Ellipse Distortion in FFAGs

J. Scott Berg
Advanced Accelerator Group Meeting
17 March 2005

- Longitudinal dynamics in FFAG lattice is parametrized by dimensionless parameters a (scaled voltage) and b (time offset)
- There is an allowed region in that parameter space
- I have a method for computing emittance growth as a function of a and b, minimizing over ellipse orientation in phase space
- I can minimize that emittance growth over b, and find emittance growth as a function of a
- Emittance growth as computed is a funny parameter: it can be negative, for instance.
- Better to minimize "ellipse distortion": keep an ellipse elliptical
- Follow the same process with ellipse distortion

After FFAG
我

Ellipse Distortion vs. a

- Note different qualitative behaviors
- Emittance growth was proportional to ϵ^{2}; action distortion is proportional to $(2 J)^{3 / 2}$. Equivalently, radius distortion is proportional to r^{2}.
-Coefficient is proportional to $(a-1 / 24)^{-1}$, whereas for emittance growth it was $(a-1 / 24)^{-2}$
- Leaving out two effects
- Amplitude-dependent shift of the ellipse center
- Amplitude-dependent distortion of the ellipse shape
- If we include these, then we don't care where the center of the ellipse is; we only care about the outer boundary enclosing all particles
- Including these effects, action distortion will be proportional to $(2 J)^{5 / 2}$, or radius distortion proportional to r^{4}
- This gives significantly less distortion for small radii
- Still working on the computation. . .

Ellipse Distortion vs. Amplitude

10

