

MER Landing Site Ellipse Changes & Status

M. P. Golombek Mars Exploration Program Landing Site Scientist JPL

January 8, 2002

Embassy Suites, Arcadia

MER Landing Sites

Mars Exploration Rover

±15° Latitude Band, <-1.3 km Elevation; ~5% of Surface Smooth, Flat Over Ellipse, ~185 Possible Landing Sites

Thermal Inertia

Grey Ellipses - MER A

White Ellipses Selected by Science Community, ~25 Western Hemisphere Hematite, Melas, Eos

Eastern Hemisphere Gusev, Gale Athabasca, Isidis Low Wind Elysium

3rd Workshop MER Landing Site Evaluations

					Mars Exploration Rover		
Science Criteria	Hematite	Gusev	Isidis	Melas	Eos	Athabasca	
Evidence for Water Activity	•	•	•	•	•	•	
Address Climate/Geologic History	•	•	•	•	•		
Preserve Biotic/Prebiotic Materials	•	•					
Definitive Testing of Hypothesis(es)	•	•	•			•	
Accessible Diversity Within the Site	•		•			•	
Site Diversity (for MER's)	•	•	•	•	•	•	
Site Diversity (from VL and MPF)	•	•	•	•	•	•	
Materials for Athena Analyses	•	•	•	•	•	•	
Rock Abundance (pro and con)			•		•	•	
Trafficability	•	•					
Amount of Dust Obscuration	•			•	•		
Mission Lifetime			•	•	•		
Relief at Scale of Rover Traverse				•		•	
Potential Useful Earth Analogs	•	•	•	•	•	•	
Safety Criteria							
1 km Slope	•	•	•	•	•	•	
100 m Slope		•		•			
10 m Slope				•			
Relief (Craters, Hills)				ĕ			
Rock Abundance/Trafficability		•			•	•	
Potentially Hazardous Rocks		•			•		
Horizontal Winds (Shear/Turbulence)							
Horizontal Winds (Sustained Mean)				•	•		
Vertical Winds		•					
Temperature at Site			•		•		
Dust	•			•	•		
Load Bearing Surface		•			•		
Elevation	•	•	•	•	•	•	
Radar Reflectivity	•	•	•	•	•	•	
Public Engagement	-	-	-	-	_	-	
Aesthetics (Views/Relief)			•	•	•	•	
Differs from VL or MPF Sites	ĕ	ĕ	ĕ	ě	ĕ	ě	
Habitability for Life (Past or Present)	ĕ	ĕ		ĕ	ĕ	ĕ	
h MER Lindhitg Sille Workshopy)	ē	ĕ	ē	ē	ē	elom	

- 6 Ellipses Evaluated at 3rd Workshop, 3/02
- Melas & Eos Removed Concerns Over Winds
- Athabasca Demoted High Radar Backscatter
 - Athabasca Ellipse Shifted Slightly East
- Isidis Promoted to Prime
- 2 Low Wind Sites Identified in Elysium
 - Evaluated Sites in Meridiani, SE Isidis & Elysium
 - Acceptable Sites in SE Isidis Low Science; Meridiani Too Cold & Close to Hematite
 - Elysium Sites Preferred on Basis of Safety & Science
- Athabasca Removed 6/02 Cannot Disprove Rough Surface
- First Order Safety Evaluation of 2 Elysium Sites Completed
- Significant New THEMIS/MOC Images Obtained
- 1 Elysium Ellipse Selected on Safety & Science 8/02
- 4 Sites Currently Under Study

Landing Sites on Mars

W Elysium Low Wind Polygon

* Are Low Wind Ellipse Centers Golombek - 6

4th MER Landing Site Workshop

Identifying New Safe Ellipses JPL

Mars Exploration Rover

- Low Wind Highest Priority
 - Evaluate GCM for Quiet Regions for Season/Time Arrival
 - Regional Mesoscale Wind Models Confirmed Low Wind Regions
- Relax Elevation (0 km) and Latitude in Search
- Evaluated Science Preference Among Low Wind Areas
- Selected 2 Highest Science Among Low Wind Areas
 - 2 Elysium Ellipses
 - Selected Using THEMIS Images, Thermophysics and Slopes
- High Resolution Mesoscale Wind Models of 2 Ellipses
 - Confirmed They Are Low Wind
- Evaluated Existing Remote Sensing Data
- Targeted Ellipses for THEMIS and MOC Imaging
- First Order Evaluation of Safety
- Selected One of Two as Finalist

4th MER Landing Site Workshop

EP78B2

- Rock Abundance as Low as Possible in Region
 - Slightly lower at EP78B2
 - Average ~5% (7 pixels are 1, 6, 6, 6, 8, 6% plus a small bit of 11%);
 - EP80B2, Average 9% (3 pixels from east to west are 3, 11, 12%)
- Mesoscale Wind Models Comparable Results
 - Horizontal winds for both sites are comparable
 - Slightly lower at EP78B2 (4±2 m/s, similar to Hematite)
 - EP80B2 (6±2 m/s, similar to Gusev).
 - Turbulence at both sites is comparable to Gusev
 - Longer wavelength shear at both sites is quite low comparable to Hematite
- EP78B2 Appears Smoother at All Scales Than EP80B2
 - 1.2 km a- and bi-directional Slopes
 - 100 m MOLA Pulse Spread & Allen Variation Extrapolated From Longer MOLA
 - THEMIS (1 visible per ellipse) and MOC Images (6 per ellipse)

EP78B2 1.2 km Slope

Mars Exploration Rover

PL

EP80B2 1.2 km Slope

4th MER Landing Site Workshop

PL

EP78B2 100 m Slope

Mars Exploration Rover

JPL

EP80B2 100 m Slope

IPL

- 0

EP78B2 Smoother than EP80B2 JPL

- Bidirectional 1.2 km Slope 0.48 vs 0.63
- Adirectional 1.2 km Slope 0.41 vs 0.55
- Pulse Spread 1.0 m vs 1.3 m
 Like Isidis versus Like Gusev
- Extrapolated 100 m Slopes
 - -3 pixels >5° vs 5 pixels >5°
 - -Hurst Exponent <1 EP80B2 Rougher at 10 m than 100 m
 - -Hurst Exponent ~1 EP78B2 As Smooth at 10 m as 100 m
- THEMIS Images Appear Smoother

 100 m/pixel Thermal Images (Many in Each Ellipse)
 20 m/pixel Visible Images (1 per Ellipse)
- 3 m/pixel MOC Images Appear Smoother (6 per el) 4th MER L MiQKe Diuliges in Lows in EP80B2 Golombek - 15

EP80B2 Rougher Than EP78B2

Mars Exploration Rover

4th MER Landing Site Workshop

SLOPE AND PULSE STATISTICS JPL

Mars Exploration Rover

Site	B1.2	A1.2	B sd	1.2 A sd	Av PW	sd PW
TM10A2	0.15	0.21	0.18	0.45	0.75	0.24
TM20B2	0.16	0.22	0.20	0.47	0.75	0.24
IP84A2	0.19	0.14	0.24	0.10	1.10	0.35
IP96B2	0.18	0.14	0.24	0.10	1.08	0.33
EP55A2	0.20	0.16	0.44	0.20	1.42	0.44
EP78B2	0.48	0.41	0.55	0.29	1.03	0.43
EP80B2	0.63	0.55	0.67	0.36	1.32	0.57
VL1	0.27	0.32	1.02	1.01		
VL2	0.28	0.27	0.28	0.19		
MPF	0.30	0.25	1.07	0.68		

B1.2, A1.2-Mean Bidirectional, Adirectional Slope; sd-Standard Deviation; Av PW-Mean Pulse Width 4th MER Landing Site Workshop Golombek - 17

MER Landing Site Ellipse Data

Mars Exploration Rover

PL

Landing Site,	MDIM2	MOLA(1)	Ellipse	Ellipse	Ellipse
Ellipse #	Lat.	Lat.	Length	Width	Azimuth
	Long. W	Long. E	km	km	deg
Hematite, TM20B2	2.07S	2.06S	117	18	86
TM10A2	6.08	353.77	119	17	84
Gusev,	14.82S	14.64S			
EP55A2	184.85	175.06	96	19	76
Isidis, IP84A2	4.31N	4.22N	132	16	88
IP96B2	271.97	87.91	135	16	91
Elysium,	11.91S	11.73S			
EP78B2	236.10	123.72	155	16	94
Elysium,	14.50N	14.32N			
EP80B2	244.63	115.20	165	15	95

*Ellipse Azimuth Measured Clockwise from North for Beginning of Launch Period

Werage Thermophysical Properties

			Mars E	xploration Rover
Landing Site	TES I	TES Alb	IRTM	IRTM
			FC I	Rock
Hematite	232	0.170	307	5
Gusev	274	0.222	248	7
Isidis	454	0.228	384	14
Elysium, 78B	264	0.229	303	5
Elysium, 80B	274	0.228	315	9
VL1	320	0.255	250	16
VL2	240	0.235	175	17
MPF	425	0.218	344	18

Thermal inertia (I) and fine component (FC) thermal inertia in SI units, J m⁻² s^{-0.5} K⁻¹. Rock abundance (Rock) - percent of surface covered. 4th MER Landing Site Workshop Golombek - 19

- EP78B2 Preferred on Safety Grounds
 - -Lower Rock Abundance
 - -Lower Slopes at All Scales
 - -Slightly Lower Horizontal Winds
 - -Also Further South [11.9N versus 14.5N]
- Science Both Highland/Lowland Bdry
 - -More Thermophysical Variation in EP78B2
 - -More Dust Mantling at EP80B2, More Dunes
 - -More Relief at EP80B2
 - -Little Science Difference Between 2
- EP78B2 Selected; EP80B2 Eliminated

MERIDIANI

4th MER Landing Site Workshop

GUSEV

ISIDIS

Mars Exploration Rover

4th MER Landing Site Workshop

Golombek - 23

- Hematite Name Changed to Meridiani Planum
 - -Hematite is a Mineral, Not Mars Location
 - -New Name for Smooth Area of Hematite Ellipse
 - Meridiani Planum In New USGS Map Based on Physiography
 - Terra Meridiani Low Albedo Feature
 - Provisionally Accepted by IAU K. Tanaka, Mars Task Group
- Elysium Name Maintained
 - -Actually in Utopia Physiographic Province
 - Just West of Basin Divide of Elysium in Utopia Planitia
 - -But Ellipses Squarely in Elysium in Existing Maps
 - -Ellipse May Get Eliminated (Based on Low Science Ranking) Before New Maps Come Out

Based on MOLA Topography - Soon to be Widely Distributed As Wall Maps

MARS REGIONAL NAMES

Meridiani Planum

Mars Exploration Rover

Smooth Flat Area Near 0, 0

4th MER Landing Site Workshop

Elysium

Mars Exploration Rover

Based on Physiography Elysium Ellipses Actually in Utopia Plantitia, just to West of Wrinkle Ridge Divide

EP78B2 in "Elysium"

Mars Exploration Rover

4th MER Landing Site Workshop

Golombek - 29