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The identification of autism susceptibility genes
has been hampered by phenotypic heterogeneity
of autism, among other factors. However, the use
of endophenotypes has shown preliminary suc-
cess in reducing heterogeneity and identifying
potential autism-related susceptibility regions.
To further explore the utility of using language-
related endophenotypes, we performed linkage
analysis on multiplex autism families stratified
according to delayed expressive speech and also
assessed the extent to which parental phenotype
information would aid in identifying regions of
linkage. A whole genome scan using a multipoint
non-parametric linkage approach was performed
in 133 families, stratifying the sample by phrase
speech delay and word delay (WD). None of the
regions reached suggested genome-wide or repli-
cation significance thresholds. However, several
loci on chromosomes 1, 2, 4, 6, 7, 8, 9, 10, 12, 15, and
19 yielded nominally higher linkage signals in the
delayed groups. The results did not support
reported linkage findings for loci on chromosomes
7 or 13 that were a result of stratification based on
the language delay endophenotype. In addition,
inclusion of information on parental history of
language delay did not appreciably affect the
linkage results. The nominal increase in NPL
scores across several regions using language
delay endophenotypes for stratification suggests
that this strategy may be useful in attenuating
heterogeneity. However, the inconsistencies in
regions identified across studies highlight the
importance of increasing sample sizes to provide
adequate power to test replications in indepen-
dent samples. � 2006 Wiley-Liss, Inc.
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INTRODUCTION

Autismand the relatedautismspectrumdisorders (ASD) are
complex neurodevelopmental disorders characterized by core
deficits in three major domains: social interaction and social
relatedness, verbal and non-verbal communication, and
restricted interests and/or repetitive or stereotyped behaviors
and resistance to change. The expression of the deficits
encompasses a wide continuum extending from mild peculia-
rities to severe developmental disabilities. There is strong
evidence from twomajor lines of investigation that the genetic
contribution to ASD is substantial [Cook, 2001; Folstein and
Rosen-Sheidley, 2001]. First, indirect evidence comes from the
high incidence of neurogenetic disorders and chromosomal
anomalies occurring in 5%–9%of autismpatients [Lewis et al.,
1995; Fombonne et al., 1997; Cook, 2001;Wassink et al., 2001].
Second, twin and family studies provide direct evidence of a
genetic etiology in idiopathic autism [Folstein and Rutter,
1977; Ritvo et al., 1985, 1991; Steffenburg et al., 1989; Bailey
et al., 1995; Le Couteur et al., 1996].

Although heritability estimates for ASD range from 60% to
90% [Folstein and Rutter, 1977; Ritvo et al., 1985], placing it
among the most heritable of complex neuropsychiatric condi-
tions; the identification of candidate loci for the disorder has
been complicated by genetic and phenotypic heterogeneity.
Results from the nine published whole genome scans using
autism as a qualitative phenotype [IMGSAC, 1998, 2001;
Barrett et al., 1999; Philippe et al., 1999; Risch et al., 1999; Liu
et al., 2001; Auranen et al., 2002; Shao et al., 2002b; Yonan
et al., 2003] have been variable, with the most consistent
findings on chromosome 7 [Badner and Gershon, 2002]. The
other regions of interest that have shown strong linkage
signals and/or have support from multiple studies include: 2q
[Philippe et al., 1999; IMGSAC, 2001; Buxbaum et al., 2002;
Shao et al., 2002b], 4 [IMGSAC, 1998; Barrett et al., 1999;
Yonan et al., 2003], 13 [Barrett et al., 1999], 17p [Risch et al.,
1999; IMGSAC, 2001; Liu et al., 2001; Yonan et al., 2003; Stone
et al., 2004; Cantor et al., 2005], and X [Auranen et al., 2002;
Shao et al., 2002b].
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Investigators have begun to use endophenotypes related to
autism in an attempt to reduce heterogeneity and identify
factors that may relate more closely to genetic etiologies than
the current broad diagnostic categories. Endophenotypes are
components of a more complex phenotype, such as behavioral,
cognitive, morphologic, or biochemical features that may be
more directly related to the underlying genetic etiologies
[Gottesman and Gould, 2003]. Using behavioral endopheno-
types such as insistence on sameness, obsessive-compulsive
behavior, or savant skills to stratify ASD families in linkage
analysis has shown promise [Nurmi et al., 2003; Shao et al.,
2003; Buxbaum et al., 2004; McCauley et al., 2004]. The most
significant linkage result reported by our group was based on
stratifying families by the sex of the autistic proband; this
revealed a locus with genome-wide significance on chromo-
some 17 for the families with only male autistic probands
[Stone et al., 2004] and this locus was recently replicated
genome atwide significance in an independent sample [Cantor
et al., 2005]. Stratification of families by the proband’s
language delay has also proved a useful linkage strategy,
producing strengthened signals on chromosomes 2q [Buxbaum
et al., 2001; Shao et al., 2002a], 7q [Bradford et al., 2001], and
13q [Bradford et al., 2001]. In addition to stratifying families
based on proband phrase speech delay, Bradford et al. [2001]
also considered parents with language delay as affected and
reported strengthened linkage signals to autism on chromo-
somes 7 and 13. In an alternative approach, use of a language
endophenotype in a quantitative linkage analysis highlighted
a region on chromosome 7q that was not present in a previous
qualitative scan of the same data from the Autism Genetic
Resource Exchange [AGRE; Liu et al., 2001; Alarcón et al.,
2002].

Given these varied findings, replication is critical to assess
the validity of reported linkage peaks in complex neuropsy-
chiatric disorders. Based on the success of previous reports
[Bradford et al., 2001;Buxbaumetal., 2001; Shaoet al., 2002a],
we stratified families from theAGRE sample by the presence of
expressive speech delay and included parental information
regarding a history of language delays or deficits in order to
categorize parents as affected in the linkage analysis. Rather
than limit our investigation to previously reported chromoso-
mal regions with only modest evidence for linkage, we
performed a whole genome scan.

MATERIALS AND METHODS

Participants

Families were obtained from the Autism Genetics Resource
Exchange (AGRE) program. AGRE is a large shared database
containing phenotype and genotype information of ASD
families available to approved researchers [Geschwind et al.,
2001]. Families were ascertained based on the criteria that
therewere at least two siblings with a reported ASD diagnosis.
Diagnoses are confirmed by the Autism Diagnosis Interview-
Revised (ADI-R) [Lord et al., 1994]. The present analysis used
the broad-spectrum diagnosis for probands which included
those with autistic disorder and those with similar but lesser
deficits in communication, social relatedness, and/or repetitive
behaviors/restricted interests. Details on diagnostic algo-
rithms are available on the AGRE website (www.agre.org).

Phenotypic assessment included thediagnostic testingusing
the ADI-R [Lord et al., 1994] and the Autism Diagnostic
Observation Schedule (ADOS-G) ([Lord et al., 2000], and
cognitive testing using the Raven Progressive Matrices—
Colored Version [Raven, 1956] and the Peabody Picture
Vocabulary Test (PPVT-III) [Dunn and Dunn, 1981] which
can be used as surrogate non-verbal and verbal IQ measures,
respectively.

Families for this analysis were selected from the 345
genotyped families based on the availability of more extensive
parental language data.MZ twins and individuals with known
chromosomal abnormalities were excluded. This sample
included 133 nuclear families with a total of 634 individuals,
131 fathers, 133 mothers, 89 unaffected siblings (40 males,
49 females), and 280 probands (221 males, 59 females).

Stratification

Delay in spoken language acquisition is frequently seen in
autism but not required for the DSM-IV diagnosis of an ASD.
We stratified the families based on proband phrase and word
speech delay as reported on the ADI-R items: A12 or ‘‘age at
first word’’ and A13 or ‘‘age at first phrase.’’ Phrase delay (PD)
families included two or more autistic or broad-spectrum
probands with phrase speech acquired after 36 months of age
(n¼ 69). Word delay (WD) families included two or more
autistic or broad-spectrum probands with single words
acquired after 18 months of age (n¼ 60). We defined WD as
the acquisition of single spoken words past 18 months of age
because this is the standard cut-off used in the clinical practice
of neurology and is, thus, widely regarded as clinically
meaningful. Probands who had not yet acquired the single
words or phrases were considered delayed for purposes of this
analysis.

Parental Classification

Parental affectation status was based on a history of
language development questionnaire adapted from those used
for family studies of specific language impairment [Tomblin,
1989; Tomblin et al., 1992] anddyslexia [LeflyandPennington,
2000]. If the parent had a self-reported history of delayed
speech and language or had difficulty learning to read, the
individual was considered affected similar to the approach
used by Bradford et al. [2001].

Genotypes

Laboratory and genotyping procedures have beenpreviously
detailed [Liu et al., 2001; Yonan et al., 2003]. Briefly, 10–20 ml
of blood were collected from all available family members
(parents, affected children, unaffected children) in the family
home. Samples were shipped to Rutgers University Repository
where immortalized lymphoblast cell lines were created, and
DNA was extracted for storage and distribution to approved
AGRE researchers. DNA was genotyped at the Columbia
University Genome Center using 365 DNA microsatellite
markers. These included 335 markers used in the original
genome scan [Liu et al., 2001] at anaveragedensity of 10 cM, as
well as an additional 30 fine map microsatellites on chromo-
some 7q with an average density of 2 cM. The markers had an
average heterozygosity of 0.77.

Analysis

The SAS analysis software package [SAS, 2004, Version 9.1]
was used to calculate descriptive statistics of the sample and to
prepare input files for genetic analysis. Mendelian genotype
errors were queried with PedCheck [O’Connell and Weeks,
1998] and genotype error was detected in <0.01%.

A multipoint non-parametric linkage analysis was perform-
edusing theGenehunter program [Kruglyak et al., 1996] using
the broad-spectrum diagnosis. Four analyses were performed:
(1) all families (ALL; n¼ 133); (2) PD families (n¼ 69); (3) word
delayed (WD) families (n¼ 60); and (4) all families including
parental information (ALL with PI; n¼ 133). Given that none
of the linkage peaks reached criteria for genome-wide
significance (i.e., P� 2� 10�5 based on Lander and Kruglyak,
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1995), we reported only loci with nominal P values� 0.05, as
well as those corresponding results from the ALL group for
comparison purposes.

RESULTS

Linkage With and Without Stratification

We stratified the families based on proband phrase andword
speech delay to attempt to replicate previous findings from
other smaller cohorts of multiplex autism pedigrees. We also
performed the linkage scan in the entire cohort to use as a
comparison to determine whether stratification actually
increased the NPL score. None of the linkage results of the
non-parametric multipoint scan (Methods) were significant at
a genome-wide level for any of the cohorts (ALL, PD, or WD)
(Fig. 1). Moreover, the results on chr 2, 7, and 13 did not meet
the suggested threshold for replication [Lander and Kruglyak,
1995]. However, as shown in Table I, several peaks reached
nominal significance (P< 0.05). Loci on chromosomes 1, 2, 4, 6,
7, 8, 9, 10, 12, 15, and 19 showed a modest increase in linkage
scores either when stratified by PD orWD, and several of these
(chr 1, 10, 12, 15, 19) had NPL scores greater than 2.2 yielding
P values¼ 0.01 (Table I). Loci on chromosome 1, 15, and 19 had
NPL scores withP values� 0.05 using either language-related
phenotypes, PD or WD.

Similar to previous studies, stratification by PD did appear
to strengthen the linkage signals on chromosome 2 [Buxbaum
et al., 2001; Shao et al., 2002a]. In our sample thiswas achieved
at four loci, one of which is in the region (peak¼ 188 cM)
identified by both the Buxbaum (peak¼ 186 cM) and Shao
groups (peak¼ 198 cM). Although our results could be
considered in support of Buxbaum’s chromosome 2 peak, after
removal of the AGRE families that overlapped both studies
(n¼ 36 total, 16 inPDgroup) the peakat this locus disappeared
in thePhraseDelayedgroup (NPL¼ 1.03,P> 0.05). In contrast
to a previous report [Bradford et al., 2001] stratification by
phrase or WD did not strengthen the signal compared to the
entire sample on chromosomes 7 or 13. In fact, our data did not
show a peak in the same regions on either of those chromo-
somes in any group.

Parental Language Information

Inclusion of parental language development information
had a negligible effect on the linkage scores and, thus, these
results are not presented. However, we examined the trans-
mission of this trait in the nuclear families and observed that
language-deficit information obtained retrospectively from the
parents did not co-segregate with proband language delay as
measured by the ADI in this cohort. The percentage of parents
with language problems tended to be higher in the sets of
families without proband language delays, although the
differences were not significant. Specifically 13.5% of the
74 PD families were parents affected with language problems
whereas 20.5% of the 214 NPD families were affected
(w2¼ 1.79 ns). A similar patternwas observedwhen stratifying
families with WD: 17% of the 123 WD families were affected
parents versus 20% of the 165 NWD families (w2¼ 0.4 ns).
Thus, it is not surprising that the inclusion of parental report
information did not strengthen linkage signals.

Association With Other Cognitive
or Behavioral Variables

To better characterize the subgroups and determine if there
was some other feature co-segregatingwith the delayed groups
that could contribute to the modestly strengthened linkage
signals, the delayed andnon-delayed groupswere compared on

mean scores from the cognitive, language, and behavioral
testing (see Tables IIa and b). The multiple statistical
comparisons performed required an adjusted significance level
of P< 0.0007; the resulting between-group significance values
did not exceed this threshold.

DISCUSSION

We performed a non-parametric genome scan on a subset of
133 families from the AGRE sample with extended phenotypic
information to test the approach used in previous studies to
reduce heterogeneity and strengthen linkage signals by
stratification based on proband language delay endopheno-
types [Buxbaum et al., 2001; Shao et al., 2002a]. We also
incorporated information from parents of probands with
reported language difficulties to determinewhether thiswould
similarly strengthen linkage signals as shown by Bradford
et al. [2001].

Consistent with results from previous genome scans in
independent samples, the present linkage results from the 133
AGRE families with language information identified regions
on chromosomes 4 [Barrett et al., 1999], 10 [IMGSAC, 1998], 11
[Barrett et al., 1999], 16 [IMGSAC, 1998, 2001], and 17
[IMGSAC, 2001] yielding NPL scores with P values of¼ 0.05.

As shown previously, stratification of families based on
proband phrase or WD did appear to strengthen linkage
signals in a number of regions. However, none met suggested
criteria for genome-wide significance or for replication [Lander
and Kruglyak, 1995]. A region on chromosome 2q was of
particular interest as an autism susceptibility region for two
reasons: (1) it had been previously reported by two groups
[Buxbaum et al., 2001; Shao et al., 2002a] to have increased
evidence for linkage in language-delayed families; and (2)
there is an association between autism and a mitochondrial
gene in this region [Ramoz et al., 2004]. However, when the
AGRE families included in the Buxbaum et al., analysis were
removed from the current study, the peak in that region was
diminished. This suggested that the same group of families
contributed to the linkage signal on 2q in both studies. Thus,
the present study does not provide additional support for
linkage in the 2q region despite having a larger number of
families than the Buxbaum report.

Our results fromthe stratified families also showedanominal
peak on chromosome 15q at 12.3cM which is within a region
containing theGABRB3 gene (15q11-13, 9-23cM) that has been
variably associated with autism [Cook et al., 1998; Maestrini
et al., 1999;Buxbaumetal., 2002],with endophenotypes related
to insistence on sameness [Shao et al., 2003] and savant skills
[Nurmi et al., 2003], but not with language delay.

We did not observe any strengthening of the signal in the
region of chromosome 7q identified by Bradford et al. [2001].
Our group has demonstrated suggestive linkage to this region
on chromosome 7q in AGRE using a quantitative trait locus
(QTL)approachbasedonageatfirstword [Alarcón et al., 2002].
Further analysis of this region has demonstrated that the
linkage peak may not be related to the magnitude of language
delay per se, but rather to a more general language-related
susceptibility trait [Alarcón et al., 2005]. Thus, not finding an
effect of stratification based on delay in the AGRE sample
would not be surprising. However, we did find a region at the
telomere on chromosome 7 in the phrase delayed families as
well as very modest evidence (P< 0.05) for linkage on
chromosomes 1, 2, 4, 6, 8, 9, 10, 12, and 19 in areas that have
not previously been reported as linked to autism and will need
to be further studied in an independent sample.

We also examined the utility of incorporating historical
information regarding parental language difficulties into the
linkage analysis. Bradford et al. [2001] hypothesized that
extending the specific endophenotype of language delay to

Stratification by Language Delay 593



Fig. 1. NPL plots of each chromosome for ALL families (solid lines) and those stratified by phrase delay (dark dotted lines) and word delay (light
dotted lines).
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other family members should increase the signal at any locus
related to that phenotype. Expecting that the majority of the
increased signal would come from families who also had
probands with speech delay, they also stratified on phrase
speech delay in amanner similar to our analysis. Their results
on chromosome 7 and 13 showed amodest effect of inclusion of
parent information, made stronger by combining with strati-
fication based on the presence of proband phrase speech delay.
Results of the present study did not support those described in
Bradford’s report.

The lack of support observed in this study of previous linkage
peaks strengthened by stratification and/or inclusion of par-

ental information could be explained in a number ofways. First,
none of the linkage results in the previous stratification studies
reached genome-wide significance and therefore may have
represented spurious results based on sub-setting of the cohort
into smaller groups. Similarly, although the results for the
Bradford et al. [2001] study that explored theutility of including
parental information in the linkage analysis was based on
50 families, they still did not reach significance for genome-wide
scans [Lander andKruglyak, 1995] andmay represent spurious
findings. Second, the present results may reflect a lack of power
due to the small sample size thatwas a consequence of including
only the subset of the complete AGRE sample with available

Fig. 1. (Continued )
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parental language information. Third, in this cohort, it is also
possible that the language deficits in parents are not related to
the specific delay endophenotype in their children, and, thus,
inclusionofparental information in thepresent linkageanalysis
increased heterogeneity rather than reducing it. This is

supported by the lack of parent-child clustering of language
delay within families. Finally, although the questions and
methods used to obtain these data were similar to those used in
other studies, it is possible that the self-report language history
information we obtained from parents is not reliable.

TABLE IIa. Test Scores for Phrase Delayed Versus Non-Delayed Groups Show no Significant
Differences When Corrected for Multiple Comparisons

Mean scores (SD)

T-score df P-valuePhrase delay No delay

Raven 93.4 (27.5) 94.3 (25) �0.14 104 0.89
PPVT 75.2 (25.4) 77.2 (30) �0.29 100 0.77
ADI social 20.4 (6.8) 19.8 (7) 0.67 282 0.5
ADI comm. non-verbal 14.7 (5.1) 14.9 (4.8) �0.31 200 0.76
ADI comm. verbal 11.2 (3.1) 11.6 (3.2) �0.57 80 0.57
ADI behav 5.1 (2.4) 6 (2.8) �2.47 282 0.01

TABLE IIb. Test Scores for Word Delayed Versus Non-Delayed Groups Show no Significant
Differences When Corrected for Multiple Comparisons

Mean scores (SD)

T-score df P-valueWord delay No delay

Raven 93.9 (24.2) 94.2 (26.6) �0.050 104 0.96
PPVT 74 (27.2) 78.8 (30.1) �0.831 100 0.41
ADI social 20.6 (6.7) 19.4 (7.1) 1.474 282 0.14
ADI comm. non-verbal 15.1 (5.4) 14.7 (4.3) 0.659 200 0.51
ADI comm. verbal 10.8 (3.1) 11.9 (3) �1.597 80 0.11
ADI behav 5.9 (2.8) 5.6 (2.7) 0.891 282 0.37

TABLE I. Summary of Peaks in Stratification Analysis in ALL and DELAYED Families

Chr

Region All families Stratified by PD Stratified by WD

cM NPL NPL NPL

1 125.51–136.88 1.12 1.70* 2.2**
2 136.34 0.48 2.07* ni
2 153.65 �0.039 1.78* ni
2 191.87a 0.14 1.82* ni
2 255.7 1.20 1.81* ni
4 33.42 2.53** ni ni
4 104.94 2.42** ni ni
4 167.55 1.67* ni ni
4 181.93 0.35 ni 1.69*
6 187.23 �0.08 ni 1.76*
7 10.68 0.50 1.68* ni
8 127.23 1.22 1.90* ni
9 14.23 0.08 1.69* ni
9 33.09 0.61 ni 1.89*
10 59.03–70.23 1.89* 2.32** ni
11 32.95 2.43** ni ni
11 54.02 2.11* ni ni
12 48.7 1.64* ni 2.41**
12 68.16 2.34** ni ni
15 12.2b 0.94 2.35** 2.28**
16 28.3 2.36** ni ni
17 50.74 2.10* ni ni
19 83.19–87.66 1.64* 2.16** 2.34**

ni, no increase.
*P�0.05.
**P� 0.01.
aLocus in region previously linked to language delay endophenotype in autism [Buxbaum et al., 2001; Shao et al.,
2002a].
bLocus in region previously linked to autism and endophenotypes regarding insistence on sameness [Shao et al.,
2003] and savant skills [Nurmi et al., 2003].
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This study provides an example of the difficulty phenotypic
heterogeneity poses for the identification of autism suscept-
ibility genes. Furthermore, the fact that different studies all
using similar language-related endophenotypes yield linkage
to different loci implies that even the language delay
component of ASD could be genetically heterogeneous. For
instance, a child could present with speech delay secondary to
a true expressive language deficit (which may also be
accompanied by a receptive language deficit), or due to a more
specific motor speech disorder (e.g., speech apraxia). These
different underlying pathologies could have distinct under-
lying genetic etiologies leading to the identification of a variety
of loci in linkage analyses. Alternatively, this trait could co-
segregate with another trait (so far undetected) that truly
underlies linkage to the chromosomal regions identified.
Better definition of the language endophenotype and perhaps
further subgrouping of much larger samples into more
homogeneous groups based on related aspects of the phenotype
(e.g., receptive and expressive speech delay or speech apraxia)
will be necessary to further explore this concept.
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