Methods for Computing Navigation Accuracy Category (NAC) for Traffic Information Service-Broadcast (TIS-B)

ICNS Conference
April 2004
Roxaneh Chamlou

Outline

- Motivation
- Definitions -- $\mathrm{NAC}_{\mathrm{P}}$ and $\mathrm{NAC}_{\mathrm{v}}$
- Characteristics of Uncertainty Region for TIS-B Track Reports
- Derivation of 1- σ Uncertainty Ellipse from State Covariance
- Derivation of 95\% Circular Uncertainty (NAC) from 1- σ Uncertainty Ellipse
- Exact and Bounded Methods
- Performance Comparison
- Summary of Algorithm for Exact Method with Example
- Future Work

Motivation

- Aircraft Surveillance Applications (ASA) ${ }^{1}$ require accuracy of reported position and velocity to determine if acceptable performance is met for intended use
- Horizontal position and velocity accuracies for Automatic Dependent Surveillance-Broadcast (ADS-B) and TIS-B are conveyed by single integers:
- Navigation Accuracy Category for Position, NAC $_{\mathbf{p}}$
- Navigation Accuracy Category for Velocity, NAC $_{\mathbf{v}}$
${ }^{1}$ Reference: Minimum Aviation System Performance Standards for Aircraft Surveillance Applications (ASA), RTCA Do-289

Definitions -- NAC $_{P}$ and NAC ${ }_{V}$

- $\mathrm{NAC}_{\mathrm{P}}{ }^{\mathbf{1}}$:
- The Estimated Position Uncertainty (EPU) is the 95\% accuracy bound on horizontal position
- EPU is defined as the radius of a circle, centered on a reported position, such that the probability of the actual position being outside the circle is $\mathbf{0 . 0 5}$
- Horizontal NAC P $_{P}$ is an index to EPU
- Example: $\mathbf{E P U}=1 \mathrm{nmi} \Leftrightarrow$ NAC $_{\mathbf{P}}=4$
- $N A C_{V}{ }^{1}$ is an index to the $\mathbf{9 5 \%}$ accuracy of the least accurate rate component
${ }^{1}$ Reference: Minimum Aviation System Performance Standards for Aircraft Surveillance Applications (ASA), RTCA Do-289

Characteristics of Uncertainty Region for TIS-B Reports

- Uncertainty of Track Position and Rate derived from Radars are not Circular but Elliptical in the Horizontal Plane.

- Uncertainty Ellipse Orientation varies with Time and is Rotated with respect to the Reference Coordinate Frame.

Uncertainty Characterized by Filtered State Covariance

- Modern Trackers are based on Kalman Filter (e.g., SENSIS, STARS, MICROEARTS) and provide a measure of the error statistics through the covariance
- The covariance of a column vector $\mathbf{E}_{\mathbf{k}}=\left[\begin{array}{lll}\Delta x \Delta x & \Delta y & \Delta \dot{y}\end{array}\right]$ where $(\Delta x, \Delta y)$ are the position and $(\Delta \dot{x}, \Delta \dot{y})$ are the rate errors in the horizontal plane is given by

$$
\begin{align*}
& \mathbf{P}=\operatorname{Cov}\left[\mathbf{E}_{\mathbf{k}}\right]=E\left[\mathbf{E}_{\mathbf{k}} \mathbf{E}_{\mathbf{k}}{ }^{\mathbf{T}}\right] \\
& \left.\left.=\left[\begin{array}{lllll}
E[\Delta x & \Delta x] & E[\Delta x & \Delta \dot{x}] & E[\Delta x \\
\Delta y] & E[\Delta x & \Delta \dot{y}] \\
E[\Delta \dot{x} & \Delta x] & E[\Delta \dot{x} & \Delta \dot{x}] & E[\Delta \dot{x} \\
\Delta y] & E[\Delta \dot{x} & \Delta \dot{y}] \\
E[\Delta y & \Delta x] & E[\Delta y & \Delta \dot{x}] & E[\Delta y \\
\Delta y] & E[\Delta y & \Delta \dot{y}] \\
E[\Delta \dot{y} & \Delta x] & E[\Delta \dot{y} & \Delta \dot{x}] & E[\Delta \dot{y}
\end{array} \Delta y\right] ~ E[\Delta \dot{y} \quad \Delta \dot{y}]\right]\right] \tag{1}\\
& =\left[\begin{array}{cccc}
\sigma_{x}^{2} & \sigma_{x \dot{x}}^{2} & \sigma_{x y}^{2} & \sigma_{x \dot{y}}^{2} \\
\sigma_{x \dot{x}}^{2} & \sigma_{\dot{x}}^{2} & \sigma_{\dot{x} y}^{2} & \sigma_{\dot{x} \dot{y}}^{2} \\
\sigma_{x y}^{2} & \sigma_{\dot{x} y}^{2} & \sigma_{y}^{2} & \sigma_{y \dot{y}}^{2} \\
\sigma_{x \dot{y}}^{2} & \sigma_{\dot{x} \dot{y}}^{2} & \sigma_{y \dot{y}}^{2} & \sigma_{\dot{y}}^{2}
\end{array}\right]
\end{align*}
$$

- Diagonal elements are the variances, off-diagonal encode correlations

Decoupled Position and Velocity Covariance

- Covariance Matrix can be partitioned ${ }^{1}$ into position and rate terms as a property of the multivariate Gaussian distribution of E_{k}.

$$
\begin{align*}
& \mathbf{P}=\operatorname{Cov}\left[\mathbf{E}_{\mathbf{k}}\right]=E\left[\mathbf{E}_{\mathbf{k}} \mathbf{E}_{\mathbf{k}}{ }^{\mathbf{T}}\right] \\
& =\left[\begin{array}{cccc}
\sigma_{x}^{2} & \sigma_{x \dot{x}}^{2} & \sigma_{x y}^{2} & \sigma_{x \dot{y}}^{2} \\
\sigma_{x \dot{y}}^{2} & \sigma_{\dot{x}}^{2} & \sigma_{x y}^{2} & \sigma_{x \dot{x}}^{2} \\
\sigma_{x y}^{2} & \sigma_{x y}^{2} & \sigma_{y}^{2} & \sigma_{x \dot{y}}^{2} \\
\sigma_{x \dot{y}}^{2} & \sigma_{x \dot{x}}^{2} & \sigma_{y \dot{y}}^{2} & \sigma_{\dot{y}}^{2}
\end{array}\right] \tag{2}\\
& \mathbf{P}_{p o s}=\operatorname{Cov}\left[\mathbf{E}_{p o s}\right]=E\left[\mathbf{E}_{p o s} \mathbf{E}_{p o s}^{\mathrm{T}}\right] \\
& =\left[\begin{array}{cc}
\sigma_{x}^{2} & \sigma_{x y}^{2} \\
\sigma_{x y}^{2} & \sigma_{y}^{2}
\end{array}\right] \tag{3}\\
& \mathbf{P}_{\text {rate }}=\operatorname{Cov}\left[\mathbf{E}_{\text {rate }}\right]=E\left[\mathbf{E}_{\text {rate }} \mathbf{E}_{\text {rate }}^{\mathrm{T}}\right] \\
& =\left[\begin{array}{ll}
\sigma_{\dot{x}}^{2} & \sigma_{x i}^{2} \\
\sigma_{\dot{x} \dot{y}}^{2} & \sigma_{\dot{y}}^{2}
\end{array}\right]
\end{align*}
$$

- Calculation of $\mathrm{NAC}_{\mathrm{p}}$ and $\mathrm{NAC}_{\mathrm{v}}$ are decoupled.
- Remainder of talk is focused on algorithmic development of NAC p_{p}.
${ }^{1}$ Reference: B. Nobel, J.W. Daniel, Applied Linear Algebra, Prentice Hall, Nov. 1987

Derivation of 1- σ Uncertainty Ellipse from Covariance

Gaussian Density Function

- Bivariate Gaussian density of $\mathbf{E}_{p o s}$ is:

$$
\begin{equation*}
f_{\mathbf{E}_{p o s}}\left(\mathbf{e}_{p o s}\right)=\frac{\left(\operatorname{det} \mathbf{P}_{p o s}\right)^{-1}}{2 \pi} \exp \left(-1 / 2\left(\mathbf{e}_{p o s}{ }^{T} \mathbf{P}_{p o s}{ }^{-1} \mathbf{e}_{p o s}\right)\right) \tag{5}
\end{equation*}
$$

- Contours of $\boldsymbol{f}_{\mathrm{E}}\left(\mathrm{e}_{\text {pos }}\right)$ described by:

$$
\begin{align*}
C & =\mathbf{e}_{p o s}^{T} \mathbf{P}_{p o s}^{-1} \mathbf{e}_{\text {pos }} \\
& =\left[\begin{array}{ll}
\Delta x & \Delta y
\end{array}\right]\left[\begin{array}{ll}
\sigma_{x}^{2} & \sigma_{x y} \\
\sigma_{x y} & \sigma_{y}^{2}
\end{array}\right]^{-1}\left[\begin{array}{c}
\Delta x \\
\Delta y
\end{array}\right] \tag{6}\\
& =\frac{1}{1-\rho^{2}}\left(\frac{\Delta x^{2}}{\sigma_{x}^{2}}-2 \rho \frac{\Delta x \Delta y}{\sigma_{x} \sigma_{y}}+\frac{\Delta y^{2}}{\sigma_{y}^{2}}\right) \text { where } \rho=\frac{\sigma_{x y}^{2}}{\sigma_{x} \sigma_{y}}
\end{align*}
$$

- This is an ellipse that is rotated by an angle θ.

$$
\begin{equation*}
\theta=\frac{1}{2} \arctan \left(\frac{2 \rho \sigma_{x} \sigma_{y}}{\sigma_{x}^{2}-\sigma_{y}^{2}}\right) \tag{7}
\end{equation*}
$$

- In rotated coordinate frame components of uncertainty are independent.

MITRE

Derivation of 95\% Circular Uncertainty (NAC) from 1- σ Uncertainty Ellipse

- Covariance provides 1- σ Uncertainty
- Desired to find simple scaling of 1- σ major axis to find NAC
- 95\% Elliptical Error Bound
- Requires simple 2.4477 scaling of 1- σ ellipse
- Scaling is independent of eccentricity of ellipse
- 95\% Circular Uncertainty found by twodimensional integration of $\boldsymbol{f}_{\mathrm{E}}\left(\mathrm{e}_{p o s}\right)$ over a circular domain
- No closed form solution
- Real-time numerical integration not practical
- No single scaling of 1- σ major axis works for all eccentricities
- Two methods explored:
- Exact
- Offline Numerical Integration to calculate scalar factor of 1- σ major axis parameterized

Description of the Three Error Bounds

- Calculate eccentricity via eigenvalues of filtered covariance.
- Bounded
- Fixed scale factor to derive NAC from 1- σ uncertainty

Exact Method

- Calculate the scaling factor as a function of the ratio of major-to-minor axes
- The axes of the ellipse are computed from the eigenvalues of the partitioned Covariance matrix. The eigenvalues, λ_{1} and λ_{2}, of a symmetric 2×2 matrix

$$
P=\left[\begin{array}{cc}
\sigma_{x}^{2} & \sigma_{x y}^{2} \\
\sigma_{x y}^{2} & \sigma_{y}^{2}
\end{array}\right]
$$

are given by the equation

$$
\begin{align*}
\lambda_{1,2} & =\frac{\left(\sigma_{x}^{2}+\sigma_{y}^{2}\right) \pm \sqrt{\left(\sigma_{x}^{2}-\sigma_{y}^{2}\right)^{2}+4 \sigma_{x y}^{4}}}{2} \tag{8}\\
& " 1-\sigma^{\prime \prime} \operatorname{axis}_{\text {midior }}=\max \left(+\sqrt{\lambda_{1}}++\sqrt{\lambda_{2}}\right) \tag{9}\\
& " 1-\sigma^{\prime \prime} \operatorname{axis}_{\text {minior }}=\min \left(+\sqrt{\lambda_{1}},+\sqrt{\lambda_{2}}\right) \tag{10}
\end{align*}
$$

Exact Method (cont'd)

- Equation of 95\% Uncertainty Region (NAC):
- Applying change of basis (rotation of covariance) and change of variables:
- Containment radius $=\boldsymbol{k} *\left(\lambda_{\text {major }}\right)^{1 / 2}$
- Build solution table offline
- Solve for k
- Parameterized by $\sqrt{\lambda_{\text {major }} / \lambda_{\text {minor }}}$

Exact Method - Performance

Variable scaling factor, \boldsymbol{k}, computed via numerical integration for a constant $\mathbf{9 5 \%}$ containment region.

- Range of values for $\boldsymbol{k} \boldsymbol{2} \mathbf{2 . 4 4 7 7}$ to $\mathbf{1 . 9 6 2 5}$
- The scaling factors can be:
- Interpolated between exact solutions in a look-up table.
- Approximated by the following expression

$$
\begin{align*}
& k=\frac{(2.4477-1.9625)}{\text { ratio }^{3}}+1.9625=\frac{.4852}{\text { ratio }^{3}}+1.9625 \\
& \text { where ratio }=\frac{" 1-\sigma " \text { axis }_{\text {major }}}{" 1-\sigma " \text { axis }_{\text {minor }}}=\frac{\max \left(+\sqrt{\lambda_{1}},+\sqrt{\lambda_{2}}\right)}{\min \left(+\sqrt{\lambda_{1}},+\sqrt{\lambda_{2}}\right)} \tag{13}
\end{align*}
$$

Scaling Factor and Performance of Exact Method

Approximation of Scaling Factor

Ratio of Major-to-Minor Axis

Bounded Method: Root-Sum-Squared (RSS)

- The RSS method:
- Containment radius $=$ RSS $_{k}$ defined by:

$$
\begin{equation*}
R S S_{k}=\sqrt{\left(k * \sigma_{x}\right)^{2}+\left(k * \sigma_{y}\right)^{2}}=k \sqrt{\sigma_{x}^{2}+\sigma_{y}^{2}} \tag{14}
\end{equation*}
$$

- Uses the components from the covariance matrix. Equivalent to root-sumsquared of the square roots of the eigenvalues

$$
\begin{equation*}
R S S_{k}=\sqrt{\left(k * \sqrt{\lambda_{1}}\right)^{2}+\left(k * \sqrt{\lambda_{2}}\right)^{2}}=k \sqrt{\lambda_{1}+\lambda_{2}} \tag{15}
\end{equation*}
$$

- Converges to exact solution for highly elongated ellipse, $\boldsymbol{\lambda}_{1} \gg \lambda_{2}$
- The containment region derived from the RSS radius will vary depending on the eccentricity of the error ellipse because it uses a fixed scaling factor

Performance of RSS Method

- Scaling extrema from Exact Method: Circular $=2.4477$ and Elongated Ellipse $=1.9625$

Performance of RSS using Scaling Factor $=1.9625$

Performance of RSS using Scaling Factor $=2.4477$

- For scaling factor $=1.9625$ converges to $\mathbf{9 5 \%}$ as ratio increases, but exceeds the $\mathbf{9 5 \%}$ threshold by $\mathbf{3 \%}$ at ratio $=1$
- For scaling factor $=2.4477$ the containment region only approaches $\mathbf{9 8 . 6 \%}$ and exceeds the threshold by 5% when ratio $=1$.

Algorithm Summary for Computing NACp using Exact Method - with an Example

1. Partition the covariance matrix into position-only and rate-only submatrices.

$$
P=\left[\begin{array}{cccc}
4.84 \mathrm{e}+5 & \mathrm{~d} & -3.176 \mathrm{e}+5 & \mathrm{~d} \\
\mathrm{~d} & 7.657 \mathrm{e}+2 & \mathrm{~d} & -1.452 \mathrm{e}+2 \\
-3.176 \mathrm{e}+5 & \mathrm{~d} & 6.577 \mathrm{e}+5 & \mathrm{~d} \\
\mathrm{~d} & -1.452 \mathrm{e}+2 & \mathrm{~d} & 8.877 \mathrm{e}+2
\end{array}\right] \quad \square \quad \begin{array}{ll}
\mathbf{P}_{\text {pos }}=\left[\begin{array}{cc}
4.84 \mathrm{e}+5 & -3.176 \mathrm{e}+5 \\
-3.176 \mathrm{e}+5 & 6.577 \mathrm{e}+5
\end{array}\right] \\
\end{array}
$$

2. Find the eigenvalues of each submatrix (Equation 8). Here shown for position-only.

$$
\begin{gathered}
\lambda_{1,2}=\frac{(4.84 \mathrm{e}+5+6.577 e+5) \pm \sqrt{(4.84 \mathrm{e}+5-6.577 e+5)^{2}+4(-3.176 \mathrm{e}+5)^{2}}}{2} \quad \quad \lambda_{1}=9.0011 e+5 ; \quad \lambda_{2}=2.4159 e+5 \\
\text { major axis }=\sqrt{\lambda_{1}}=958.7417 \text { feet } ; \text { minor axis }=\sqrt{\lambda_{2}}=491.5172 \text { feet }
\end{gathered}
$$

3. Compute the real time ratio to approximate the scaling factor from Equation (11).

$$
\text { ratio }=9.58 .7417 / 491.5172=1.95 \quad k=\frac{0.4852}{1.95^{3}}+1.9625=2.0279
$$

4. Compute Radius of 95% Containment:

$$
\text { radius }=k^{*} \text { major axis }=2.0458^{*} 958.7417[f e e t]=1.96 e+3[f e e t]=0.323 \mathrm{nmi} .
$$

5. From Table 3-6 in ASA MASPS ${ }^{1}$ this corresponds to $\mathrm{NAC}_{\mathrm{P}}=6$.

Conclusion

- The Exact Method:
- Outperforms the Bounded Method
- Maintains a stable 95\% containment region during straight line phase of trajectory
- Computationally feasible

Future Work

- The estimated covariance matrix underestimates the true uncertainty during the transition period from straight line to maneuver trajectory.
- Characterize the uncertainty during the transition phase
- Depends on:
- Tracker Type (e.g., using simple Maneuver Detection or Interactive Multiple Model (IMM) to account for maneuvers)
- Sensor type (i.e., measurement accuracy, update rate)
- Target-to-Sensor Geometry
- Number of Sensors
- Type of maneuver (e.g., maximum acceleration)

