Estimation of the Sockeye Salmon Escapement into McLees Lake, Unalaska Island, Alaska, 2002

Douglas E. Palmer

March 2003
United States Department of the Interior
Fish and Wildlife Service
Region 7
Fishery Resources

Estimation of the Sockeye Salmon Escapement into McLees Lake, Unalaska Island, Alaska, 2002

by
Douglas E. Palmer

U.S. Fish and Wildlife Service
Kenai Fish and Wildlife Field Office
P.O. Box 1670
Kenai, Alaska 99611

March 2003

This Project (FIS 01-059) was funded under Cooperative Agreement 701811J332 between the U.S. Fish and Wildlife Service, Office of Subsistence Management and Kenai Fish and Wildlife Field Office and the Qawalangin Tribe of Unalaska.

The Alaska Fisheries Data Series was established in 1994 to provide public access to unpublished study results. These reports are intended to document short-term field studies limited in or lacking statistical interpretation. Reports in this series receive limited internal review prior to release and may be finalized in more formal literature in the future. Consequently, these reports should not be cited without approval of the author or the Division of Fisheries Resources.

Disclaimer: The mention of trade names or commercial products in this report does not constitute endorsement or recommendation for use by the federal government.

The U.S. Department of Interior prohibits discrimination in Departmental Federally Conducted Programs on the basis of race, color, national origin, sex, age, or disability. If you believe that you have been discriminated against in any program, activity, or facility operated by the U.S. Fish and Wildlife Service or if you desire further information please write to:
U.S. Department of Interior

Office for Equal Opportunity 1849 C Street, N.W.
Washington, D.C. 20240

Table of Contents

Page
List of Figures ii
List of Appendices ii
Abstract 1
Introduction 1
Methods 3
Weir Design and Operation 3
Escapement Counts 3
Biological Sampling 3
Data Analysis 4
Results 4
Weir Operation 4
Biological Data 4
Discussion 5
Weir Operation 5
Biological Data 6
Acknowledgments 6
References 7
Appendices 8

List of Figures

Figure

1. Map of Unalaska Island showing the location of McLees Lake and the weir site . . . 2
2. Adult sockeye salmon counts through the McLees Lake weir, Unalaska Island, Alaska, 2002

List of Appendices

Appendix Page

1. Estimated harvest of sockeye salmon and number of permits issued for the Reese Bay subsistence fishery 1985-2001 (Shaul and Dinnocenzo 2002a)
2. Aerial index escapement counts of sockeye salmon for the McLees Lake watershed,
Unalaska Island, Alaska 1974-2002. NS denotes years when no survey was
conducted
3. Weir panels with pickets constructed from electrical metal conduit with a 1.3 cm inside diameter and strung together with 3-mm aircraft cable
4. Lateral view of an installed weir panel. Spanning cable is anchored to both banks
and pulled tight so it does not sag into the water. Fence posts and one tripod support
the cable so the weight of the weir does not cause the panels to submerge 9
5. Water temperature and river stage height at the McLees Lake weir, Unalaska
Island, 2002 . 10
6. Daily counts, cumulative counts, and cumulative proportion of sockeye and chinook salmon escapements through McLees Lake weir, 2002. Boxed areas encompass the second quartile, median, and third quartile of the sockeye salmon escapement
7. Estimated age and sex composition of weekly sockeye salmon escapements
through the McLees Lake weir, 2002; and estimated design effects of the
stratified sampling design 12
8. Length (mm) at age for sockeye salmon at McLees Lake weir, 2002 15

Estimation of the Sockeye Salmon Escapement into McLees Lake, Unalaska Island, Alaska, 2002

Douglas E. Palmer
U.S. Fish and Wildlife Service, Kenai Fish and Wildlife Field Office P.O. Box 1670, Kenai, Alaska 99611, (907) 262-9863

Abstract

From June 1 to July 29, 2002, a flexible picket weir was used to collect abundance, run timing, and biological data from sockeye salmon returning to McLees Lake on Unalaska Island. A total of 97,780 sockeye Oncorhynchus nerka, and one chinook O. tshawytscha salmon were counted through the weir. Peak passage occurred from June 18 through July 9 when 60,203 (62\%) sockeye salmon entered McLees Lake. The sockeye salmon return to McLees Lake during 2002 was about twice that observed during 2001 when 45,866 sockeye were counted through the weir.

Abstract

Six age groups were identified from 751 sockeye salmon sampled from the weir escapement between June 4 and July 24. This escapement was composed primarily of age 1.2 (60.1%) and 1.3 (31.7%) fish. Females composed an estimated 43.2% of the sampled sockeye salmon escapement. Age composition did not differ between sexes.

Introduction

McLees Lake empties into Reese Bay on the north side of Unalaska Island approximately 12 miles NW of the city of Unalaska (Figure 1). This watershed provides important spawning and rearing habitat for sockeye salmon. Adult sockeye salmon returning to McLees Lake are harvested in Reese Bay by subsistence users from Unalaska. The Reese Bay subsistence fishery currently provides 85-95 \% of the annual sockeye harvest for this community (Shaul and Dinnocenzo 2002a) and the number of households participating in this fishery has increased in recent years (Appendix 1). Current management of the fishery is limited to using aerial surveys and harvest information to assess escapement.

The escapement of sockeye salmon to McLees Lake has been monitored using aerial
survey counts since 1974 (Arnie Shaul, Alaska Department of Fish and Game, personal communication). Aerial surveys have generally been limited to one survey each year and have ranged from 300-34,000 fish (Appendix 2). Aerial counts serve as an index to abundance but can be influenced by several factors including time of survey, poor weather, lack of availability of suitable aircraft and variation among observers. No aerial surveys were conducted during some years because of one or more of these factors.

Subsistence harvests of sockeye salmon returning to McLees Lake have been monitored since 1985 (Shaul and Dinnocenzo 2002b). The estimated annual harvest in the Reese Bay subsistence fishery has ranged from 436 to 3,985 sockeye salmon (Appendix 1). During this time period the number of permits issued for this fishery has ranged from

Figure 1.-Map of Unalaska Island showing the location of McLees Lake and the weir site.

12 to 121. Annual fluctuations in harvest have generally corresponded to the number of permits issued for the fishery. Since 1995, the average annual harvest has nearly doubled and the number of permits issued has nearly tripled from that observed from 1985-1994. These numbers suggest that sockeye salmon returning to McLees Lake have become increasingly important to the local subsistence fishery.

Local residents and the Alaska Department of Fish and Game (Department) have expressed concerns that the lack of an escapement estimate for sockeye salmon into McLees Lake may jeopardize the health of the run, as well as future opportunities for subsistence fishing. These concerns prompted the Kodiak/Aleutian Federal Regional Subsistence Advisory Council to identify an
escapement monitoring project on McLees Lake as a high priority. To address these concerns, the Kenai Fish and Wildlife Field Office (Kenai FWFO) and the Qawalangin Tribe of Unalaska entered into a partnership agreement to monitor the sockeye salmon return to McLees Lake over a 3-year period. Specific objectives of the project were to: (1) enumerate the daily passage of sockeye salmon through a flexible picket weir; (2) describe the run-timing of sockeye salmon through the weir; (3) estimate the weekly sex and age composition of the sockeye salmon return; and, (4) estimate the mean length of sockeye salmon by sex and age. This report summarizes findings during 2002, the second year of the project.

Methods

Weir Design and Operation

A flexible picket weir spanning 21 m was installed at the outlet of McLees Lake and operated from June 1 to July 29, 2002. The weir was patterned after a design used on the Alaska Peninsula (Nick Hetrick, U.S. Fish and Wildlife Service, personal communication). Weir pickets are electrical metal conduit with a 1.3 cm inside diameter. Picket spacing ranged from 3.5 cm for panels in shallow water near each stream bank to 2.2 cm on panels near the middle of the McLees Lake outlet channel. All pickets are 1.5 m long and strung together with $3-\mathrm{mm}$ aircraft cable to make panels 3 m long (Appendix 3). A spanning cable ($6-\mathrm{mm}$ aircraft) was strung bank to bank and pulled tight about 0.3 m above the surface of the water. The weir panels were leaned against the cable which was supported with a single tripod in midchannel and fenceposts approximately every 3 meters (Appendix 4). A trap and holding area was constructed into the upstream side of the weir to facilitate sampling fish and passing adult salmon through the weir. The weir and sampling trap were inspected daily and maintained as needed to ensure integrity.

A staff gauge was installed 4 m downstream of the weir to measure daily water levels. Water temperatures were monitored in the outlet channel with a StowAway ${ }^{\circledR}$ TidbiT ${ }^{\circledR}$ temperature logger.

Escapement Counts

Fish were passed and counted intermittently between 0700 and 2400 hours each day. The duration of each counting session varied depending on the intensity of fish passage through the weir. Daily escapement counts were relayed to Kenai

FWFO via satellite phone. Kenai FWFO provided daily escapement information (Email) to the Department in Cold Bay, allowing for possible in-season management decisions regarding the Reese Bay subsistence fishery.

Biological Sampling

Data on fish age, sex, and length (ASL) were collected using a temporally stratified sampling design (Cochran 1977), with statistical weeks defining strata. A sample of fish was collected weekly for ASL information. Sampling typically occurred during two or three days during each statistical week in an effort to obtain a weekly subsample of 100 sockeye salmon.

Fish sampling consisted of measuring length, determining sex, collecting scales, and then releasing the fish upstream of the weir. Length was measured from mid-eye to fork-of-caudal-fin to the nearest 5 mm . Sex was determined by observing external characteristics. Scales were removed from the preferred area for age determination (Koo 1962; Mosher 1968). One scale was collected from each sockeye salmon.

Sample data for salmon were recorded on all-weather age, sex, length (ASL) field forms and transferred to ASL mark-sense forms provided by the Department. Salmon scales were cleaned and properly affixed to gummed scale cards. Mark-sense forms and scale cards were completed according to Department procedures for the Alaska Peninsula/Aleutian Islands Area (Murphy 2000). At the end of the season, mark-sense forms and scale cards were forwarded to the Department in Kodiak to determine age from the scales and enter age data onto the ASL forms. The Department scanned the completed forms and provided a synopsis of the ASL data to Kenai FWFO.

Data Analysis

Mean lengths of males and females by age were compared using a two-tailed t test at " $=0.05$ (Zar 1984). Age and sex composition were estimated using a stratified sampling design (Cochran 1977). Chi-square contingency table analysis was used to test for differences in age composition between the sexes. Because the standard test only applies to data collected under simple random sampling, adjustments were made to the test statistic, following Rao and Thomas (1989), to account for the impact of our stratified sampling design on the results. The O^{2} statistic, hereafter referred to as $O^{2}(\boldsymbol{\$})$, was divided by the mean generalized design effect, \$, as a first-order correction to the standard test (Rao and Thomas 1989). Estimated design effects for the cells are presented in Appendix 7. Age and sex specific escapements in a stratum, $\hat{A}_{h i j}$, and their variances, $V\left[\hat{A}_{h i j}\right]$, were estimated as:

$$
\begin{equation*}
\hat{A}_{h i j}=N_{h} \hat{p}_{h i j} ; \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{V}\left[\hat{A}_{h i j}\right]=N_{h}^{2}\left(1-\frac{n_{h}}{N_{h}}\right)\left(\frac{\hat{p}_{h i j}\left(1-\hat{p}_{h i j}\right)}{n_{h}-1}\right) \tag{2}
\end{equation*}
$$

where

$$
\left.\begin{array}{rl}
N_{h}= & \text { total escapement of a given } \\
& \text { species during stratum } h ;
\end{array}\right\}
$$

Abundance estimates and their variances for each stratum were summed to obtain age- and sex- specific escapements for the season as follows:

$$
\begin{equation*}
\hat{A}_{i j}=\sum \hat{A}_{h i j} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{V}\left[\hat{A}_{i j}\right]=\sum \hat{V}\left(\hat{A}_{h i j}\right) \tag{4}
\end{equation*}
$$

Results

Weir Operation

The weir was functional throughout the operational period. No holes were reported, water levels did not exceed the height of the weir, and no salmon were observed escaping through the pickets. The sampling trap was installed mid-channel and worked well throughout the sampling period and at all stage heights (Appendix 5). Water temperatures during weir operations ranged from 11.0 to $13.6^{\circ} \mathrm{C}$ and averaged $12.5{ }^{\circ} \mathrm{C}$ (Appendix 5).

Biological Data

Two species of Pacific salmon, including 97,780 sockeye and one chinook salmon, were counted upstream through the weir (Appendix 6). Sockeye salmon passed through the weir from June 3 to July 29. Peak passage occurred from June 18 to July 9 when 60,203 (62%) sockeye salmon entered McLees Lake (Figure 2; Appendix 6). During this period, counts of sockeye salmon exceeded 3,000 fish/day on eight days. The largest daily count was 4,093 fish on June 26. One chinook salmon was observed passing the weir on July 8.

Figure 2.-Adult sockeye salmon counts through the McLees Lake weir, Unalaska Island, Alaska, 2002.

Six age groups were identified from 654 out of 751 sockeye salmon sampled from the weir escapement between June 4 and July 24 (Appendix 7). During this period, 96,447 sockeye salmon were counted through the weir. Age 1.2 and 1.3 sockeye salmon were most abundant, accounting for 60.1% and 31.7% of the sampled fish, respectively. Females made up an estimated 43.2% of the sockeye escapement. Age composition did not differ between sexes $\left(\boldsymbol{O}^{2}(\boldsymbol{\$})=7.018, \mathrm{df}=3\right.$, $P>0.05$; age groups $1.4,2.3$ and 3.2 were combined for this analysis because of small sample sizes). In sampled fish, the mean lengths of age 1.2, 1.3, and 2.2 males were greater than those of same-aged females (twotailed t test: age 1.2, $t=10.972, \mathrm{df}=357$, $\mathrm{P}<0.001$; age 1.3, $t=8.276, \mathrm{df}=198, P<0.001$; age $2.2, t=4.533, \mathrm{df}=38, P<0.001$; insufficient data for other age groups)(Appendix 8).

Discussion

Weir Operation

The weir was operated from June 1 through July 29 during 2002. No sockeye salmon were counted through the weir during the first two days of operation followed by escapements of several hundred fish on subsequent days (Figure 2). This dramatic increase in fish passage from zero to several hundred fish suggests that few fish had entered McLees Lake prior to weir installation.

The weir was operated throughout the season without interruption. The trap was installed in the deepest part of the channel which allowed us to sample fish through July 24 . Fish passage began to steadily decline after July 24 and the weir was removed on July 29.

Biological Data

The sockeye salmon return to McLees Lake during 2002 ($N=97,780$) was more than twice that observed during 2001 ($N=45,866$; Palmer 2002). The number of sockeye salmon counted during 2002 included fish entering McLees Lake prior to June 15 ($N=10,414$). This segment of the run was missed during 2001, however, it accounted for only 10.7 \% of the run during 2002.

Sockeye salmon escapements to McLees Lake for the last two years have been much stronger than expected based on previous aerial survey counts. Aerial surveys conducted on the McLees Lake watershed from 1974 through 2000 ranged from 300 11,000 fish (Appendix 2). Aerial surveys conducted by the Department during midAugust in 2001 and 2002 resulted in counts of 34,000 and 33,000 sockeye salmon, respectively (Arnie Shaul, Alaska Department of Fish and Game, personal communication). These aerial counts are considered low because substantial numbers of salmon were probably upstream of where it was possible to fly. Nonetheless, the aerial index counts for 2001 and 2002 were several times larger than any aerial count prior to 2001 suggesting that escapements into McLees Lake over the last two years were much larger than any return since 1974.

The age composition of sockeye salmon sampled at the weir during 2002 was different from that observed during 2001 (Palmer 2002). Age 1.2 and 1.3 sockeye salmon were the dominant age groups during both years, however, age 1.3 were dominant (94.5%) in 2001 and age 1.2 fish were dominant (60.1%) in 2002. The proportion of females in the 2002 weir escapement (43.2%) was similar to that observed during 2001(41.9 \%).

Acknowledgments

Special appreciation is extended to the field crew: Shane Keep and Kenny McGlashan. A special thanks is extended to Charlie Weeks, who assisted with logistics and pre-season support of the project. George Pletnikoff, environmental coordinator for the Qawalangin Tribe, was instrumental in fulfilling tribal responsibilities for the project.

We also appreciate the assistance of the Alaska Department of Fish and Game (Department). Forrest Bowers, local area management biologist with the Department, provided a skiff and personnel to transport groceries and supplies from Dutch Harbor to the weir site during June and July. The Department also provided bunkhouse space for the crew in Dutch Harbor at the beginning and end of field operations. Thanks are also extended to Matt Foster and Patti Nelson with the Department in Kodiak for scale sample analysis.

The U.S. Fish and Wildlife Service, Office of Subsistence Management, provided funding support for this project through the Fisheries Resource Monitoring Program, project number FIS 01-059.

References

Cochran, W.G. 1977. Sampling techniques, third edition. John Wiley and Sons, New York.

Koo, T.S.Y. 1962. Age determination in salmon. Pages 37-48 in T.S.Y. Koo, editor. Studies of Alaskan red salmon. University of Washington Press, Seattle, Washington.

Mosher, K.H. 1968. Photographic atlas of sockeye salmon scales. U.S. Fish and Wildlife Service, Bureau of Commercial Fisheries, Fishery Bulletin 2:243-274.

Murphy, R.L. 2000. Alaska Peninsula salmon evaluation and escapement sampling operating procedures, 2000. Alaska Department of Fish and Game, Division of Commercial Fisheries, Kodiak, Alaska.

Palmer, D.E. 2002. Estimation of the sockeye salmon escapement into McLees Lake, Unalaska Island, Alaska, 2001. U.S. Fish and Wildlife Service, Kenai Fishery Resource Office, Alaska Fisheries Data Series Report Number 2002-2.

Rao, J.N.K., and D.R. Thomas. 1989. Chisquared tests for contingency tables. Pages 89-114 in Skinner, C.J., D. Holt, and T.M.F. Smith, editors. Analysis of complex surveys. John Wiley \& Sons, New York.

Shaul, A.R. and J.J. Dinnocenzo. 2002a. Aleutian Islands and Atka-Amlia Islands management areas salmon management report, 2001. Regional Information Report Number 4K02-14. Alaska Department of Fish and Game, Division of Commercial Fisheries, Kodiak, Alaska.

Shaul, A.R. and J.J. Dinnocenzo. 2002b. Annual summary of the commercial salmon fishery and a report on salmon subsistence and personal use fisheries for the Alaska Peninsula and Aleutian Islands Management Areas, 2001. Regional Information Report Number 4K02-22. Alaska Department of Fish and Game, Division of Commercial Fisheries, Kodiak, Alaska.

Zar, J.H. 1984. Biostatistical analysis, second edition. Prentice and Hall, Englewood Cliffs, New Jersey.

APPENDIX 1.-Estimated harvest of sockeye salmon and number of permits issued for the Reese Bay subsistence fishery 1985-2001 (Shaul and Dinnocenzo 2002a).

APPENDIX 2.-Aerial index escapement counts of sockeye salmon for the McLees Lake watershed, Unalaska Island, Alaska 1974-2002. NS denotes years when no survey was conducted.

APPENDIX 3.-Weir panels with pickets constructed from electrical metal conduit with a 1.3 cm inside diameter and strung together with $3-\mathrm{mm}$ aircraft cable.

APPENDIX 4.-Lateral view of an installed weir panel. Spanning cable is anchored to both banks and pulled tight so it does not sag into the water. Fence posts and one tripod support the cable so the weight of the weir does not cause the panels to submerge.

APPENDIX 5.-Water temperature and river stage height at the McLees Lake weir, Unalaska Island, 2002.

APPENDIX 6.-Daily counts, cumulative counts, and cumulative proportion of sockeye and chinook salmon escapements through McLees Lake weir, 2002. Boxed areas encompass the second quartile, median, and third quartile of the sockeye salmon escapement.

Date	Sockeye Salmon			Chinook Salmon		
	Daily	Cumulative		Daily Count	Cumulative	
	Count	Count	Proportion		Count	Proportion
6/1	0	0	0.000	0	0	0.000
6/2	0	0	0.000	0	0	0.000
6/3	840	840	0.009	0	0	0.000
6/4	678	1,518	0.016	0	0	0.000
6/5	257	1,775	0.018	0	0	0.000
6/6	1,130	2,905	0.030	0	0	0.000
6/7	662	3,567	0.036	0	0	0.000
6/8	582	4,149	0.042	0	0	0.000
6/9	1,835	5,984	0.061	0	0	0.000
6/10	747	6,731	0.069	0	0	0.000
6/11	1,037	7,768	0.079	0	0	0.000
6/12	670	8,438	0.086	0	0	0.000
6/13	1,037	9,475	0.097	0	0	0.000
6/14	939	10,414	0.107	0	0	0.000
6/15	1,713	12,127	0.124	0	0	0.000
6/16	635	12,762	0.131	0	0	0.000
6/17	976	13,738	0.140	0	0	0.000
6/18	1,776	15,514	0.159	0	0	0.000
6/19	3,143	18,657	0.191	0	0	0.000
6/20	2,907	21,564	0.221	0	0	0.000
6/21	3,701	25,265	0.258	0	0	0.000
6/22	1,712	26,977	0.276	0	0	0.000
6/23	3,346	30,323	0.310	0	0	0.000
6/24	2,254	32,577	0.333	0	0	0.000
6/25	2,748	35,325	0.361	0	0	0.000
6/26	4,093	39,418	0.403	0	0	0.000
6/27	3,852	43,270	0.443	0	0	0.000
6/28	3,620	46,890	0.480	0	0	0.000
6/29	3,298	50,188	0.513	0	0	0.000
6/30	2,802	52,990	0.542	0	0	0.000
7/1	2,308	55,298	0.566	0	0	0.000
7/2	2,565	57,863	0.592	0	0	0.000
7/3	2,058	59,921	0.613	0	0	0.000
7/4	2,882	62,803	0.642	0	0	0.000
7/5	2,080	64,883	0.664	0	0	0.000
7/6	3,158	68,041	0.696	0	0	0.000
7/7	2,126	70,167	0.718	0	0	0.000
7/8	2,141	72,308	0.739	1	1	1.000
7/9	1,633	73,941	0.756	0	1	1.000
7/10	620	74,561	0.763	0	1	1.000
7/11	2,906	77,467	0.792	0	1	1.000
7/12	693	78,160	0.799	0	1	1.000
7/13	927	79,087	0.809	0	1	1.000
7/14	2,520	81,607	0.835	0	1	1.000
7/15	1,060	82,667	0.845	0	1	1.000
7/16	1,133	83,800	0.857	0	1	1.000
7/17	872	84,672	0.866	0	1	1.000
7/18	936	85,608	0.876	0	1	1.000
7/19	2,810	88,418	0.904	0	1	1.000
7/20	2,074	90,492	0.925	0	1	1.000
7/21	1,226	91,718	0.938	0	1	1.000
7/22	1,328	93,046	0.952	0	1	1.000
7/23	1,295	94,341	0.965	0	1	1.000
7/24	1,246	95,587	0.978	0	1	1.000
7/25	860	96,447	0.986	0	1	1.000
7/26	556	97,003	0.992	0	1	1.000
7/27	346	97,349	0.996	0	1	1.000
7/28	126	97,475	0.997	0	1	1.000
7/29	305	97,780	1.000	0	1	1.000

APPENDIX 7.-Estimated age and sex composition of weekly sockeye salmon escapements through the McLees Lake weir, 2002; and estimated design effects of the stratified sampling design.

		Brood Year and Age Class						Total
		1998	1997		1996			
		1.2	1.3	2.2	1.4	2.3	3.2	
Stratum 1: 05/31-06/06								
Sampling Dates: 06/04 \& 06/06								
Female:	Number in Sample:	11	13	1	0	2	0	27
	Estimated \% of Escapement	13.8	16.3	1.3	0.0	2.5	0.0	33.8
	Estimated Escapement:	399	472	36	0	73	0	980
	Standard Error:	111.0	118.9	35.8	0.0	50.3	0.0	
Male:	Number in Sample:	9	38	2	2	1	1	53
	Estimated \% of Escapement	11.3	47.5	2.5	2.5	1.3	1.3	66.3
	Estimated Escapement:	327	1,380	73	73	36	36	1,925
	Standard Error:	101.8	161.0	50.3	50.3	35.8	35.8	
Total:	Number in Sample:	20	51	3	2	3	1	80
	Estimated \% of Escapement	25.0	63.8	3.8	2.5	3.8	1.3	100.0
	Estimated Escapement:	726	1,852	109	73	109	36	2,905
	Standard Error:	139.6	154.9	61.2	50.3	61.2	35.8	
Stratum 2: 06/07-06/13								
Sampling Dates: 06/10 \& 06/12								
Female:	Number in Sample:	7	11	1	0	0	0	19
	Estimated \% of Escapement	12.3	19.3	1.8	0.0	0.0	0.0	33.3
	Estimated Escapement:	807	1,268	115	0	0	0	2,190
	Standard Error:	286.9	345.0	114.8	0.0	0.0	0.0	
Male:	Number in Sample:	10	21	3	2	0	2	38
	Estimated \% of Escapement	17.5	36.8	5.3	3.5	0.0	3.5	66.7
	Estimated Escapement:	1,153	2,421	346	231	0	231	4,380
	Standard Error:	332.5	421.7	195.2	160.8	0.0	160.8	
Total:	Number in Sample:	17	32	4	2	0	2	57
	Estimated \% of Escapement	29.8	56.1	7.0	3.5	0.0	3.5	100.0
	Estimated Escapement:	1,959	3,688	461	231	0	231	6,570
	Standard Error:	399.9	433.8	223.3	160.8	0.0	160.8	
Stratum 3: 06/14-06/20								
Sampling Dates: 06/15, 06/18 \& 06/20								
Female:	Number in Sample:	11	17	2	0	1	0	31
	Estimated \% of Escapement	13.1	20.2	2.4	0.0	1.2	0.0	36.9
	Estimated Escapement:	1,583	2,447	288	0	144	0	4,461
	Standard Error:	446.1	531.3	201.6	0.0	143.4	0.0	
Male:	Number in Sample:	28	19	4	1	0	1	53
	Estimated \% of Escapement	33.3	22.6	4.8	1.2	0.0	1.2	63.1
	Estimated Escapement:	4,030	2,734	576	144	0	144	7,628
	Standard Error:	623.3	553.2	281.6	143.4	0.0	143.4	
Total:	Number in Sample:	39	36	6	1	1	1	84
	Estimated \% of Escapement	46.4	42.9	7.1	1.2	1.2	1.2	100.0
	Estimated Escapement:	5,613	5,181	864	144	144	144	12,089
	Standard Error:	659.5	654.4	340.5	143.4	143.4	143.4	

APPENDIX 7.-(Page 2 of 3)

		Brood Year and Age Class						Total
		1998	1997		1996			
		1.2	1.3	2.2	1.4	2.3	3.2	
Stratum 4: 06/21-06/27								
Sampling Dates: $06 / 24,06 / 25$ \& 06/27								
Female:	Number in Sample:	23	20	2	0	0	0	45
	Estimated \% of Escapement	25.6	22.2	2.2	0.0	0.0	0.0	50.0
	Estimated Escapement:	5,547	4,824	482	0	0	0	10,853
	Standard Error:	1,001.5	954.6	338.5	0.0	0.0	0.0	
Male:	Number in Sample:	30	11	3	1	0	0	45
	Estimated \% of Escapement	33.3	12.2	3.3	1.1	0.0	0.0	50.0
	Estimated Escapement:	7,235	2,653	724	241	0	0	10,853
	Standard Error:	1,082.4	752.1	412.2	240.7	0.0	0.0	
Total:	Number in Sample:	53	31	5	1	0	0	90
	Estimated \% of Escapement	58.9	34.4	5.6	1.1	0.0	0.0	100.0
	Estimated Escapement:	12,782	7,477	1,206	241	0	0	21,706
	Standard Error:	1,129.7	1,091.1	525.9	240.7	0.0	0.0	
Stratum 5: 06/28-07/04								
Sampling Dates: $07 / 01,07 / 02$ \& 07/04								
Female:	Number in Sample:	25	13	2	0	0	0	40
	Estimated \% of Escapement	29.4	15.3	2.4	0.0	0.0	0.0	47.1
	Estimated Escapement:	5,745	2,987	460	0	0	0	9,192
	Standard Error:	969.0	765.4	322.3	0.0	0.0	0.0	
Male:	Number in Sample:	31	11	2	1	0	0	45
	Estimated \% of Escapement	36.5	12.9	2.4	1.2	0.0	0.0	52.9
	Estimated Escapement:	7,124	2,528	460	230	0	0	10,341
	Standard Error:	1,023.6	713.8	322.3	229.3	0.0	0.0	
Total:	Number in Sample:	56	24	4	1	0	0	85
	Estimated \% of Escapement	65.9	28.2	4.7	1.2	0.0	0.0	100.0
	Estimated Escapement:	12,869	5,515	919	230	0	0	19,533
	Standard Error:	1,008.2	957.3	450.3	229.3	0.0	0.0	
Stratum 6: 07/05-07/11								
Sampling Dates: $07 / 08,07 / 09$ \& 07/11								
Female:	Number in Sample:	31	6	3	0	0	0	40
	Estimated \% of Escapement	34.8	6.7	3.4	0.0	0.0	0.0	44.9
	Estimated Escapement:	5,108	989	494	0	0	0	6,591
	Standard Error:	742.5	390.8	281.3	0.0	0.0	0.0	
Male:	Number in Sample:	34	10	5	0	0	0	49
	Estimated \% of Escapement	38.2	11.2	5.6	0.0	0.0	0.0	55.1
	Estimated Escapement:	5,602	1,648	824	0	0	0	8,073
	Standard Error:	757.2	492.2	358.9	0.0	0.0	0.0	
Total:	Number in Sample:	65	16	8	0	0	0	89
	Estimated \% of Escapement	73.0	18.0	9.0	0.0	0.0	0.0	100.0
	Estimated Escapement:	10,710	2,636	1,318	0	0	0	14,664
	Standard Error:	691.6	598.4	445.7	0.0	0.0	0.0	

APPENDIX 7.-(Page 3 of 3)

		Brood Year and Age Class						Total	
		1998	1997		1996				
		1.2	1.3	2.2	1.4	2.3	3.2		
Stratum 7: 07/12-07/18									
Sampling Dates: 07/15, 07/16 \& 07/17									
Female:	Number in Sample:	30	7	3	0	0	0	40	
	Estimated \% of Escapement	31.6	7.4	3.2	0.0	0.0	0.0	42.1	
	Estimated Escapement:	2,571	600	257	0	0	0	3,428	
	Standard Error:	388.0	218.1	146.0	0.0	0.0	0.0		
Male:	Number in Sample:	38	12	3	2	0	0	55	
	Estimated \% of Escapement	40.0	12.6	3.2	2.1	0.0	0.0	57.9	
	Estimated Escapement:	3,256	1,028	257	171	0	0	4,713	
	Standard Error:	409.0	277.3	146.0	119.8	0.0	0.0		
Total:	Number in Sample:	68	19	6	2	0	0	95	
	Estimated \% of Escapement	71.6	20.0	6.3	2.1	0.0	0.0	100.0	
	Estimated Escapement:	5,827	1,628	514	171	0	0	8,141	
	Standard Error:	376.5	333.9	203.1	119.8	0.0	0.0		
Stratum 8: 07/19-07/25									
Sampling Dates: $07 / 23$ \& 07/24									
Female:	Number in Sample:	22	5	0	0	0	0	27	
	Estimated \% of Escapement	29.7	6.8	0.0	0.0	0.0	0.0	36.5	
	Estimated Escapement:	3,222	732	0	0	0	0	3,955	
	Standard Error:	577.9	317.3	0.0	0.0	0.0	0.0		
Male:	Number in Sample:	29	13	4	0	1	0	47	
	Estimated \% of Escapement	39.2	17.6	5.4	0.0	1.4	0.0	63.5	
	Estimated Escapement:	4,248	1,904	586	0	146	0	6,884	
	Standard Error:	617.2	481.1	285.9	0.0	146.0	0.0		
Total:	Number in Sample:	51	18	4	0	1	0	74	
	Estimated \% of Escapement	68.9	24.3	5.4	0.0	1.4	0.0	100.0	
	Estimated Escapement:	7,470	2,637	586	0	146	0	10,839	
	Standard Error:	585.1	542.4	285.9	0.0	146.0	0.0		
Stratum 9: 07/26-08/01 No Samples Collected									
Strata 1-9: 05/31-08/01									
Sampling Dates: 06/04-07/24									
Female:	Number in Sample:	160	92	14	0	3	0	269	
	\% Females in Age Group:	60.0	34.4	5.1	0.0	0.5	0.0	100.0	
	Estimated \% of Escapement	25.9	14.8	2.2	0.0	0.2	0.0	43.2	
	Estimated Escapement:	24,982	14,318	2,133	0	217	0	41,650	
	Standard Error:	1,808.7	1,487.8	611.5	0.0	152.0	0.0		
	Estimated Design Effects:	1.203	1.236	1.221	0.000	0.731	0.000	1.204	
Male:	Number in Sample:	209	135	26	9	2	4	385	
	\% Males in Age Group:	60.2	29.7	7.0	2.0	0.3	0.7	100.0	
	Estimated \% of Escapement	34.2	16.9	4.0	1.1	0.2	0.4	56.8	
	Estimated Escapement:	32,974	16,296	3,844	1,089	183	411	54,797	
	Standard Error:	1,962.2	1,461.3	790.9	416.9	150.3	218.5		
	Estimated Design Effects:	1.208	1.074	1.154	1.099	0.845	0.797	1.204	
Total:	Number in Sample:	369	227	40	9	5	4	654	
	Estimated \% of Escapement	60.1	31.7	6.2	1.1	0.4	0.4	100.0	
	Estimated Escapement:	57,957	30,614	5,977	1,089	399	411	$96,447{ }^{\text {a }}$	
	Standard Error:	1,967.1	1,873.8	985.2	416.9	213.6	218.5		
	Estimated Design Effects:	1.139	1.144	1.179	1.099	0.784	0.797		

[^0]APPENDIX 8.-Length (mm) at age for sockeye salmon at McLees Lake weir, 2002.

ApPENDIX 8.-(Page 2 of 3)

		Brood Year and Age Class						
		$\frac{1998}{1.2}$	1997		1996			
		1.3	2.2	1.4	2.3	3.2		
Stratum 4: 06/21-06/27								
Sampling Dates: $06 / 24,06 / 25$ \& 06/27								
Female:	Mean Length		498	549	485			
	Std. Error	4.8	4.9	5.0				
	Range	465-550	490-595	480-490				
	Sample Size	23	20	2	0	0	0	
Male:	Mean Length	518	580	520	635			
	Std. Error	4.6	7.9	17.6	---			
	Range	475-560	520-615	500-555	---			
	Sample Size	30	11	3	1	0	0	
Stratum 5: 06/28-07/04								
Sampling Dates: 07/01, 07/02 \& 07/04								
Female:	Mean Length	498	550	505				
	Std. Error	4.9	6.7	10.0				
	Range	450-550	490-575	495-515				
	Sample Size	25	13	2	0	0	0	
Male:	Mean Length	520	585	523	605			
	Std. Error	2.8	5.6	17.5	---			
	Range	490-550	545-610	505-540	---			
	Sample Size	31	11	2	1	0	0	
Stratum 6: 07/05-07/11								
Sampling Dates: 07/08, 07/09 \& 07/11								
Female:	Mean Length	500	538	492				
	Std. Error	2.4	22.2	6.0				
	Range	475-525	435-585	480-500				
	Sample Size	31	6	3	0	0	0	
Male:	Mean Length	523	579	526				
	Std. Error	2.9	5.5	7.3				
	Range	480-550	550-600	505-550				
	Sample Size	34	10	5	0	0	0	

-continued-

APPENDIX 8.-(Page 3 of 3)

Stratum 9: 07/26-08/01
No Samples Collected

All Strata							
Female:	Mean Length	499	551	500		548	
	Std. Error	1.6	2.6	3.4		21.7	
	Range	$430-555$	$435-600$	$480-515$		$510-585$	3
	Sample Size	160	92	14	0	0	
Male:	Mean Length	524	578	525	609	568	514
	Std. Error	1.5	2.2	4.4	5.0	22.5	10.3
	Range	$475-615$	$460-620$	$490-575$	$580-635$	$545-590$	$495-540$
	Sample Size	209	135	26	9	2	4
All Fish:	Mean Length	513	567	516	609	556	514
	Std. Error	1.3	1.9	3.6	5.0	14.6	10.3
	Range	$430-615$	$435-620$	$480-575$	$580-635$	$510-590$	$495-540$
	Sample Size	369	227	40	9	5	4

[^0]: ${ }^{\text {a }}$ 1,333 fish that were counted through the weir during stratum 9 are not included in this total.

