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Journals and websites are serving up genomic data at
an exponentially increasing rate and biology will have
to adapt. An appreciation for biological systems in
aggregate will have to develop. Genomic data will
need to be organized, synthesized and modeled to
form a physiological description of the system under
study. This review will focus on the emerging field of
‘gene expression physiology’, which attempts to
understand the regulation of mRNA abundance on a
genomic scale. One goal of gene expression physiology
is to understand which genes are downstream
transcriptional targets of particular cellular signaling
pathways (Fig. 1). Using recently developed high-
throughput technologies, a comprehensive gene
expression ‘profile’ of a cell can be readily obtained.
Gene expression profiling can be used, for example, to
define the changes in cellular physiology that occur as
an immune cell is stimulated by a cytokine or by
antigen. Likewise, gene expression profiling can read
out the transcriptional consequences of perturbing an
individual signaling pathway. Experimentally, this
can be achieved by overexpressing a wild-type or
dominant negative version of a regulatory protein in
the pathway, by disrupting a gene regulating the
pathway, or by treating cells with pharmacological
inhibitors of the pathway. The use of gene expression
profiles collected from well-defined experimental
systems is amplified as they are assembled into large
gene expression databases. When the gene expression
profile of a disease process is subsequently obtained,
the pre-assembled gene expression database can be
used to gain insight into the signaling pathways that
are pathologically engaged in the disease.

Microarray analysis of gene expression physiology

The study of gene expression physiology has been
jump-started by new technologies that quantitate, in
parallel, the mRNA levels of tens of thousands of
genes1–3. The two dominant technologies, spotted
cDNA microarrays and oligonucleotide arrays, each
begin with an ordered array of nucleic acids

representing thousands of genes on a solid support4.
mRNA from the cells of interest is used to create a
fluorescent, first-strand cDNA probe that is then
hybridized to the microarray. In many cases,
especially when using spotted cDNA microarrays, two
mRNA samples are directly compared on the same
microarray by incorporating different fluorochromes
into the cDNA probes derived from the samples. The
extent of hybridization of the probes to each gene on
the microarray is then quantitated and the ratio of
the pixel intensities for each fluorochrome is an
excellent measure of relative gene expression in each
mRNA sample. When microarray experiments are of
high technical quality, the derived fluorescence ratios
are in close quantitative agreement with relative
gene expression measurements derived from
Northern blots or quantitative RT-PCR.

The relative ease and robustness of DNA microarray
methodology has led to an explosion of gene expression
information in the past few years. To harness this data
stream, a diversity of mathematical methods have been
developed that all aim at finding the coherent patterns
inherent in gene expression data sets5. One of the most
popular methods, hierarchical clustering, uses a
standard Pearson correlation coefficient to quantitate
the similarity in expression of two different genes
across a set of samples6. Using this similarity measure,
a list of genes can be ordered hierarchically, leading to
an appreciation of sets of genes that are coregulated.
The same methods can be used to determine the
similarity in gene expression between different
samples. Often the results of these mathematical
manipulations are displayed in a tabular format (Fig. 2)
in which highly expressed genes are depicted in shades
of red and underexpressed genes are depicted in shades
of green6. Each row in such a table represents the
measurements for a given gene across several mRNA
samples, and each column represents the results from a
single sample. This visualization tool often reveals the
gene expression physiology inherent in a complex DNA
microarray data set.

Systematic gene expression analysis of the immune

system

The announced completion of the human genome
sequence is only the beginning of a complete
description of human genes. A daunting task that lies
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ahead is to completely annotate this genomic
sequence to describe all human genes that are
expressed as mRNA. When this is accomplished, it
will be possible to create a single microarray that
represents all human genes. In the interim, it has
proven very useful to create specialized cDNA
microarrays that focus on genes of known or
suspected importance to a particular biological
system. One such microarray, the lymphochip, was
created to analyze normal and disease states of the
immune system7,8. The starting point of the
lymphochip was the high-throughput sequencing of
cDNA clones from libraries derived from human
immune cells. The expressed sequence tags (ESTs)
derived from this effort were mined for those
representing novel genes that were enriched in
immune cell cDNA libraries. The lymphochip
incorporated 15 000 such clones from libraries
prepared from germinal center B cells as well as from
various lymphoma and leukemia subtypes. In
addition, roughly 3500 ‘named’ genes of known
structure and function were included on the
lymphochip based on their published roles in immune
cell differentiation, responses and disorders.

Figure 2 presents over one million measurements of
gene expression from 202 lymphochip analyses of gene
expression in normal and pathological immune cells.
The genes in this table were organized using the
hierarchical clustering algorithm described above,
revealing groups of genes that were over- or under-
expressed in groups of samples. One of the powerful
messages that has emerged from genomic-scale analysis
of the simple eukaryote Saccharomyces cerivisiae is 
that genes that function in similar biochemical or
functional pathways are coordinately regulated across a
variety of cellular states. For example, the diauxic shift
of yeast from anaerobic to aerobic metabolism is
accompanied by the coordinate induction and repression
of genes in the glycolytic pathway9. Likewise, genes
encoding subunits of the same multi-protein complex
(for example, the proteosome and ribosome) are often
strikingly coregulated6.

Similar coregulation of functionally related genes
has been observed in mammalian cells in a number of
large gene expression profiling experiments7,10,11.
Genes that are coordinately expressed in a particular
cell type or during a biological response have been
termed gene expression ‘signatures’7. Some of the
gene expression signatures listed at the left of Fig. 2
highlight genes expressed at certain stages of
lymphoid differentiation (for example, the pan-B-cell
and germinal center B-cell signatures). The
proliferation signature is defined by hundreds of
genes that are coordinately regulated during the cell
cycle, demonstrating that much of the gene
expression physiology of the cell is tied to this critical
biological response. Other signatures represent
induced gene expression during activation of immune
cells by mitogens and/or cytokines (for example, the
lymphocyte/monocyte activation and T-cell activation
signatures) or response of these cells to insults (for
example, the DNA damage signature). Finally, some
signatures represent pathological gene expression in
immune disorders and malignancies [for example,
signatures of rheumatoid arthritis synovial cells (RA),
chronic lymphocytic leukemia (CLL) and multiple
myeloma]. Representative genes from these
signatures are shown at the right of Fig. 2, but each of
these signatures includes scores of genes, many of
unknown function. Such a gene expression map is
therefore a powerful hypothesis generator that can
provide clues about which genes are functionally
involved in particular cellular responses.

Recent gene expression profiling experiments have
yielded gene expression signatures of B-cell
activation and tolerance12, T-cell activation13, and T-
helper cell differentiation14. B-cell tolerance induced
by chronic exposure to self antigen generated a gene
expression signature that was surprisingly unrelated
to normal lymphocyte activation responses12. Genes
upregulated by antigen stimulation of normal B cells
were not highly expressed in tolerant cells, including
genes that are required for mitogenesis (c-myc and
LSIRF/IRF-4) and for protection from activation-
induced apoptosis (A1). Further, tolerant B cells
expressed LKLF, a negative regulator of lymphocyte
proliferation that is normally downregulated by BCR
signaling in normal B cells. CD72 was found to be
upregulated in tolerant cells, which might inhibit
BCR signaling in tolerant cells by recruitment of
SHP-1. Thus, the gene expression signature of
tolerant B cells explained, in large measure, the
anergic phenotype of these cells.

Two subtypes of helper T cells, Th1 and Th2, secrete
distinct spectra of cytokines and participate
differentially in various immune-mediated diseases.
The selective homing of Th1 versus Th2 cells to sites of
inflammation may be understood based on the gene
expression signatures of these two cell types14. First,
Th1 cells treated with IL-12 upregulated
fucosyltransferase VII (FUT7), which is responsible for
fucosylating selectin ligands on the surface of T cells.
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This fucosylation is required for the first step of
lymphocyte adhesion to endothelial cells, ‘rolling’.
IL-12 also induced two chemokine receptors, CCR5 and
CCR1, both of which promote increased interaction
between lymphocytes and chemokines (RANTES and
MIP-1α) bound to the surface of endothelial cells.
Finally, IL-12 upregulation of integrin α6 promotes
binding of Th1 cells to laminin, leading to successful
diapedesis and entry into the inflammatory site.

Subtyping of diseases by gene expression profiling

One of the powerful applications of gene expression
profiling to human disease relies on its ability to
provide a rich and quantitative molecular phenotype of
the disease process. For diseases in which the
diagnosis relies on clinical observations together with

non-quantitative assays such as histological
morphology, gene expression profiling has the
potential to subdivide current diagnoses into
molecularly distinct diseases. Genomic-scale gene
expression profiling of lymphomas and leukemias has
provided proof-in-principle of this analytic paradigm7.
Known subtypes of these malignancies could be
readily distinguished from each other by their
characteristic gene expression signatures7,15. Chronic
lymphocytic leukemia, the most common leukemia of
adults, had a gene expression signature that was
shared, in part, by resting blood B cells7, a finding that
is consistent with the indolent, relatively non-
proliferative character of this disease. By contrast,
follicular lymphoma cells strongly resembled normal
germinal center B cells in gene expression7. This
finding is in keeping with the observation that
follicular lymphoma cells show evidence of ongoing
somatic mutation of immunoglobulin genes16, a
process that is characteristic of germinal center B cells.

Diffuse large B-cell lymphoma (DLBCL), the most
common subtype of non-Hodgkin’s lymphoma, has
long been a clinical and pathological enigma.
Although various classification schemes have
subdivided this diagnostic category on morphological
grounds, these subdivisions could not always be
reproducibly applied. Clinically, it has been puzzling
that combination chemotherapy is able to cure
approximately 40% of these patients while failing in
the remainder. A clear possibility, therefore, was that
this diagnostic category actually lumps together more
than one molecularly distinct disease, a suspicion
borne out by gene expression profiling. One subtype of
DLBCL, termed germinal center B-like DLBCL,
expressed most genes in the germinal center B cell
signature and thus was putatively derived from this
stage of B cell differentiation (Fig. 3)7. The other
subtype of DLBCL, termed activated B-like DLBCL,
lacks expression of these germinal center B cell genes
and instead expresses genes that are induced in blood
B cells by mitogenic stimulation. In keeping with this
subdivision of the DLBCLs was the observation that
the germinal center B-like lymphomas had evidence
of ongoing somatic mutation of immunoglobulin
genes, whereas the activated B-like DLBCLs did
not17. Clinically, these two DLBCL subsets were
remarkably divergent: 75% of the germinal center B-
like DLBCL patients were alive five years following
chemotherapy as compared with less than one quarter
of patients with activated B-like DLBCL (Ref. 7). This
example highlights the virtue of genomic-scale gene
expression profiling of normal lymphocyte subsets in
order to provide a framework to interpret gene
expression profiles of pathological processes.

What other immune disorders might benefit from
the diagnostic precision of gene expression profiling?
Most of the autoimmune disorders are heterogeneous
in clinical presentation and course. The diagnosis of
systemic lupus erythematosis (SLE), for example,
requires some, but not all, clinical features of the
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Fig. 2.A gene expression map of normal and pathological immune responses. The table presents
lymphochip microarray data from 202 experiments analyzing gene expression in lymphoma,
leukemia, and multiple myeloma cell lines and samples, in autoimmune diseases, in immune cells
stimulated with various mitogens and cytokines, and in cell lines treated with pharmacological
inhibitors. The genes were organized by hierarchical clustering (see text for details). Gene expression
data are depicted over a 16-fold range using the color scale shown at the bottom. Grey represents bad
or missing data. Gene expression signatures consisting of coregulated genes are shown on the left;
representative genes in each gene expression signature are shown on the right.
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disease to be present and shows evidence of polygenic
inheritance18,19, suggesting that SLE may be a
collection of related, but molecularly distinct diseases.
Heterogeneity in disease definition will certainly
confound attempts to map genes responsible for SLE.
Conceivably, each of the underlying genetic loci that
contribute to SLE might confer a characteristic gene
expression signature that could be used as a
quantitative marker to map the gene in family
studies of SLE. Molecular heterogeneity in other
autoimmune diseases might also explain the variable
responses of patients to therapy. The challenge facing
those who wish to profile gene expression in immune-
mediated diseases, however, is to choose the
appropriate source of cells to profile. One ready source
is peripheral blood, although it is not yet clear that
the pathogenic cell types in these disorders will
constitute a large enough proportion of blood cells to
be detected by gene expression profiling. Biopsies of
sites of active disease might be helpful, but it may be
necessary to fractionate the biopsied cells into defined
cellular subtypes prior to gene expression profiling.

Dissecting the molecular circuitry of the cell

The applications of gene expression profiling
mentioned thus far take particular advantage of the
genomic-scale portrait of gene expression that this
technology provides. A complementary use of DNA
microarrays is to survey the changes in gene
expression that occur when specific regulatory factors
or pathways are perturbed. Such perturbations could
be experimentally effected by dominant gain- or loss-
of-function mutations in regulatory factors, by
ablation of regulatory genes in the germ line or in
somatic cells, or by pharmacological manipulations. A
simple model of gene expression physiology would
suggest that activation of a particular signal
transduction pathway would lead to a characteristic
and limited set of gene expression changes. If this
were the case, then each signal transduction pathway
could be investigated one by one, leading eventually
to a model that could predict the gene expression
fluxes that would result from changes in a cell’s
environmental stimuli. Although this is clearly an
oversimplified view, recent experiments provide
tempered optimism that this bottom-up approach to
gene expression physiology will be fruitful.

Transcription factors are attractive starting points
for this approach since their site of action is proximal to
the gene and thus their action might be less confounded
by regulatory cross-talk than more upstream
components of signal transduction pathways.
Overexpression and/or dominant negative
methodology has been coupled to DNA microarray
technology to define the regulatory targets of the
transcription factors p53 (Ref. 20), c-myc (Refs 21,22),
wt1 (Ref. 23), Pax3–FKHR fusion oncoprotein24, and
BCL-6 (Ref. 25). It is no accident that all of these
transcription factors are oncogenes or tumor
suppressors: translocation, overexpression or loss of
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these factors presumably causes cancer because they
have non-redundant and/or limiting effects on gene
transcription.

DNA microarray analysis of BCL-6 target genes
To illustrate this type of microarray analysis, Fig. 4
summarizes the target genes of BCL-6, a frequently
translocated oncogene in diffuse large B-cell
lymphoma that also regulates normal immune
responses26,27. BCL-6 mutant mice have a variety of
immune system defects including inability to form
germinal centers and a spontaneous and lethal
inflammatory disease of the heart and lungs that is
characterized by Th2-type cytokines28–30. BCL-6
protein is expressed highly in most germinal center B
cells31–33 and the defect in germinal center formation in
BCL-6 mutant mice is intrinsic to B cells30. Because
BCL-6 is a potent transcriptional repressor,
lymphochip microarrays were used to screen for genes
that were downregulated after introduction of wild-
type BCL-6 into B cell lines that lack endogenous BCL-
6 expression25. In addition, a dominant negative form
of BCL-6 consisting only of its DNA-binding domain
was introduced into B cell lines that naturally express
BCL-6, and lymphochip microarrays were used to
detect genes that were ‘de-repressed’. Only genes that
were affected by both of these manipulations were
deemed presumptive BCL-6 target genes.

The BCL-6 target genes provided rich insights into
the known BCL-6-regulated phenotypes (Fig. 4a). One
set of BCL-6 target genes consists of many B cell
activation genes such as CD69, CD44, Id2 and cyclin
D2. These genes are induced by BCR stimulation of
resting B cells and BCL-6 was able to block this
induction25. By contrast, none of these genes is
expressed in germinal center B cells, which have high
levels of BCL-6 protein. A second important BCL-6
target gene was blimp-1, a transcriptional repressor
that is critical for plasmacytic differentiation34–36. The
ability of BCL-6 to repress blimp-1 suggests that BCL-
6 blocks plasmacytic differentiation. Indeed, dominant
negative BCL-6 was able to cause partial plasmacytic
differentiation in a Burkitt’s lymphoma cell line25.
These target genes might explain how BCL-6 controls
the fate of a B cell following antigen exposure. A naive
splenic B cell encountering antigen can either become
activated and differentiate rapidly into plasmacytic
cells in the periarteriolar lymphoid sheath or
differentiate into a germinal center B cell in the
follicular region37. By blocking expression of B cell
activation genes and blimp-1, BCL-6 might skew the
fate of the B cell towards the germinal center program.

The inflammatory phenotype of BCL-6 mutant
mice may be explained, in part, by the fact that BCL-6
inhibits expression of the chemokines, MIP-1α and
IP-10 (Ref. 25). These chemokines attract monocytes
and activated T cells to sites of inflammation, and
their derepression in BCL-6 mutant mice could
contribute to the observed myocarditis and
pulmonary vasculitis.

Finally, BCL-6 target genes provide a plausible
mechanism by which BCL-6 causes lymphomas.
Differentiation of germinal center B cells into plasma
cells is accompanied by loss of BCL-6 expression30,
thus allowing blimp-1 to be expressed. Translocation of
BCL-6 in non-Hodgkin’s lymphomas prevents this
physiological downregulation of BCL-6 expression,
thus blocking blimp-1 expression and trapping the cell
at the germinal center stage of differentiation. A target
gene of blimp-1 repression is c-myc and, therefore,
BCL-6 translocations would indirectly maintain
progression through the cell cycle by elevating c-myc
expression. These findings place BCL-6 at the top of a
regulatory cascade of transcription factors (Fig. 4b).
Cell-cycle progression is also promoted by the ability of
BCL-6 to repress p27kip1, a cyclin-dependent kinase
inhibitor25. Thus, BCL-6 translocations co-opt the
normal regulatory functions of BCL-6, thereby
promoting proliferation, preventing terminal
plasmacytic differentiation and possibly allowing
secondary oncogenic hits to further transform the cells.

Will this straightforward approach uncover the
target genes of more membrane-proximal signaling
events? One study of growth factor receptor-mediated
signal transduction demonstrated that a largely
overlapping repertoire of immediate early genes is
modulated by several different growth factor
receptors, despite many apparent differences in how
the receptors engaged downstream signal
transduction proteins38. Therefore, it appears that
many signaling pathways converge on these
immediate early genes, possibly due to their
importance in cell cycle progression from G0 to G1.
Nonetheless, these growth factor receptors mediate
biologically distinct responses, presumably as a result
of differential modulation of more delayed response
genes. Studies in yeast suggest that individual MAP
kinase pathways function as independent signal
transduction modules that evoke characteristic
changes in target gene expression39. Furthermore,
perturbations in different components of the same
signal transduction pathways in yeast yield similar
gene expression changes40. Thus, some signal
transduction pathways behave in a modular fashion,
allowing their contribution to cellular physiology to be
separated from other signaling events.

Concluding remarks

The challenge for the future is to generate
comprehensive microarray data sets cataloguing the
gene expression changes that result from discrete
manipulation of individual components of signaling
pathways. What is the best way to manipulate
signaling pathways to produce interpretable data?
Overexpression studies, although easy to perform, can
be plagued by secondary effects that result from non-
physiological titration of interacting proteins. Thus,
when possible, dominant negative, loss-of-function
approaches are preferable. Knockout animals can be
potentially very useful in probing regulatory pathways.
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One important caveat, however, is that if a germ-line
mutation leads to altered differentiation of cells, it
might be difficult to make a meaningful comparison of
gene expression between comparable cell types in wild-
type and mutant animals. The use of conditional alleles
will be a powerful tool in this regard, both in vivo and in
vitro, because they will allow gene expression changes
to be studied in a temporal fashion following pathway
manipulation. Changes in cellular physiology are often
characterized by cascades of gene expression changes
caused by serial activation of transcription factors
(Fig. 4b). Indeed, if manipulation of a signaling pathway
induces cell-cycle arrest, a host of gene expression
changes will secondarily occur39. To pinpoint the
primary gene expression changes downstream of a
regulatory protein, conditional alleles can be created by
fusing a regulatory protein to the estrogen-receptor
ligand-binding domain25. Estrogens activate such
fusion proteins by inducing a conformational change in
the ligand-binding domain and thus the effects of these

fusion proteins on gene expression can be studied in the
presence of protein synthesis inhibitors. Under these
conditions, only the primary targets of the regulatory
factor will be affected. Finally, small molecules that
discretely modulate signaling protein function will be
powerful tools in the near future41. This ‘chemical
genetics’ approach will permit modulation of signaling
pathways in a temporally defined fashion and could
allow multiple regulatory proteins to be modulated in
parallel. Pharmacological inhibitors of calcineurin and
MEK kinase were tested for their effects on gene
expression during B-cell activation using microarrays,
and each drug yielded a surprisingly discrete gene
expression signature12. With suitably powerful
mathematical models, well-planned genomic-scale gene
expression experiments will lead to a comprehensive
understanding of gene expression physiology and,
ultimately, to the precise pharmacological
manipulation of these pathways to the benefit of
patients.
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