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Abstract  Applied economic analyses conducted on fishermen’s spatial deci-
sions have primarily used random utility models of location choice. A common
characteristic of these studies is that they typically assume that fishermen have
current information on catch rates at all fishing sites in the fishery, which im-
plies a high degree of information sharing among fishermen while at sea. Using
data from the Hawaii longline fishery, this paper tests this hypothesis, analyzing
whether varying assumptions on information available to fishermen for basing
spatial choices affects predictions regarding those decisions.
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Introduction

With the increasing use of area closure policies to regulate fisheries, understanding
how commercial fishermen choose their fishing grounds has never been more impor-
tant to fishery managers. Random utility models are well suited for handling
discrete problems, such as choice of fishing grounds, and a small but vibrant litera-
ture is emerging (Bockstael and Opaluch 1983; Eales and Wilen 1986; Dupont 1993;
Holland and Sutinen 1999, 2000; Curtis and Hicks 2000; Mistiaen and Strand 2000;
Smith 2001). In constructing random utility models of commercial fishing location
choices, researchers have a series of modeling decisions that precede model estima-
tion. These decisions concern the time period over which the decisions are made, the
level of aggregation of fishing locations, and the nature of the preference function.
The time period may be for an individual set per fishing trip, for the trip itself, or
for a fishing season. One finds examples of various time periods. The original paper
by Bockstael and Opaluch (1983) modeled the choice of what fishery to pursue,
which might be considered a medium-run decision. Mistiaen and Strand (2000)
model the short-run decision of choice location of a fishing trip, while Eales and
Wilen (1986) model the location of the first set, a very short-run decision. One of
the objects of choice in a fisheries location model is the geographic area. These can
be defined quite large, as in the case of Mistiaen and Strand, who aggregate longline
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fishing in the Gulf and south Atlantic into eight areas. The smaller the area, the less
the aggregation bias and the greater the ability to model realistic policy measures.
Yet the smaller the site, the less likely the spatial resolution of the data will provide
much information about the site.

The definition of the preference function is arguably more difficult in commer-
cial fishing than in other applications. To see why, consider the initial applications
of these models to transportation choices, typically involving commuters. In these
cases, knowledge of the costs and other characteristics of alternatives is common
across commuters. Further, once the characteristics of different alternatives are
known, commuters have little need to update their information about characteristics
of choices. In the many applications of random utility models to recreational fisher-
ies, the chief characteristics of a choice are travel cost and fishing success, typically
measured as a catch rate. When the model is estimated on a cross-sectional data set,
the problem of updating is limited to calculating different catch rates for different
seasons. As in the commuter applications, recreational anglers have no need to up-
date their expectations within a trip. In commercial fishing, the characteristics of the
sites are not known, which has led researchers to specify the preference function as
the expected utility of wealth or the expected utility of profits. Below, we argue for
expected profits. In addition, in those fisheries in which fishermen make multi-day
trips, the researcher must consider whether fishermen are able to update their expec-
tations of returns and, if so, identify a plausible mechanism for updating this
information. In any case, the correct specification and use of the model depend on a
clear understanding of the behavior of the particular fishery.

Because of the uncertainty associated with fishing returns and the potential im-
portance of updating expectations while at sea, the degree to which fishermen share
information becomes relevant. Little attention has been paid to the role of informa-
tion sharing in random utility models of location choice. Indeed, it is commonly
assumed that fishermen have information on returns at their current site choice, as
well as all other sites in the fishery, presumably through information sharing among
fishermen. Yet there is no reason for fishermen to share information so freely with
one another and, in fact, the evidence from the anthropology literature indicates that
there is a considerable secrecy and deceit in some fisheries (Anderson 1972, 1979,
1980; Gatewood 1984; Orbach 1977; Palmer 1990). In addition, the evidence of in-
formation sharing among fishermen suggests that broad-based pooling of
information does not occur, but instead is limited to small circles of fishermen who
have familial or long-standing relationships. Wilson and Acheson (1980) provide
further insights into the role of information sharing among fishermen, suggesting
that the value of information varies across fisheries, with greater secrecy and deceit
associated with more sedentary species. This is the case since the knowledge one
obtains on aggregations of sedentary species lasts longer and is more valuable than
is the case for migratory species.

The objective of this study is to investigate empirically how fishermen’s expec-
tations of returns are formulated by considering alternative hypotheses on what
information the fishermen use to choose their fishing grounds. To conduct this
analysis for the Hawaii longline fishery, we estimate random utility models for loca-
tion and target choice, which involves a gear configuration choice that determines
the target species. In the case of longlining, where vessels make trips that last for
many days, there are numerous site choices made for each trip. Each site choice car-
ries with it access to additional sites and eventually the necessity to return to port to
sell the harvest and prevent deterioration of the fish. Consequently, the site choice
may be considered a type of dynamic programming problem, where the location of
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the site is the state. We do not solve the dynamic programming problem, but we de-
vise a method that accounts for the forward-looking behavior of longliners. This
type of site choice is a great deal more complicated than the single choice models of
Bockstael and Opaluch (1983) and Eales and Wilen (1986), incorporating evolving
information and changing choice sets.

To investigate the degree of information sharing among longliners, we compare
three plausible methods of calculating the economic returns to sets. The first model
estimated assumes that while at sea, fishermen can update their expectations daily
on returns to all location and target choices. The second model assumes that the
fishermen’s site choices are based strictly upon the expectations they form at port,
and are not updated after each set. The third model assumes that the fishermen can
only update their expectations on returns to their current location but that there is no
information sharing with fishermen at neighboring sites. By varying expected re-
turns based on the information the fisherman is believed to have access to or use,
the analysis provides insights into the extent of at-sea information sharing among
fishermen. A more accurate portrayal of the fishermen’s expectations process im-
proves effort allocation predictions and provides more accurate assessments of the
economic impacts of an area closure.

Results showed that the third model, in which only the expectations of returns at
the current fishing site were updated daily, performed statistically the best. How-
ever, all of the models predicted well (over 85% of choices were predicted correctly
for all models) and, somewhat surprisingly, the model in which decisions are based
strictly upon information available prior to debarking from port predicted better than
the model that assumed universal information sharing among fishermen. This sug-
gests that information sharing at sea among longliners in Hawaii may be limited
and, further, that at-sea decisions may be more determined by ex-ante expectations
(and decisions) made from port than previously realized. The ability to predict at-
sea behavior based upon information available prior to the start of the trip is
potentially quite useful to fishery management, particularly in those fisheries with
in-season quota monitoring.

Effort Allocation in the Hawaii Longline Fishery

In Hawaii, the longline fisherman can influence catch and catch composition
through his choice of production technology, henceforth referred to as targeting
strategy, and through his location choice. Longliners pursue different targeting strat-
egies by varying input usage and fishing practices (see table 1). For example,
vessels targeting tuna set their gear in the morning and haul in the evening, typically
setting 20–25 miles of mainline with about 1,300 hooks. Vessels targeting swordfish
set 35–45 miles of mainline, with about 870 hooks and light sticks (fluorescent glow
sticks) attached and fish at night. Differences in set times are due to differences in
foraging habits of the species; hook usage differs because the highest-value tuna are
found in the deeper waters, and the more hooks on a line, the deeper the set of the
line. A mixed targeting strategy identifies vessels targeting both tuna and swordfish.
A swordfish set can be distinguished from a mixed set by the high light sticks-to-
hooks ratio on the swordfish set relative to that on sets in which the longliner has a
mixed targeting strategy. Finally, targeting behavior varies across space. For ex-
ample, 94% of the sets in which tuna is targeted occur in the most southern fishing
grounds (south of 23∞N) of the fishery, but less than 1% occur in the most northern
fishing grounds (north of 33∞N).
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Modeling Locational Choices in the Longline Fishery

Constructing the Choice Alternative

To estimate a model of locational choice, we could simply define fishing areas on a
sufficiently small scale that longliners can switch sites on a daily basis, and let the
vessels engage in whatever targeting activity they found most attractive when they
make their location decisions. A model with more choices would provide more in-
formation, both for understanding the fishery and for matters of policy. But careful
analysis of the distribution of trips (table 1) suggests there are roughly three regions
of the northern Pacific that serve as distinct fishing areas:

1. The northern most area, from north of 33∞N, where most of the fishing is for
swordfish;

2. The middle area, where the sets are for tuna, swordfish, or a mixed targeting
strategy [23∞N – 33∞N];

3. The southern area, from 12∞N to 23∞N, where vessels tend to target tuna.

These areas or regions, also called fisheries, will be the three largest areas of vessel
choice, denoted f in the models below. The areas do not determine completely what
vessels target, however. For example, although targeting tuna is the dominant prac-
tice in the tuna region, vessels also target swordfish or employ a mixed targeting
strategy in this region. Hence, even when vessels have chosen the region, they can
still choose the species to target, denoted c. We model the three target species and
the three regions as eight choices: swordfish, tuna, and mixed target in each of the
three regions, dropping tuna targeting in the swordfish fishery as a choice since this
activity does not occur. Each region-target combination (except tuna in the sword-
fish region) is considered a separate alternative, so that we have eight region-species
alternatives, fc = 1,…,8, where fc = 1 is for the swordfish region; swordfish target,

Table 1
Hawaii Longline Set and Trip Characteristics in 1998 by Target Choice

Choice Characteristics Swordfish Mixed Tuna

Average number of hooks per set 867 868 1,359
Average number of light sticks per set 581 310 131
Average fuel usage per trip (gallons) 9,656 6,780 2,085
Average set time 7:00 p.m. 6:00 p.m. 8:00 a.m.
Average trip length (days) 26.2 16.8 14.8
Average number of fishing sets 14.3  11 10.1
Distance to initial site from port 778.7 510.4 223
Number of sites fished per trip 3.8 3.2 2.7
Percentage of sets in tuna fishery (12∞N – 24∞N) 6 14 94
Percentage of sets in mixed fishery (24∞N – 33∞N) 69 75 6
Percentage of sets in swordfish fishery (33∞N – 45∞N) 25 11 ~
Trip revenue from bigeye tuna catch $7,613 $10,861 $25,963
Trip revenue from yellowfin tuna catch $809 $2,090 $5,925
Trip revenue from swordfish catch $22,807 $16,869 $339
Catch deterioration $402 $3,014 $5,642
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fc = 2, is for swordfish region; mixed target, fc = 3, is for mixed region; swordfish
target, fc = 4, is for mixed region; mixed target, fc = 5, is for mixed region, tuna
target, etc. In this construction of the model, target species and regions are not cho-
sen independently. The vessel chooses a region-target species as one choice.

When the vessel has chosen one of the eight region-species alternatives, the ves-
sel then must choose the site within this alternative in which to make a set. This is
the site choice, denoted s. Site definitions range from 2∞ x 3∞ (120 miles by 180
miles) to 3.5∞ x 3∞ (210 miles by 180 miles), which is a sufficiently small scale that
does not preclude vessels from switching sites on a daily basis. We develop the loca-
tion model as a nested logit model in which the angler chooses the region-fishery,
denoted fc, and given this choice, then selects the site.1 The number of sites defined
ranges from 46 sites in the tuna region; 40 sites in the mixed region; and 51 sites in
the swordfish region. The choices are made for each day of the trip, denoted t. The
site choice set, conditional on fishing region-target species, is denoted Mfc.

To formulate a model of the location where vessels choose to fish, and the sites
where their sets are taken, we need assumptions about what motivates the skipper or
owner to be molded into a preference function. A clear sense of the objective func-
tion is essential to capturing the behavior correctly, as well as an essential guide to
welfare measurement. There is no doubt that skippers want profits as high as pos-
sible, other things equal. But since Bockstael and Opaluch, it has been customary to
assume that the skipper cares about the dispersion of profits as well as the mean.
Hence, it has been the accepted practice to model the choice of location in an ex-
pected utility framework, so that the variance matters as well as the mean of profits
(see Mistiaen and Strand 2000; Curtis and Hicks 2000). There are several reasons to
doubt that risk aversion is an important determinant of choice of the set level. The
difference among expected profit levels is relatively small at the set level. As Rabin
(2000) has shown, the implication of risk aversion for small differences in income is
a utility function that is quite extreme for large changes. Further, Eggert and
Martinsson (2002) have survey evidence that risk aversion is not an important influ-
ence for choice among locations. While this issue needs to be investigated further,
we assume that skippers make set choices to maximize expected profit and that they
are risk neutral.

The Structure of the Preference Function

If this were a single choice of one set, then the nested model would be straightfor-
ward to estimate. The skipper would choose the site and fishery/catch target with the
highest expected profits. But the problem is more complicated, because each site
choice determines the alternatives that are available for the next choice. A vessel
that has incurred the large expense of fishing distant sites in the swordfish fishery
on day t is not likely to choose a site near to port in the tuna fishery on day t + 1
because he has yet to earn back his sunk cost in fuel. This is essentially a dynamic
programming problem. We adopt the approach taken in Curtis (1999) and Curtis and
Hicks (2000), which does not solve the complete dynamic programming problem but
looks ahead at the alternatives available from each site. We assume that the
fisherman’s objective is to maximize the expected value of the sum of profits from
the finite stream of daily fishing sets made during the course of a trip. The periodic

1 This is similar to Holland and Sutinen’s (2000) model of the New England trawl fishery in which fish-
ermen first choose a fishery and fishing region (e.g., groundfish on Georges Bank) and then area choice
within the larger region.
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flow of profits consists of revenues less costs less the value of catch deterioration.
Deterioration of catch plays a dynamic role that varies among species. Tuna deterio-
rate more quickly than swordfish, and the larger the previous harvests, the greater
the loss from deterioration. Accordingly, in each period, t, the daily profits the jth
fisherman expects to receive from site choice, s, conditional on having chosen fish-
ing region-target species, fc, is defined as:

E E REV Y s Mjs fc t t s fc t j js fc t s jt t
fc( ) – – , ,, | , | , | –P W W= [ ]{ } Îw x a gg 1 (1)

where REVs,fc|t represent revenues in period t at site s conditional on having chosen
fishery target fc; wj and xjs,fc|t represent the vector of input prices and variable input
usage for k = 1,…,n inputs, e.g., fuel, bait, labor, and light sticks, of the jth fisher-
man using region-target strategy fc at site s; asgggggYjt–1 represents the value of catch
deterioration; Wt is the fisherman’s information set at time t; Mfc denotes the choice
set of sites given fc is chosen. Note that profits are to be computed from available
data, not estimated.

Catch deterioration is a common feature in fresh-product fisheries and helps to
explain patterns of location choices through its impact on the production horizon.
For example, vessels that target both swordfish and tuna during the course of a trip
typically first target swordfish in the north and then switch to tuna as they return to
port since swordfish has a long shelf life, and tuna is highly perishable. For each ad-
ditional day at sea, the total loss in value of the jth fisherman’s catch from all m
species at time t from deterioration equals gYjt–1, where ggggg = (g1,…gm) and Y =
(Y1,…Ym), where gm ≥ 0 equals the daily rate at which the accumulated value of catch
of the mth species, denoted Ym, loses value. The deterioration of value associated
with accessing a more distant fishing site equals asgggggYjt–1 ≥ 0, where as equals the
travel days required to access site s.

The impact of the choice of the current set on the future profits can be modeled
by calculating the stream of profits. The expected value of the stream of profits from
choosing s,fc in period t is defined as:

V s fc E
R

Et js fc t t fc jr fcr Mt

T
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1
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where the first term on the right-hand side (RHS) is (1), the expected profits to be
added to total trip profits from the next fishing set. The second term on the RHS
equals the sum of expected profits to be added to total trip profits for fishing sets t =
2,…,T and is calculated for each set as the average of all site profits for each region/
target choice. The value of T, the number of days available for sets, is given by the
number of sets the vessel actually makes.

Expressions (1) and (2) identify the need for estimates of current and future ex-
pected returns as well as the potential importance of information in formulating
these estimates. Previous studies have assumed that fishermen have current informa-
tion on returns at all fishing sites in a fishery; i.e., perfect information sharing
among all fishermen in the fishery. This paper tests this assumption by employing
alternative approaches to modeling fishing returns.
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Forecasting Expected Returns To Choices

To forecast daily returns to fishing sites, an autoregressive moving average model
(ARMA) is used to reveal the data generating process, relating average returns to
site s in period t (REVs,t) to lagged values of these returns (REVs,t–1,…,REVs,t–r) and
to current and past disturbances (es,t–1,…,es,t–r) at site s. ARMA models have also
been used by Dupont (1993) for similar purposes. The general specification of the
ARMA used is:

REV REVs fc t fc t p s t p
p

T

fc t p t p
p

T

, | | , ,= +- -
=

- -
=

å åd u e
1 1

,

where dfc,p and ufc,p are parameters to be estimated and other variables are defined
above.

To implement the ARMA for this analysis, a separate model was developed for
each fishing region due to differences in the physical characteristics of each fishery.
For example, in the northern waters of the swordfish fishery, the isotherm is much
higher than in the temperate waters of the mixed and tuna fisheries.2 This may, for
example, affect nutrient upwellings and, more generally, species’ foraging patterns,
as species that are usually found over a wider range of depths are essentially com-
pressed into a much narrower band of the water column. In contrast, the
stratification of stocks permitted by the low depth of the isotherm in the tuna fishery
requires longliners to use a lineshooter to target deep-water species such as bigeye
tuna.

Prior to estimation, a 5% random sample was selected from the daily observa-
tions of each series to be used as an out-of-sample benchmark against which
forecasting performance could be measured. The within-sample data for each fore-
casting model was then evaluated pairwise against alternative specifications using a
general to specific model building process. Evaluation criteria consisted of the
Schwarz Box Criteria, Akaike Information Criteria, and visual inspection of the
autocorrelation function.

Results from testing the ARMA structure are presented in table 2. Briefly, all
models revealed a first-order moving average structure, with results from both the
mixed and tuna fisheries yielding an ARMA (3,1) specification, and results from the
swordfish fishery yielding an ARMA (2,1) specification. Fishermen’s expectations
of returns to a site in future periods were forecast for sites in each fishery using the
step-ahead approach.

The Empirical Model

The intertemporal model shown in equation (2) fits naturally into the nested logit
framework because both impose additive separability on the utility function. The in-
tuition of this approach is that each fisherman, facing a finite set of fishing choices
on each choice occasion, chooses a fishing site from each fishery/target alternative
based upon current expected profits and incorporates this information into their
choice of fishery/target, which is made based upon the long-run stream of profits as-
sociated with each of these alternatives.

2 The isotherm refers to the depth at which the temperature is too low to support life or, in this case,
pelagic species.
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To form the expectation of profits at a location choice, we calculate the profits
that would be computed there, updated by information about the number of boats at
the site and whether the fishermen fished at the site previously on the current trip.
This permits the vessel skipper to update information in a small way. The impact of
the location choice on the returns for the remainder of the fishing trip is given by the
term PSTREAM, which is a measure of the profits that would be available in future
sets contiguous to the site. Dropping the subscript on time, the empirical model is:

ˆ ,, , , ,V SRPROFIT BOAT SETPREV STREAMs fc s fc s fc fc s fc= + + + +b b b e1 2 3 P (4)

where PSTREAMfc is calculated as:

P PSTREAM
Rfc fc r fcr Mt

T
fc=

1
1 , | .tt Î= + åå (5)

The role of the PSTREAM variable is to influence the choice of region-target spe-
cies. It captures the effects of relocating from one region to another. Note that
PSTREAMfc is an average of profits at the available sites in the region-target spe-
cies, fc. BOAT equals the number of boats at a site; SETPREV is a dummy variable
that equals one if the fisherman has fished at the site in the previous set, zero else;
es,fc is the unobservable component of utility, which is assumed to be randomly dis-
tributed and drawn from a generalized extreme value (GEV) distribution; and
SRPROFIT equals Ps,fc, as defined in equation (1). The GEV distribution implies
that choices are correlated among daily site choices within a fishery, but long-run
benefits are not correlated.

BOAT and SETPREV are included in the model as part of the information set.
BOAT may be indicative of the potential for information sharing at a site, with in-
creased numbers of vessels reflecting an increased likelihood that more information
sharing cliques are represented at the site. SETPREV, which has previously been
used in location choice models to capture habit formation effects that may result in
inertia, is included here to capture potential differences in information available to
fishermen at a fishing site he has recently fished. There is considerable anecdotal
evidence of inertia in site choice. This may occur for reasons of uncertainty about

Table 2
Site Revenue Forecasting Model Results

Variable Tuna Mixed Swordfish

d1 0.704 0.58618 0.435
(9.61)* (8.54) (11.28)

d2 0.174 0.289 0.385
(5.73) (4.00) (3.30)

d3 0.095 0.062
(1.90) (2.85)

ut–1 0.252 0.22 0.21
AIC 6,958.5 8,519.0 9,481.9
SBC 6,973.2 8,538.2 9,496.2

* Estimated parameters/standard errors in parentheses.
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revenues or because of the costs of relocating. In a more fundamental sense, the in-
ertia may mean that the vessel owners or captains have learned about productive
fishing sites.

Based on equation (4) and the assumed error structure, the probability of choos-
ing site s conditional on having chosen fishery/catch target, fc, can be expressed:

P
E

E
s fc

s fc

r fcr

M fc,

,=
[ ]

[ ]=å
exp ˆ

exp ˆ
,

,

P

P

r

r1

(6)

where E s fc
ˆ

,P  = b1SRPROFITs,fc + b2BOATs,fc + b3SETPREVs,fc. Estimation of equation
(6) provides estimates of the vector of coefficients b/r, where r provides a measure
of substitutability of sites within fishery/target choices. These estimates are used to
construct the inclusive value (INCVAL), a measure that captures information from
the short-run site decision and incorporates it in the long-run fishery/target choice
and is defined as:

INCVAL Efc r fcr

M fc

= =ålog exp ( ˆ ).,P r1

The probability of choosing site s conditional on having chosen fishery/target fc is:
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(
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P
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where E fcP̂  = f1PSTREAMfc + rINCVALfc. Estimation of r from equation (7) enables
the b coefficients to be identified.

Data on Inputs, Sets, and Prices

Overall, 113 longline vessels completed 11,785 fishing sets on 1,101 trips in 1998.
Logbook data contains detailed set-level information on the date, location, input
use, and catch of each species on all longline trips. From this data, travel distances
can be calculated and daily hook and light stick usage is obtained. Fish landings and
price information are obtained from a random sample of sales at a fresh-fish auction
in Honolulu at which fish are auctioned individually. Information on input costs and
fuel and bait usage is from a cost-earnings survey of the Hawaii longline fleet that
initially collected information on 1993 operations and updated in 1997.

Empirical Results

The empirical issue we address concerns information the fisherman uses to base ex-
pectations of returns to fishing alternatives. To provide insights into this issue, three
models are estimated and compared. In the first model, referred to as the “Updating
Model,” it is assumed that fishermen are able to update their expectations on returns
to site and fishery/target choices daily for the site at which they are currently fish-
ing, as well as all neighboring sites. The fishermen’s expectations of returns for
other fishery/target choices are also updated daily in a like manner.
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In the next model, referred to as the “No Updating Model,” it is assumed that
the fishermen’s decisions are based upon the expectations they form at port. That is,
if the fisherman left port on the first of the month, his expected returns on the elev-
enth are not based upon one-step-ahead forecasts made on the tenth using
information from say the eighth through the tenth, as in the Updating Model. In-
stead, in the No Updating Model, expected returns on the eleventh are based upon
10-step ahead projections made on the first of the month. In No Updating, the only
new ‘information’ the fisherman acquires from fishing is his location, the number of
vessels at a site, and whether he has fished at a site previously. In the third model
estimated, “Mixed Updating,” it is assumed that the fisherman updates his expecta-
tions on returns to fishing sites he has recently or is currently fishing at but uses
information acquired at port on returns to other alternatives. That is, it is assumed
that there is no information sharing among fishermen operating at different locales.

Table 3 shows the site choice and fishery/target choice results for all models es-
timated including estimated coefficients and their t-statistics, the pseudo-R2, and the
percentage of correctly predicted choices for each model. With the exception of
SETPREV in the Mixed Updating Model, all coefficients of the site choice nest are
of the expected sign and are significantly different from zero, at least at the 5% level
in all models. In particular, an increase in the expected profits at a site, SRPROFIT,
has a positive effect on the probability of that site being chosen in all three models.
SETPREV is insignificant in the Mixed Updating model, which assumes that fisher-
men only have current information on which to base their expectations of fishing
returns at their current site. For all other sites, they must base their expectations on
information gained while at port. This result may suggest that controlling for differ-
ences in information available to a vessel may better explain location persistence
than simply attributing this behavior to inertia effects.

In the fishery/target choice nest, an increase in the expected profits (PSTREAM)
has a positive effect on the probability of a fishery/target alternative being chosen in
all models. In addition, the coefficient on the inclusive value (INCVAL) is within the
theoretical bounds, (0,1), for all models. Note that the coefficient on INCVAL, which
is indicative of the influence of the site choice decision on the long-run path, is

Table 3
Empirical Results of Nested Logit Models

Updating No Updating Mixed Updating

SRPROFIT 0.00806 0.0064 0.00876
(10.619)* (8.987) (9.347)

SETPREV 22.818 26.414 22.819
(63.076) (46.873) (.037)

BOAT 0.04039 0.1029 0.04037
(8.926) (30.662) (29.145)

PSTREAM 0.00349 0.00124 0.00447
(10.860) (1.992) (11.012)

INCVAL 0.532 0.682 0.524
(34.380) (44.784) (40.633)

Site Pseudo R2 0.72 0.65 0.86
Fishery/Target Pseudo R2 0.53 0.44 0.71
Percentage of Choice Occasions
Correctly Predicted 86.6 91.1 94.7

* Estimated parameters with t-statistics in parentheses.
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greatest for the No Updating Model. This difference may be due to the fact that the
values of INCVAL are higher relative to PSTREAM in the No Updating Model, the
latter of which are of relatively lower value in the No Updating Model than in the
other models because of the substantially longer forecasting stream.

An additional test of the models is their predictive ability. The Updating Model
predicts choices well, but the No Updating Model predicts marginally better. Mixed
Updating has the highest explanatory power in terms of the R2, as well as the highest
percentage of accurately predicted choices.

Measuring the Welfare Effects of Area Closures

Although the expected signs of the coefficients estimated in a random utility are in-
tuitive, the actual parameter estimates are not. To provide greater context to the
model comparison of this analysis, we consider an area closure policy that NMFS
recommended in 2000 to reduce longline interactions with sea turtles. This policy
recommended closing the fishing grounds between 30∞N to 44˚N between 137˚W
and 173˚E throughout the year, and during April and May, closing the area between
23˚N and 44˚N as well as between 6˚N lat. and 16˚N lat. between 137˚W and 173˚E.
The welfare measure we adopt is that proposed by Curtis and Hicks (2000), which
reflects the amount a fisherman needs to be compensated at the start of a trip in or-
der to equate his expected benefits from a trip after the closures with his pre-closure
level of expected benefits. This payment is the amount of profits, denoted Pw, that
will make the fisherman indifferent between the alternatives before and after the
closure:
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is expected maximum profits and P0 represents expected maximum profits before
the closure. P1(.) is calculated for those sites in each fishery, Mfc1, still open after
the closure. The idea of expected maximum profits is that the researcher does not
have full information about the profit function and so does not know the choices of
the vessels. Taking the expected maximum profit accounts for the researcher’s un-
certainty. Even for vessels that don’t visit the closed sites, the probability that they
will visit influences the welfare measure. For firms that have higher probability of
visiting the closed sites, the welfare loss will be higher.

Welfare estimates from each model are shown in table 4 for each targeting strat-
egy. Overall, the models yielded similar results, with swordfish fishermen needing
to be compensated the most for lost profits due to the closure ($11,200 to $16,000),
and tuna fishermen needing to be compensated the least ($700–$900). The higher
welfare losses for swordfishing stem, in part, from their longer trips and in part be-
cause the closure eliminated more sites in the swordfish region. Compensation to
mixed-target fishermen for lost profits due to the closure ranged from $4,800 to
$7,300. All compensation schemes under the Mixed Updating model were higher
than those calculated under either the Updating or the No Updating models.
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Conclusions

Overall, the model that performed best was that in which expected returns at the cur-
rent fishing site were based upon information that was updated daily, but expected
returns at neighboring and more distant sites were based upon information available
prior to debarking from port. This may suggest that while some information sharing
among longliners may occur at sea, it may be limited. Alternatively, it may indicate
that the longliners have little ability to respond to new information on more distant
fishing sites once at sea or do not trust the information.

While the No Updating Model was not as statistically reliable as the Mixed Up-
dating Model, it outperformed the traditional approach to measuring returns at a
site; i.e., assuming the fishermen have current information on returns at all sites in a
fishery and also had a respectable number of accurate predictions. The ability to pre-
dict at-sea behavior based upon information available prior to the start of the trip is
potentially quite useful to fishery management. For example, in fisheries with in-
season quota monitoring, it may be possible to more accurately predict when the
quota has been reached. More generally, the results underscore the need for behav-
ioral models in fishery economics that account for ex-ante decision making, such as
ex-ante cost functions, which have been more widely applied in the agricultural eco-
nomics literature but have yet to gain prominence in the fisheries economics
literature despite the stochastic nature of fishery production.
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