Geology of the "Elysium" Site (or, low wind ≠ low science)

K.L. Tanaka, J.A. Skinner, M.H. Carr, M.S. Gilmore, and T.M. Hare

4th 2003 MER Landing Site Selection Workshop Pasadena, CA January 9, 2003

Overview

- Geologic setting
- Ellipse landforms (MOLA, THEMIS, MOC)
- Geologic interpretations
- Ellipse landform slope hazards
- Rover views
- Testing hypotheses with Athena instruments

 Boundary plains of southeastern Utopia basin/Planitia (no longer Elysium Planitia)

• Below Terra Cimmeria highlands

- On western margin of Hyblaeus Dorsa (NNE-trending wrinkle ridge system separating Utopia/Elysium Planitiae)
- Fields of knobs-highland outliers
- Bands of arcuate depressions in plains

"Elysium" Site Geologic Setting

MER Utopia ellipse

Hb1b

Hb₂

HNI

Hb_{1b}

Hb_{1a}

(CA)

Hyblaeus Dorsa

Utopia Planitia

Terra Cimmeria

- Wrinkle ridges (2 large ones plus widespread, subtle forms
- Craters (4 >1 km diameter)
- Knobs (wrinkle ridge arches, crater rims, outliers of older materials, and mud and/or silicate volcanoes)
- Irregular depressions (center and east end of ellipse; possibly related to collapse)

Ellipse landforms seen in MOLA

Scarps Pancake domes with small knobs Large knobs Depressions

Region north of MER ellipse

Degraded craters

Densely cratered broad arch (upper left) with crenulated margin (arrows)

1 km

Examples of pancake domes (p) with 300-m knobs (k). Note ridge along dome margin (black arrows) and possible embayment by plains flow (white arrows)

Rounded, pitted mound complex, S. Utopia Pl.

Left: Mass flows (?) in plains near base of Terra Cimmeria south of MER ellipse

flow a

dome

THEMIS

Right: Examples of scarps bounding rougher flow A (red arrows) and flow B (yellow arrows); flow A surrounds dome. North central part of ellipse.

Discharge sites of Hephaestus Fossae

Spring discharges?

Possible channel at base of wrinkle ridge, northcentral part of ellipse

MER "Elysium" Site Regional Geology

HNk

250

HNu

1000

-2000

-3000

4000

0

VE=60X

Elevation (m 1000

- Degraded highland boundary igodol
- Series of eroded units and plains materials igodol
- Vastitas Borealis Formation lies below

Regional unit crater densities

Unit	Unit symbol	Superposed or total count	Area (10 ⁶ km ²)	N(5)	N(16)	Age ¹
Elysium channeled material	Aech	S	2.06	73±6 ²	5±2 ²	EA
Elysium lobate material	Ael	S	1.22	91±9 ²	7 ± 3^{2}	EA
Vastitas Borealis Formation	AHv	S	3.64	77±5	4±1	LH/EA
Boundary plains unit 2	Hb ₂	S	0.33	79±16	3±3	LH
Boundary plains smooth unit	Hbs	S	0.23	151±26	4±4	EH
Boundary plains unit 1b	Hb _{1b}	S	0.26	151±24	34±11	EH
Boundary plains unit 1b	Hb _{1b}	t	0.26	204±28	49±14	LN/EH
Boundary plains unit 1a	Hb _{1a}	S	0.51	172±18	24±7	EH
Boundary plains unit 1a	Hb _{1a}	t	0.51	180±19	26±7	EH
Knobby unit	HNk	S	0.46	201±21	50±11	LN/EH
Knobby unit	HNk	t	0.46	233±23	72±13	LN
Highland material	HNu	t	0.49	571±34	173±19	N/EH

Based on data of N.G. Barlow

MOC NA crater counts

Analysis: Broad arch in western part of ellipse appears to be Early Hesperian; other lower surfaces covered by flows and domes largely Late Hesperian to Early Amazonian

"Elysium" ellipse geologic history

- LN/EH: Highland boundary degradation; mass wasting, collapse [Tanaka et al.]; intrusion? [Squyres, Wilhelms et al.]; volcanic resurfacing? [Head et al.]
- EH/LH: Tectonic contraction, indicative of mechanical discontinuity 2 km depth [Okubo]; marine sedimentation? [Parker]
- LH/EA: Local collapse?; mud/silicate volcanic resurfacing; minor contraction; spring discharge along faults?
- LA: Local dune formation in craters and along scarps

Landform Interpretations

+ = supports = N/A or equivocal	Lava flows	Marine sediments	Highland colluvium	Mud volcanism
Highland boundary setting		+	+	+/
Large knob and bench		+	+	
Small knobs/ low domes	+/	+/		+
Wrinkle ridges	+			
Thin flows	+/	+/	+	+
Depressions				+

• Slope mean/median: 0.773°/0.612°

- 1 model, 10 m/pixel [Kirk et al.]
- 0 to 34° slope range
- $>15^{\circ} = 0.46\%$, $>10^{\circ} = 4.1\%$
- Slope mean = 3.8° (Meridiani < Elysium < Isidis < Gusev)
- Hazards = mostly rims of craters >200 m in diameter; wrinkle ridge and trough scarps
- Other parts of ellipse would have comparable to moderately higher slopes
- Depression formed by collapse?

Slopes in MOC stereo: Roughness mainly function of crater density?

Rover "Viewsheds"

- Line-of-sight

 landscapes seen
 from rover based
 on MOLA DEM
- *Top:* From center of ellipse (within trough)
- *Bottom:* From high area near ellipse center

Science Investigations for Athena Payload

Key Observations

Testable Hypothesis	Mineralogy/ composition (MT, MS, MI, APXS, RAT)	Morphology (PC)	Rock texture and fabric (MI, PC, RAT)	Rock physical properties (RAT)
Highland colluvium; H_2O weathering	Mixture, hydrous	Terraces, flows	Poorly sorted, some rounding	Poorly consolidated
Mud volcanism, intrusion	Mixture, hydrothermal	Flows, vents, karst, dikes	Layering, soft sediment deformation, breccia	Poorly consolidated
Lava flows and vents	Lava	Flows, vents	Porphyritic, vesicles, jointing	Breccia
Marine sediments	Evaporites	Shorelines, ripple marks	Fines, sorted, layers, rounding	Poorly consolidated
Spring discharges	Evaporites, detritus	Channels, tufa, structure	Variable	Variable

MT=MiniTES, MS=M<u>ö</u>ssbauer Spectrometer, MI=Microscopic Imager; PC=PanCa²¹

"Elysium" site science pros and cons *Pros*

- Sample Noachian highland, dissected rocks
- Sample Hesperian lowland sediment
- Assess highland/lowland boundary geology
- Possible mud volcanism and spring discharge
- Relatively simple geologic setting
- Well-defined, testable hypotheses

• May be primarily volcanic