. [PubMed]
  • Cooke, NE; Coit, D; Weiner, RI; Baxter, JD; Martial, JA. Structure of cloned DNA complementary to rat prolactin messenger RNA. J Biol Chem. 1980 Jul 10;255(13):6502–6510. [PubMed]
  • Sandstedt, J; Ohlsson, C; Norjavaara, E; Nilsson, J; Törnell, J. Disproportional bone growth and reduced weight gain in gonadectomized male bovine growth hormone transgenic and normal mice. Endocrinology. 1994 Dec;135(6):2574–2580. [PubMed]
  • Sinha, YN; Salocks, CB; Wickes, MA; Vanderlaan, WP. Serum and pituitary concentrations of prolactin and growth hormone in mice during a twenty-four hour period. Endocrinology. 1977 Mar;100(3):786–791. [PubMed]
  • Huseby, RA; Soares, MJ; Talamantes, F. Ectopic pituitary grafts in mice: hormone levels, effects on fertility, and the development of adenomyosis uteri, prolactinomas, and mammary carcinomas. Endocrinology. 1985 Apr;116(4):1440–1448. [PubMed]
  • Adler, RA. The anterior pituitary-grafted rat: a valid model of chronic hyperprolactinemia. Endocr Rev. 1986 Aug;7(3):302–313. [PubMed]
  • Ginsburg, E; Vonderhaar, BK. Prolactin synthesis and secretion by human breast cancer cells. Cancer Res. 1995 Jun 15;55(12):2591–2595. [PubMed]