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Abstract

In this paper we present an adaptive application-driven power management (AADPM) strategy
with online idle period length distribution learning capability for the IEEE 802.11b WLAN. We
discuss its design and evaluate the performance in comparison with other power management
strategies using the network simulator NS2. We simulated both the single user and multiple user
scenarios. Experimental results have shown that, compared with other power management methods
examined in this paper, AADPM achieved the highest energy saving in all cases and it demonstrated
strong adaptability to network congestion.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction and motivation

Battery-powered systems are often confronted with the problem of delivering high
performance with limited computational and energy resources. Wireless networks provide
mobile users the opportunities of remote information access and sharing. However, without
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an effective power management (PM) strategy, the wireless network interface card (NIC)
can quickly drain the battery of the mobile device. Kravets and Krishnan have shown in
their paper that the NIC may consume up to 10% of the total energy of a high-end portable
computer and nearly 50% of the overall energy of a low-end handheld device [8].

Our goal is to minimize the energy consumption of the wireless NIC while maintaining
high throughput for wireless request/response type applications. The target environment is
the popular IEEE 802.11 infrastructure wireless LAN (as opposed to the IEEE 802.11 ad
hoc network) [4], in which all stations communicate with an access point (AP). When the
802.11b power save mode (PSM) is enabled, the AP broadcasts a Beacon every Beacon
Period (typically 100 ms). During the BeaconPeriod, the AP buffers all data destined
for the stations. Each Beacon contains a traffic indication map (TIM) showing whether
a station has data buffered at the AP. IEEE 802.11b compliant wireless NICs support two
power states: awake and doze. The NIC is fully powered while awake. In the doze state,
the NIC is not able to transmit or receive packets and consumes very low power. When
the PSM is enabled, a mobile station can switch its NIC to doze state when it has no
data to send or receive in order to conserve energy. The station wakes up periodically and
listens to the Beacon. If the TIM indicates that there are data buffered at the AP, the mobile
station must poll the AP and receive all outstanding data. Typically, a station listens to
every Beacon, but it can be configured to skip Beacons. PSM is often referred to as a static
power management scheme because of the fixed listening interval.

Research has shown that while PSM does quite well in saving energy in some cases,
it is not flexible enough to balance energy consumption and throughput [1,7]. The
round trip time (RTT) is often used as the performance metric for request/response type
applications. PSM is too coarse-grained for applications that have RTTs much shorter than
one BeaconPeriod. If the BeaconPeriod is 100 ms, depending on when a request is issued
relative to the Beacon, PSM may introduce a maximum of 100 ms and an average of
50 ms delay to the request (see Fig. 1(a)). This delay is often not acceptable to latency
sensitive applications. On the other hand, PSM is too fine-grained for applications that
have long server response time. As shown in Fig. 1(b), for a request that has an RTT of
about 800 ms, the station wakes up and listens to the Beacon nine times before it receives
the response. We must note that waking up and listening to Beacons are not free in terms of
energy consumption. If the energy saving during the doze state cannot amortize the energy
consumed during the wakeup and listening to Beacon periods, PSM may even cause more
energy consumption than when there is no power management (NO PM) [1].

In this paper, we propose and evaluate an application-driven dynamic power manage-
ment (DPM) approach that has online learning capability. It requires no changes to the
IEEE 802.11b protocol. In addition, its effectiveness is independent from the input because
it does not assume a particular network traffic pattern. In order to evaluate our scheme,
we extended the network simulator NS2 [11] to support 802.11b PSM and compared the
performance of the proposed scheme with several other PM strategies reported in the liter-
ature. We present the results of topologies that contain a single mobile station and multiple
mobile stations. To the best of our knowledge, our work is the first simulation study on the
adaptability of DPM methods in the presence of multiple mobile stations.

The rest of this paper is organized as follows: Section 2 introduces the related work;
Section 3 discusses the design and implementation of our adaptive application-driven DPM
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Fig. 1. Static PSM.

(ADDPM) strategy; Section 4 presents the experimental results and analysis; and finally,
Section 5 concludes our work.

2. Related work

Observations of the inflexibility of the static PSM have led to the development of many
dynamic power management (DPM) strategies [1,2,5,7,8].

Cisco Aironet 802.11a/b/g wireless LAN adapters provide a DPM option, which
switches the NIC between the power save mode (PSM) and the continuous awake mode
(CAM) depending on network traffic [3]. It switches to CAM when retrieving a large
number of packets and switches back to PSM after the retrieval. This DPM approach
switches the NIC to CAM when more than one packet is waiting at the AP, and it switches
the NIC back to PSM after approximately 800 ms of inactivity [1]. We refer to this
approach as the fixed-timeout DPM (FTDPM) for the rest of the paper.

Krashinsky and Balakrishnan proposed the Bounded-Slowdown (BSD) protocol [7],
which operates completely at the link layer with no higher-layer knowledge. Under the
assumption that NIC power management mode transitions between CAM and PSM are
always successful and introduce negligible overhead, the authors mathematically proved
that the BSD protocol guarantees that the observed RTT is less than (1 + p) times longer
than the RTT measured in the absence of PSM, where p is the expected factor of RTT delay
(p > 0). Experimental results show that in many cases, the BSD protocol can significantly
reduce the energy consumption of web page retrieval while guaranteeing the performance
bound. Note that the assumption regarding the NIC power management mode transition
made by the authors may not hold in reality [1]. As we will show in the evaluation section,
violations of this assumption may lead to RTTs significantly out of bounds.

Compared to the low-level PM protocols discussed above, application-driven PM
approaches have the advantage of knowing the application’s intention of network usage.
This knowledge provides more opportunities for energy saving without sacrificing
throughput. However, unlike low-level PM, there is no one-size-fits-all solution to
application-level PM, because applications may exhibit drastically different network traffic
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patterns. Many application-level PM protocols have been developed to embrace the
energy/throughput tradeoff [1,8].

The protocol proposed by Kravets and Krishnan is a general application-level DPM [8],
in which the mobile station acts as the master and the AP is the slave. The slave only sends
out data when the master commands it to do so. Both the master and slave can queue up data
during non-transmit phases, in which the NIC is suspended to save energy. This protocol
uses a fixed timeout period to determine whether or not to suspend the NIC, and it applies
the sleep duration parameter to control the length by which the NIC should be suspended.
Performance evaluation on Web and Email applications shows that this approach conserves
83% of the energy consumed by communication at the cost of a delay in RTT that ranges
from 0.4 to 3.1 s. This protocol has two drawbacks. First, it requires changes to the AP and
stations’ firmware, because currently, 802.11b compliant APs cannot act as the slave of a
station. Second, selfish mobile stations may ask the AP to queue large amount of packets
for itself and therefore, cause overflow and packet losses at AP.

The self-tuning power management (STPM) scheme has been developed to improve the
energy efficiency and reduce the RTT delay of latency sensitive applications [1]. It uses the
history of a group of requests that are closely related in time (150 ms) to determine whether
or not to change the NIC power mode. Results show that STPM can reduce the energy
usage of a distributed file system application by 21% compared to PSM, while reducing the
RTT delay by 80%. However, STPM is not suitable for request/response type applications
that involve long user think time (e.g. web browsing) or applications that have long server
response time (e.g. distributed information retrieval), because they cannot generate enough
traffic for STPM to switch to CAM. As a result, STPM will behave the same as PSM for
those applications.

When a NIC is in the doze mode, it is shut off from the rest of the network. The
effectiveness of the DPM strategies discussed in this section depends on how well they
predict the ongoing activities in the network during their connectivity blackout. Wake-
on-wireless [10] works as a nice complement to existing DPM methods by using a low-
power network to signal a mobile station when packets are waiting at the AP. However,
this technology is not yet widely available.

We proposed an adaptive application-driven power management (AADPM) strategy
with online idle period length distribution learning capability. The work that is the most
similar to ours is the STPM protocol [1]. However, our primary targets are distinctively
different. STPM focus on latency sensitive, interactive applications such as distributed file
systems where system response time is short in comparison to the BeaconPeriod, while
AADPM addresses request/response type applications that involve long server response
time and long user think time. AADPM differs from other DPM methods in several ways:

• Unlike some protocols [7,8], it requires no changes to the existing IEEE 802.11b
protocol.

• It does not assume a particular request arrival pattern, nor does it make assumptions
about the server response time. It learns the idle period length distribution online.

• Unlike the BSD protocol [7], it explicitly considers the mode transition cost when
making transition decisions.
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• None of the previously mentioned PM strategies explicitly consider the possibility of
having multiple NIC low-power states. When a NIC supports multiple low-power states,
our scheme maximizes energy saving by intelligently choosing the most suitable state.

3. Adaptive application-driven power management (AADPM)

In this section, we characterize NICs, discuss energy-aware application design, and
present the AADPM policy.

3.1. NIC characterization

Let’s first differentiate two concepts: the operational states from the power management
modes of a NIC. The operational states refer to the fact that a NIC can be operated in
either a full power consumption status (awake) or a low power consumption status (doze).
The power management modes govern the switch between these two operational states. If
the low power operational state (doze) is disabled, the NIC is said to be in a Continuous
Awake power management Mode (CAM). If the low power operational state is enabled, on
the other hand, the NIC is said to be in a Power Save Mode (PSM) because the doze state
can be utilized to conserve energy when appropriate. If the AP knows that a mobile station
is in CAM, it will forward all packets destined for the mobile station without delay. If the
AP knows that a mobile station is in PSM, it will store all packets destined for the mobile
station until the station polls for them.

A mobile station can change its operational state at anytime and such operational
state transition takes a fixed amount of time; however, it cannot switch between the
power management modes, CAM and PSM, at will. It must notify the AP of the power
management mode change intention because the AP will treat packets destined for the
mobile station differently according to the station’s current power management mode.
According to the 802.11b specification, a power management mode change can be carried
out only after a successful frame exchange between the mobile station and the AP. A
frame exchange typically includes a RTS (request-to-send) packet, a CTS (clear-to-send)
packet, a data packet, and an ACK packet. Thus, it is not guaranteed that a power
management mode change between CAM and PSM will always be successful, and the
overhead introduced by such a transition depends on the network condition. It is reported
that a power management mode transition may take as long as 600 ms [1].

As reported in [7], the Enterasys Networks RoamAbout NIC consumes 750 mW in the
awake state (transmitting data, receiving data, or idle), and 50 mW while it is in the doze
state. The operational state transition from doze to ready to receive (awake) takes 2 ms,
and the energy consumption is 1.5 mJ (750 mW being consumed for 2 ms). The time
overhead caused by the power management mode transition, tpm mode change overhead cannot
be predetermined and it is measured during the simulation. We used these NIC parameters
in all our experiments.

Note that operational state transition from awake to doze usually consumes negligible
energy, but the reverse is not true. An operational state transition from awake to doze will
save energy only if the energy saving in the doze state can amortize the energy required for
the state transition from doze to awake.
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Fig. 2. The AADPM architecture.

Let Pawake and Pdoze denote the power usage of a NIC in the awake and doze
state, respectively. Eoperational state transition represents the energy consumption during the
operational state transition from doze to awake. We define a break-even time tBE, which is
the minimum amount of time that the NIC needs to stay in the doze state in order to achieve
energy saving. The tBE is calculated by Eq. (1). The tBE of the above Enterasys Networks
Roam About NIC is approximately 2 ms.

tBE =
Eoperational state transition

Pawake − Pdoze
. (1)

3.2. Modifications to existing applications

As an application-level power management scheme, AADPM does not require changes
to the firmware. Instead, a software module, the AADMP module, is introduced between
the application and the NIC driver. It receives information from the application and controls
the NIC through the driver software. This is a design similar to the one proposed by Anand
et al., and the authors have shown how to implement it as a Linux kernel module [1]. Fig. 2
illustrates the AADPM architecture.

In order to communicate with the AADPM module, we need to make some fairly simple
modifications to existing applications: (i) the server sends an application-level ACK to the
client when a request is accepted, (ii) the client program notifies the AADPM Module
when an application-level ACK or a response is received, and (iii) the client program
gathers statistics about the idle period history and the last mode transition cost. We refer to
applications that satisfy these three requirements as energy-aware (EA) applications.

The first requirement ensures that the application is transport-layer independent — its
function does not depend on a reliable transport-layer protocol such as TCP. The second
requirement provides the AADPM module the precise knowledge of the beginning of
an idle period. The third requirement allows the AADPM to predict the next idle period
length. More specifically, we use two separate histograms to record the lengths of the server
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response time and user think time. The idle period length probability distribution can be
calculated using the histograms, which in turn can be used by the AADPM to generate a
probability-based idle period length prediction.

The algorithm that creates the histograms can be formally stated as follows. The set of
all possible idle period lengths (0, ∞) is partitioned into n intervals, where n is the number
of bins in the histogram. Let li denote the starting point of interval i (0 ≤ i < n). Bin i
represents the idle period length range ∈ [li , li+1). If an idle period has a length greater
than ln, it belongs to bin n − l. Each bin has a counter Ci that indicates the number of idle
period lengths that falls in the range of bin i .

A history window size ω is used to define the total number of history records — only the
most recent ω idle periods are recorded (

∑n−1
i=0 Ci = ω). The probability that the length of

the next idle period will fall in the range of bin i is p(i) =
Ci
ω

. The cumulative distribution

function (CDF) is P(i) =

∑i
j=0 C j
ω

.

3.3. AADPM

3.3.1. Design principles
The design principles of the AADPM strategy are as follows:

• Do not assume a particular idle period distribution. Instead, we use online distribution
learning. This avoids the problem that the PM strategy works well if the reality matches
the assumption, but will perform poorly otherwise.

• Allow the user to provide an energy/throughput tradeoff indicator, the et ratio, as the
guideline for predicting the upcoming idle period length. The et ratio ranges from 0 to
1.0 with 0 giving maximum throughput (minimum RTT delay, in other words) and 1.0
maximum energy conservation. If no et ratio is specified, the default value used is 0.5,
where equal priority is given to energy saving and performance.

• Explicitly consider the power management mode transition cost, tpm mode change overhead,
when making mode transition decisions. The AADPM module makes a decision for the
NIC to transit between CAM and PSM only when it believes that after subtracting the
power management mode transition cost from the predicted idle period length, the idle
period is still longer than the break-even time.

3.3.2. Predict the next idle period length
The predicted upcoming idle period length has a direct impact on the energy/throughput

tradeoff: if the prediction is much shorter than the upcoming idle period, the energy saving
is not maximized; if it is much longer than the upcoming idle period, the RTT delay
increases. Given the CDF of the idle period length, Fig. 3 presents the prediction algorithm.

Note that et ratio is not a precise bound for RTT delay. It is an indictor of, out of
energy saving and throughput, which factor is more important to the user. AADPM uses
the et ratio as a guide when making a prediction. For instance, by setting the et ratio to
0.8, the user implies that 80% priority is given to energy saving and 20% priority is given
to throughput. The actual amount of savings depends on the distribution of the RTT.
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Fig. 3. The idle period length prediction algorithm.

3.3.3. The AADPM policy
An EA application discloses two hints to the AADPM module: the beginning of

the upcoming idle period tidle start and the last power management mode transition cost
tpm mode change overheadt . The AADPM obtains the break-even time tBE and wakeup delay
tdelay parameters from the NIC. tidle is calculated as shown in Fig. 3.

Assume that the default power management mode of a NIC is CAM. The NIC is
switched to the PSM mode, only if (tidle − tpm mode change overheadt ) > tBE. If the upcoming
idle period is a user think-time idle period (the idle period after a response is received)
and the mode transition condition holds, the NIC goes to sleep until the arrival of the next
request. If the upcoming idle period is a wait-for-server idle period (the idle period after a
request is sent) and the mode transition condition holds, the NIC sleep duration is governed
by tsleep in Eq. (3) below,

tbeacon =
(⌊

(tcurrent + tidle)/tbp
⌋

+ 1
)
× tbp (2)

tsleep = tbeacon − tcurrent − tdelay (3)

where tcurrent, tbp, and tbeacon are the current time, the beacon period, and the next Beacon
time, respectively. Once the tsleep time expires, the mobile station wakes up periodically
and listens to every Beacon like PSM until pending data are detected. It then switches the
NIC to the CAM mode and receives all subsequent data without delay (Fig. 4).

4. Evaluation

We compared the performance and energy impact of NO PM, AADPM, PSM, FTDPM,
and BSD through extensive simulation using the network simulator NS2 [11].

4.1. Simulation methodology

NS2 version 2.26 does not support detailed WLAN simulation, nor does it support the
802.11b power save mode. Based on the 802.11b specification, we extended NS2 to provide
functions necessary for PM strategy evaluation. We also implemented a library of PM
methods that have been reported in the literature. We believe that our NS2 extension and
the PM library can significantly shorten the design and test cycles of future PM strategies.
The EA application is implemented as an NS2 application agent. NIC parameters discussed
in Section 3.1 are summarized in Table 1.

Note that the energy consumed by the NIC is only part of the overall mobile device
energy consumption. While PM strategies save energy for the NIC, they also inevitably
increase the total execution time of requests. The prolonged execution time consequently
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Fig. 4. The AADPM policy.

Table 1
NIC parameters

NIC state Power (W) Wakeup delay (ms)

Active 0.75 0
Doze 0.05 2

increases the base power consumption of the mobile station. Thus, it is important to study
the impact of a PM strategy on the overall mobile device energy consumption as well as
its effect on the NIC energy consumption. It was measured in [1] that the base power of
an HP iPAQ 3870 with 64 MB of DRAM and 32 MB of flash memory is 1.44 W. We used
this parameter in our simulation.

The AADPM histogram has n = 1024 and ω = 20. Each bin in the response time and
the think time histograms represents an interval of 100 ms.

We used the UC-Berkley-Home-IP HTTP traces [9,12] to test the different DPM
strategies. The CDFs of request size, server response time, and response size used in the
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Fig. 5. CDFs of request size, response size and server response time.

experiments are shown in Fig. 5. We used these parameters in all our experiments, unless
noted otherwise.

In the performance analysis, we are interested in a group of requests that are
closely related to each other in terms of time. However, nearly 80% of the think time
intervals obtained from the UC-Berkley traces are longer than 10 s. As a result, the
NIC energy consumption during the think time will completely dominate the overall
energy consumption, and the performance of static PM methods such as PSM will suffer
substantially. In order to provide a fair comparison of different PM strategies, we did not
use the trace think time in our experiments. Instead, we used think time intervals that are
randomly generated within the range of 1 and 3 s.

The experiment setup includes one or more mobile stations, an AP, and a server. Mobile
stations and the AP communicate using the 802.11b protocol. The AP and the server are
connected through a duplex link that has a bandwidth of 10 Mbps and a latency of 2 ms.

We designed two sets of experiments. In set I, the network topology contains a single
mobile station, and the station executes 10,000 requests from the trace. In set II, there are
10 concurrent mobile stations. Each station independently submits 1000 requests from the
trace at a randomly generated pace. The purpose of experiment set II is to investigate how
well a PM strategy reacts to network congestion.

4.2. Experiment set I

Fig. 6(a) presents a decomposed view of the average NIC energy consumption per
request. It shows that when no PM is applied, more than 98% of the overall NIC energy
consumption is during the idle period. Thus, the effectiveness of a PM strategy depends
on whether it can recognize the idle periods and switch the NIC to doze mode when there
is a potential energy gain under the performance constraints. Fig. 6(b) plots the overall
mobile device energy consumption, which includes the NIC as well as the base energy
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(a) NIC energy.

(b) Device energy.

Fig. 6. NIC and the overall device energy consumption with NO PM (single mobile station).

consumption during the request execution. It shows that the NIC energy consumption only
accounts for 34% of the total device energy usage. Thus, in order to achieve the overall
energy saving for a mobile device, the energy gain introduced by the NIC must be greater
than the base energy loss during the increased execution time.

Fig. 7 compares the performance of NO PM, PSM, FTDPM, BSD with three different
performance bounds — 1.0, 0.5, and 0.1, and AADPM with three different et ratio values
— 1.0, 0.5, and 0.1. When there is not power management scheme (NO PM), all responses
are forwarded to the client immediately without any delay at the AP and therefore, these
RTTs are used as the baseline for comparison. When a PM strategy is deployed, the AP will
buffer the responses while the station is in doze mode and hence, introduce RTT delays.
Fig. 7a shows the RTT delay ((RTTPM method − RTTNO PM)/RTTNO PM) caused by each
PM method. Fig. 7b shows the average NIC energy consumption per request for each
method.

Results indicate that there is no absolute winner among the PM strategies that we
examined: BSD alternatives achieved the shortest RTT delay, but the AADPM variations
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Fig. 7a. RTT delay ratio (single mobile station).

Fig. 7b. Average NIC energy consumption per request (single mobile station).

accomplished the best energy saving. Fig. 8 plots a decomposed view of the NIC
energy consumption of each PM method. These results demonstrate that by knowing the
application’s network usage intention and using the online idle period distribution learning
algorithm, AAD0.5 saved 64% more energy than the second-best energy saving PM policy
BSD1.0.

Compared to NO PM, PSM saved 38% of the NIC energy at the cost of a 7.64 times
longer RTT delay. Compared to PSM, FTDPM significantly reduces the RTT delay by
staying awake for 800 ms and switching back to active mode from doze mode as soon as
pending packets are detected. However, the energy consumption of DPM is 17% higher
than PSM.

When the proposed AADPM strategy with different et ratios is applied, the
experimental results match our expectation — larger et ratio leads to more aggressive
idle period length prediction, and consequently longer RTT delay. The average delay is
3.1 when the et ratio is 1.0, and it is 0.97 when the et ratio is 0.1. However, longer NIC
sleep time does not necessarily result in less energy consumption. The average energy
consumption is 0.35 J with AAD0.5, while it is 0.39 J with AAD1.0. This is because the
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Fig. 8. A decomposed view of the NIC energy consumption (single mobile station).

performance of AADPM depends on the accuracy of the idle period prediction. When
the prediction is much longer than the response time, the NIC wastes energy during the
overslept period. When the prediction is much shorter than the response time, however, the
NIC consumes extra energy by staying awake. Since 61% of the requests from the trace
have a response time less than 100 ms, the predicted idle period lengths are more accurate
when the et ratio is 0.5. The fact that most response times are concentrated in a small range
also explains why the delay and energy consumption of AAD0.5 and AAD0.1 are nearly
the same.

These results suggest that the et ratio should not be statically chosen. If the response
time distribution changes, the ratio should adapt accordingly. One alternative is to use the
user specified et ratio as the starting point. When it is time to make a prediction, multiple
et ratios can be applied and the predictions recorded. The AADPM can choose the et ratio
that generates the most accurate predictions based on its observation over a period of time.

Fig. 7b shows that the energy consumption of AAD0.5 is the lowest among the PM
strategies examined. Also the RTT delay of AADPM0.5 is 87% less than PSM, while
the energy saving is nearly 70%. However, it does introduce longer delays compared
to FTDPM and BSD variations. Compared to FTDPM, AADPM0.5 saved 74% of the
energy consumption at the cost of an 88% increase in delay. When compared with
BSD0.5, AADPM reduced the energy consumption by 65%, however, it prolonged the
RTT delay by 3.5 times. These results imply that AADPM may not be the best PM
protocol for applications whose RTTs are dominated by the network delay instead of server
response time, for instance, web browsing, where small RTTs may be strongly weighted
in importance by the user. The trace used in our experiments showed the near-worst case
scenario of the AADPM performance.

We expect AADPM to better demonstrate its advantages in a large body of applications
that involves complex remote execution, such as distributed information retrieval that we
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Fig. 9a. RTT delay ratio (single mobile station) with normal response time distribution.

Fig. 9b. Average NIC energy consumption per request (single mobile station) with normal response time
distribution.

will discuss next. Moreover, as we will see in the next subsection, AADPM adapts to
network congestion better than other PM approaches.

We have prototyped an agent-based wireless distributed information retrieval system
called MAMDAS in our previous research [6]. We modelled the server’s response time
using a normal distribution with µ = 2.5 and σ = 0.2. Figs. 9a and 9b plot the RTT
delay and NIC energy consumption for the different PM approaches. FTDPM and BSD0.1
achieved the best performance at a high cost of energy. AADPM showed performance
gains as well as energy savings — compared with PSM and BSD0.5, AAD0.5 achieved an
RTT delay reduction of 89% and 64%, respectively; it also improved the energy saving by
65% and 76%, respectively.
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Fig. 10. BSD0.5 RTT delay ratio.

From Fig. 7a we also observe that BSD cannot always guarantee the performance bound
— when the BSD performance bound is set to 0.1, the average RTT delay is actually 0.16.
Further investigation reveals that when the RTT delay upper bound is 0.5, although the
average delay is 0.22, much less than the performance bound, the delay of some requests
can be as high as 10 times (Fig. 10).

As we discussed in Section 2, under the assumption that NIC mode transitions are
always successful and introduce no overhead, it is mathematically provable that the BSD
protocol can guarantee a performance upper bound. However, according to the 802.11b
specification [4], mode transition requires one successful frame exchange between the
mobile station and the AP. Thus, the success of a transition is not guaranteed, and the
overhead is at least one frame exchange. This transition cost can be as high as 600 ms [1].
We believe that it is impossible to provide a hard performance bound in reality. Thus, it
is more practical to use an energy/performance tradeoff indicator, such as the et ratio of
ADDPM, in guiding the PM decisions.

Fig. 11 plots the average mobile device energy consumption per request. It shows that
the energy reduction of the NIC does not ensure an overall device energy conservation
— compared to NO PM, PSM reduced the NIC energy consumption by 37% (Fig. 7b),
however, it increased the overall device energy by 16%. The reason is that the energy
consumed by the NIC is only a portion of the total energy used by a device while executing
requests. The employment of a PM policy can reduce the NIC energy, but it increases the
execution time of a request at the same time. If the base power of a device consumed during
the prolonged request execution time cannot be compensated by the NIC energy saving, a
PM strategy may result in both performance and energy degradation like PSM did in our
experiments.

Fig. 11 also implies that AADPM achieved a good balance between performance and
energy. The extra base power consumption caused by the RTT delays is amortized by the
NIC energy gain and therefore, AADPM variations also achieved the best overall device
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Fig. 11. Average device energy consumption per request (single mobile station).

energy savings. Compared to the approach that achieved the second best overall energy
saving — BSD1.0, AAD0.5 saved the energy by an addition 12%.

4.3. Experiment set II

DPM strategies try to adapt to changes in the network. It is important to demonstrate that
a DPM method performs well in a lightly-loaded network, as well as in a congested one. In
this set of experiments, we evaluate the performance of different PM strategies in a multi-
client environment. There are 10 clients in the network, and each of them submits 1000
requests at a randomly generated think time interval between 1 and 3 s. The response time
is according to the UC-Berkley-Home-IP trace. The Fig. 12a presents the RTT delay of the
PM strategies in comparison to the baseline RTT time measured under the multiple client
and NO PM configuration. Fig. 12b plots the average NIC energy consumption results per
request.

When there are multiple clients, the RTT of each request naturally increases due to
collision. Simulation results show that the average baseline (NO PM) RTT measured
in a multiple client setting is 1.39 times higher than the average RTT measured in a
single client scenario. For this reason, the relative RTT delays of different PM strategies
actually decreased in a multi-client scenario. We observe that the performance of static PM
methods, such as the PSM, does not change much in the multi-client setting because they
do not react to changes in the environment. Conservative DPM strategies, such as FTDPM
and BSD, react to collision by increasing the awake time for the NIC. Thus, we notice a
significant reduction in RTT delay and a sharp increase in the NIC energy consumption
at the same time. Predictive DPM approaches, like the AADPM, on the other hand, try to
balance the energy consumption and throughput by adapting to the ever changing network
condition. AADPM variations showed a moderate reduction in RTT delays and a small
increase in the NIC energy consumption.
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Fig. 12a. RTT delay ratio (multiple mobile stations).

Fig. 12b. Average NIC energy consumption per request (multiple mobile stations).

Fig. 13 shows the average device energy consumption per request in the multi-client
environment. It is interesting that dynamic PM strategies such as FTDPM and BSD0.1
cost more overall device energy to execute a request than the static PSM approach.
The execution traces generated by our simulator suggest that this is mainly due to the
NIC power management mode change overhead. Since FTDPM and BSD operate at the
link layer and without application-level knowledge, they conservatively assume that each
outgoing packet is a request and each incoming packet is a response. Thus, when the
network is congested and the packet loss increases, these two methods leave the NIC awake
most of the time. In addition, NIC power management mode changes become more costly
in a congested network. As a result, the energy loss from the RTT delays exceeded the
energy gain from the NIC.
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Fig. 13. Average device energy consumption per request (multiple mobile stations).

Table 2
Summary of notation

Notation Meaning

P The total power consumption of a mobile device
α The average percentage of power consumed by the NIC with respect to

the overall power consumption per request
α × P The average NIC power consumption
(1 − α) × P The base power of a mobile device
T Average RTT per request without PM
D Average RTT delay when a PM strategy is applied
S The percentage of average NIC energy saving compared to NO PM

5. Discussion

Fig. 11 suggests that a power management scheme, e.g. PSM, may actually have adverse
impact on the overall energy consumption. Observing this phenomenon, one may ask a
question: is it possible that a PM strategy increases not only the RTT delay but also the
overall mobile device energy consumption?

Using the notation summarized in Table 2, we can describe the expected device energy
consumption of NO PM as T × P . A PM strategy can improve the overall energy saving
of a mobile device if the inequality of (4) holds. In other words, if the inequality of (4)
dose not hold, the PM strategy should not be employed because its performance is worse
than NO PM. Parameters P and α can be obtained from the hardware specifications,
and parameters T, D, and S can be empirically determined by using training data. The
simplified inequality shows that only S, D, and α are the final determinants for whether a
power management scheme should be applied.

T × P > (1 + D) × T × [(1 − α) × P + (1 − S) × α × P]

S >
D

α × (1 + D)
. (4)
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Fig. 14. Overall energy saving conditions.

Fig. 14 visualizes the inequality expressed by Eq. (4), with different α values.
For example, when α equals to 0.2, the average NIC energy consumption constitutes
20% of the overall device energy consumption. If empirical studies show that the
relationship between D and S falls in the grey or the black area, PM schemes should be
avoided.

6. Conclusions

In this paper, we proposed an application-driven power management strategy,
AADPM, which has online learning capability. Because it does not require changes
to the existing IEEE802.11b protocol, it can be easily integrated with the majority
of the request/response type wireless applications. Since AADPM does not assume a
particular network usage pattern, it provides a general DPM solution for this type of
applications.

Despite the fact that many PM strategies have been proposed, a study on the adaptability
of different PM methods in the presence of multiple users is still missing. In this study, we
compare the PM strategies under both the single-user and multiple-user scenarios. The
experimental results show that AADPM gained the highest energy saving among all the
PM strategies examined in all cases. When the server response time is longer than that
for web browsing applications (several seconds long), AADPM achieved both the lowest
energy usage and RTT increase. However, the results also indicate that AADPM is not
as suitable for latency sensitive applications that have extremely short server response
times, because it introduces longer RTT delays than the BSD and FTDPM methods in this
situation.

Static PM strategies like PSM do not adapt to the environmental changes and therefore,
they are not noticeably affected by concurrent users. DPM approaches showed increases
in both RTT delay and energy consumption when multiple users contend for the wireless
media. Because of AADPM’s adaptive learning capability, it achieved the lowest increase
in RTT delay as well as energy consumption.
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