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ABSTRACT 

This paper presents a new mesh conversion template, called HEXHOOP, that fully automates a conversion from a hex-dominant 
mesh to an all-hex mesh.  A HEXHOOP template subdivides a hex/prism/pyramid element to a set of smaller hex elements while 
maintaining the topological conformity with neighboring elements.  A HEXHOOP template is constructed by assembling sub-
templates, cores and caps.  A dicing template for a hex and a prism is constructed by choosing the appropriate combination of a 
core and caps.  A template that dices a pyramid without losing conformity to the adjacent element is derived from a HEXHOOP 
template.  Some experimental results show that the HEXHOOP templates successfully convert a hex-dominant mesh to an all-hex 
mesh. 
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1. INTRODUCTION 

We propose new mesh conversion templates, called 
HEXHOOP, that fully-automate a conversion from a hex-
dominant mesh to an all-hex mesh.  A hex-dominant mesh is 
a three-dimensional mesh consisting of four types of 
elements, hexahedral elements, prism elements, pyramid 
elements and tetrahedral elements, as illustrated in Figure 1 
(a).  An all-hex mesh is a mesh consisting of exclusively 
hexahedral elements.  Figure 1 (b) shows an example of an 
all-hex mesh converted from a hex-dominant mesh shown in 
Figure 1 (a) by using our HEXHOOP templates. 

Such conversion templates make all-hex meshing possible for 
a complicated geometry for which the existing direct all-hex 
meshing methods are inadequate.  Although it would be ideal 
if an all-hex mesh could be generated for an arbitrary three-
dimensional shape without going through a hex-dominant 
mesh [1, 2], the direct all-hex meshing problem is known to 

be highly challenging, and none of the exiting methods 
always succeeds to create a high-quality all-hex mesh for a 
complex three-dimensional geometry.  Although there exists 
a trivial solution, creating a tetrahedral mesh first and 
subdividing each of the tet elements into four smaller hex 
elements, such an all-hex mesh is topologically so irregular 
that this method is not used in practice.  Creating a quality 
hex-dominant mesh, on the other hand, is an easier problem 
to solve, either by hand or by an automated algorithm [3, 4].  
Our HEXHOOP templates take as input any type of hex-
dominant mesh and convert it to an all-hex mesh 
automatically. 

In order to highlight the difficulty in developing conversion 
templates for all-hex meshing, let us first examine a much 
easier, two-dimensional problem of converting a quad-
dominant mesh to an all-quad mesh, as illustrated in Figure 2 
(a).  The solution to this problem is well known—we need 
only two types of templates shown in Figure 2 (b).  With 



these two types of templates, it is guaranteed that we convert 
any quad-dominant mesh to an all-quad mesh. 

During this all-quad mesh conversion, it is important to 
maintain the interface conformity, or the topological and 
geometric conformity between adjacent mesh elements.  To 
maintain conformity, each of the all interior-edges of a final 
mesh must be shared by exactly two elements.   By using the 
two templates shown in Figure 2 (b) it is easy to satisfy such 
conformity in the all-quad mesh conversion because all the 
edges of an input quad-dominant mesh are always split into 
two segments. 

Let us now consider the all-hex mesh conversion problem.  A 
similar interface comformity requirement exists.  The 
common method for converting a hex-dominant mesh into an 
all-hex mesh is to subdivide, or dice, a non-hex element into 
a set of smaller hexes.  A hex in the original mesh is also 
subdivided into a set of smaller hexes.  In a final all-hex 
mesh, all the interfaces between adjacent hexes must be 
quadrilaterals, and each of the quadrilaterals must be shared 
by exactly two hexes in order to maintain the conformity. 

Despite the apparent similarity between the problem 
statements, this all-hex mesh conversion problem is 
significantly more challenging than the all-quad mesh 
conversion problem for the following two reasons: 

• An input hex-dominant mesh consists of four 
different types of elements, hexes, prisms, pyramids 
and tets, as opposed to only two types of elements in a 
quad-dominant mesh. 

• A hex-dominant mesh has two types of interfaces, 
triangles and quadrilaterals, which makes it more 
difficult to maintain the topological and geometric 
conformity at the interfaces, compared with the all-
quad mesh conversion problem, in which there is only 
one type of interfaces, a line segment. 

Among the four types of elements in a hex-dominant mesh, 
hexes, tets, and prisms have the following well-known, 
simple conversion templates: 

• A hex element can be split into eight smaller hex 
elements by adding a node at the center of the 
volume, six nodes at the centers of six quadrilateral 
faces, twelve nodes at the centers of twelve edges of 
the original hex. 

• A tet element can be split into four smaller hex 
elements by adding a node at the center of the 
volume, four nodes at the centers of four triangular 
faces, and six nodes at the centers of six edges of the 
original tet. 

• A prism can be split into six smaller hex elements by 
adding a node at the center of the volume, five nodes 
at the centers of two triangular faces and three 
quadrilateral faces, and nine nodes at the centers of 
nine edges of the original prism. 

Note that all of these three templates apply aforementioned 
all-quad templates, shown in Figure 2 (b), —splitting a 
triangular face of the original element into three smaller 

quadrilaterals, and a quadrilateral face into four smaller 
quadrilaterals. 

 

(a)  an example of a hex-dominant mesh 

 

(b) an all-hex mesh 

Figure 1  Converting a hex-dominant 
mesh to an all-hex mesh 

 

  

(a) conversion of a 
quad-dominant 
mesh to an all-

quad mesh 

(b) two all-quad conversion templates 

Figure 2  Templates for converting a quad-
dominant mesh to an all-quad mesh 
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(a) basic rectangular pattern (b) variations of 
rectangular pattern 

 

(c) Schneiders’ Open Problem: a valid dicing of this pyramid 
has not been published. 

Figure 3  Rectangular pattern and Schneiders’ 
Open Problem 

 

 

 

(a) basic triangular pattern (b) variations of triangular 
pattern 

 

(c) Mitchell’s Geode template: the side face has an irregular 
pattern. 

Figure 4  Triangular pattern and Mitchell’s 
Geode template 

One problem is that there is no such template known for a 
pyramid; if it exists, such a template should subdivide four 
triangular faces of the pyramid into three smaller 
quadrilateral faces and the bottom quadrilateral face to four 
smaller quadrilaterals as shown in Figure 3 (a).  We call this 
subdivision pattern of the bottom quadrilateral face and its 
variations rectangular patterns.  Given this boundary mesh 
consisting of 16 quadrilaterals, finding a valid internal 
structure that dices the pyramid into a set of smaller hex 
elements is difficult, and there is no valid solution published 

for this open problem as Schneiders discusses in his paper [5] 
and one of his web pages [6].  This problem is referred to as 
“Schneiders’ Open Problem”.  Although Carboner proposes a 
solution to the problem [7], his solution is not valid because 
some interior faces are not shared by two hexes. 

2x1 4x2 
One known simple template for a pyramid first splits the 
pyramid into two tet elements, and then applies the known tet 
template to each tet.  With this template the bottom 
quadrilateral face of a pyramid is split into a pattern shown in 
Figure 4 (a).  This pattern and its variations are referred to as 
triangular patterns.  If we subdivide a bottom face of a 
pyramid into a triangular pattern, however, a hex element or a 
prism element adjacent to the pyramid must have a triangular 
pattern on one face in order to maintain the interface 
conformity.  This brings up another unsolved problem of 
finding conversion templates for a hex and a prism that have 
both rectangular patterns and triangular patterns mixed on the 
exterior surface of the hex and the prism.  Mitchell presents a 
partial solution to this problem as shown in Figure 4 (c) [8], 
but this template has an irregular subdivision pattern on the 
side faces of a hex, which limits its application and practical 
value. 

2x2 

4x4 

In summary, there are two approaches to the all-hex 
conversion template, but no complete solution to these two 
approaches has been published: 

(1) to find templates for a pyramid with a rectangular 
subdivision pattern on the bottom face, as 
Schneiders pointed out in [5] and [6], and  

(2) to find a template for a hex and a prism that have 
mixed subdivision patterns, rectangular and 
triangular, as Mitchell attempted [8]. 

In this paper we propose a family of new mesh conversion 
templates, called HEXHOOP, that provide solutions to both 
unsolved problems.  Unlike previously published templates, 
HEXHOOP is not a single specific template; it is a systematic 
method for constructing a family of modular sub-templates 
that can be assembled to form all-hex conversion templates 
for hexes, pyramids, and prisms.  This new template design 
uses two types of modular sub-templates, called a core and a 
cap.  For a hex or prism element we define one core, which 
specifies the subdivision patterns of two opposite faces of the 
input hex or prism.  We then define four caps for a hex and 
three caps for a prism to specify the subdivision patterns of 
the other faces.  The advantage of the HEXHOOP method is 
that two subdivision patterns, rectangular and triangular, can 
be mixed and matched freely on the exterior surfaces of a 
hex, prism, and a pyramid. 

2x2 4x2 4x4 

The rest of this document is organized as follows.  Section 2 
discusses the basic concept of the HEXHOOP template, and 
Section 3 explains detailed construction methods of 
HEXHOOP templates.  We show possible variations of cores 
in Section 4 and present two solutions to Schneiders’ Open 
Problem in Section 5. 



  

Figure 5  Ten possible combinations of 
triangular patterns and rectangular patterns 
on a template (shaded faces are triangular 

patterned faces) 

 

 

Figure 6  HEXHOOP’s modula
all-hex template

 

2. MODULAR APPROACH TO ALL-HEX 
TEMPLATES 

Our goal is to develop a system of all-hex templates for 
hexes, prisms, and pyramids.  As discussed in Sections 1 the 
difficulty is that there exists two face subdivision patterns, 
rectangular pattern and triangular pattern, mixed on the 
exterior faces of a hex, prism, and pyramid.  In this section 
and the next two sections we primarily discuss templates for 
hexes in detail to explain our new modular design approach 
of HEXHOOP.  Templates for prisms and pyramids are 
discussed later in Sections 4 and 5. 

(a) 

(c) C1: one tri pattern (b) C0: no tri pattern 

(e) C2-2: two tri 
patterns 

(d) C2-1 two tri patterns Because a hex template has six exterior faces, and each of the 
faces has either a rectangular or triangular pattern, there are 
ten different hex templates.  The number of exterior faces 
with a triangular pattern ranges from 0 to 6, and in the cases 
where the number of such exterior faces is 2, 3, and 4, there 
exists two topologically different ways to choose the exterior 
faces as illustrated in Figure 5.  Among the ten cases there are 
two cases for which there exists a known, simple solution: a 
hex template with six rectangular patterned faces (Figure 5 
(b)), and a hex template with two triangular patterned faces, 
one on the top and one on the bottom (Figure 5 (e)).  
Solutions to the other eight cases are not trivial, and to our 
knowledge there has been no published solution to creating a 
valid template for all of the cases. 

(f) C3-1: three tri 
patterns 

(g) C3-2: three tri 
patterns 

(i) C4-2: four tri 
patterns 

(h) C4-1: four tri 
patterns 

To tackle this challenging all-hex template problem, we 
propose a new modular approach that provides a systematic 
method of constructing a family of modular sub-templates 
that can be assembled to form all-hex conversion templates.  
Unlike previously published templates, HEXHOOP is not a 
single specific template.  Instead, we first define sub-
templates, each of which has either rectangular or triangular 
subdivision patterns on its external faces, and then assemble 
them together.  Our new template design uses two types of 
modular sub-templates, called a core and a cap.  For a hex 
template we define one core, which specifies the subdivision 
patterns of two opposite faces and then define four caps to 
specify the subdivision patterns of the other four faces, as 
shown in Figure 6.  This new modular approach to all-hex 
template generation is superior because two subdivision 
patterns, rectangular and triangular, can be mixed and 
combined freely on the exterior surfaces of a hex. 

(k) C6: six tri patterns (j) C5: five tri patterns 

Cap 

The design of the cap is key to the modular template design.  
Each cap has two faces, front and back, with an irregular 
subdivision pattern.  Thus it exhibits the same problem as 
Mitchell’s Geode template—all the irregular faces must be 
matched and shared with the next cap.  Mitchell addressed 
this problem by assuming that all the Geodes are laid out in a 
closed shell-like volume, which is a strong restriction on the 
applicability of the template.  In our HEXHOOP approach we 
solve this problem by arranging four caps to form a hoop, or 

Core 

Cap 

Cap 

Cap 
HEXHOOP template
r approach to a 
 

a ring.  In this way, all the irregular faces are matched and 
shared by adjacent caps without exposing them to the exterior 
of the template.  This is the single most important feature of 
our modular template design.  Therefore the template is 
named “HEXHOOP”, meaning a hoop of hex elements. 

Each cap has one exterior face to be subdivided into either a 
rectangular or triangular pattern.  The construction process 



for each type of cap is as follows:  We begin with an all-hex 
mesh consisting of four elements and subdivide one end into 
a triangular pattern as shown in Figure 7 (a).  This triangular 
pattern marches through a mesh and reaches the other end as 
shown in Figure 7 (b).  Next, the corners of the two ends are 
joined as also shown in Figure 7 (b).  By joining two corners 
we obtain a volumetric region surrounded by inside faces of 
the mesh as shown in Figure 7 (c).  This region is called a 
pipe.  We then add some hexes (in this case two hexes) and 
fill the pipe.  Finally, an appropriate deformation scheme is 
applied so that neither gaps nor overlaps remain when the cap 
is assembled with a core and other caps.  The final shape of 
the cap is shown in Figure 7 (d).  We call this all-hex sub-
template a cap of the HEXHOOP template.  Because the top 
faces form a triangular pattern, we can connect a diced tet, 
pyramid, or prism without losing the mesh conformity.  In a 
similar way we can subdivide one end face into a rectangular 
pattern.  This way, we obtain a cap with a rectangular pattern 
on its external face.  To distinguish two different types of 
caps, we call a cap with a triangular pattern a triangular cap 
and a cap with a rectangular pattern a rectangular cap. 

An important property of this cap design is that both 
rectangular and triangular caps share the identical boundary 
face subdivision patterns except on the top face.  It is 
especially convenient to have a simple rectangular pattern on 
both types of caps on the bottom face.  A volumetric region 
surrounded by four ‘hooped’ caps is therefore a region 
surrounded by four rectangular patterns.  A sub-template for 
this volume is called a core, and the core is easily constructed 
by sweeping a quad mesh shown in Figure 3 (a), Figure 3 (b), 
Figure 4 (a) or Figure 4 (b) four times. 

3. CONSTRUCTION OF HEXHOOP 
TEMPLATES FOR A HEX ELEMENT 

3.1. Construction of a Standard Core 
HEXHOOP’s core has two wing faces and four slots as 
shown in Figure 8.  Four slots are labeled as slot 0, slot 1, slot 
2 and slot 3.  The two wing faces and three vertical, cross-
sectional faces are all rectangles.  In order to dice such a core 
into a set of smaller hexes we subdivide two sets of parallel 
edges, vertical and horizontal, into a same number of line 
segments.  This will subdivide the two wing faces and three 
cross-sectional faces into a structured rectangular grid 
pattern.  We denote as n  the number of sub-edges in 
horizontal direction, and as n  the number of sub-edges in 
vertical direction as shown in Figure 9.  Then the number of 
subdivision of slot 0 and slot 1 is n , and slot 2 and slot 3 

.  We call this type of core a n  rectangular core.  
An example of 2  rectangular core is shown in Figure 9 
(a). 

1

2

1

1 ×2n 2n
4×

Another type of core is a triangular core, which has a 
triangular subdivision pattern on the two wing faces.  Figure 
9 (b) shows an example of such a core.  Because this core has 

 triangular pattern on wing faces we call the core 44 × 44 ×  
triangular core.  By choosing a different triangular 
subdivision pattern, shown in Figures 4 (a) and 4(b), and 

applying it to the wing faces, we can create different types of 
triangular cores such as a 4 2×  triangular core and a 2 2×  
triangular core. 

2

 

Figure 7  Construction of a triangular cap 
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Figure 8  A core has two wing faces 
and four slots. 
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Figure 9  Rectangular core 
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(a) 2x4 rectangular core 
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3.2. Construction of a Cap 
A cap has three types of faces: T-faces, B-faces, and F-faces, 
as shown in Figure 10.  T-faces become a part of the exterior 
faces of a hex.  B-faces are connected to a core, and F-faces 
are connected to an adjacent cap.  As illustrated in Figure 11, 
the characteristic of a cap is fully described by three factors:  

• the number of subdivision, n , of the two edges 
shared by a T-face and a B-face 

f

• the number of subdivision, n , of the four edges 
shared by a T-face and a F-face 

s

• the type of the subdivision pattern of two T-faces, 
rectangular or triangular 

A cap is either a n  triangular cap or a nfs n× fs n×  
rectangular cap. 

Any two caps with the same n  can be connected each other 
with F-faces without losing the mesh conformity.  Any cap 
whose  is the same as n  of the core can be connected to 
slot 0 or slot 1 of a core.  Similarly any cap whose n  is the 
same as  of the core can be connected to slot 2 or slot 3.  If 
T-faces have a triangular pattern, a triangular face of a 
pyramid, tet or prism can be attached to these T-faces.  On 
the other hand if T-faces have a rectangular pattern, the cap a 
quadrilateral face of a hex or a prism can be attached to these 
T-faces. 

f

sn

n

1

s

2

There are five types of caps that are practically most useful, 
illustrated in Figure 12.  Since all caps shown in Figure 12 
have , any of the caps shown in Figure 12 can be 
connected to each other without losing the mesh conformity. 

4=fn

3.3. Assembly of a HEXHOOP Template 
Having discussed the construction of various caps and cores, 
we now consider assembling one core and four caps to 
construct a complete HEXHOOP template for a hex.  In order 
to assemble a core and caps we need following node tables: 

• nodes on each slot of the core 

• nodes on B-face of a cap 

• nodes on F-faces of a cap 

We denote the node tables of slot , p 30 ≤≤ p

pb
kf

fn p

, as s , 

nodes on the B-faces as b , nodes on the front F-faces as 

 and nodes on the back F-faces as .  n  is the 
number of subdivision of slot 0 and slot 1, and n  is the 
number of subdivision of slot 2 and slot 3.  And we also 
denote  for  of cap  and  for  of cap .   

p
i

p
j

p

pf
kf 1

2

p
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The node tables are used to generate a core and a cap, and all 
the nodes must be ordered consistently according to the order 
illustrated in Figure 13.  The length of table s  is 5p

i )1( 1 +n  

for  and  for .  The length of 

table  is .  The length of  and  is 
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Figure 10  Faces of a Cap 

 

 
 

Figure 11  Subdivision of a Cap 
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Figure 13  Orders of nodes in node

Because cap p  is connected to slot , 
conditions must be satisfied: 
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Also, in order to form a hoop of caps, we have
following conditions: 

Condition 2:  3210
ffff nnnn ===

If the above conditions are not satisfied, the le
 does not match corresponding  (an

and thus caps cannot be connected. 
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Now we have sufficient information to 
HEXHOOP template.  After each cap is forme
properly so that it fits its matching slot, nod
together as shown in Figure 14. 

We stress again the fact that the interior patt
has nothing to do with this assembly p
combination of caps can therefore be chosen
long as Conditions 1 and 2 are both satisfied. 

 

Figure 14  Joining nodes of a core
cap  

In this section we have explained how to generate two types 
of standard cores, triangular core and rectangular cores, and 
two types of caps, triangular caps and rectangular caps.  By 
combining these two types of cores and caps we can obtain 
various all-hex template for a hex.  This covers all the ten 
triangular and rectangular pattern combinations listed in 
Figure 5 except that shown in Figure 5 (g).  This combination 
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of three triangular patterned faces and three rectangular 
patterned faces require a non-standard core that has one 
triangular wing face and one rectangular wing face.  Section 
4.1 discusses how to realize such a core. 

4. VARIATIONS OF A CORE 

This section discusses three variations of a core.  These non-
standard cores are required in: (1) covering all the ten 
combinations of triangular and rectangular patterned faces 
shown in Figure 5, and (2) generating HEXHOOP templates 
for a prism. 

4.1. Double Hoop Core 
As pointed out earlier, a combination of three triangular 
patterned faces and three rectangular patterned faces, shown 
in Figure 5 (g), requires a non-standard core with one 
triangular patterned face and one rectangular patterned face.  
Figure 15 shows an example of such a template with three 

44×  triangular patterns and three 4  rectangular 
patterns. 

4×

In order to make this new core with one triangular wing face 
and one rectangular wing face, we assemble a HEXHOOP 
template with a 4 4×  rectangular core, a 4  triangular 
cap and three 4

4×
4×  rectangular caps.  If we assemble and 

rotate the template 90 degree to the left, we obtain a 
HEXHOOP template as shown in Figure 16 (a).  Only one 
face of a template has a 44×  triangular pattern and all other 
faces have a 44×  rectangular pattern.  Now, we narrow the 
center of the mesh as shown in Figure 16 (b).  The mesh then 
becomes a 4 4×  core with only one wing face 4 4×  
triangular pattern.  We call this core a 4  double hoop 
core because two hoops of caps exist in this template. 

4×

 

Figure 15  A combination of three 4x4 
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triangular patterns and three 4x4 
rectangular patterns require a non-
standard core with one triangular 

patterned face and one rectangular 
patterned face. 

 



 

Figure 16  4x4 double hoop core 

 

 

Figure 17 Core for a prism element 

4.2. Core for a Prism Element 
Up to this point we have discussed HEXHOOP templates for 
a hex element.  HEXHOOP templates can be developed in a 
similar way for a prism element.  Two differences, also 
illustrated in Figure 17, are: (1) a core’s two wing faces for a 
prism are triangles, and (2) a hoop of caps for a prism 
consists of only three caps. 

Two wing faces can be subdivided in various ways.  Figure 
17 (c) and Figure 17 (d) show two such examples.  By 
sweeping the two wing faces’ subdivision pattern throughout 

the core, we obtain an all-hex mesh.  We can then attach 
three n×4  caps to the core’s three slots.  Like the 
HEXHOOP templates for a hex, the subdivision pattern of 
each cap’s T-faces can be either triangular or rectangular.  
We call the core shown in Figure 17 (c) as a 2  prism core 
and the core shown in Figure 17 (d)  prism core. 

×
×4

5. A SOLUTION TO SCHNEIDERS’ OPEN 
PROBLEM WITH HEXHOOP 

(a) 

4   

In this section we provide a solution to Schneiders’ Open 
Problem [6] using a HEXHOOP template for hex. 

We first create a sub-template shown in Figure 18 (a).  This 
is a HEXHOOP template that combines a 2  rectangular 
core, two 1

1×
4×  rectangular caps, a 2  rectangular cap, 

and a 
4×

42× triangular cap. 

Consider such a template whose bounding box is (-1.0,-1.0,-
1.0) to (1.0,1.0,1.0).  We then deform the template by 
following coordinate transformation: 
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Figure 18  A HEXHOOP template for a hex 
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Figure 19  Bottom face of the deformed 
template 

 

 

Figure 20  Attaching two diced prisms from the 
front and from the back 

This deformation transforms the HEXHOOP template to the 
shape shown in Figure 18 (b). 

At this point, the bottom face has a 2x4 rectangular pattern as 
shown in Figure 19 (a); now we attach a diced prism from the 
bottom as shown in Figure 19 (b).  This gives a mesh shown 
in Figure 19 (c) 

After the diced prism is attached to the bottom, the bottom 
face becomes 2x2 rectangular pattern; this is the pattern that 
Schneiders’ Open Problem demands.  Next, we attach two 
more diced prisms as shown in Figure 20 (a) from the front 
and from the back. 

At this point, if we look at the mesh from the top, the mesh 
shows the pattern illustrated in Figure 20 (b).  The inner 
square has a triangular pattern.  Thus, obviously we can 
attach six diced tets on the inner square.  We make a tet mesh 
as shown in Figure 21, dice it into hexes, and attach them to 
the inner square of the current mesh. 

Now, the mesh shows the pattern illustrated in Figure 22.  
Finally, adding four diced prisms from the four sides as 
shown in Figure 23 gives a solution to Schneiders’ Open 
Problem.  Because each interior face is always shared by two 
hexahedral elements during the above procedure, the mesh is 
valid. 

 

Figure 21  Tet mesh which is 
attached to the center square (b) (a) 

 
 

Figure 22  After a diced tet mesh 
is attached 

(c) 

 

 

Figure 23  A solution to Rob 
Schneiders’ Open Problem 

(a) (b) 

6. EXAMPLES 

This section shows some examples of the conversion from a 
hex-dominant mesh to an all-hex mesh.  The examples shown 
in this section are tested by a program to confirm that they 
are topologically valid, and that there are no gaps and 
overlaps.  The qualities of the meshes, however, are not 
optimized in these examples, because the goal of the 
HEXHOOP template is to provide templates that create a 
topologically valid all-hex mesh, and the geometric quality of 
the mesh must be improved by appropriate post-processes. 

Figure 24 (a) shows a hex-dominant mesh, which consists of 
3 hexes, 1 prism, 4 pyramids, and 3 tets, and Figure 24 (b) 
shows a resultant all-hex mesh consisting of 542 hexes.  
Figure 24 (c) and Figure 24 (d) show cross-sections after the 
conversion. 

The hex element that is adjacent to two pyramids and a hex is 
replaced with a HEXHOOP template made from a 4x2 
rectangular core, a 2x4 triangular cap, a 4x4 triangular cap, a 
2x4 rectangular cap, and a 4x4 rectangular cap.  The hex 
element that is adjacent to a pyramid, two hexes, and a prism 



is replaced with a HEXHOOP template made from a 4x2 
rectangular core, a 2x4 triangular cap, a 2x4 rectangular cap, 
and two 4x4 rectangular caps.  The prism that is adjacent to a 
hex and a pyramid is replaced with a HEXHOOP template 
made from a 2x prism core, a 2x4 triangular cap, and two 2x4 
rectangular caps.  Pyramids and tets are diced accordingly. 

Figure 25 (a) shows a hex-dominant mesh of a geometry, 
made by combining three octagonal prisms, and Figure 25 (b) 
shows its cross-section.  Hexes and prisms that are adjacent 
to a pyramid are replaced with HEXHOOP templates of 

= = =4, and the other elements are subdivided 
accordingly.  The hex-dominant mesh is converted to the all-
hex mesh shown in Figure 25 (c).  A cross-section of the all-
hex mesh is shown in Figure 25 (d). 

1n 2n fn

Figure 26 (a) shows a hex-dominant mesh of a mechanical 
part, and Figure 26 (b) shows its cross-section.  Again, hexes 
and prisms that are adjacent to a pyramid are replaced with 
HEXHOOP templates of n = = =4, and the other 
elements are subdivided accordingly.  The hex-dominant 
mesh is converted to the all-hex mesh shown in Figure 26 (c).  
A cross-section of the all-hex mesh is shown in Figure 26 (d). 

1 2n fn

7. DISCUSSION 

The proposed all-hex conversion templates have two 
limitations: (1) the number of elements in a final all-hex 
mesh increases drastically, and (2) the quality of some of the 
elements in the templates is relatively low. 

If = = =4 is chosen for all elements in a hex-
dominant mesh, the total number of elements in the final all-
hex mesh increases to about 60 times more than the number 
of elements in the original hex-dominant mesh.  In order to 
keep the number of elements in the final all-hex mesh low, 
the original hex-dominant mesh must be made as coarse as 
possible.  A method for creating such a coarse hex-dominant 
mesh is one of our future research issues. 

1n 2n fn

Alternatively, different values of n , , and n  can be 
chosen for each element so that the number of elements in the 
all-hex mesh remains low.  Developing an algorithm for 
choosing an optimal combination of n , n , and  for each 
element of a hex-dominant mesh, however, is not trivial and 
would require future work. 

1

1

2n

2

f
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Although the quality of the elements in the templates is 
relatively low, the quality of the final all-hex mesh could be 
improved by appropriate post-process such as optimization 
based smoothing [9].  We are currently working on 
developing a new mesh-smoothing scheme suitable for an all-
hex mesh created with the HEXHOOP template. 

It is also important that an input hex-dominant mesh be of 
reasonably good quality.  As in all other template-based 
methods, if an element in the hex-dominant mesh is highly 
distorted all the hexes resulting from this element will also be 
distorted.  One possible remedy for this problem is to try 
limiting the usage of tets and pyramids, for which the hexes 
in the templates are more distorted, to non-critical regions of 
a FEM analysis. 

8. CONCLUSIONS 

We proposed a new modular approach to designing all-hex 
mesh conversion templates called HEXHOOP.  Our method 
provides a systematic method of generating various templates 
when triangular and rectangular subdivision patterns are 
arbitrarily combined on the exterior faces of a template, 
which could not be realized with previously published 
methods.   
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(a) A hex-dominant mesh  
(3 hexes, 1 prism, 4 pyramids,  

and 3 tets) 

(b) An all-hex mesh (542 hexes) 

  

(c) A cross-section of the all-hex 
mesh 

(d) A cross-section of the all-hex 
mesh 

Figure 24  An example of the conversion from a hex-dominant 
mesh to an all-hex mesh 

 

    

(a) A hex-dominant mesh of 
an object consisting of three 

circular bars  
(93 hexes, 127 prisms, 127 

prisms, and 417 tets) 

(b) A cross-section of the 
hex-dominant mesh 

(c) An all-hex mesh, which is 
converted from (a)  

(35,120 hexes) 

(d) A cross-section of the all-
hex mesh 

Figure 25  A hex-dominant mesh and an all-hex mesh of an object consisting of three circular bars 

 

 



 

 

 

 

 

  

(a) A hex-dominant mesh of a mechanical part  
(162 hexes, 137 prisms, 113 pyramids, and 402 tets) 

(b) A cross-section of the hex-dominant mesh 

  

(c) An all-hex mesh of the mechanical part 
(42,156 hexes) 

(d) A cross-section of the all-hex mesh 

Figure 26  A hex-dominant mesh and an all-hex mesh of a mechanical part 
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