Microbial Activity and Community Structure in a Net-pen Aquaculture Area

Tomoko SAKAMI^{*1}, Katsuyuki ABO^{*1}, and Kazufumi TAKAYANAGI^{*2} ^{*1}National Research Institute of Aquaculture ^{*2} Seikai National Fisheries Research Institute

Organic matter cycling in an aquaculture area

The object of this study is to elucidate how microbial communities are affected by aquaculture

Microbial parameters examined
Abundance and production rate
Organic matter degrading activity
Community structure

Study Site

Aquaculture area; StnA Reference area; StnR

		Stn A	Stn R	
	mean	range	mean range	Р
Dissolved Organic Carbon(M)	85 (51 - 161)	76 (51 - 116)	0.0002
Dissolved Organic Nitrogen(M)	8.6 (3.9 - 23)	7.8 (4.7 - 10)	0.0245
Particulate Organic Carbon(M)	8 (7.5 - 117)	7.8 (6.3 - 101)	0.907
Particulate Organic Nitrogen((M)	1.1 (0.86 - 17.6)	1 (0.7 - 14.3)	0.361
Chlorophyll a (µg L⁻¹)	4.7 (0.2 - 45)	3.7 (0.1 - 26)	0.09

Abundance

Production rate

Bacterial production per unit area

Stn A / Stn R = 3.5

Correlation coefficients between bacterial and environmental parameters (p<0.05)

Stn A	DOC	DON	POC	PON	Chla	Temp	Sal
Bacterial Abundance	0.56	0.56	0.77	0.73	0.57	0.61	-0.48
Bacterial Production	0.44		0.55	0.53	0.40	0.46	-0.77

Stn R	DOC	DON	POC	PON	Chla	Temp	Sal
Bacterial Abundance	0.59	0.42				0.44	
Bacterial Production	0.36	0.40	0.46	0.50	0.46	0.37	

Input of organic matter from the fish farms to the surrounding waters might promote microbial activity

Microbial organic matter degradation

Hydrolytic enzyme activity in seawater

β-D- glucosidase;
 β-linked polysaccharide degradation
 Leucine aminopeptidase;
 Protein degradation

Microbial hydrolytic enzyme activity

Leucine aminopeptidase

Ratio of β -Glc to LAP activity

Aquaculture activity have stronger stimulatory effect on β -glucosidase activity than on leucine aminopeptidase activity

Correlation coefficients between bacterial and environmental parameters (p<0.05)

Stn A	DOC	DON	POC	PON	Chla	Temp	Sal
LAP	0.49		0.87	0.86	0.83	0.57	-0.58
β-GLC	0.37		0.63	0.62	0.59		-0.54
Stn R	DOC	DON	POC	PON	Chla	Temp	Sal
LAP	0.39		0.66	0.67	0.64	0.54	-0.55
β-GLC	0.44		0.73	0.70	0.69	0.54	-0.53

Particle associated bacterial community related to the high activity

How to examine the bacterial community structure

Free-living bacterial community structure

Aquaculture area Month MAMJJASONDJFM

Reference area Month MAMJJASONDJFM

Alpha subclass of the Proteobacteria

Gamma subclass of the Proteobacteria

Cytophaga-flavobacterium -bacteroides Group

Cyanobacteria

Particle-associated bacterial community structure

Aquaculture area Month MAMJJASONDJFM

Aquaculture area Month MAMJJASONDJFM

Cyanobacteria

High OM Degrading Ability

Alpha subclass of

the Proteobacteria

Summary

The microbial activities were promoted in the aquaculture area

- The stimulated bacterial secondary production was equivalent to the organic matter loads from fish farming
- Microbial poly-hydrocarbon degrading activity was promoted more than protein degrading activity.

The microbial community structure study has shown that

- Some specific bacterial species were observed at high activity season in the aquaculture area.
- Particle-associated bacterial community had high proteolytic activity, and some CFB-group bacteria probably related to the high activity in summer.