

Methods for Computing Navigation Accuracy Category (NAC) for Traffic Information Service-Broadcast (TIS-B)

ICNS Conference April 2004 Roxaneh Chamlou

© 2004 The MITRE Corporation. All Rights Reserved.

Outline

- Motivation
- Definitions -- NAC_P and NAC_v
- Characteristics of Uncertainty Region for TIS-B Track Reports
- Derivation of 1-σ Uncertainty Ellipse from State Covariance
- Derivation of 95% Circular Uncertainty (NAC) from 1-σ Uncertainty Ellipse
 - Exact and Bounded Methods
 - Performance Comparison
 - Summary of Algorithm for Exact Method with Example
- Future Work

Motivation

- Aircraft Surveillance Applications (ASA)¹ require accuracy of reported position and velocity to determine if acceptable performance is met for intended use
- Horizontal position and velocity accuracies for Automatic Dependent Surveillance-Broadcast (ADS-B) and TIS-B are conveyed by single integers:
 - Navigation Accuracy Category for Position, NAC_p
 - Navigation Accuracy Category for Velocity, NAC_v

¹Reference: Minimum Aviation System Performance Standards for Aircraft Surveillance Applications (ASA), RTCA Do-289

Definitions -- NAC_P and NAC_V

- NAC_P^1 :
 - The Estimated Position Uncertainty (EPU) is the 95% accuracy bound on horizontal position
 - EPU is defined as the radius of a circle, centered on a reported position, such that the probability of the actual position being outside the circle is 0.05
 - Horizontal NAC_P is an index to EPU
 - Example: EPU = 1 nmi \Leftrightarrow NAC_P = 4
- NAC_V^{-1} is an index to the 95% accuracy of the least accurate rate component

¹Reference: Minimum Aviation System Performance Standards for Aircraft Surveillance Applications (ASA), RTCA Do-289

Characteristics of Uncertainty Region for TIS-B Reports

• Uncertainty of Track Position and Rate derived from Radars are not *Circular* but *Elliptical* in the Horizontal Plane.

• Uncertainty Ellipse Orientation varies with Time and is Rotated with respect to the Reference Coordinate Frame.

Uncertainty Characterized by Filtered State Covariance

- Modern Trackers are based on Kalman Filter (e.g., SENSIS, STARS, MICROEARTS) and provide a measure of the error statistics through the covariance
- The covariance of a column vector $\mathbf{E}_{\mathbf{k}} = [\Delta x \, \Delta \dot{x} \, \Delta y \, \Delta \dot{y}]$ where $(\Delta x, \, \Delta y)$ are the position and $(\Delta \dot{x}, \Delta \dot{y})$ are the rate errors in the horizontal plane is given by

$$\mathbf{P} = Cov[\mathbf{E}_{\mathbf{k}}] = E[\mathbf{E}_{\mathbf{k}}\mathbf{E}_{\mathbf{k}}^{\mathsf{T}}]$$

$$= \begin{bmatrix} E[\Delta x \ \Delta x] & E[\Delta x \ \Delta \dot{x}] & E[\Delta x \ \Delta \dot{x}] & E[\Delta x \ \Delta y] & E[\Delta x \ \Delta \dot{y}] \\ E[\Delta \dot{x} \ \Delta x] & E[\Delta \dot{x} \ \Delta \dot{x}] & E[\Delta \dot{x} \ \Delta y] & E[\Delta \dot{x} \ \Delta \dot{y}] \\ E[\Delta y \ \Delta x] & E[\Delta y \ \Delta \dot{x}] & E[\Delta y \ \Delta y] & E[\Delta y \ \Delta \dot{y}] \\ E[\Delta \dot{y} \ \Delta x] & E[\Delta \dot{y} \ \Delta \dot{x}] & E[\Delta \dot{y} \ \Delta y] & E[\Delta \dot{y} \ \Delta \dot{y}] \end{bmatrix}$$

$$= \begin{bmatrix} \sigma_{x}^{2} & \sigma_{xx}^{2} & \sigma_{xy}^{2} & \sigma_{xy}^{2} \\ \sigma_{xx}^{2} & \sigma_{x}^{2} & \sigma_{xy}^{2} & \sigma_{xy}^{2} \\ \sigma_{xy}^{2} & \sigma_{xy}^{2} & \sigma_{yy}^{2} & \sigma_{yy}^{2} \\ \sigma_{xy}^{2} & \sigma_{xy}^{2} & \sigma_{yy}^{2} & \sigma_{yy}^{2} \end{bmatrix}$$

$$(1)$$

• Diagonal elements are the variances, off-diagonal encode correlations

Decoupled Position and Velocity Covariance

 Covariance Matrix can be partitioned¹ into position and rate terms as a property of the multivariate Gaussian distribution of E_k.

$$\mathbf{P} = Cov[\mathbf{E}_{k}] = E[\mathbf{E}_{k}\mathbf{E}_{k}^{T}]$$

$$= \begin{bmatrix} \sigma_{x}^{2} & \sigma_{xx}^{2} & \sigma_{xy}^{2} & \sigma_{xy}^{2} \\ \sigma_{xx}^{2} & \sigma_{xy}^{2} & \sigma_{xy}^{2} & \sigma_{xy}^{2} \\ \sigma_{xy}^{2} & \sigma_{xy}^{2} & \sigma_{yy}^{2} & \sigma_{yy}^{2} \end{bmatrix}$$

$$\mathbf{P}_{pos} = Cov[\mathbf{E}_{pos}] = E[\mathbf{E}_{pos}\mathbf{E}_{pos}^{T}] \qquad \mathbf{P}_{rate} = Cov[\mathbf{E}_{rate}] = E[\mathbf{E}_{rate}\mathbf{E}_{rate}^{T}]$$

$$= \begin{bmatrix} \sigma_{x}^{2} & \sigma_{xy}^{2} \\ \sigma_{xy}^{2} & \sigma_{y}^{2} \end{bmatrix} \qquad (3) \qquad = \begin{bmatrix} \sigma_{x}^{2} & \sigma_{xy}^{2} \\ \sigma_{xy}^{2} & \sigma_{y}^{2} \end{bmatrix} \qquad (4)$$

- Calculation of NAC_p and NAC_v are decoupled.
- Remainder of talk is focused on algorithmic development of NAC_p.

¹Reference: B. Nobel, J.W. Daniel, Applied Linear Algebra, Prentice Hall, Nov. 1987

7

Derivation of 1-\sigma Uncertainty Ellipse from Covariance

Bivariate Gaussian density of E_{pos} is: ٠

$$f_{\mathbf{E}_{pos}}(\mathbf{e}_{pos}) = \frac{\left(\det \mathbf{P}_{pos}\right)^{-1}}{2\pi} \exp(-1/2(\mathbf{e}_{pos}^{T} \mathbf{P}_{pos}^{-1} \mathbf{e}_{pos}))$$
(5)

- Contours of $f_{\rm E}(e_{pos})$ described by: $C = \mathbf{e}_{pos}^{T} \mathbf{P}_{pos}^{-1} \mathbf{e}_{pos}$ $= \begin{bmatrix} \Delta x & \Delta y \end{bmatrix} \begin{bmatrix} \sigma_x^2 & \sigma_{xy} \\ \sigma_{xy} & \sigma_y^2 \end{bmatrix}^{-1} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix}$ (6) $=\frac{1}{1-\rho^2}\left(\frac{\Delta x^2}{\sigma_x^2}-2\rho\frac{\Delta x\Delta y}{\sigma_x\sigma_y}+\frac{\Delta y^2}{\sigma_y^2}\right) \quad where \quad \rho=\frac{\sigma_{xy}^2}{\sigma_x\sigma_y}$
- This is an ellipse that is rotated by an angle θ . ٠

$$\theta = \frac{1}{2} \arctan\left(\frac{2\rho\sigma_x\sigma_y}{\sigma_x^2 - \sigma_y^2}\right)$$
(7)

In rotated coordinate frame components of ٠ uncertainty are independent.

MITRE

٠

Derivation of 95% Circular Uncertainty (NAC) from 1-σ Uncertainty Ellipse

- Covariance provides 1-σ Uncertainty
 - Desired to find simple scaling of 1-σ major axis to find NAC
- 95% Elliptical Error Bound
 - Requires simple 2.4477 scaling of 1-σ ellipse
 - Scaling is independent of eccentricity of ellipse
- 95% *Circular* Uncertainty found by twodimensional integration of $f_{\rm E}({\rm e}_{pos})$ over a circular domain
 - No closed form solution
 - Real-time numerical integration not practical
 - No single scaling of 1-σ major axis works for all eccentricities
 - Two methods explored:
 - Exact
 - Offline Numerical Integration to calculate scalar factor of 1-σ major axis parameterized by eccentricity
 - Calculate eccentricity via eigenvalues of filtered covariance.
 - Bounded
 - Fixed scale factor to derive NAC from 1-σ uncertainty

Description of the Three Error Bounds

Exact Method

- Calculate the scaling factor as a function of the ratio of major-to-minor axes
- The axes of the ellipse are computed from the eigenvalues of the partitioned Covariance matrix. The eigenvalues, λ_1 and λ_2 , of a symmetric 2x2 matrix

$$P = \begin{bmatrix} \boldsymbol{\sigma}_{x}^{2} & \boldsymbol{\sigma}_{xy}^{2} \\ \boldsymbol{\sigma}_{xy}^{2} & \boldsymbol{\sigma}_{y}^{2} \end{bmatrix}$$

are given by the equation

$$\lambda_{1,2} = \frac{(\sigma_x^2 + \sigma_y^2) \pm \sqrt{(\sigma_x^2 - \sigma_y^2)^2 + 4\sigma_{xy}^4}}{2}$$
(8)

"1-
$$\sigma$$
" axis_{major} = max(+ $\sqrt{\lambda_1}$,+ $\sqrt{\lambda_2}$) (9)

"1-
$$\sigma$$
" axis_{minor} = min(+ $\sqrt{\lambda_1}$,+ $\sqrt{\lambda_2}$) (10)

Exact Method (cont'd)

• Equation of 95% Uncertainty Region (NAC):

$$0.95 = \iint_{\{x,y:x^2+y^2 < radius\}} \frac{1}{2\pi\sigma_x\sigma_y} e^{-\frac{1}{2(1-\rho^2)} \left(\frac{x^2}{2\sigma_x^2} - 2\rho \frac{xy}{\sigma_x\sigma_y} \frac{y^2}{2\sigma_y^2}\right)} dxdy$$
(11)

• Applying change of basis (rotation of covariance) and change of variables:

$$0.95 = \int_{0}^{2\pi} \int_{\substack{k \sqrt{\lambda_{major}/\lambda_{minor}} \\ r < \frac{\sqrt{\cos^2 \theta + \sqrt{\lambda_{major}/\lambda_{minor}} \sin^2 \theta}}{\sqrt{\cos^2 \theta + \sqrt{\lambda_{major}/\lambda_{minor}} \sin^2 \theta}}} \frac{1}{2\pi} e^{-\left(\frac{r^2}{2}\right)} r dr d\theta$$
(12)

- Containment radius = $k^* (\lambda_{major})^{1/2}$
- Build solution table offline
 - Solve for k
 - Parameterized by $\sqrt{}$

$$\lambda_{major} / \lambda_{minor}$$

Exact Method - Performance

- Variable scaling factor, *k*, computed via numerical integration for a constant 95% containment region.
 - Range of values for *k*: 2.4477 to 1.9625
- The scaling factors can be:
 - Interpolated between exact solutions in a look-up table.
 - Approximated by the following expression

$$k = \frac{(2.4477 - 1.9625)}{ratio^{3}} + 1.9625 = \frac{.4852}{ratio^{3}} + 1.9625$$

where $ratio = \frac{"1 - \sigma"axis_{major}}{"1 - \sigma"axis_{minor}} = \frac{max(+\sqrt{\lambda_{1}}, +\sqrt{\lambda_{2}})}{min(+\sqrt{\lambda_{1}}, +\sqrt{\lambda_{2}})}$

Bounded Method: Root-Sum-Squared (RSS)

- The RSS method:
 - Containment radius = RSS_k defined by:

$$RSS_{k} = \sqrt{\left(k * \sigma_{x}\right)^{2} + \left(k * \sigma_{y}\right)^{2}} = k\sqrt{\sigma_{x}^{2} + \sigma_{y}^{2}}$$
(14)

- Uses the components from the covariance matrix. Equivalent to root-sumsquared of the square roots of the eigenvalues

$$RSS_{k} = \sqrt{\left(k * \sqrt{\lambda_{1}}\right)^{2} + \left(k * \sqrt{\lambda_{2}}\right)^{2}} = k\sqrt{\lambda_{1} + \lambda_{2}}$$
(15)

- Converges to exact solution for highly elongated ellipse, $\lambda_1 >> \lambda_2$

• The containment region derived from the RSS radius will vary depending on the eccentricity of the error ellipse because it uses a fixed scaling factor

Performance of RSS Method

• Scaling extrema from Exact Method: Circular = 2.4477 and Elongated Ellipse = 1.9625

- For scaling factor = 1.9625 converges to 95% as ratio increases, but exceeds the 95% threshold by 3% at ratio = 1
- For scaling factor = 2.4477 the containment region only approaches 98.6% and exceeds the threshold by 5% when ratio = 1.

Algorithm Summary for Computing NACp using Exact Method – with an Example

1. Partition the covariance matrix into position-only and rate-only submatrices.

2. Find the eigenvalues of each submatrix (Equation 8). Here shown for position-only.

$$\lambda_{1,2} = \frac{(4.84e + 5 + 6.577e + 5) \pm \sqrt{(4.84e + 5 - 6.577e + 5)^2 + 4(-3.176e + 5)^2}}{2} \qquad \qquad \lambda_1 = 9.0011e + 5; \quad \lambda_2 = 2.4159e + 5$$
major axis = $\sqrt{\lambda_1} = 958.7417$ feet; minor axis = $\sqrt{\lambda_2} = 491.5172$ feet

3. Compute the real time ratio to approximate the scaling factor from Equation (11).

ratio = 9.58.7417 / 491.5172 = 1.95
$$k = \frac{0.4852}{1.95^3} + 1.9625 = 2.0279$$

- 4. Compute Radius of 95% Containment: radius = k* major axis = 2.0458*958.7417 [feet] = 1.96e+3 [feet] = 0.323 nmi.
- 5. From Table 3-6 in ASA MASPS¹ this corresponds to $NAC_P = 6$.

Conclusion

- The Exact Method:
 - Outperforms the Bounded Method
 - Maintains a stable 95% containment region during straight line phase of trajectory
 - Computationally feasible

Future Work

- The estimated covariance matrix underestimates the true uncertainty during the transition period from straight line to maneuver trajectory.
- Characterize the uncertainty during the transition phase
 - Depends on:
 - Tracker Type (e.g., using simple Maneuver Detection or Interactive Multiple Model (IMM) to account for maneuvers)
 - Sensor type (i.e., measurement accuracy, update rate)
 - Target-to-Sensor Geometry
 - Number of Sensors
 - Type of maneuver (e.g., maximum acceleration)

