Pierre Auger Project Surface Detector Electronics

Tank Power Controller (TPC) Board

June 14, 2001

Power Controller Functionality:

The Tank Power Controller (TPC) Board has as its main function the responsibility of turning on and shutting off the power to the station electronics. The TPC has the capability to power down the station electronics at any time. However, to protect against mid-operation shutdowns, often the TPC will notify the local station CPU (host) when a shutdown is required. The TPC will notify the host when it detects a questionable battery or system electronics status. The host will then immediately reply with a shutdown or remain-on command. Although the host will usually be notified, certain critical incidents will cause immediate shutdown.

In order to simplify the explanation of the power controller program, it has been divided into two sections: the main program and the transmission protocol. The main program procedure flows very linearly from top to bottom with very few branch points. As a result, the main program flow may be understood equally well by looking at a flowchart or a numbered sequence. The host protocol, on the other hand, does not flow simply from top to bottom. The host protocol has several wide branch points and is best explained in paragraph form although a simplified flowchart is included.

Main Program

The main program provides a framework for following a set sequence of states. The main program at its highest hierarchy level has only three modes and various states associated with these modes. The three modes of the main program are as follows: initialize mode, run mode, and shutdown mode. The procedure for traversing the modes is shown below.

1) IDLE state is exited upon power up.

Initialize Mode:
Initialize Mode is where power is turned on from being off and the TPC is preparing to communicate with the host

2) READ BOARD STATUS state reads the board status following power up to make sure that the power controller board is functional.

3) If the board status is not valid (overheated or digital voltage too low) then the power controller board remains off

4) READ BATTERY VOLTAGE state reads the battery voltages (ADC 5 and ADC 6) to determine whether or not to turn the system electronics on .

5) If the battery voltage is greater than 16V, then the system electronic power is turned on.

6) POWER UP ELECTRONICS is the state where the system electronics switch is turned on if the status is okay and there is enough power in the batteries.

7) WAIT 1-2 MINUTES state is necessary to give the system electronics enough time to initialize and stabilize.

8) CHECK TURN ON/OFF BIT state reads a single bit on the J4 connector which should be externally driven high to indicate that power to station electronics should remain on.

9) If the status is still okay, the TPC keeps power on and sends the board status back to the local station controller.

.
[image: image1.wmf]IDLE

READ BOARD STATUS

READ BATTERY VOLTAGE

STATUS

OK?

VOLTAGE

>16V?

POWER UP ELECTRONICS

WAIT 1

-

2 MINUTES

SEND STATUS

SEND ADC DATA

WAIT FOR COMMAND

PROCESS COMMAND

READ BOARD STATUS

STATUS

OK?

READ BATTERY VOLTAGE

VOLTAGE

>16V?

WAIT 3

-

4 HOURS

YES

YES

YES

YES

NO

NO

NO

NO

Initialize Mode

Run Mode

Shutdown Mode

Figure 1: Main Program Flowchart

Run Mode:
Run Mode is a continuous loop where communication between the PCB and the host is established and the system electronics are on. Run mode is only exited on a bad PCB board status or by a command from the host.

10) Convert next ADC channel

11) The next step in Run Mode is WAIT FOR COMMAND

12) If a command is received from the host then the TPC will PROCESS THE COMMAND: reply and set parameters associated with the command.

13) After processing the command, the TPC will CHECK BOARD STATUS again

14) If the board status is okay then the TPC will go to the next step. If not, the TPC will notify the host and then shutdown the power to the station electronics

15) If the board status is valid, then the TPC must CHECK BATTERY VOLTAGES again.

16) If the voltages are > 16V, then the TPC will wait for another command and return to step 10. If voltages are between 14 and 16V, then the TPC will send a warning message depending upon which battery is low. If the battery voltage is below 14V then the TPC immediately turns off the switch and cuts station power.

Shutdown Mode:
The purpose of shutdown mode is to keep the system electronics powered down long enough for the batteries to recharge. Shutdown mode is exited every 3-4 hours to check and see if enough battery power is available to run the electronics.

17) WAIT 3-4 HOURS self explanatory

18) After shutdown mode is exited, Initialize mode is re-entered at step 2.

Communications Protocol

The TPC communicates with the host via a UART port using an RS-232 standard interface. The communications system operates in half-duplex system mode, where only one device is transmitting at a time. The TPC software uses the following RS-232 mode parameters:

· Baud rate:
9600 baud

· Data bits:
8 bits

· Parity:
None

· Stop Bits:
1

· Flow Ctrl:
None

The host has a quad UART chip which handles the RS-232 transfers at the byte level so the CPU doesn’t have to worry about it. This UART has a data buffer several bytes deep so that the CPU may access data at its leisure. To take full advantage of the use of this chip while also preserving the command structure, two (2) bytes are used to frame each transaction: the preamble (‘<’) and the postscript (‘>’).

Any byte that is received between the two framing bytes is assumed to be a real command and not just serial port noise. If the received command is one of the commands supported by the TPC board, then this command is executed and a correctly framed reply message is sent.

Previous versions of the host-to-TPC communications software did not utilize the UART interrupt. The previous code iterations polled UART flags at a given rate. This made all processes deterministic and easy to model and simulate, but it did not minimize the time required to acquire UART data. This was not a problem because the previous protocol required software handshaking after every byte. The current version of the code, however, utilizes the UART interrupts and as a result, significantly higher data rates may be achieved. The tradeoff for this faster data rate is increased susceptibility to noise on the transceiver lines. This is not a major issue as there is a fixed length structure to all data packets and any packets with the wrong structure are thrown out. The host may simply request a re-transmission on these events without adverse effects.

All UART data falls into one of 3 categories: command byte, data byte, or framing byte. The command bytes are listed below.

Command Bytes

There are only four command bytes necessary to operate the PCB:

Command Byte

Description

	‘a’
	System electronics power

	‘b’
	PCB board status

	‘c’
	Upload PCB ADC data

Table 1a: Local Station controller command Bytes and their meanings

These command bytes are always transmitted by the local station controller and received by the TPC board. After completing the corresponding command, the TPC board replies with a correctly framed command except that the lowercase character is replaced with an uppercase one. As a result, the TPC may respond with one of the following commands.

Command Byte

Description

	‘A’
	System electronics power

	‘B’
	PCB board status

	‘C’
	Upload PCB ADC data

Table 1b: TPC Command Bytes and their meanings

Paramter/Data Bytes

Within this document, the term parameter refers to a byte sent downstream to the TPC from the local station controller. Conversely, the term data refers to the bytes sent upstream from the TPC to the local station controller. Currently there are only three commands implemented in the TPC code. Of these three commands, only one has parameters associated with it. However, the framework is present to easily add more commands and these additional commands could easily be defined to contain parameters. The following table displays the possible data and parameter bytes that may follow each command byte:

Command Byte

Data Byte

Meaning

	‘a’
	‘0’
	Do nothing

	
	‘1’
	Turn ON system electronics

	
	‘2’
	Turn OFF system electronics

Table 2a.
Parameters and their meanings

	‘A’
	‘1’
	Switch turned ON

	
	‘2’
	Switch turned OFF

	‘B’
	‘0’
	Digital supply failure, switch overheat (never see)

	
	‘1’
	Digital supply failure (never see)

	
	‘2’
	Switch overheat

	
	‘3’
	Status OK

	‘C’
	Any number
	ADC data channels 0-14, every 4th byte starts a new ADC channel

	‘D’
	N/A
	Status error

	‘E’
	N/A
	Battery failure

	‘F’
	N/A
	Turn-OFF bit LOW

	‘S’
	N/A
	Shutdown

Table 2b:
Data bytes and their meanings
Framing Bytes

The framing bytes are the bytes that are used to pick out the beginning and end of commands in the current communications protocol. The preamble character ‘<’ signifies the beginning of a new command. The postscript character, ‘>’, signifies the end of a command. The use of both of these characters in conjunction with the known command lengths enables transfer errors on the byte level to be easily detected. The addition of these framing bytes is essential to enabling commands to be issued in atomic units. By framing the commands, using fixed length commands, and utilizing the TPC interrupts, commands may be sent as multiple bytes without handshaking. Multiple commands may even be sent without handshaking.

Communications Subroutine

Utilizing the UART interrupt splits the Run mode into 2 semi-concurrently running processes. The processes are not entirely concurrent as the UART interrupt is handled by the MCU when an interrupt is received, but the processes become relatively independent of one another. The flow charts in figure 2 show the program flows of the 2 processes controlling the communications protocol. The main communications loop flowchart illustrates the portion of the communications software that resides within the main program loop. This portion of the code is running as long as the TPC is in RUN mode. The interrupt service routine (ISR) is entered upon receiving a UART interrupt. The ISR code must determine the type of interrupt, store any received data, and reset the interrupt within this ISR to prepare for the next interrupt. This code must be very short and quick to ensure that the UART is able to receive more bytes as quickly as possible.

[image: image2.wmf]IDLE

Is

cmd

_pending

>0?

Read

cmd

_pending

Read byte from

serial buffer @ index

Decrement

cmd

_pending

Increment

index

Map input byte

to function; set

cmd

Set index = 0

Is

Byte =‘<‘?

Increment

Tx

_pending

Is

Byte =‘>‘?

Decrement

Tx

_pending

iff

>0

Enter RUN mode

Execute

Command (

cmd

)

YES

NO

NO

YES

YES

NO

Begin ISR

Is interrupt

Rx int.?

Read data byte

from serial data reg.

Store data byte in

cmd

_buffer @

cmd

_pending

Increment

cmd

_pending

Reset rx interrupt

Cmd

_pending

>= 8?

Set

cmd

_pending

= 0

Write ‘!’ to

UART port

Reset

tx

interrupt

YES

NO

NO

YES

Exit ISR

Main Comm.

Loop:

Int. Service

Routine:

Sample commands:

I) Transmitting status:
command byte = ‘a’, server = PCB, client = host

A) TPC sends transaction: “<B3>”

II) Receiving power down:
command byte = ‘b’, server = Host, client = PCB

A) Host sends command: “<a2>”

B) TPC replies with “<A2>”

C) TPC shuts down

_1047128754.ppt

IDLE

READ BOARD STATUS

READ BATTERY VOLTAGE

STATUS

OK?

VOLTAGE

>16V?

POWER UP ELECTRONICS

WAIT 1-2 MINUTES

SEND STATUS

SEND ADC DATA

WAIT FOR COMMAND

PROCESS COMMAND

READ BOARD STATUS

STATUS

OK?

READ BATTERY VOLTAGE

VOLTAGE

>16V?

WAIT 3-4 HOURS

YES

YES

YES

YES

NO

NO

NO

NO

Initialize Mode

Run Mode

Shutdown Mode

_1054015560.ppt

IDLE

Is

cmd_pending

 >0?

Read cmd_pending

Read byte from

serial buffer @ index

Decrement

cmd_pending

Increment

index

Map input byte

to function; set cmd

Set index = 0

Is

Byte =‘<‘?

Increment

Tx_pending

Is

Byte =‘>‘?

Decrement

Tx_pending iff >0

Enter RUN mode

Execute

Command (cmd)

YES

NO

NO

YES

YES

NO

Begin ISR

Is interrupt

Rx int.?

Read data byte

from serial data reg.

Store data byte in

cmd_buffer @ cmd_pending

Increment

cmd_pending

Reset rx interrupt

Cmd_pending

>= 8?

Set cmd_pending

= 0

Write ‘!’ to

UART port

Reset tx interrupt

YES

NO

NO

YES

Exit ISR

Main Comm.

 Loop:

Int. Service

 Routine:

