Geology of the "Elysium" Site (or, low wind \neq low science)

K.L. Tanaka, J.A. Skinner, M.H.

Carr, M.S. Gilmore, and T.M. Hare

$4^{\text {th }} 2003$ MER Landing Site Selection Workshop
 Pasadena, CA
 January 9, 2003

Overview

- Geologic setting
- Ellipse landforms (MOLA, THEMIS, MOC)
- Geologic interpretations
- Ellipse landform slope hazards
- Rover views
- Testing hypotheses with Athena instruments
- Boundary plains of southeastern Utopia basin/Planitia (no longer Elysium Planitia)
- Below Terra Cimmeria highlands
- On western margin of Hyblaeus Dorsa (NNE-trending wrinkle ridge system separating Utopia/Elysium Planitiae)
- Fields of knobs-highland outliers
- Bands of arcuate depressions in plains

"Elysium" Site Geologic

Setting

- Wrinkle ridges (2 large ones plus widespread, subtle forms
- Craters ($4>1 \mathrm{~km}$ diameter)
- Knobs (wrinkle ridge arches, crater rims, outliers of older materials, and mud and/or silicate volcanoes)
- Irregular depressions (center and east end of ellipse; possibly related to

Ellipse landforms seen in MOLA

Scarps
 Pancake domes with small knobs
 Large knobs Depressions

Densely cratered broad arch (upper left) with crenulated margin (arrows)

1 km

Examples of pancake domes (p) with 300-m knobs (k). Note ridge along dome margin (black arrows) and possible embayment by plains flow (white arrows)

Rounded, pitted mound complex, S. Utopia Pl.

Left: Mass flows (?) in plains near base of Terra Cimmeria south of MER ellipse

Right: Examples of scarps bounding rougher flow A (red arrows) and flow B (yellow arrows); flow A surrounds dome. North central part of ellipse.

Spring

 discharges?Possible channel at base of wrinkle ridge, northcentral part of ellipse

MER "Elysium" Site Regional Geology

- Degraded highland boundary
- Series of eroded units and plains materials
- Vastitas Borealis Formation lies below

Regional unit crater densities

Unit	Unit symbol	Superposed or total count	$\begin{gathered} \text { Area }\left(10^{6}\right. \\ \left.\mathrm{km}^{2}\right) \end{gathered}$	N(5)	N(16)	Age ${ }^{1}$
Elysium channeled material	Aech	S	2.06	73 ± 6^{2}	5 ± 2^{2}	EA
Elysium lobate material	Ael	S	1.22	91 ± 9^{2}	7 ± 3^{2}	EA
Vastitas Borealis Formation	AHv	s	3.64	77 ± 5	4 ± 1	LH/EA
Boundary plains unit 2	Hb_{2}	S	0.33	79 ± 16	3 ± 3	LH
Boundary plains smooth unit	Hbs	S	0.23	151 ± 26	4 ± 4	EH
Boundary plains unit 1b	$\mathrm{Hb}_{1 \mathrm{~b}}$	S	0.26	151 ± 24	34 ± 11	EH
Boundary plains unit 1b	$\mathrm{Hb}_{1 \mathrm{~b}}$	t	0.26	204 ± 28	49 ± 14	LN/EH
Boundary plains unit 1a	$\mathrm{Hb}_{1 \mathrm{a}}$	S	0.51	172 ± 18	24 ± 7	EH
Boundary plains unit 1a	$\mathrm{Hb}_{1 \mathrm{a}}$	t	0.51	180 ± 19	26 ± 7	EH
Knobby unit	HNk	S	0.46	201 ± 21	50 ± 11	LN/EH
Knobby unit	HNk	t	0.46	233 ± 23	72 ± 13	LN
Highland material	HNu	t	0.49	571 ± 34	173 ± 19	N/EH

Based on data of N.G. Barlow

MOC NA crater counts

Analysis: Broad arch in western part of ellipse appears to be Early Hesperian; other lower surfaces covered by flows and domes largely Late Hesperian to Early Amazonian

Elysium Wind Safe Site

"Elysium" ellipse geologic history

- LN/EH: Highland boundary degradation; mass wasting, collapse [Tanaka et al.]; intrusion? [Squyres, Wilhelms et al.]; volcanic resurfacing? [Head et al.]
- EH/LH: Tectonic contraction, indicative of mechanical discontinuity 2 km depth [Okubo]; marine sedimentation? [Parker]
- LH/EA: Local collapse?; mud/silicate volcanic resurfacing; minor contraction; spring discharge along faults?
- LA: Local dune formation in craters and along scarps

Landform Interpretations

$\begin{aligned} & +=\text { supports } \\ & \text {--- = N/A or } \\ & \text { equivocal } \end{aligned}$	Lava flows	Marine sediments	Highland colluvium	Mud volcanism
Highland boundary setting	---	+	+	+/---
Large knob and bench	---	$+$	+	---
Small knobs/ low domes	+/---	+/---	---	+
Wrinkle ridges	+	---	---	---
Thin flows	+/---	+/---	+	$+$
Depressions	---	---	---	+

- 1 model, 10 m/pixel [Kirk et al.]
- 0 to 34° slope range
- $>15^{\circ}=0.46 \%,>10^{\circ}=4.1 \%$
- \quad Slope mean $=3.8^{\circ}$ (Meridiani < Elysium < Isidis < Gusev)
- Hazards = mostly rims of craters >200 m in diameter; wrinkle ridge and trough scarps
- Other parts of ellipse would have comparable to moderately higher slopes
- Depression formed by collapse?

MOC 18-00429

Slopes in MOC stereo:
Roughness mainly function of crater density?

Gusev Crater Sites

- Hematite Sites
— Isidis Sites
- Elysium Site

Rover

"Viewsheds"

- Line-of-sight
landscapes seen from rover based on MOLA DEM
- Top: From center of ellipse (within trough)
- Bottom: From high area near ellipse center

Science Investigations for Athena Payload

Key Observations

Testable Hypothesis	Mineralogy/ composition (MT, MS, MI, APXS, RAT)	Morphology (PC)	Rock texture and fabric (MI, PC, RAT)	Rock physical properties (RAT)
Highland colluvium; $\mathrm{H}_{2} \mathrm{O}$ weathering	Mixture, hydrous	Terraces, flows	Poorly sorted, some rounding	Poorly consolidated
Mud volcanism, intrusion	Mixture, hydrothermal	Flows, vents, karst, dikes	Layerin, soft sediment deformation, breccia	Poorly consolidated
Lava flows and vents	Lava	Flows, vents	Porphyritic, vesicles, jointing	Breccia
Marine sediments	Evaporites	Shorelines, ripple marks	Fines, sorted, layers, rounding	Poorly consolidated
Spring discharges	Evaporites,	Channels, dufa, structure	Variable	Variable

MT=MiniTES, MS=Mössbauer Spectrometer, MI=Microscopic Imager; PC=PanCam ${ }^{21}$

"Elysium" site science pros and cons

Pros

Con

- Sample Noachian highland, dissected rocks
- Sample Hesperian lowland sediment
- Assess highland/lowland boundary geology
- Possible mud volcanism and spring discharge
- Relatively simple geologic setting
- Well-defined, testable hypotheses

