Lawrence Livermore National Laboratory
Public Affairs Office
LLNL HomeLLNL HomeAbout LLNLAbout LLNLVisiting Visiting
 
  Go  return to accessibility menu
 
PAO Home

Contact Us
Newsroom
  News Releases
  Science Features
  Media Advisories
  Statements
  Biographies
  Photos & Images
  Video Library

Community
Employee News
Learn More

Public Affairs : Newsroom : News Releases : 2004 News Release Archive :: NR-04-10-02

News Release

  Contact: Anne Stark
  Phone: (925) 422-9799
  E-mail: stark8@llnl.gov
  FOR IMMEDIATE RELEASE
Date: October 6, 2004
NR-04-10-02

Livermore scientists predict novel melt curve of hydrogen, pointing to the possible existence of a new superfluid state

Illustration of Hydrogen Transition from Molecular Solid to Quantum Liquid
This figure illustrates the transition from a molecular solid (top) to a quantum liquid (bottom) that is expected to occur in hydrogen under high pressure.
300 dpi image

LIVERMORE, Calif. - Scientists at Lawrence Livermore National Laboratory have discovered a new melt curve of hydrogen, resulting in the possible existence of a novel superfluid - a brand new state of matter.

As reported in the Oct. 7 edition of the journal Nature, the researchers present the results of ab initio calculations of the hydrogen melt curve at pressures up to 2 million atmospheres.

The measurement of the high-pressure phases of hydrogen has been the focus of numerous experiments for nearly a century. However, the phase boundary that separates the solid and the liquid has remained relatively unknown.

Until now, when scientists Stanimir Bonev, Eric Schwegler, Tadashi Ogitsu and Giulia Galli reported the melt line with first-principles simulations, and proposed new experimental measurements to verify the existence of a maximum melting temperature and the transformation of solid molecular hydrogen to a metallic liquid at pressures close to 4 million atmospheres.

“Our results show that a quantum fluid at around 4 million atmospheres of pressure is possible, at very low temperature” Bonev said. “Contrary to intuitive expectations, we discovered that the melting temperature versus pressure curve has a maximum, which is not directly related to molecular disassociation, but rather to changes in the intermolecular interactions in the fluid phase, occurring at high pressure.”

The Livermore team's calculations not only predict a maximum in the melt line, but also provide a microscopic model showing its physical origin in changes in the intermolecular interaction - significantly different from earlier models. Based on their new understanding for the physics behind the melting of hydrogen, the researchers are able to propose new experiments to measure the solid-liquid phase boundary.

The calculated melt curve of hydrogen is between 500,000 atmospheres and 2 million atmospheres of pressure. Above about 800,000 atmospheres of pressure, the melt line goes from a positive to a negative slope - a phenomenon that is related to a softening of the intermolecular interactions and to the fluid and solid becoming very similar in structure and energy at high pressure. This change from a positive to a negative slope is gradual and is not directly related to molecular disassociation, as previously speculated.

“Our results provide strong evidence toward the existence of a low-temperature quantum fluid in hydrogen,” Bonev said. "The existence of a maximum melting temperature is a unique physical phenomenon in a molecular solid with a close packed structure.”

The simulations carried out by the Livermore team are very complex and sophisticated, and required the use of large-scale parallel quantum simulation codes, such as the LLNL GP ab-initio molecular dynamics code, written by F.Gygi in the Computation Directorate.

More information is available at www.nature.com

Founded in 1952, Lawrence Livermore National Laboratory is a nuclear security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by the University of California for the National Nuclear Security Administration/U.S. Department of Energy.

UCRL-WEB-206911| Privacy & Legal Notice return to accessibility menu

November 12, 2007

LLNL Sponsor Logos NNSA Department of Energy University of California Lawrence Livermore National Laboratory
7000 East Avenue • Livermore, CA 94550
Operated by Lawrence Livermore National Security, LLC, for the Department of Energy's National Nuclear Security Administration