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Patient Management with Molecular Imaging:
Outline

• Clinical questions
• Biologic targets and radiopharmaceuticals 

for molecular imaging
• Examples of clinical applications

• Assess the therapeutic targets
• Identify resistance factors
• Measure early response to treatment



A New Paradigm for Cancer Imaging:
Help Direct Cancer Treatment

• Established role:
• Detect cancer
• Find how far cancer has spread

• New role for imaging:
• Guide cancer treatment selection
• Evaluate early treatment response



A New Paradigm for Cancer Imaging:
Help Match Therapy to Tumor Biology

• Emerging trends in cancer treatment
• Characterize tumor biology pre-Rx
• Individualized, specific therapy
• Static response may be OK in some cases

• The implied needs for cancer imaging
• Characterize in vivo tumor biology
• Identify targets, predict response
• Measure tumor response (early!)



Existing Cancer Imaging Paradigm:
Targets for Detecting Tumor Cells
Higher in Tumor than Normal Tissue
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Emerging Cancer Imaging Paradigm:
Measure Factors Affecting Response
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New Cancer Imaging Agents: 
Desirable Properties for Clinical Use

• Fills a clinical need in cancer care
• Uptake based upon specific tumor biology
• Can be regionally distributed
• Clinically practical

• Clinically-feasible imaging protocols
• Qualitative and quantitative interpretation

• Robust, automated image analysis



Why Radioisotope Imaging?
Answer: To achieve tracer conditions

• Example: Estrogen Receptor Imaging
• Tracer specific activity 1000 mCi/µmol
• Injected activity dose: 5 mCi
• Injected molar dose: 5 nmol
• Peak blood concentration: 1 nM
(Typical estradiol blood concentration is µM)

• Can image biochemical processes without 
disturbing them

• Radiographic, MR, or optical agents require ~mM



PET Imaging Agents: 
Isotope Choices

• 18F ( 110 min) -model for clinical use from FDG
• 11C (20 min) -important for science and development

• T1/2 too short for distribution
• Clinical use at centers with cyclotrons

• Other choices:
• 124I (~4 days) - longer half life, high rad dose
• Cu isotopes (60Cu, 62Cu) - ATSM, eg.
• 94mTc (~50 min) - wealth of experience from SPECT
• 68Ga (68 min) - convenient generator



Specific Examples of Molecular Imaging to 
Direct Cancer Therapy

• Assess the therapeutic target

• Identify resistance factors

• Measure early response



Identifying Therapeutic Targets using 
Molecular Imaging:Why?

• Imaging can measure the level of expression
• Heterogeneity of target expression
• Especially for advanced disease

• Imaging can measure the in vivo effect of 
drug therapy on the target.  Examples:
• Receptor antagonism
• Change in target expression



Agents for Measuring Therapeutic Targets
• Tumor Receptors

• ER - 18FES
• AR - 18FDHT
• Others - SSR receptors, endocrine agents

• Oncogenes
• MoAbs, Labeled tyrosine kinases

• Angiogenesis
• Specific - 18F-RGD peptides
• Blood flow - H2

15O



[F-18]-Fluoroestradiol (FES):
A Tracer for Estrogen Receptor Imaging
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[F-18] FES Measures ER 
Expression in Breast Cancer

(thick sagittal planes)
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FES PET Provides a Quantitative
Estimate of ER Expression

vs Radioligand Binding vs Immunohistochemistry

(Mintun, Radiology 169:45, 1988)
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FES Imaging Measures Estrogen 
Binding Antagonism by Tamoxifen

(thick sagittal planes)
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How Can ER Imaging Help?
• Specific identification of breast cancer 

metastases
• Directly measure the effect of hormonal 

therapy
• Assess heterogeneity of ER 

• Spatial: Expression at each Dz site
• Temporal: Changes in expression with Rx
• Goal: Predict likelihood of response to 

hormonal Rx



FES Uptake Predicts Breast Cancer 
Response to Hormonal Therapy

Post-RxPre-Rx

FES FDG

University of Washington
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FES Uptake Predicts Response of Advanced 
Breast Cancer to Hormonal Therapy

LABC or Metastatic Br CA 
Primary Tamoxifen Rx

Recurrent or Metastatic Br CA 
Aromatase Inhibitor Rx

(Mortimer, J Clin Onc,   
19: 2797, 2001)
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Specific Examples of Molecular Imaging to 
Direct Cancer Therapy

• Assess the therapeutic target

• Identify resistance factors

• Measure early response



Agents for Identifying 
Tumor Resistance Factors

• Hypoxia
• 18FMISO, 60Cu-ATSM, 18FIAZA, 18F-EF5

• Drug transport/efflux
• 11C-verapamil, 11C -colchicine,                             

11C - or 18F -paclitaxel, 94mTc -sestamibi
• Resistance to Apoptosis

• ?? 18FDG



Biologic Consequences of Tumor Hypoxia

• Mediated through HIF-1 and other factors
• Associated with tumor aggressiveness:

• Promotes angiogenesis
• Increases transcription of glycolytic enzymes

• Leads to resistance
• Alters cell cycle kinetics
• May select cells resistant to apoptosis
• Key factor in XRT, also in ChemoRx



Imaging Hypoxia as the Accumulation 
of a Radiopharmaceutical
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Tissue Hypoxia in 
Advanced Axillary Breast Cancer

[F-18]-Fluoromisonidazole
(FMISO)

[F-18]-FDG
Glucose Metabolism

Hypoxia

SUV max = 10.2 Tumor/Blood max = 1.8
Significant FMISO uptake seen in 

~ 30% of large breast cancers
(Rajendran, Clin CA Res, in press)



Tissue Hypoxia in Glioblastoma
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FMISO Uptake in Heand and Neck CA 
Predicts Response to XRT

Hypoxic volume (HV) from FMISO PET showed a 
significant correlation with response (p value = 0.05)
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TROG 98.02
An International Trial Partnered by Academics and Industry

•Arm 1 – Radiotherapy 70 Gy/ 7 wks
with “Chemo-boost” cisplat +5FU

••Arm 2 Arm 2 –– Radiotherapy 70 Gy/ 7Radiotherapy 70 Gy/ 7 wkswks
with with cisplatcisplat ++tirapazaminetirapazamine

(Lester Peters, Peter MacCallum Cancer Centre,Melbourne, Australia)
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Specific Examples of Molecular Imaging to 
Direct Cancer Therapy

• Assess the therapeutic target

• Identify resistance factors

• Measure early response



Biologic Events in Response to 
Successful Cancer Therapy

Rx

Cellular Proliferation
or

Cell Death

Viable Cell Number

Tumor size



Cell Proliferation Imaging Agents

• Gold standard - thymidine
• Methyl or 2-11C-Thymidine

• Analogs with minimal metabolism
• 18FLT
• 18FMAU 

• Analogs with longer half-life
• 124IUdR



Thymidine Incorporation Pathways
TdR

dUMP

dTMP dTDP dTTP DNA

TdR

Exogenous (salvage) pathway

Endogenous (de novo ) pathway



11C-Thymidine Images of 
Small Cell Lung Cancer

Marrow  (with mets)Primary Tumor

Uptake Image
(20 - 60 min)
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11C-Thymidine Brain Tumor Images

Uptake Image Flux Image

( Eary, Cancer Res, 1998)



FDG
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Small Cell Lung Cancer:
PET Imaging Pre-and Post One Cycle of Rx

7 days



11C-Thymidine PET to Measure 
Response to Chemotherapy:

Thymidine Flux Pre-and Post One Cycle of Rx
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[18F]-Fluoro-L-thymidine (FLT)

Not incorporated into DNA, but ... 

minimal in vivo catabolism(Grierson, Nucl Med Biol, 2000)



FLT as a Measure of Tumor Proliferation
FLT Flux versus Ki-67 Score
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Clinical Use of Molecular Imaging: 
Summary and Future Directions

• Driven by the goal of more individualized therapy
• More specifically targeted
• Less toxic

• Imaging will play a role in choosing therapy
• Assess therapeutic targets
• Identify resistance factors

• Better response monitoring will be key
• Earlier measures of treatment efficacy
• More specific measures of drug action
• Quantitative surrogate endpoints for clinical trials

• The best is yet to come!
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UW PET Cancer Imaging Research:
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