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Abstract
The National Institute of Standards and Technology has developed a contact
micrometer for accurate measurement of the outer diameter of optical fibres.
The contact micrometer is used to measure reference fibres that are artefacts
used by the telecommunications industry for calibrating their own
measurement systems. We present a model for diameters measured by the
contact micrometer. Based on this model, the probability distribution of the
diameters is derived and two diameter estimates are presented. We illustrate
and compare the diameter estimates using simulated data.

1. Introduction

The optical fibre industry has developed the grey-scale
method [1], which uses a video microscope for measuring
the geometrical parameters of the cleaved end of a
telecommunications fibre. A typical single-mode optical fibre
is nearly circular and has a glass core of about 10 µm in
diameter surrounded by a glass cladding with an outer diameter
of about 125 µm. Grey-scale systems are used to determine the
cladding diameter, the non-circularity of the cladding, and
the decentring, or concentricity error, between the core and
the cladding. Measurements of non-circularity and decentring
do not require high absolute accuracy. The cladding diameter,
however, must be measured and controlled within 0.1 µm to
enable the manufacture of efficient fibre connectors that do not
require manual adjustment.

Measurements made with grey-scale systems may suffer
from a systematic error of a few tenths of a micrometre [2].
Consequently, industry needs a standard so that they can
correct for this systematic error. The National Institute of
Standards and Technology (NIST) has developed a contact
micrometer that can make cladding-diameter measurements
accurate to 0.04 µm [3]. The contact micrometer is used to
certify standard reference material (SRM) fibres that have been
commercially available since 1993.

Each SRM is individually calibrated. The SRM consists
of a short length of fibre in an aluminium housing. Cladding
diameters of the reference fibre are measured (by the contact
micrometer) at angular orientations of 0˚, 45˚, 90˚, and 135˚,
and the results are listed in an accompanying certificate. The
positions of these angles are marked by radial lines scribed at
the rear of the housing. To calibrate the grey-scale or other

systems, the user simply follows the instructions described in
the certificate to place the housing in the system at one of the
four angular positions, measures the diameter of the reference
fibre, compares it with the certified diameter, and calibrates
the system accordingly.

The above calibration procedure requires that the
reference fibre be contained in a housing that has lines scribed
at 45˚ intervals. In some special cases, NIST is asked to provide
calibration service for measurement systems that have their
own holders. In these cases, after diameter measurements are
taken, the NIST reference fibre is removed from its housing
and mounted into the alternative holder. In transferring the
fibre, the identification of angular orientation may be lost.
If the transverse diameter is measured by the system (which
is more like the NIST contact micrometer than a grey-scale
system) to be calibrated, the measurements may be limited to
comparison with a single certified value of diameter because
of the lack of angular information. Consequently, we need
to report a certified diameter for the reference fibre so it can
be compared with the diameter obtained from a measurement
system having the fibre oriented at any angle.

In this article, we propose a model for diameters measured
by the contact micrometer. Based on this model, the
probability distribution of the diameters is derived. Two
diameter estimates are presented. The first estimate is based
on the mean of the diameter measurements at equally spaced
angular orientations. The second estimate is obtained from a
non-linear estimation of elliptical parameters of the model.
The standard errors of the estimates for various sampling
schemes are calculated. We illustrate and compare the
diameter estimates using simulated data.
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2. Model of fibre cross section

Because fibre-cladding non-circularity is one of the primary
geometric measurements of interest, an ellipse rather than a
circle is used to model the cross section of a fibre. To be
consistent with formulations used in the industry, we express
the equation of the ellipse (assuming that it does not pass
through the origin) as

f (x, y) = Ax2 + Bxy + Cy2 + Dx + Ey + 1 = 0, (1)

where B2 − 4AC < 0. The centre of the ellipse is located at
(α, β), where

α = 2CD − BE

B2 − 4AC
, (2)

β = 2AE − BD

B2 − 4AC
(3)

and the major axis makes an angle of

θ = 1

2
tan−1

(
B

A − C

)
(4)

with the positive x-axis. The length of the semi-major axis,
M , is the larger of√

2(α2A + αβB + β2C − 1)

A + C + (B/ sin 2θ)
(5)

and √
2(α2A + αβB + β2C − 1)

A + C − (B/ sin 2θ)
, (6)

depending on the sign of B/ sin 2θ , and the length of the semi-
minor axis, m, is the smaller. In fibre modelling, the mean
diameter of the ellipse is defined to be the sum M + m, while
the non-circularity δ is defined as (M − m)/(M + m) and
is expressed as a percentage. The mean diameter and non-
circularity are estimated by substituting appropriate parameter
estimates Â, B̂, Ĉ, D̂, Ê in (2)–(6). Both the ordinary least
squares and errors-in-variables [4], or orthogonal-distance
least squares, can be used to fit (1) to grey-scale images.
For a detailed discussion on statistical methods applied to the
estimation of optical-fibre geometry, see [5, 6].

3. Contact micrometer

A contact micrometer [7] consists of a stationary post called
an anvil, and a movable part called a spindle. Measurements
are performed by first pressing the fibre between the spindle
and the anvil, with the position of the spindle being monitored
interferometrically. Then, the fibre is removed, and the spindle
is brought into contact with the anvil. The difference between
the two positions is the diameter of the fibre. If we model
the cross section of the fibre by an ellipse, then the contact
micrometer measures the horizontal width of the ellipse as the
diameter of the fibre. Figure 1 shows the horizontal width AB

of an ellipse.
The width in figure 1 is determined by the x-coordinates

of the two vertical tangent lines of the ellipse. From (1), we
find that

dy

dx
= −B

2C
± (B2x + BE)/2C − 2AX − D

G
,

A B

X

Y

Mm

θ

Figure 1. The horizontal width (AB) of an ellipse.

where

G =
√(

B2

4
− AC

)
x2 −

(
CD − BE

2

)
x +

E2

4
− C.

The values of x such that dy/dx = ±∞ satisfy G = 0, or

x = BE − 2CD

4AC − B2

∓
√

(BE − 2CD)2 − (4AC − B2)(4C − E2)

4AC − B2
. (7)

After some algebra, (7) reduces to

x = α ∓
√

m2 sin2 θ + M2 cos2 θ.

Thus,

W = AB = 2
√

m2 sin2 θ + M2 cos2 θ. (8)

For given M and m, the horizontal width W depends on the
orientation of the ellipse. Since θ can take any value between
0 and 2π , we can obtain the probability density function (pdf)
of W by assuming that θ is distributed uniformly in [0, 2π ].
Based on this assumption, the pdf of W is found to be

fW(w) = w

π
√

(M2 − m2)2 − (w2/2 − M2 − m2)2

2m < w < 2M. (9)

Figure 2 displays a histogram of W obtained from 100 000
simulated values of θ with M = 63 and m = 62. The
superimposed line is the pdf of W . The tails of this U-shaped
pdf play a significant role in the estimation of the cladding
diameter, which is discussed in the next section.

4. Estimation of diameter with exact angular control

The first method for estimating the cladding diameter based on
measurements from a contact micrometer uses measurements
at equally spaced angular orientations. Specifically, we use
the mean of horizontal widths at angles of 0˚, 45˚, 9˚, and
135˚ to estimate the diameter. A plausible model for these
measurements is

wi = 2
√

m2 sin2(ui − θ0) + M2 cos2(ui − θ0) + εi

= Wi + εi, (10)
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Figure 2. Histogram and pdf of horizontal widths of an ellipse with
M = 63 and m = 62.

where ui = (i−1)π/4, i = 1, 2, 3, 4, θ0 is the unknown initial
orientation of the ellipse, and εi are the zero-mean random
noise with standard deviation σε . In a typical measurement, σε

is estimated to be 0.014 µm [3]. Note that the Wi are identically
distributed but are correlated.

To simplify the presentation, we work with the
standardized horizontal width

Vi = Wi

M + m

= 2
√

ρ2 sin2(ui − θ0) + (1 − ρ)2 cos2(ui − θ0),

where ρ = m/(M + m), to evaluate the mean and variance of
the diameter estimator w̄4 = ∑4

i=1 wi/4.
We first evaluate E(Vi). It is seen that

E(Vi) = 1

2π

∫ 2π

0
2
√

ρ2 sin2 θ + (1 − ρ)2 cos2 θ dθ. (11)

The above integral is an elliptic integral of the second kind [8]
and can be evaluated accurately. Expanding the integrand
about ρ = 1/2, dropping all terms of order higher than six,
and then integrating, we obtain the approximation

E(Vi) ≈ 1 +
(
ρ − 1

2

)2
+ 1

4

(
ρ − 1

2

)4
+ 1

4

(
ρ − 1

2

)6
. (12)

For values of ρ that are relevant to our applications (δ < 1%),
the absolute difference between the exact and approximate
E(Vi) is smaller than 10−17. Even if δ is as large as 2%, the
absolute difference is still smaller than 10−8. Thus, we use

E(w̄4) ≈ (M + m)

(
1 +

δ2

22
+

δ4

26
+

δ6

28

)
. (13)

Recall that δ is the non-circularity measure.
To evaluate var(w̄4), we need to evaluate the covariances

of Vi and Vj . It is seen that cov(Vi, Vj ) depends only on
|ui − uj |. That is, cov(V1, V2) = cov(V2, V3) = cov(V3, V4),
and cov(V1, V3) = cov(V2, V4). Also, since Vi is periodic

with period = π , cov(V1, V4) = cov(V1, V2). In other words,
we need only to evaluate E(V 2

1 ), E(V1V2), and E(V1V3). For
E(V 2

1 ), we can obtain the exact result with

E(V 2
1 ) = 1

2π

∫ 2π

0
4(ρ2 sin2 θ + (1 − ρ)2 cos2 θ) dθ

= 2ρ2 + 2(1 − ρ)2,

We use the Taylor expansion to obtain the approximations

E(V1V2) ≈ 1 + 2
(
ρ − 1

2

)2
+

(
ρ − 1

2

)4
+ 2

(
ρ − 1

2

)6

and
E(V1V3) ≈ 1 + 4

(
ρ − 1

2

)4
+ 4

(
ρ − 1

2

)8
.

Again, the exact and approximate results of E(V1V2) and
E(V1V3) are practically equal, even if δ is as large as 2%.
Based on these results, it can be shown that

var(w̄4) = 1
4 var(W1) + 1

2 cov(W1, W2)

+ 1
4 cov(W1, W3) + 1

4σ 2
ε

≈ 7

212
(M + m)2δ8 +

1

4
σ 2

ε . (14)

The first term on the right-hand side of (14) is due to
the variation of the means of the four horizontal widths, and
the second term is due to the measurement errors. The first
term is much smaller than the second term even when the non-
circularity is moderate. For example, when M = 63 µm and
m = 62 µm,

var(w̄4) ≈ 0.448 × 10−15 µm2 + 0.49 × 10−4 µm2.

Thus, only the measurement errors contribute to the overall
uncertainty of w̄4 and hence w̄4 is an adequate estimator of the
diameter.

Forui = (i−1)π/4, i = 1, 2, . . . , 8, we haveWj = Wj+4,
j = 1, 2, 3, 4, and

∑8
i=1 Wi/8 = ∑4

i=1 Wi/4. That is, w̄4 is
essentially a mean of measurements at equally spaced angles
around a circle. Diameter estimators based on measurements
from other sampling schemes produce larger uncertainties than
that produced by w̄4. For the extreme case, let w̄r be the mean
of four measurements at random angular orientations. Then,

var(w̄r ) = 1
4 var(W1) + 1

4σ 2
ε

≈ 0.125 µm2 + 0.49 × 10−4 µm2 (15)

for M = 63 µm and m = 62 µm. Obviously, the uncertainty
of w̄r is too large to be acceptable. Also, let w̄7 be
the mean of seven measurements at angles of (i − 1)π/4,
i = 1, 2, . . . , 7, i.e. angles are equally spaced but do not
complete the circle. Then,

var(w̄7) = 13
49 var(W1) + 24

49 cov(W1, W2)

+ 12
49 cov(W1, W3) + 1

7σ 2
ε

≈ 7

212
(M + m)2δ8 +

1

98
(M + m)2δ2 +

1

7
σ 2

ε .

(16)

Comparing (16) with (14), var(w̄7) has an extra term in δ2.
This term can be relatively large if the non-circularity is not
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small. For example, when M = 63 µm and m = 62 µm, this
term is 0.0102 µm2, which is much larger than the error term
of 0.28×10−4 µm2. Thus, w̄7 is an inferior diameter estimator
to w̄4 even though three more measurements were used. This
is because the sampling scheme corresponding to w̄7 produces
uneven numbers of horizontal width measurements in the tail
areas (see figure 2). Depending on the initial orientation
of the fibre, either two measurements are taken in the left
tail (three in the right tail) or three measurements in the
left tail (two in the right tail), resulting in a mean having a
larger variance than the mean based on a balanced scheme.
A similar result on the optimality of balanced sampling
schemes for measurements collected on the circumference of
circular features was discussed in [9].

5. Estimation of diameter with known angular
increment

The second method of estimating fibre diameter by means
of contact micrometer measurements is based on known
angular increments. Sometimes, it may not be possible
to rotate the fibre to a desired orientation with acceptable
precision. Instead, it can be rotated by a fixed mechanism,
which corresponds to a known angular increment. That is,
the resulting sampling scheme may not be balanced. Since
the increments are known, based on (ui, wi), we can first
estimate the parameters m, M , and θ0 in (10) using non-linear
regression and then use these parameter estimates to determine
the expected horizontal width according to (13). However,
since for a typical fibre, the (M + m)δ2/4 term in (13) is
smaller than the last digit of the value used in reporting the
certified diameter, and in order to be consistent with the grey-
scale method, we estimate the diameter using Ŵ with

Ŵ = M̂ + m̂, (17)

where M̂ and m̂ are obtained from the non-linear fit of (10).
Although sampling plans are critical to the optimality of non-
linear parameter estimates M̂ and m̂, and hence Ŵ , we can
compensate for the lack of balanced sampling schemes by
increasing the number of measurements used in the non-linear
fit. Thus, the effects of an unbalanced sampling scheme should
be less drastic than what we observed in the previous section
for means of wi .

The variance of Ŵ is approximated by

ˆvar(Ŵ ) ≈ ˆvar(M̂) + ˆvar(m̂) + 2 ˆcov(M̂, m̂), (18)

where the variance and covariance of Ŵ and m̂ are part of
the non-linear least-squares solution. We use simulations to
illustrate the method proposed in this section.

The units of the fibre diameter used in the simulation
are micrometres. The first simulation is based on the seven-
measurement example in the last section. We first generate wi ,
i = 1, 2, . . . , 7, according to (10) with (M, m) = (63, 62) and
(M, m) = (63.75, 61.25), ui = (i − 1)π/4, and an arbitrary
orientation θ0. Gaussian random noises with mean 0 and
standard deviation 0.014 are used to perturb the measurements.
We then obtain the least-squares estimates of M , m, and
θ0 based on (ui, wi), i = 1, 2, . . . , 7. We also obtain the
diameter estimator Ŵ of (17), its estimated variance of (18),

Table 1. Simulation results (µm) for ui = (i − 1)45˚,
i = 1, 2, . . . , 7.

M = 63, m = 62 M = 63.75, m = 61.25

Mean Sd Mean Sd

Ŵ 125.000 0.005 40 125.012 0.005 40
w̄7 125.000 0.101 70 125.008 0.253 90√

ˆvar(Ŵ ) 0.005 42 6 × 10−6 0.005 42 1 × 10−5

Table 2. Simulation results (µm) for ui = (i − 1)10˚,
i = 1, 2, . . . , 8.

M = 63, m = 62 M = 63.75, m = 61.25

Mean Sd Mean Sd

Ŵ 125.000 0.015 10 125.013 0.015 10
w̄8 124.999 0.501 25 125.005 1.253 14√

ˆvar(Ŵ ) 0.015 16 0.000 15 0.015 17 0.000 37

and w̄7 = ∑7
i=1 wi/7. The process is repeated 10 000 times.

Table 1 lists the statistics of the simulation results for both
(M, m) = (63, 62) and (M, m) = (63.75, 61.25).

The row labelled Ŵ in table 1 displays the mean and
standard deviation of the 10 000 simulated Ŵ . Since the
standard error of the random noise is 0.014/

√
7 = 0.005 29,

the estimation method based on the least-squares solution of
elliptical parameters contributes insignificantly to the overall
uncertainty of the diameter estimate for both δ = 0.8% and
δ = 2%. We include the w̄7 row to compare the uncertainties of
w̄7 obtained by simulation and by (16). The last row shows the
mean and standard deviation of the 10 000 estimated standard
error of Ŵ using (18), indicating that (18) is an adequate
approximation of var(Ŵ ).

In the second simulation, we employ the same simulation
parameters used in the first study except ui = (i − 1)10˚,
i = 1, 2, . . . , 8. Obviously, this is not a desirable sampling
scheme (all the measurements are from the same quadrant), and
should be avoided in practice. Table 2 displays the statistics
of diameter estimates based on 10 000 simulated samples.

The standard error of the mean horizontal width w̄8 when
(M, m) = (63, 62) in table 2 (0.501 25) is twice as large as the
standard error of the mean of eight horizontal widths at random
angular orientations (0.250 05 by (15)). With the random-
angle scheme, it is likely that the measurements would be
drawn from more than one quadrant, resulting in a (relatively)
more symmetric distribution of horizontal widths. Table 2 also
indicates that Ŵ is an acceptable diameter estimator even with
this poor sampling scheme.

For balanced and complete sampling schemes, the method
based on the mean width and the method based on elliptical
parameter estimation perform equally well. Tables 3 and 4
display the simulation results for cases with n = 4 and 8, and
for (M, m) = (63, 62) and (M, m) = (63.75, 61.25).

6. Estimation of diameter with angles subject to
error

In real experiments, the angles may be subject to measurement
error. In the literature of simple linear regression when both
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Table 3. Simulation results (µm) for two balanced schemes when
(M, m) = (63, 62) µm.

n = 4 n = 8

Mean Sd Mean Sd

Ŵ 125.000 0.007 03 125.000 0.004 97
w̄n 125.002 0.007 03 125.002 0.004 97√

ˆvar(Ŵ ) 0.007 00 4 × 10−9 0.004 95 2 × 10−9

Table 4. Simulation results (µm) for two balanced schemes when
(M, m) = (63.75, 61.25) µm.

n = 4 n = 8

Mean Sd Mean Sd

Ŵ 125.012 0.007 03 125.012 0.004 97
w̄n 125.012 0.007 03 125.012 0.004 97√

ˆvar(Ŵ ) 0.007 00 1 × 10−8 0.004 95 6 × 10−9

Table 5. Simulation results (µm) for two sampling schemes with
angles subject to error when (M, m) = (63, 62) µm.

45˚ (n = 4) 10˚ (n = 8)

Mean Sd Mean Sd
Ŵ 125.000 0.010 01 125.000 0.021 97
w̄n 125.002 0.010 01 125.003 0.501 42√

ˆvar(Ŵ ) 0.007 00 6 × 10−9 0.015 16 0.000 15

variables are subject to measurement errors, it is stated that if
the measurement error variance in X (independent variable) is
small relative to the variability of the X’s, then errors in the
X’s can be safely ignored. If we apply this criterion to our
experiments, we would like the angular measurement error
variance to be small relative to the variance of the angular
measurements. One method of increasing the variance of the
angular measurements is to have a balanced sampling scheme.
We use simulations to study the effects of angular measurement
errors on the second diameter estimation method.

We employ the same simulation parameters used in the
previous studies. We allow the orientation ui to randomly
vary within ±1˚ of its nominal value, which represents a worst-
case scenario in our experiments. We then generate wi using
the perturbed orientations. The method of elliptical parameter
estimation based on nominal ui and wi is used to estimate the
diameter. Table 5 shows the results for (M, m) = (63, 62).

Table 5 indicates that although the relative increase in the
standard error of Ŵ is large (greater than 40%) when the ui

are subject to error, the absolute increase, however, is not large
enough to make Ŵ unacceptable. It also indicates that errors
in the ui cause ˆvar(Ŵ ) to underestimate var(Ŵ ).

We replace the ordinary least-squares method with the
errors-in-variables method in elliptical parameter estimation.
For the case with nominal ui = (i − 1)π/4, i = 1, 2, 3, 4,

the standard deviation of the 10 000 simulated Ŵ is found
to be 0.009 57, and the mean and standard deviation of

the 10 000 simulated
√

ˆvar(Ŵ ) are 0.010 64 and 0.001 10,
respectively. Thus, the errors-in-variables method produces
a closer estimate for the standard error of Ŵ .

7. Concluding remarks

Geometrically uniform fibres are required in large-scale fibre
networks. The optical-fibre industry uses the grey-scale
method to measure key fibre geometric parameters. NIST
provides SRM fibres so that the industry has artefacts for
calibrating their grey-scale systems. The SRM fibres are
certified by a contact micrometer that is capable of measuring
the cladding diameter accurate to 0.04 µm. The certified
cladding diameter of the SRM fibre is reported in the
accompanying certificate.

We proposed a model for diameters measured by the
contact micrometer. We presented two methods for estimating
the cladding diameter of the SRM fibre. The first estimate is
based on the mean of diameter measurements, and requires
the measurements to be taken at equally spaced angular
orientations. The second estimate is based on the non-linear
estimation of elliptical parameters of the model and does not
require the special sampling scheme. In preparing SRM fibres,
we take measurements at equally spaced angular orientations
and use both methods to assure an accurate estimate of the
cladding diameter of fibres.

Acknowledgments

This work is a contribution of the NIST and is not subject to
copyright in the United States.

References

[1] Telecommunications Industry Association 1993
TIA/EIA-455-176 (Fiber Optic Test Procedure FOTP-176):
Method for Measuring Optical Fiber Cross-Sectional
Geometry by Automated Grey-Scale Analysis (Arlington, VA:
TIA)

[2] Mechels S E and Young M 1991 Appl. Opt. 30 2202–11
[3] Young M, Hale P D and Mechels S E 1993 J. Res. Natl Inst.

Stand. Technol. 98 203–16
[4] Fuller W A 1987 Measurement Error Models (New York:

Wiley)
[5] Mamileti L, Wang C M, Young M and Vecchia D F 1993 Appl.

Opt. 31 4182–5
[6] Wang C M, Vecchia D F, Matt Y and Brilliant N A 1997

Technometrics 39 25–33
[7] Young M 1991 Technical Digest: Optical Fibre Measurement

Conference (OFMC), 17–18 September 1991, York
(Teddington, UK: National Physical Laboratory) pp 123–6

[8] Abramowitz M and Stegun I A 1965 Handbook of
Mathematical Functions (Applied Mathematical Series
vol 55) (Washington DC: US Government Printing Office)

[9] Wang C M and Lam C T 1997 Technometrics 39 119–26

Metrologia, 40 (2003) 57–61 61


