# Calcium based phantom bursting model as described in: # Three Roads to Islet Bursting: Emergent Oscillations in Coupled # Phantom Bursters, C. L. Zimliki, D. Mears, and A. Sherman # Biophysical Journal, in press. # Corresponds to Fig. 1 # Units: t = ms; V = mV; g = pS; c = uM # Equations V' = -(Ica + Ikatp + Ikca + Ik)/Cm n' = (ninf - n)/taun c' = fcyt*(Jmem + Jer) a' = (ainf - a)/taua cer' = -fer*VcytVer*Jer # Activation functions ainf = 1/(1 + exp((R - c)/sa)) ninf = 1/(1 + exp((vn - V)/sn)) minf = 1/(1 + exp((vm - V)/sm)) w = c^nh/(c^nh + kD^nh) # Ionic currents Ikca = gkca*w*(V - Vk) Ikatp = gkatp*a*(V - Vk) Ik = gk*n*(V - Vk) Ica = gca*minf*(V - Vca) # Ca2+ fluxes Jmem = -(alpha*Ica + kpmca*c) Jer = pleak*(cer - c) - kserca*c # Parameters # Fig. 1A: gkca=800 (fast); 1B: gkca=400 (slow); 1C: gkca=610 (medium) par gkca=610, gkatp=450, gk=3000, gca=1200, Vk=-75, Vca=25 par kD=0.25, taun=16, taua=300000, Cm=5300, R=0.09, sa=0.2, fcyt=0.01 par VcytVer=50, fer=0.01, pleak=4e-5, kserca=0.2, kpmca=0.1 par alpha=2.25e-6, vn=-16, sn=5.6, vm=-20, sm=12, nh=5 # Initial conditions init v=-65, n=0.0001, c=0.1, a=0.516, cer=500 @ meth=cvode, dtmax=1, dt=5, total=1.0e5, maxstor=1000000 @ bounds=1000, xp=t, yp=v, toler=1.0e-7, atoler=1.0e-7 @ xlo=0, xhi=100000, ylo=-80, yhi=-20