pmc logo imageJournal ListSearchpmc logo image
Logo of molcellbMol Cell Biol SubscriptionsMol Cell Biol Web Site
Mol Cell Biol. 1996 March; 16(3): 1017–1026.
PMCID: PMC231084
A novel histone H4 mutant defective in nuclear division and mitotic chromosome transmission.
M M Smith, P Yang, M S Santisteban, P W Boone, A T Goldstein, and P C Megee
Department of Microbiology, University of Virginia Cancer Center, Charlottesville, 22908, USA.
Abstract
The histone proteins are essential for the assembly and function of th e eukaryotic chromosome. Here we report the first isolation of a temperature-sensitive lethal histone H4 mutant defective in mitotic chromosome transmission Saccharomyces cerevisiae. The mutant requires two amino acid substitutions in histone H4: a lethal Thr-to-Ile change at position 82, which lies within one of the DNA-binding surfaces of the protein, and a substitution of Ala to Val at position 89 that is an intragenic suppressor. Genetic and biochemical evidence shows that the mutant histone H4 is temperature sensitive for function but not for synthesis, deposition, or stability. The chromatin structure of 2 micrometer circle minichromosomes is temperature sensitive in vivo, consistent with a defect in H4-DNA interactions. The mutant also has defects in transcription, displaying weak Spt- phenotypes. At the restrictive temperature, mutant cells arrest in the cell cycle at nuclear division, with a large bud, a single nucleus with 2C DNA content, and a short bipolar spindle. At semipermissive temperatures, the frequency of chromosome loss is elevated 60-fold in the mutant while DNA recombination frequencies are unaffected. High-copy CSE4, encoding an H3 variant related to the mammalian CENP-A kinetochore antigen, was found to suppress the temperature sensitivity of the mutant without suppressing the Spt- transcription defect. These genetic, biochemical, and phenotypic results indicate that this novel histone H4 mutant defines one or more chromatin-dependent steps in chromosome segregation.
Full Text
The Full Text of this article is available as a PDF (546K).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
  • Aparicio, OM; Billington, BL; Gottschling, DE. Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiae. Cell. 1991 Sep 20;66(6):1279–1287. [PubMed]
  • Arents, G; Burlingame, RW; Wang, BC; Love, WE; Moudrianakis, EN. The nucleosomal core histone octamer at 3.1 A resolution: a tripartite protein assembly and a left-handed superhelix. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10148–10152. [PubMed]
  • Arents, G; Moudrianakis, EN. Topography of the histone octamer surface: repeating structural motifs utilized in the docking of nucleosomal DNA. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10489–10493. [PubMed]
  • Arndt, KT; Styles, CA; Fink, GR. A suppressor of a HIS4 transcriptional defect encodes a protein with homology to the catalytic subunit of protein phosphatases. Cell. 1989 Feb 24;56(4):527–537. [PubMed]
  • Bauer, WR; Hayes, JJ; White, JH; Wolffe, AP. Nucleosome structural changes due to acetylation. J Mol Biol. 1994 Feb 25;236(3):685–690. [PubMed]
  • Bavykin, SG; Usachenko, SI; Zalensky, AO; Mirzabekov, AD. Structure of nucleosomes and organization of internucleosomal DNA in chromatin. J Mol Biol. 1990 Apr 5;212(3):495–511. [PubMed]
  • Bloom, KS; Amaya, E; Carbon, J; Clarke, L; Hill, A; Yeh, E. Chromatin conformation of yeast centromeres. J Cell Biol. 1984 Nov;99(5):1559–1568. [PubMed]
  • Bloom, KS; Carbon, J. Yeast centromere DNA is in a unique and highly ordered structure in chromosomes and small circular minichromosomes. Cell. 1982 Jun;29(2):305–317. [PubMed]
  • Boeke, JD; LaCroute, F; Fink, GR. A positive selection for mutants lacking orotidine-5'-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet. 1984;197(2):345–346. [PubMed]
  • Boeke, JD; Trueheart, J; Natsoulis, G; Fink, GR. 5-Fluoroorotic acid as a selective agent in yeast molecular genetics. Methods Enzymol. 1987;154:164–175. [PubMed]
  • Brill, SJ; Sternglanz, R. Transcription-dependent DNA supercoiling in yeast DNA topoisomerase mutants. Cell. 1988 Jul 29;54(3):403–411. [PubMed]
  • Brown, JA; Holmes, SG; Smith, MM. The chromatin structure of Saccharomyces cerevisiae autonomously replicating sequences changes during the cell division cycle. Mol Cell Biol. 1991 Oct;11(10):5301–5311. [PubMed]
  • Cairns, BR; Kim, YJ; Sayre, MH; Laurent, BC; Kornberg, RD. A multisubunit complex containing the SWI1/ADR6, SWI2/SNF2, SWI3, SNF5, and SNF6 gene products isolated from yeast. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1950–1954. [PubMed]
  • Carlson, M; Laurent, BC. The SNF/SWI family of global transcriptional activators. Curr Opin Cell Biol. 1994 Jun;6(3):396–402. [PubMed]
  • Clark-Adams, CD; Norris, D; Osley, MA; Fassler, JS; Winston, F. Changes in histone gene dosage alter transcription in yeast. Genes Dev. 1988 Feb;2(2):150–159. [PubMed]
  • Corliss, DA; White, WE., Jr Fluorescence of yeast vitally stained with ethidium bromide and propidium iodide. J Histochem Cytochem. 1981 Jan;29(1):45–48. [PubMed]
  • Durrin, LK; Mann, RK; Kayne, PS; Grunstein, M. Yeast histone H4 N-terminal sequence is required for promoter activation in vivo. Cell. 1991 Jun 14;65(6):1023–1031. [PubMed]
  • Fassler, JS; Winston, F. Isolation and analysis of a novel class of suppressor of Ty insertion mutations in Saccharomyces cerevisiae. Genetics. 1988 Feb;118(2):203–212. [PubMed]
  • Funk, M; Hegemann, JH; Philippsen, P. Chromatin digestion with restriction endonucleases reveals 150-160 bp of protected DNA in the centromere of chromosome XIV in Saccharomyces cerevisiae. Mol Gen Genet. 1989 Oct;219(1-2):153–160. [PubMed]
  • Guacci, V; Hogan, E; Koshland, D. Chromosome condensation and sister chromatid pairing in budding yeast. J Cell Biol. 1994 May;125(3):517–530. [PubMed]
  • Han, M; Chang, M; Kim, UJ; Grunstein, M. Histone H2B repression causes cell-cycle-specific arrest in yeast: effects on chromosomal segregation, replication, and transcription. Cell. 1987 Feb 27;48(4):589–597. [PubMed]
  • Hartwell, Leland H; Mortimer, Robert K; Culotti, Joseph; Culotti, Marilyn. Genetic Control of the Cell Division Cycle in Yeast: V. Genetic Analysis of cdc Mutants. Genetics. 1973 Jun;74(2):267–286. [PubMed]
  • Hartwell, LH; Smith, D. Altered fidelity of mitotic chromosome transmission in cell cycle mutants of S. cerevisiae. Genetics. 1985 Jul;110(3):381–395. [PubMed]
  • Hayes, JJ; Tullius, TD; Wolffe, AP. The structure of DNA in a nucleosome. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7405–7409. [PubMed]
  • Hecht, A; Laroche, T; Strahl-Bolsinger, S; Gasser, SM; Grunstein, M. Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: a molecular model for the formation of heterochromatin in yeast. Cell. 1995 Feb 24;80(4):583–592. [PubMed]
  • Hieter, P; Mann, C; Snyder, M; Davis, RW. Mitotic stability of yeast chromosomes: a colony color assay that measures nondisjunction and chromosome loss. Cell. 1985 Feb;40(2):381–392. [PubMed]
  • Hirschhorn, JN; Bortvin, AL; Ricupero-Hovasse, SL; Winston, F. A new class of histone H2A mutations in Saccharomyces cerevisiae causes specific transcriptional defects in vivo. Mol Cell Biol. 1995 Apr;15(4):1999–2009. [PubMed]
  • Hirschhorn, JN; Brown, SA; Clark, CD; Winston, F. Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure. Genes Dev. 1992 Dec;6(12A):2288–2298. [PubMed]
  • Holm, C; Goto, T; Wang, JC; Botstein, D. DNA topoisomerase II is required at the time of mitosis in yeast. Cell. 1985 Jun;41(2):553–563. [PubMed]
  • Holm, C; Stearns, T; Botstein, D. DNA topoisomerase II must act at mitosis to prevent nondisjunction and chromosome breakage. Mol Cell Biol. 1989 Jan;9(1):159–168. [PubMed]
  • Huffaker, TC; Hoyt, MA; Botstein, D. Genetic analysis of the yeast cytoskeleton. Annu Rev Genet. 1987;21:259–284. [PubMed]
  • Jarvik, J; Botstein, D. Conditional-lethal mutations that suppress genetic defects in morphogenesis by altering structural proteins. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2738–2742. [PubMed]
  • Jiang, YW; Dohrmann, PR; Stillman, DJ. Genetic and physical interactions between yeast RGR1 and SIN4 in chromatin organization and transcriptional regulation. Genetics. 1995 May;140(1):47–54. [PubMed]
  • Jiang, YW; Stillman, DJ. Involvement of the SIN4 global transcriptional regulator in the chromatin structure of Saccharomyces cerevisiae. Mol Cell Biol. 1992 Oct;12(10):4503–4514. [PubMed]
  • Johnson, LM; Fisher-Adams, G; Grunstein, M. Identification of a non-basic domain in the histone H4 N-terminus required for repression of the yeast silent mating loci. EMBO J. 1992 Jun;11(6):2201–2209. [PubMed]
  • Johnson, LM; Kayne, PS; Kahn, ES; Grunstein, M. Genetic evidence for an interaction between SIR3 and histone H4 in the repression of the silent mating loci in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6286–6290. [PubMed]
  • Kayne, PS; Kim, UJ; Han, M; Mullen, JR; Yoshizaki, F; Grunstein, M. Extremely conserved histone H4 N terminus is dispensable for growth but essential for repressing the silent mating loci in yeast. Cell. 1988 Oct 7;55(1):27–39. [PubMed]
  • Kim, UJ; Han, M; Kayne, P; Grunstein, M. Effects of histone H4 depletion on the cell cycle and transcription of Saccharomyces cerevisiae. EMBO J. 1988 Jul;7(7):2211–2219. [PubMed]
  • Kolodrubetz, D; Rykowski, MC; Grunstein, M. Histone H2A subtypes associate interchangeably in vivo with histone H2B subtypes. Proc Natl Acad Sci U S A. 1982 Dec;79(24):7814–7818. [PubMed]
  • Kornberg, RD; Lorch, Y. Chromatin structure and transcription. Annu Rev Cell Biol. 1992;8:563–587. [PubMed]
  • Kruger, W; Peterson, CL; Sil, A; Coburn, C; Arents, G; Moudrianakis, EN; Herskowitz, I. Amino acid substitutions in the structured domains of histones H3 and H4 partially relieve the requirement of the yeast SWI/SNF complex for transcription. Genes Dev. 1995 Nov 15;9(22):2770–2779. [PubMed]
  • Kunkel, TA; Roberts, JD; Zakour, RA. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. [PubMed]
  • Lambert, SF; Thomas, JO. Lysine-containing DNA-binding regions on the surface of the histone octamer in the nucleosome core particle. Eur J Biochem. 1986 Oct 1;160(1):191–201. [PubMed]
  • Lee, MS; Garrard, WT. Positive DNA supercoiling generates a chromatin conformation characteristic of highly active genes. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9675–9679. [PubMed]
  • Lohr, D; Ide, G. Comparison on the structure and transcriptional capability of growing phase and stationary yeast chromatin: a model for reversible gene activation. Nucleic Acids Res. 1979;6(5):1909–1927. [PubMed]
  • Longtine, MS; Enomoto, S; Finstad, SL; Berman, J. Telomere-mediated plasmid segregation in Saccharomyces cerevisiae involves gene products required for transcriptional repression at silencers and telomeres. Genetics. 1993 Feb;133(2):171–182. [PubMed]
  • Mann, RK; Grunstein, M. Histone H3 N-terminal mutations allow hyperactivation of the yeast GAL1 gene in vivo. EMBO J. 1992 Sep;11(9):3297–3306. [PubMed]
  • Marschall, LG; Clarke, L. A novel cis-acting centromeric DNA element affects S. pombe centromeric chromatin structure at a distance. J Cell Biol. 1995 Feb;128(4):445–454. [PubMed]
  • Meeks-Wagner, D; Hartwell, LH. Normal stoichiometry of histone dimer sets is necessary for high fidelity of mitotic chromosome transmission. Cell. 1986 Jan 17;44(1):43–52. [PubMed]
  • Megee, PC; Morgan, BA; Mittman, BA; Smith, MM. Genetic analysis of histone H4: essential role of lysines subject to reversible acetylation. Science. 1990 Feb 16;247(4944):841–845. [PubMed]
  • Megee, PC; Morgan, BA; Smith, MM. Histone H4 and the maintenance of genome integrity. Genes Dev. 1995 Jul 15;9(14):1716–1727. [PubMed]
  • Moretti, P; Freeman, K; Coodly, L; Shore, D. Evidence that a complex of SIR proteins interacts with the silencer and telomere-binding protein RAP1. Genes Dev. 1994 Oct 1;8(19):2257–2269. [PubMed]
  • Morgan, BA; Mittman, BA; Smith, MM. The highly conserved N-terminal domains of histones H3 and H4 are required for normal cell cycle progression. Mol Cell Biol. 1991 Aug;11(8):4111–4120. [PubMed]
  • Morse, RH. Topoisomer heterogeneity of plasmid chromatin in living cells. J Mol Biol. 1991 Nov 20;222(2):133–137. [PubMed]
  • Morse, RH; Pederson, DS; Dean, A; Simpson, RT. Yeast nucleosomes allow thermal untwisting of DNA. Nucleic Acids Res. 1987 Dec 23;15(24):10311–10330. [PubMed]
  • Norris, D; Dunn, B; Osley, MA. The effect of histone gene deletions on chromatin structure in Saccharomyces cerevisiae. Science. 1988 Nov 4;242(4879):759–761. [PubMed]
  • Norton, VG; Marvin, KW; Yau, P; Bradbury, EM. Nucleosome linking number change controlled by acetylation of histones H3 and H4. J Biol Chem. 1990 Nov 15;265(32):19848–19852. [PubMed]
  • Osborne, BI; Guarente, L. Transcription by RNA polymerase II induces changes of DNA topology in yeast. Genes Dev. 1988 Jun;2(6):766–772. [PubMed]
  • Park, EC; Szostak, JW. Point mutations in the yeast histone H4 gene prevent silencing of the silent mating type locus HML. Mol Cell Biol. 1990 Sep;10(9):4932–4934. [PubMed]
  • Pederson, DS; Morse, RH. Effect of transcription of yeast chromatin on DNA topology in vivo. EMBO J. 1990 Jun;9(6):1873–1881. [PubMed]
  • Peterson, CL; Dingwall, A; Scott, MP. Five SWI/SNF gene products are components of a large multisubunit complex required for transcriptional enhancement. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):2905–2908. [PubMed]
  • Peterson, CL; Tamkun, JW. The SWI-SNF complex: a chromatin remodeling machine? Trends Biochem Sci. 1995 Apr;20(4):143–146. [PubMed]
  • Polizzi, C; Clarke, L. The chromatin structure of centromeres from fission yeast: differentiation of the central core that correlates with function. J Cell Biol. 1991 Jan;112(2):191–201. [PubMed]
  • Prelich, G; Winston, F. Mutations that suppress the deletion of an upstream activating sequence in yeast: involvement of a protein kinase and histone H3 in repressing transcription in vivo. Genetics. 1993 Nov;135(3):665–676. [PubMed]
  • Pringle, JR. The use of conditional lethal cell cycle mutants for temporal and functional sequence mapping of cell cycle events. J Cell Physiol. 1978 Jun;95(3):393–405. [PubMed]
  • Pulleyblank, DE; Shure, M; Tang, D; Vinograd, J; Vosberg, HP. Action of nicking-closing enzyme on supercoiled and nonsupercoiled closed circular DNA: formation of a Boltzmann distribution of topological isomers. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4280–4284. [PubMed]
  • Roth, SY; Shimizu, M; Johnson, L; Grunstein, M; Simpson, RT. Stable nucleosome positioning and complete repression by the yeast alpha 2 repressor are disrupted by amino-terminal mutations in histone H4. Genes Dev. 1992 Mar;6(3):411–425. [PubMed]
  • Rykowski, MC; Wallis, JW; Choe, J; Grunstein, M. Histone H2B subtypes are dispensable during the yeast cell cycle. Cell. 1981 Aug;25(2):477–487. [PubMed]
  • Saavedra, RA; Huberman, JA. Both DNA topoisomerases I and II relax 2 micron plasmid DNA in living yeast cells. Cell. 1986 Apr 11;45(1):65–70. [PubMed]
  • Sandell, LL; Zakian, VA. Loss of a yeast telomere: arrest, recovery, and chromosome loss. Cell. 1993 Nov 19;75(4):729–739. [PubMed]
  • Saunders, M; Fitzgerald-Hayes, M; Bloom, K. Chromatin structure of altered yeast centromeres. Proc Natl Acad Sci U S A. 1988 Jan;85(1):175–179. [PubMed]
  • Saunders, MJ; Yeh, E; Grunstein, M; Bloom, K. Nucleosome depletion alters the chromatin structure of Saccharomyces cerevisiae centromeres. Mol Cell Biol. 1990 Nov;10(11):5721–5727. [PubMed]
  • Shortle, D; Botstein, D. Directed mutagenesis with sodium bisulfite. Methods Enzymol. 1983;100:457–468. [PubMed]
  • Smith, MM. Mutations that affect chromosomal proteins in yeast. Methods Cell Biol. 1991;35:485–523. [PubMed]
  • Smith, MM. Histone structure and function. Curr Opin Cell Biol. 1991 Jun;3(3):429–437. [PubMed]
  • Smith, MM; Stirling, VB. Histone H3 and H4 gene deletions in Saccharomyces cerevisiae. J Cell Biol. 1988 Mar;106(3):557–566. [PubMed]
  • Stoler, S; Keith, KC; Curnick, KE; Fitzgerald-Hayes, M. A mutation in CSE4, an essential gene encoding a novel chromatin-associated protein in yeast, causes chromosome nondisjunction and cell cycle arrest at mitosis. Genes Dev. 1995 Mar 1;9(5):573–586. [PubMed]
  • Sullivan, KF; Hechenberger, M; Masri, K. Human CENP-A contains a histone H3 related histone fold domain that is required for targeting to the centromere. J Cell Biol. 1994 Nov;127(3):581–592. [PubMed]
  • Weiher, H; Schaller, H. Segment-specific mutagenesis: extensive mutagenesis of a lac promoter/operator element. Proc Natl Acad Sci U S A. 1982 Mar;79(5):1408–1412. [PubMed]
  • Weinert, TA; Hartwell, LH. The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. Science. 1988 Jul 15;241(4863):317–322. [PubMed]
  • Williamson, DH; Fennell, DJ. The use of fluorescent DNA-binding agent for detecting and separating yeast mitochondrial DNA. Methods Cell Biol. 1975;12:335–351. [PubMed]
  • Winston, F; Carlson, M. Yeast SNF/SWI transcriptional activators and the SPT/SIN chromatin connection. Trends Genet. 1992 Nov;8(11):387–391. [PubMed]
  • Winston, F; Chaleff, DT; Valent, B; Fink, GR. Mutations affecting Ty-mediated expression of the HIS4 gene of Saccharomyces cerevisiae. Genetics. 1984 Jun;107(2):179–197. [PubMed]
  • Wright, JH; Gottschling, DE; Zakian, VA. Saccharomyces telomeres assume a non-nucleosomal chromatin structure. Genes Dev. 1992 Feb;6(2):197–210. [PubMed]