A New Model for Predicting Hydration Kinetics and Microstructure Development in Cement Paste

Jeff Bullard NIST

Modeling Challenges: Chemistry

Tricalcium Silicate (idealized)

<u>Dissolution</u> Ca₃SiO₅ + 3 H₂O \rightarrow 3 Ca²⁺ + H₂SiO₄²⁻ + 4 OH⁻

 $\frac{\text{Growth of C-S-H}}{\text{x Ca}^{2+} + \text{H}_2\text{SiO}_4^{2-} + 2(\text{x-1}) \text{ OH}^- \rightarrow \text{CaO}_x - \text{SiO}_2 - \text{H}_2\text{O}}$

<u>Growth of Portlandite</u> $Ca^{2+} + 2 OH^{-} \rightarrow Ca(OH)_{2}$

Value of x depends on local pore solution chemistry

Modeling Challenges: Chemistry Tricalcium Aluminate (idealized)

<u>Net Reactions Without Gypsum or CH</u> 2 C₃A + 27 H → C₂AH₈ + C₄AH₁₉ → C₃AH₆ C₃A + 6 H → C₃AH₆ (> 30 °C)

<u>Net Reactions With CH</u> $C_3A + CH + 12 H \rightarrow C_4AH_{13}$

<u>Net Reactions With Gypsum (> 2-3%)</u> $C_3A + 3 CSH_2 + 26 H \rightarrow C_6AS_3H_{32}$ (initial)

Modeling Challenges: Structure

Micro-scale

Kinetic Implications

- Nucleation sites
- C-S-H growth = diffusion barrier
- Water availability

Property Implications

- Porosity forms 3-D percolating network
- Solids may begin as percolating (or not) "soft" clusters; later form stiff percolating network

Modeling Challenges: Structure Nano-scale

Modeling Challenges: Structure

Nano-scale

Micrographs courtesy of I.G. Richardson, University of Leeds

C₃S Paste, 80°C, 8 d

C₃S Paste, 20°C, 8 yr

Some Available Models

CEMHYD3D (NIST)

• Digital image basis

Some Available Models

CEMHYD3D (NIST)

- Digital image basis
- Accurate microstructure representation
- Rule-based to mimic reaction and diffusion

CEMHYD3D

Cellular automaton approach

- Each volume element is an independent agent that can

Some Available Models

CEMHYD3D (NIST)

- Digital image basis
- Accurate microstructure representation
- Rule-based to mimic reaction and diffusion
- Little or no kinetic information
- Magic resolution of 1 μm
- Primarily interpolative

Some Available Models

HYMOSTRUC (TU Delft); IPK (EPFL)

- Continuum basis
- Chemically homogenized particles
- Hydration modeled as growth of interparticle contacts
- Phenomenological kinetic equations (e.g. Johnson-Avrami-Mehl)
- Not easily extensible

New Model: HydratiCA

- Discretize on regular grid
- Retain power of CEMHYD3D microstructure representation
- Stochastic methods for diffusion and reaction
- Algorithms are mechanistically based, and converge to standard PDE rate equations
- Scalable and extensible
- Applies to general aqueous mineral systems

Mesh Class

Dimensions, resolution, clock, phase stats, thermal condition, moisture conditions, databases

Node Class

neighbors, volume, materials, methods for transport and rx

Derived Material Classes (Liquid, Solid, Gel, Crystal, Solute)

Material Database Class

Methods for material-specific behavior encoded here

Base Material Class

ID, composition, ρ , Ω , C_p , porosity, mobility, virtual methods for material-specific behavior

Ion Database Class

ID, mol wt, radius, intrinsic diffusivity, charge (immutable)

Reaction Database Class

ID, reactants, products, molar stoichiometric coefficients, reaction enthalpy, activation enthalpy, equilibrium constant baseline rate constant

HydratiCA: Modeling Aqueous Diffusion

HydratiCA: Modeling Aqueous Diffusion

- Based on a random walker algorithm
- Each computational node contains a number of "cells" of solute and water
- In any time step, each cell can execute a single step in a random direction
- Probability of stepping is proportional to the solute mobility and the time increment

$$p = D \Delta t / \lambda^2$$

Non-steady state diffusion of neutral solute

- C(x,y,z,0) = 0
- C(0,y,z,t) = 15 mM
- C(100,y,z,t) = 5 mM

Non-steady state diffusion of neutral solute

HydratiCA: Ionic Diffusion

- Effective mobility of a charged species is influenced by long-range Coulombic interactions with other charged species
- Local charge neutrality is required, even though different ions have different intrinsic diffusion coefficients
- HydratiCA can estimate the electrostatic potential at each time step, and include it in the electrochemical potential
- Results in **biased** random walk

Coupled diffusion of ions

HydratiCA: Modeling Chemical Reactions

HydratiCA: Modeling Chemical Reactions

 $a A + b B \xrightarrow{k} c C$

- Reaction events are localized within a node
- List of available reactants is generated and compared against reaction database
- List of possible reactions is built
- Reaction randomly selected from list
- Unit reaction is executed (n cells of A and m cells of B are removed, p cells of C are added) on a probabilistic basis
- Probability proportional to rate constant k

HydratiCA: Modeling Equilibrium

At equilibrium: $k_r \{C\}^c = k_f \{A\}^a \{B\}^b$

$$\frac{k_f}{k_r} = \frac{\{C\}^c}{\{A\}^a \{B\}^b} = K_{eq}$$

HydratiCA: Modeling Reactions

Periodic Solution $Ca(OH)_2$ Periodic

- 10 x 10 x 10 nodes
- Node spacing λ = 3 µm

• T = 298 K

Periodic

Ca(OH)₂
$$\stackrel{k_{f}}{\longleftarrow} Ca^{2+} + 2OH^{-}$$

 $k_{f} = 2.17 \times 10^{-7} \text{ moles/m}^{2/s}$
 $k_{r} = 3.29 \times 10^{-3} \text{ moles/m}^{2/s}$

HydratiCA: Chemical Equilibrium

HydratiCA: Temperature Effects

HydratiCA: Temperature Effects

HydratiCA: Nucleation

- Similar to nucleation of solid from a supercooled melt
- Literature review: D. Kaschiev and G.M. van Rosmalen, Cryst. Res. Technol. 38 [7-8] 555-574 (2003).

$$I(x,t) = AS \exp\left[\frac{-W^*}{kT}\right]$$

where

$$A = \left(\frac{4\pi}{3\nu_0}\right)^{1/3} \left(\frac{\sigma}{kT}\right)^{1/2} D \prod_{\beta}^{n} a_{\beta}^{\nu_{\beta}^{i} - \nu_{\beta}^{f}}$$

$$W^* = \frac{16\pi\nu_0^2 \sigma^3}{3(kT\ln S)^2}$$
For spherical nuclei

1

S = saturation index $\sigma =$ surface energy D = diffusion coefficient $\nu_0 =$ molecular volume of solid

HydratiCA: Modeling Nucleation

- 10 x 10 x 10 nodes
- Node spacing λ = 3 µm

```
• T = 298 K
```

Ca(OH)₂
$$\stackrel{k_f}{\longleftarrow}$$
 Ca²⁺ + 2OH⁻
 $k_f = 2.17 \times 10^{-7} \text{ moles/m}^2/\text{s}$
 $k_r = 3.29 \times 10^{-3} \text{ moles/m}^2/\text{s}$

HydratiCA: Nucleation

Dirt Speck in Water

Surface Nucleation

Nucleation sites distinguished by nucleation work

HydratiCA: Modeling Hydration of C₃S

HydratiCA: Hydration of C₃S

- Requires assumptions about chemical reactions and mechanisms
- Alternative theories can, in principle, be tested by HydratiCA
- First theory tested: Garrault and Nonat, *Langmuir* 17, 8131-8138 (2001).

• Coupled reactions:

$$\begin{array}{rcl} Ca_{3}SiO_{5} + 3H_{2}O & \longrightarrow & 3Ca^{2+} + 4OH^{-} + H_{2}SiO_{4}^{2-}\\ C/S \ Ca^{2+} + 2 \left(C/S - 1\right)OH^{-} + H_{2}O & \longrightarrow & CaO_{C/S} - SiO_{2} - H_{2}O\\ Ca^{2+} + 2OH^{-} & \longrightarrow & Ca(OH)_{2} \end{array}$$

- Nucleation of C-S-H occurs on surface of C₃S
- Growth of C-S-H is "autocatalytic" due to increased area of C-S-H surfaces for growth.

HydratiCA: Hydration of C₃S

- 25 x 25 x 25 nodes
- Node spacing λ = 4 µm

• T = 298 K

w/c = 0.3125 $4 \text{ m}^2/\text{kg}$

HydratiCA: Hydration of C₃S

