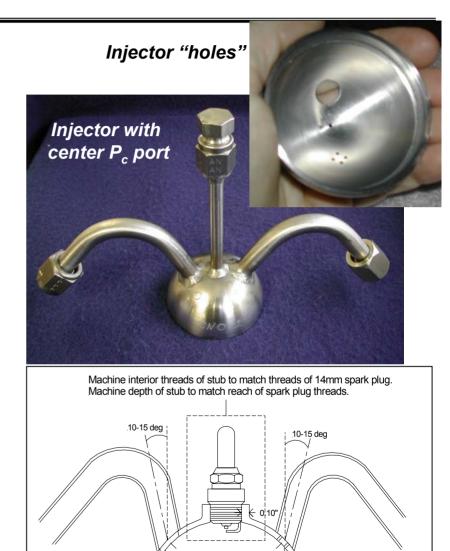



## TEST REQUIREMENTS & HARDWARE STATUS

SANDY ELAM TD61






O.D



### **HARDWARE DETAILS - INJECTOR**

- 2 3/8" tubes for GOX, gasoline inlets
- Injector shell includes
  - 1 3/8" dia hole for GOX flow
  - 4 0.040" dia holes for gasoline flow
- Supply line orifices control flow rates
- Zirconia coating provides thermal protection
- 2 Designs provided for testing:
  - 1)  $\frac{1}{4}$ " welded center tube for P<sub>c</sub> port
    - 1/16" dia hole machined into shell
    - ${\boldsymbol{\cdot}}$  Compare  ${\boldsymbol{\mathsf{P}}}_{\mathrm{c}}$  with supply line pressures
    - Spark igniter fed thru nozzle aft end
  - 2) Machined "Stub" for spark plug igniter
    - Eliminates igniter thru chamber throat
    - No Pc measurement required



Spark Plug Igniter with Machined Stub

4 @ 0.040" holes on 3/16" dia

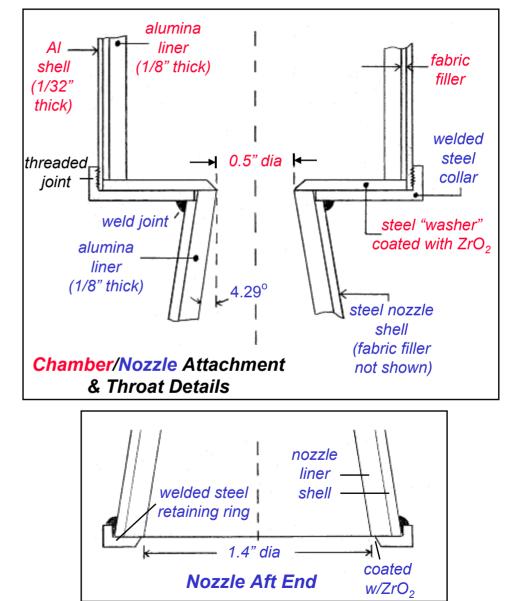
drilled perpendicular to surface

3/8" hole drilled

at 10-15 deg angle

(from vertical ref)

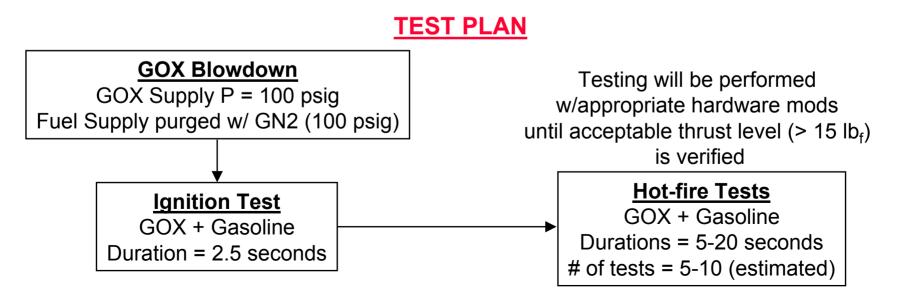



### HARDWARE DETAILS – CHAMBER/NOZZLE

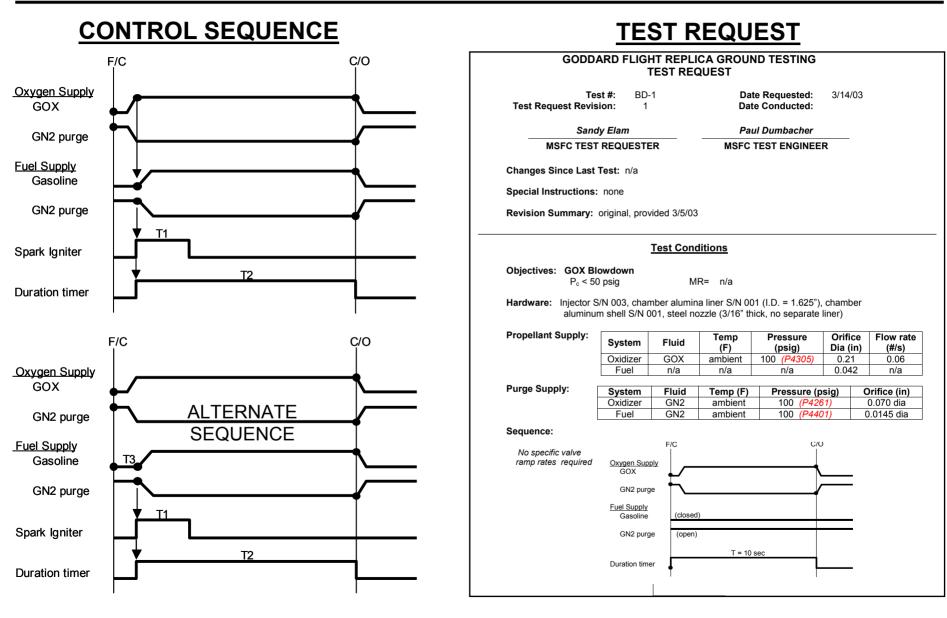
## Chamber

- 2 sizes available
  1) I.D. = 1.625", O.D. = 1.875"
  2) I.D. = 1.5", O.D. = 1.75"
- 5 of each size purchased from International Ceramics Engineering
- Steel "washer" creates "throat"
  - coated with zirconia for thermal protection

### Nozzle

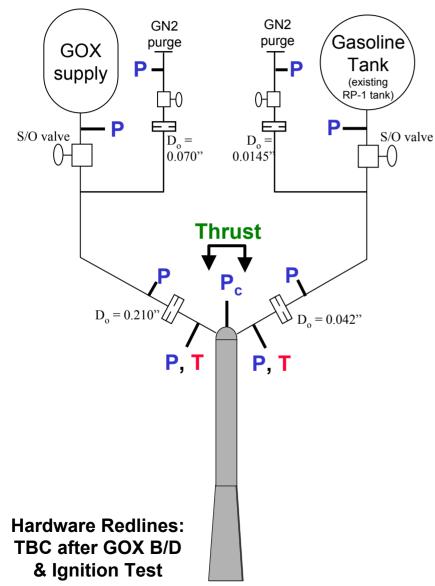

- Initial length = 6"
- Alternate length = 5" (depending on thrust results)
- 5 liners purchased from International Ceramics Engineering






|                    |                | Supply Pressure<br>(psig)                                                               | Flow Control<br>Orifice diameter (in) | flow rate<br>(lb <sub>m</sub> /s) |
|--------------------|----------------|-----------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------|
| TEST<br>CONDITIONS | GOX<br>System  | 100                                                                                     | 0.21                                  | 0.06                              |
|                    |                | Purged w ith GN2 supplied at 100 psig<br>(& controlled by 0.070" orifice in purge line) |                                       |                                   |
|                    | Fuel<br>System | 100                                                                                     | 0.042                                 | 0.025                             |
|                    |                | Purged with GN2 supplied at 100 psig<br>(& controlled by 0.0145" orifice in purge line) |                                       |                                   |

Ambient Propellants: GOX, 87 Octane Gasoline (additives will be considered, as necessary) Expected Conditions:  $P_c \sim 50 psig$ , MR  $\sim 2.4$ 










## **INSTRUMENTATION & DATA REQUIREMENTS**



#### Fuel Supply:

- Gasoline supply pressure (0-150 psig)
- Orifice upstream pressure (0-150 psig)
- Orifice downstream pressure (0-100 psig)
- Orifice downstream temp (ambient-6000 F)

#### **GOX Supply:**

- GOX supply pressure (0-150 psig)
- Orifice upstream pressure (0-150 psig)
- Orifice downstream pressure (0-100 psig)
- Orifice downstream temp (ambient-6000 F)

#### Additional instrumentation:

- Chamber pressure (0-100 psig)
- Thrust (0-30 lb<sub>f</sub>)
- Purge supply pressures (0-150 psig)

#### Other:

- No high frequency data required
- No high speed film required
- Standard video & photo services requested



## HARDWARE STATUS

- Injector
  - Initial unit (S/N 003) completed, uncoated
  - Additional units machined (VPS scheduled for 3/14/03)
- Chamber
  - Liner received, shell machined
  - Fabric filler available
  - Throat washer machined (VPS scheduled for 3/14/03)
- Nozzle
  - Ceramic liners expected 3/19/03

SS304L "nozzle" will support GOX B/D

& "ignition" testing until ceramic liners arrive

- Collar & retaining ring machined (VPS scheduled for 3/14/03)
- Appropriate ass'y will be available for GOX B/D & Ignition testing
- 1<sup>st</sup> assembly available for duration hot-fire testing: 3/21/03

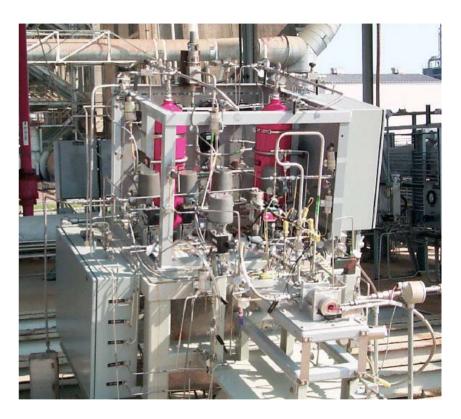


# **TEST FACILITY**

Paul Dumbacher TD71



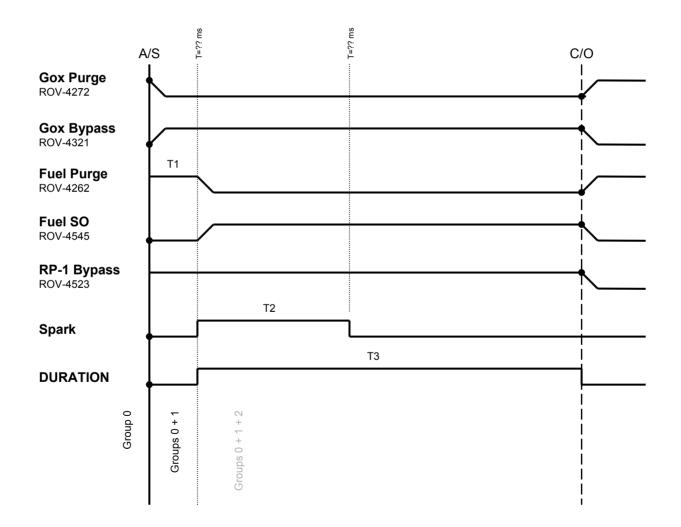
### **Facility Description:**


- GOX / Hydrocarbon fuel
- Dual hydrocarbon fuel systems
- Start-up and mainstage flowpaths for up to 100 lbs thrust
- Thrust Measurement

## **Facility Preparations:**

- Removed Laser Ignition combustion chamber
- Added firex leg to protect laser ignition connex
- Removed the "dog house" canopy

### Test Rig Preparations :


- Removed Laser Ignition combustion chamber
- Modified GOX purge and fuel purge flow rate orifices
- Modified GOX and fuel supply tubing for new injector interfaces
- Replaced load-cell (new range and cal)





### P2354 Goddard Replica Sequence

Sequence p2354001 - 03Mar11





# INSTRUMENTATION

Jason Elmore TD72 3/12/03



#### **Instrumentation Preparations:**

- Replaced Load Cell
- Wrapped exposed leads with heat tape

| 03-12-2003 | MID            | CH#     | MID DESCRIPTION                                     | RANGE UNITS   |
|------------|----------------|---------|-----------------------------------------------------|---------------|
|            | 42P1           | 58      | Optical Port Purge Press                            | 500 PSIS      |
|            | 42T1           | 57      | Optical Port Purge Temp                             | 100 DEGF      |
| ·          | FM4115         | 1       | Cooling Water Flow                                  | 30 GPM        |
| ·          | LC4601         | 4       | Measured Thrust A                                   | 100 LBS       |
|            | LC4602         | 5       | Measured Thrust A                                   | 100 LBS       |
| -          | P355           | 15      | GOX Trailer Press                                   | 3000 PSIG     |
| -          | P355<br>P4102  | 6       | Cooling Water Supply Press                          | 1000 PSIG     |
| -          |                | 7       |                                                     | 1000 PSIG     |
|            | P4115          | 8       | Cooling Water Outlet Press<br>ROV Control Pressure  | 200 PSIG      |
|            | P4205<br>P4215 |         |                                                     |               |
|            | P4215<br>P4225 | 9<br>10 | RP-1 Tank Supply Pressure<br>AF Tank Supply Press   | 1000 PSIG     |
|            | P4225<br>P4261 |         |                                                     | 1000 PSIG     |
|            | P4261<br>P4265 | 11      | Fuel/GOX Purge Press<br>Fuel Trickle Purge Pressure | 3000 PSIS     |
|            |                |         |                                                     | 1000 PSIG     |
|            | P4275          | 14      | GOX Trickle Purge Pressure                          | 1000 PSIG     |
| ·          | P4305          | 37      | GOX Press                                           | 1000 PSIS     |
| ŀ          | P4322          | 18      | GOX Bypass Venturi Inlet Press                      | 1000 PSIG     |
|            | P4324          | 19      | GOX Bypass Venturi Outlet Press                     | 1000 PSIS     |
|            | P4332          | 20      | GOX Main Venturi Inlet Press                        | 1000 PSIS     |
| -          | P4334          | 21      | GOX Main Venturi Outlet Press                       | 1000 PSIG     |
|            | P4399          | 22      | Injector GOX Press                                  | 1000 PSIG     |
|            | P4401          | 23      | Fuel Purge Set Pressure                             | 1000 PSIG     |
|            | P4402          | 24      | AF Tank Bottom Press                                | 1000 PSIG     |
| -          | P4421          | 25      | AF Venturi Inlet Press                              | 1000 PSIS     |
|            | P4422          | 27      | Fuel Purge Orifice Inlet Pressure                   | 1000 PSIS     |
| -          | P4501          | 56      | RP-1 Tank Top Press                                 | 1000 PSIS     |
|            | P4502          | 38      | RP-1 Tank Bottom Press                              | 1000 PSIG     |
|            | P4521          | 29      | RP-1 Bypass Line Pressure                           | 1000 PSIG     |
|            | P4522          | 30      | RP-1 Venturi Inlet Pressure                         | 1000 PSIG     |
| -          | P4531          | 31      | RP-1 Main Venturi Inlet Press                       | 1000 PSIG     |
| -          | P4532          | 32      | RP-1 Main Venturi Outlet Press                      | 1000 PSIS     |
|            | P4599          | 33      | Injector Fuel Press                                 | 1000 PSIG     |
| ŀ          | P4601          | 34      | Chamber Press                                       | 300 PSIS      |
|            | T4102          | 35      | Cooling Water Supply Temp                           | 0-200 DEGF    |
|            | T4115          | 36      | Cooling Water Outlet Temp                           | 0-400 DEGF    |
| ľ          | T4322          | 49      | GOX Bypass Venturi Inlet Temp                       | 40 - 150 DEGF |
| T43        | T4324          | 50      | GOX Bypass Venturi Outlet Temp                      | 40 - 150 DEGF |
|            | T4332          | 51      | GOX Main Venturi Inlet Temp                         | 40 - 150 DEGF |
|            | T4334          | 52      | GOX Main Venturi Outlet Temp                        | 40 - 150 DEGF |
|            | T4399          | 53      | Injector GOX Temp                                   | 40 - 150 DEGF |
|            | T4402          | 46      | AF Tank Bottom Temp                                 | 40 - 150 DEGF |
| ŀ          | T4421          | 47      | AF Venturi Inlet Temp                               | 40 - 150 DEGF |
| ŀ          | T4422          | 48      | AF Venturi Outlet Temp                              | 40 - 150 DEGF |
| ļ          | T4502          | 41      | RP-1 Tank Bottom Temp                               | 40 - 150 DEGF |
|            | T4521          | 42      | RP-1 Bypass Line Temp                               | 40 - 150 DEGF |
|            | T4522          | 43      | RP-1 Venturi Inlet Temp                             | 40 - 150 DEGF |
| ļ          | T4531          | 44      | RP-1 Main Venturi Inlet Temp                        | 40 - 150 DEGF |
|            | T4532          | 45      | RP-1 Main Venturi Outlet Temp                       | 40 - 150 DEGF |
|            | T4599          | 54      | Injector Fuel Temp                                  | 40 - 150 DEGF |
|            | T4600          | 55      | Ambient Temp                                        | 32 - 150 DEGF |



# **TEST CONTROL**

Be Trieu TD73 3/12/03



### **Control System Preparations:**

- Bypass logic for laser control interfaces
- Activate logic for spark wire
- Activate redline cuts as required after GOX blowdown
- Firex switch modification



# QUALITY

Chris Shepherd QS10



## SAFETY

## Johnney Mason HEI



# GODDARD ROCKET PROPELLANT TESTING Safety Analysis

#### <u>Scope</u>

Assess Facility, Test Stand, and Test Operations for Safety Concerns, which could lead to Personnel Injury, Property Loss, and/or Equipment Damage.

#### <u>Method</u>

Review All Test Requirements and the Assessments for Advanced Fuels and Laser Ignition Tests

- □ Inspection and Walk-Through of the facility
- Discussions with Test Personnel

#### **Recommendations and Closures**

- 3 Concerns Identified
- **3** Concerns Closed

#### **Continued S&MA support Activities**

- □ Complete verification of controls for "open" items
- □ Final walk-through of the facility



# GODDARD ROCKET PROPELLANT TESTING Safety Analysis

| No | CONCERN                                                                                          | CONTROL                                                                                                                                                                                                                                                                                                                                                                    | STATUS |
|----|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 1  | QD Requirements                                                                                  | A review of the use of gasoline with the Advanced Fuel test rig<br>provided no requirement greater than the requirements used for<br>the Laser Ignition Test work. Using the QD of 300 feet that was<br>established for the Ignition testing will provide an adequate<br>distance for the Goddard testing.                                                                 | Closed |
| 2  | Fire to the foam on<br>the CONX from a<br>gasoline fire or test<br>failure resulting in<br>fire. | The FIREX system was setup and operationally checked out by TPS-HCF-1298-M on 3/07/03.                                                                                                                                                                                                                                                                                     | Closed |
| 3  | Personnel exposure<br>to the gasoline<br>causing injury or<br>illness.                           | During all material handing where personnel are potentially<br>exposed to gasoline, as a minimum the requirements found in the<br>MSDS will be followed. These requirements are: Goggles with<br>Face Shield; Chemical protective gloves (Nitrile Rubber) and<br>splash aprons; and depending on time and available ventilation<br>respiratory protection may be required. | Closed |