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The assumptions and notation involved in the various formulas for blocking probability that we
shall present and discuss are illustrated in Figure 1.   users are modelled as having theQ
combined average rate of generating calls denoted by , and the arrival times of these first/
attempts to place a call are assumed to be independent; these assumptions lead [1, ch. 2, 10] to a
Poisson distribution for the number of calls generated in a given time interval, :X

       in } e , 0; (1a)Pr{  calls generated œ 8  8 X
Ð X Ñ

8

/ 8
� X

!
/

for an incremental interval , the probability of a call arrival in that interval is.>

      in } . (1b)Pr{one arrival œ .>†.> /

Also, the probability density function for the time between call arrivals is exponential:

    p ( ) e , 0. (2)œ >  >+
� >/ /

 The users seek to place these calls through a system that has  channels (also calledR
servers) that, on the average, are each occupied with a call for the mean call duration or service
time .  For telephone traffic the probability density function of the service time for a2 œ "Î.
given channel is well-modelled as exponential:

    p ( ) e , 0. (3)œ >  >=
� >. .

For this assumption, and if a given channel is constantly in use, the number of call completions
in time  is a Poisson random variable:X

       in } e , 0, (4a)Pr{  calls completed œ 8  8 X
Ð X Ñ

8

. 8
� X

!
.

and the probability that the given channel, if occupied, will complete a call in the interval  is.>

         in } . (4b)Pr{service completion in one channel œ .>†.> .

1  Excerpted and adapted from the following technical report: L. E. Miller, "Models for MSE Traffic and Blocking
Under Stress," J. S. Lee Associates, Inc. Report JC-2092-2-FF (91 pages) under contract DAAL02-89-C-0040
(Army Survivability Management Office),  July 1992. (DTIC accession number AD-B166477).
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N  channels, each with service time h = 1/µ
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Figure 1.  Model used in blocking analyses

 The amount of offered call traffic /  in terms of its loading on the system is oftenE œ / .
expressed in terms of an occupancy or channel utilization factor

    . (5)œ œ œ œ˜
R R R R

2 E Q
3 3

/ /

.
!

This measure of traffic is the expected  users' rate of arriving calls normalized by the system'sQ
rate of servicing calls (call arrival rate for  users  call departure rate for  channels).  SinceQ ƒ R
it is required for stable operation that 1.0, we observe from (5) that, when , there3 � Q � R
must be a restriction on the callers' utilization rates; that is, / 1 for .3! � R Q � Q � R
 If all  channels are occupied when a call arrives, the arriving call cannot be completed andR
is handled in one of several ways: (a) the call is “cleared," in effect forgotten; (b) the call
“returns" after a random delay as the user tries to reinitiate the same call; or (c) the call is put on
hold (“held") in a queue of a certain size, , while waiting to be serviced.U
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A.  Blocking Analyses for an Infinite Number of Sources

When there is an infinite number of users or sources ( ), the rate of calls being offered toQ Ä _
the system is not affected by how many calls are currently in the system.  Below, in Section B,
the case of a finite number of sources will be treated.
 .  For blocked calls cleared, the analysis of blocking probability proceeds byCleared Calls
noting the relationships between the probabilities of possible system states (numbers of calls in
the system, occupying one or more channels) at different times.  Let Pr{ , } denote the5 >
probability at time  that there are  calls in the system.  Using (1b) and (4b), we have> 5

   } (1 ) Pr{0, } Pr{1, } (6a)Pr{0, œ � .> > � .> >>�.> / .

   } Pr{0, } (1 ) Pr{1, } 2 Pr{2, } (6b)Pr{1, œ .> > � � .> � .> > � .> >>�.> / / . .
     ã
   } Pr{ , } (1 ) Pr{ , }Pr{ , œ .> 5�" > � � .> � 5 .> 5 >5 >�.> / / .
           ( ) Pr{ , } (6c)ã � 5�" .> 5�" >.

   } Pr{ , } (1 ) Pr{ , }. (6d)Pr{ , œ .> R�" > � � R .> R >R >�.> / .

As a steady state or equilibrium is reached, the time derivative of these probabilities is assumed
to vanish, giving, for example,

    } Pr{ , } Pr{ , } Pr{ , } P( ) (7)Pr{ , œ 5 > � .> 5 > œ 5 > ´ 55 >�.> `
`>

and resulting in
     P(0) P(1) (8a)œ/ .

     ) P(1) P(0) 2 P(2) (8b)( œ ��/ . / .
       ã
     ) P( ) P( ) ( ) Pr( ) (8c)( œ 5�" � 5�" 5�"� 5 5/ . / .
       ã
     P( ) P( ), (8d)œ R�"R R. /

together with the normalization requirement

     P( ) 1. (8e)œ5"
5œ!

R

Since , the system of equations (8) is solved by the probability expressionE œ
/

.

   P( )    (9), 0 

0, . 

œ5
E E

5 8
Ÿ 5 Ÿ R

5 � R

ÚÝÛÝÜ
� �"5 8

8œ!

R �"

! !

 The blocking probability for cleared calls and an infinite number of sources then is
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    P( ) ( , ). (10)œ R œ œ F E RF
E ˜

R

-ß_
R

E

8! !� �"
8œ!

R 8
�"

This is  or the  formula for blocking probability [2].Erlang's Loss Formula Erlang B

 .  When blocked calls are not cleared but are offered again after randomReturning Calls
delays, approximately the analysis proceeds as for cleared calls with the exception that the
effective incoming rate of calls  in terms of the originally offered rate  is [3]/ /w

    . (11)œ � F � F � F � œ
" � F

/ / / / /
/w # $ â

Thus the argument of the blocking probability is /(1 ), a function of the probabilityE œ E � Fw

itself.  This situation calls for an iterative solution for  or, more simply, a parametric solution inF
which  is expressed by (10) with  as the argument, and the offered traffic calculated also as aF Ew

function of  usingEw

    (1 ). (12)œ E � FE w

 .  When up to  blocked calls are held (delayed) in a queue, with the remainderHeld Calls U
cleared, the analysis of the transition of probabilities leads to

   } (1 ) Pr{0, } Pr{1, }; (13a)Pr{0, œ � .> > � .> >>�.> / .

   } Pr{ , } (1 ) Pr{ , }Pr{ , œ .> 5�" > � � .> � 5 .> 5 >5 >�.> / / .
     ( ) Pr{ , }, 1 ; (13b)� 5�" .> 5�" > Ÿ 5 � R.

   } Pr{ , } (1 ) Pr{ , }Pr{ , œ .> 5�" > � � .> � R .> 5 >5 >�.> / / .
     Pr{ , }, ; (13c)� R .> 5�" > R Ÿ 5 � R�U.

    } Pr{ , } (1 ) Pr{ , }. (13d)Pr{ , œ .> R�U�" > � � R .> R�U >R�U >�.> / .

Note that, for , the probability of a channel's becoming unoccupied is , rather than5   R R .>.
5 .> R R. , because there are  calls being processed, even though there are more than  calls in the
system.  At steady state, (13) results in

    P(0) P(1, }; (14a)œ >/ .

    )P( ) P( ) ( ) P( ), 1 ; (14b)( œ 5�" � 5�" 5�" Ÿ 5 � R� 5/ . / .

    )P( ) P( ) P( ), ; (14c)( œ 5�" � R 5�" R Ÿ 5 � R�U� R 5/ . / .

    ) P( ), ; (14d)P( œ R�U�" 5 œ R�UR R�U. /

with the normalization requirement

     P( ) 1. (14e)œ5"
5œ!

R�U
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Since , the system of equations (14) is solved by the probability expressionE œ
/

.

   P( )   (15a)

, 0 

, 

0, 

œ5

E

5
K Ÿ 5 � R

E E

R R
K R Ÿ 5 Ÿ R�U

5 � R�U

ÚÝÝÝÝÛÝÝÝÝÜ
Œ �

5
�"

R 5�R
�"

!

!

where

 (15b)
! ! !

œ œ � †K
E E E E E " � ÐEÎRÑ

8 R R 8 R " � ÐEÎRÑ
" " "Œ �
8œ! 8œ!

R�" R�"8 R 8 R U�"

8œR

R�U 8�R

!
�

 . (15c)
! ! !

1
œ œ � †

E E E E E ÐEÎRÑÒ � ÐEÎRÑ Ó

8 R R 8 R " � ÐEÎRÑ
" " "Œ �
8œ! 8œ!

R R8 R 8 R U

8œR�"

R�U 8�R

!
�

In this case of infinite sources and held calls, using (15b) the blocking probability is

   P( ) ( , ; ). (16a)œ 5 œ œ F E R UF
†

� †

˜" !5œR

R�U E
R "�ÐEÎRÑ

"�ÐEÎRÑ

8œ!

R�"
E E
8 R "�ÐEÎRÑ

"�ÐEÎRÑ
2ß_

R U�"

8 R U�"

!

! !

This formula (for ) is known [2] as the .  Using (10) and (15c), we canU Ä _ Erlang C formula
also write

     ; ) . (16b)( , 
( , )

1 ( , )
œF E R U

F E R †

� F E R †
2ß_

-ß_
"�ÐEÎRÑ

"�ÐEÎRÑ

-ß_
ÐEÎRÑÒ"�ÐEÎRÑ Ó

"�ÐEÎRÑ

U�"

U

It is customary for telephone traffic analyses to regard the queue size as being infinite ( ),U Ä _
since a delayed call, even if the user hangs up and tries again, is assumedly not cleared.  For
infinite queue size and / 1, (16b) becomes3 œ E R �

     , ) . (16c)(
( , )

1 ( , )
œF E R

F E R

� � F E R †
2ß_

-ß_

E E
R R-ß_

 Another formula ([3], [4]) for the case of infinite sources, held calls, and infinite queue size
is due to Molina:

   1 e e ( , ) , (17)œ � † † œ F E RF
E E

8 8
˜�E �E w

8œ!

R�" _8 8

8œR
2ß_" "

! !
œ

which can be recognized as the blocking probability that would result if (13c) and (13d) were
modified to become
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   } Pr{ , } (1 ) Pr{ , }Pr{ , œ .> 5�" > � � .> � 5 .> 5 >5 >�.> / / .
     ( 1) Pr{ , }, ; (18a)� 5� .> 5�" > R Ÿ 5 � R�U.

    } Pr{ , } [1 ( ) ] Pr{ , }. (18b)Pr{ , œ .> R�U�" > � � R�U .> R�U >R�U >�.> / .

The changes from (13c) and (13d) consist in making the probability that a call is completed in the
interval  proportional to the total number of calls in the system, including the queue, rather.>
than just the number of calls currently being serviced by the  channels.  The significance ofR
these modified equations is that (17) reflects an assumption that a queued call is held for the
original duration of that call, whether or not during that time a channel becomes free to service
the call, with queued calls being regarded as blocked (even though some of them will eventually
be serviced).

B.  Blocking Probability Analyses for a Finite Number of Sources

When there is a finite number, , of users or sources, the amount of offered traffic is affected byQ
the number of users whose calls are already in the system, and it is customary to consider the
offered traffic as  times the average source activity.  Using  to denote the average call arrivalQ / w

rate for an individual source that is free to make a call, then when  users' calls are in the system5
the state-dependent call arrival rate is

      ( ) . (19)œ Q � 5/ /5
w

 .  Taking into account the dependence of the call arrival rate on the number ofCleared Calls
calls in the system, the probability equations (6) become

   } (1 ) Pr{0, } Pr{1, }Pr{0, œ � .> > � .> >>�.> / .!

   (1 ) Pr{0, } Pr{1, }, 0; (20a)œ � Q .> > � .> > 5 œ/ .w

   } Pr{ , } (1 ) Pr{ , }Pr{ , œ .> 5�" > � � .> � 5 .> 5 >5 >�.> / / .5�" 5

      ( ) Pr{ , }� 5�" .> 5�" >.

   ( 1) Pr{ , } [1 ( ) ] Pr{ , }œ Q�5� .> 5�" > � � Q�5 .> � 5 .> 5 >/ / .w w

      ( ) Pr{ , }, 0 ; (20b)� 5�" .> 5�" > � 5 � R.

   } Pr{ , } (1 ) Pr{ , }Pr{ , œ .> R�" > � � R .> R >R >�.> / .R�"

   ( ) Pr{ , } (1 ) Pr{ , }, . (20c)œ Q�R�" .> R�" > � � R .> R > 5 œ R/ .w

At steady state these equations lead to

    P(0) P(1), 0; (21a)œ 5 œQ/ .w

    ] P( ) ( 1) P( ) ( ) P( ), 0 ; (21b)[( ) œ Q�5� 5�" � 5�" 5�" � 5 � RQ�5 �5 5/ . / .w w

    P( ) ( 1) P( ), ; (21c)œ Q�R� R�" 5 œ RR R. / w

together with the normalization requirement



Formulas for Blocking Probability

7

     P( ) 1. (21d)œ5"
5œ!

R

Using  the system of equations (21) is solved by the probability expression3
/

.
w
!

w

œ

   P( )    (22), 0

0, . 

œ Q � R5
Q Q

5 8
Ÿ 5 Ÿ R

5 � R

ÚÝÛÝÜ
Œ � Œ �a b a b� �"3 3! !

w w5 8

8œ!

R �"

These probabilities form the  or  probability distribution [2].Engset Truncated Bernoulli

 Using  to relate traffic in Erlangs to the free source activity, in terms of  theE œ Q˜w w w
! !3 3

probability that the system is blocked, called the “time congestion" ([2], [3]), is

   Pr{  channels are busy} P( )œ R œ RF

   ( , ). (23a)œ œ F R˜ˆ ‰ a b
! ˆ ‰ a b

Q
R w!

w R

8œ!

R
Q
8 !

w 8
-ßQ !

3

3

3

The probability that a user's call is lost given that the call arrives, called the “call congestion," is
the probability that  channels are being used by the other 1 users:R Q �

   P . (23b)œP

Q�"
R !

w R

8œ!

R
Q�"

8 !
w 8

ˆ ‰ a b
! ˆ ‰ a b

3

3

Note that for , the blocking and loss probabilities become the same for a system inQ Ä _
which calls are cleared.

 The offered traffic  for a finite number of sources is defined in terms of theE œ Q˜ 3!

average source activity E / , where3 / .! 5œ Qe f
  E  P( ) ( )œ † œ 5 œ K

Q�5 Q�5 Q�5 Q

Q Q Q 5
3 3 3 3

/

.
!

w
w w �" w 5
! ! Q !

5œ! 5œ!

R Rœ � Œ �" "
  ( ) / , (24a)œ K œ K K

Q�"

5
3 3 3w �" w 5 w

! Q ! !
5œ!

R

Q�" Q"Œ �
where

    ( ) . (24b)œ̃K
Q

5
Q

5œ!

R

!
w 5"Œ � 3

The quantity  can be expanded to yield the expressionKQ
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  ( ) ( )œ � œ K �K
Q�" Q�" Q�"

5 5�" 5�"
Q Q�"

5œ! 5œ"

R R

! !
w 5 w 5" "” • Œ �Œ � Œ � 3 3

  ( ) (1 ) ( )œ K � œ � K �
Q�" Q�"

5 R
Q�" Q�"

5œ!

R�"

! ! !
w 5�" w w R�""Œ � Œ �3 3 3

  1 [1 ( , )] , (25)œ � � F R Ke f3 3! !
w w

-ßQ�" Q�"

which, when substituted in (24a), leads to the expression

  ; (26)
[1 ( , )] [1 ( , )]

œ �
" � � F R " � � F R

3
3 3

3 3 3 3
!

! !
w w

! ! ! !
w w w w

-ßQ�" -ßQ

the upper bound is commonly used ([3], [4]), and its accuracy improves as  increases.  RatherQ
R

than solve (26) for  to substitute in (23a), the quantities in both of these equations are3!
w

calculated parametrically, and ( , ) may be plotted as a function of ( ).F R E œ Q-ßQ !! !
w w3 3 3

 .  Assuming the total queue size is , the probability transitionHeld Calls U œ Q � R
equations for a finite number of sources and held calls are

   } (1 ) Pr{0, } Pr{1, }, 0; (27a)Pr{0, œ � Q .> > � .> > 5 œ>�.> / .w

   } ( 1) Pr{ , } [1 ( ) ] Pr{ , }Pr{ , œ Q�5� .> 5�" > � � Q�5 .> � 5 .> 5 >5 >�.> / / .w w

      ( ) Pr{ , }, 0 ; (27b)� 5�" .> 5�" > � 5 � R.

   } ( 1) Pr{ , } [1 ( ) ] Pr{ , }Pr{ , œ Q�5� .> 5�" > � � Q�5 .> � R .> 5 >5 >�.> / / .w w

      Pr{ , }, ; (27c)� R .> 5�" > R Ÿ 5 � Q.

   } Pr{ , } (1 ) Pr{ , }, . (27d)Pr{ , œ .> Q�" > � � R .> Q > 5 œ QQ >�.> / .w

At steady state these equations lead to

    P(0) P(1), 0; (28a)œ 5 œQ/ .w

    ] P( ) ( 1) P( ) ( ) P( ), 0 ; (28b)[( ) œ Q�5� 5�" � 5�" 5�" � 5 � RQ�5 �5 5/ . / .w w

    ] P( ) ( 1) P( ) P( ), ; (28c)[( ) œ Q�5� 5�" � R 5�" R Ÿ 5 � QQ�5 �R 5/ . / .w w

    P( ) P( ), ; (28d)œ Q�" 5 œ QR Q. / w

together with the normalization requirement

      P( ) 1. (28e)œ5"
5œ!

Q

Using , the system of equations (28) is solved by the expression3
/

.!
w

w

œ
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   P( )   (29a)

,  0

,

0, 

œ5

Q

5
J Ÿ 5 � R

Q 5

5 R
J R Ÿ 5 Ÿ Q

5 � Q

ÚÝÝÝÝÝÛÝÝÝÝÝÜ

Œ � a b
Œ � Œ �

3

3

! Q
w �"5

!
w 5

Q
�"!

!

R

R

R

where

   ! (29b)œ � 8J
Q R Q

8 R 8 R
Q

8œ!

R�" Q

!
w 8

R w

8œR

!
8" "Œ � Œ � Œ �a b3

3

!

   ! 
!

œ � 8
Q R Q

8 R 8 R
" "Œ � Œ � Œ �a b
8œ!

R Q

!
w 8

R w

8œR�"

!
8

3
3

   ! . (29c)œ � 8
Q Q Q�R

8 R 8 R
" "Œ � Œ � Œ � Œ �a b a b
8œ! 8œ"

R Q�R

! !
w w8 R !

w 8

3 3
3

In this case of a finite number of sources and held calls, using (29b) the blocking probability is

  P( ) ( , ). (30a)
! 

! 
œ 5 œ œ F RF

8

� 8

˜"
! ˆ ‰ Š ‹

! !ˆ ‰ ˆ ‰a b Š ‹5œR

Q
R
R 8 R

8œR

Q
Q

8

8œ!

R�" Q
Q Q
8 R 8 R!

w 8 R

8œR

8
2ßQ !

w

R
!
w

R
!
w

!

!

3

3
3

3

Using the factoring shown in (29c), we can also write

    , ) . (30b)(
( , ) ! 

( , ) ! 
œF R

F R † 8

" � F R † 8

2ßQ !
w

-ßQ !
w

8œ!

Q�R
Q�R

8 R

8

-ßQ !
w

8œ"

Q�R
Q�R

8 R

8
3

3

3

! ˆ ‰ Š ‹
! ˆ ‰ Š ‹

3

3

!
w

!
w

The average source activity  is3!

   P( )  P( )œ 5 œ 5
Q�5 Q�5

Q Q
3 3 3!

w w
! !

5œ! 5œ!

Q Q�"" "
  ! œ J � 5

Q�" R Q�"

5 R 5 R
3 3

3w �" w
! Q !

5œ! 5œR

R�" Q�"
5

R w
!

5� Ÿ" "Œ � Œ � Œ �a b
!

  / , (31a)œ J J3!
w

Q�" Q

where the normalization factor  can be expanded as follows:JQ
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 !œ � � 8 �J
Q�" Q�" R Q�" Q�"

8 8�" R 8 8�" R
Q

8œ!

R Q

!
w 8

R w

8œR�"

!
8" "” • ” • Œ �Œ � Œ � Œ � Œ �a b3

3

!

  ! 
!

œ J � � 8
Q�" R Q�"

8�" R 8�" R
Q�"

8œ"

R Q

!
w 8

R w

8œR�"

!
8" "Œ � Œ � Œ �a b3

3

  ( !) 
!

œ J � � 8 8
Q�" R Q

8 Q † R 8 R
Q�"

8œ!

R�" Q

!
w 8�"

R w

8œR�"

!
8" "Œ � Œ � Œ �a b3

3

  1 [1 ( , )] ( , ) ( )� J � � F R � J F R �
R R Q

Q Q R
Q�" 2ßQ�" Q 2ßQ! ! ! !

w w w w Re f Œ �3 3 3 3

  1 [1 ( , )] ( , ) ( ) ; (31b)� J � � F R � J F R �
R Q

Q R
Q�" 2ßQ�" Q 2ßQ! ! ! !

w w w w Re f Œ �3 3 3 3

solving for /  leads to the inequalityJ JQ�" Q

  . (
[1 ( , )]

+ [1 ( , )] + [1 ( , )]

[1 ( , )]3 3

3 3 3 3
3

3 3! !
w w

2ßQ

! ! ! !
w w w w

2ßQ�" 2ßQ�"J J

!
! !
w wR

Q 2ßQ�F R

" �F R � " �F R �
� �

� F R
ˆ ‰ ˆ ‰Q Q

R R! !
w wR R

Q Q
R RQ�" Q�"

( ) ( )3 3
31c)

For  the upper bound in (31c) approaches the expression for  in (26)—with Q ¦ R F3! 2ßQ

replacing —and both the offered traffic and the blocking probability for held calls can beF-ßQ

calculated parametrically as functions of .  Therefore, the calculations use3!
w

    . (31d)
+ [1 ( , )]

œ Q �E µ
Q

" �F R
3

3

3 3
!

!
w

! !
w w

2ßQ

 Analogous to Molina's approach that leads to (17) above, an alternate expression for the
blocking probability with calls held and an infinite number of sources, there is an alternate
expression for calls held and a finite number of sources [3].  According to this approach, the
appearance and disappearance of held calls on the queue is treated in the same manner as carried
calls, as if there were  channels, although the system is said to be blocked if there are  orQ R
more channels occupied (time congestion) and a call is said to be held (not lost) if  or moreR
channels are occupied when a call arrives from a free source (call congestion).  The transition
equations are

   } (1 ) Pr{0, } Pr{1, }, 0; (32a)Pr{0, œ � Q .> > � .> > 5 œ>�.> / .w

   } ( 1) Pr{ , } [1 ( ) ] Pr{ , }Pr{ , œ Q�5� .> 5�" > � � Q�5 .> � 5 .> 5 >5 >�.> / / .w w

      ( ) Pr{ , }, 0 ; (32b)� 5�" .> 5�" > � 5 � Q.

   } Pr{ , } (1 ) Pr{ , }, . (32c)Pr{ , œ .> Q�" > � � Q .> Q > 5 œ QQ >�.> / .w

At steady state these equations lead to
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    P(0) P(1), 0; (33a)œ 5 œQ/ .w

    ] P( ) ( 1) P( ) ( ) P( ), 0 ; (33b)[( ) œ Q�5� 5�" � 5�" 5�" � 5 � QQ�5 �5 5/ . / .w w

    P( ) P( ), ; (33c)œ Q�" 5 œ QQ Q. / w

together with the normalization requirement

     P( ) 1. (33d)œ5"
5œ!

Q

The system of equations is solved by

   P( )   (34a)
(1 ) , 0

0, . 
œ5

Q

5
� Ÿ 5 Ÿ Q

5 � Q

Ú
ÛÜ

Œ � a b3 3! !
w w �Q5

With no calls cleared, the average source activity  is3!

  ( ) (1+ ) . (34b)
(1+ ) (1+ ) 1+

œ œ œ
Q�5 Q

Q 5
3 3 3

3 3 3

3 3 3
!

! ! !
w w w

! ! !
w w wQ Q

5œ!

Q

! !
w 5 w Q�"" Œ �

Substitution in (34a) gives the blocking probability (time congestion)

   P( )
(1 ) 1

œ 8 œ œF
�

�

"
! !ˆ ‰ ˆ ‰a b Š ‹

Š ‹8œR

Q
8œR 8œR

Q Q
Q Q
8 8 "�!

w 8

!
w Q

8

"�

Q

3

3

3
3

3
3

!

!

!

!

   (1 ) ( , ). (35)œ � œ F R
Q

8
˜"Œ �

8œR

Q

! 2ßQ
8 Q�8 w

! !3 3 3

The call congestion (holding probability) is the probability that  channels are busy with 1R Q �
users:

    P (1 ) . (36)œ �
Q�"

8
2 !

8œR

Q�"

!
8 Q�"�8"Œ �3 3
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C.  Numerical Comparisons Of Blocking Formulas

In this section we present numerical comparisons of the various formulas shown above for
blocking probability.  The formulas used in the numerical comparisons are the following:

Formula Eq. # #Sources Treatment of Lost Calls
F-ß_ (10) Infinite Cleared (Erlang B)
F<ß_ (10), (12) Infinite Returning
F2ß_ (16c) Infinite Held (Erlang C)
Fw

2ß_ (17) Infinite Held (Molina approach)
F-ßQ  (23a), (26) Finite Cleared (Engset)
F2ßQ  (30b), (31d) Finite Held
Fw

2ßQ  (35) Finite Held (Bernoulli: Molina approach)

In the numerical results that follow, these formulas are plotted together as functions of the
amount of offered traffic, , in Erlangs, for a given number of channels, .  The calculation ofE R
the formulas was done using the BASIC program listed in the Appendix, which generated a file
for input to a plotting program.
 In Figures 2 through 8, respectively, the seven formulas for blocking probability are plotted,
one formula per figure, as functions of the amount of offered traffic per channel, / .  TheE R
values 8, 10, 13, 30, and 62 are used in each figure to produce a family of curves.  FromR œ
this set of figures we are able to observe the following comparative behavior of the formulas: all
of the held calls formulas produce values that are independent or relatively independent of  inR
the neighborhood of , whereas the cleared calls formulas and calls returning formulas doE œ R
not.  For the values of  used in these figures, the blocking probability for held calls is roughlyR
50% when the amount of offered traffic equals the number of channels, except for the Erlang C
formula, which gives 1 when .F œ E œ R
 The significance of these observations is that the selection of a formula for blocking
probability is not as critical for small levels of traffic, but becomes more important as the level of
traffic approaches the number of channels; the Erlang B formula then gives an answer that can be
an order of magnitude different from that provided by the Erlang C formula.  Traditionally,
formulas based on the infinite-sources, held calls model—that is, the Erlang C and the formula
based on Molina's approximate analysis—have been preferred for network performance estimates
because they provide a conservative estimate.  Intuitively the Molina formula is more satisfying
as well, since if the  amount of offered traffic in Erlangs equals the number of channels,average
then—assuming that the average value is close to the median value—it is very likely that about
50% of the the time the traffic will be greater than , and arriving calls will be blocked.R
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Figure 2.  Erlang B Formula with  VariedR

Figure 3.  Returned Calls Formula With  VariedR



Formulas for Blocking Probability

14

Figure 4.  Erlang C Formula with  VariedR

Figure 5.  Molina Formula With  VariedR
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     8 10 13 30 62R
  Number of sources 23 26 41 88 219

Figure 6.  Engset-Cleared Formula with  VariedR

Figure 7  Engset-Held Calls Formula with  VariedR
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     8 10 13 30 62R
  Number of sources 23 26 41 88 219

Figure 8.  Bernoulli Formula with  VariedR
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APPENDIX: COMPUTER PROGRAM FOR CALCULATING
BLOCKING PROBABILITIES

The following program, written in GW-BASIC©, calculates the seven formulas for blocking
probability for plotting and comparison, as discussed above.

 Key to program variables:
   A   offered traffic
   PB1   Erlang B formula
   AR   traffic modified to account for returning calls
   PB2   Erlang C formula
   PB3   Molina formula
   PB4   Engset-cleared formula
   AE   traffic modified for Engset formula
   PB5   Engset-held formula
   PB6   Bernoulli formula

10 REM BLOCKING PROBABILITIES--7/92
20 INPUT "Enter output filename"; F$
30 OPEN "O", #1, F$
40 LPRINT "Filename = ";F$
50 INPUT "Enter number of channels"; N
60 INPUT "Enter number of users";M
70 LPRINT N;" channels and ";M;" users"
80 DA=N/20
130 LPRINT
140 LPRINT USING"\     \"; "Load";"LRet";"LE";"LQ";"EB";"EC";"Mol";"ES";
"ESH";"MESH"
150 PRINT #1, "Load", "PB1","LRet","PB2","PB3","PB4","LE","PB5","LQ","PB6"
160 FOR I=1 TO 50
170 A=I*DA
180 GOSUB 1000
200 GOSUB 1300
220 LPRINT USING "###.## ";A,AR,AE,AQ,
225 LPRINT USING "#.#### ";PB1,PB2,PB3,PB4,PB5,PB6
230 PRINT #1, A,PB1,AR,PB2,PB3,PB4,AE,PB5,AQ,PB6
240 NEXT I
300 STOP
1000 REM Infinite-source formulas
1010 SUM=1
1020 TERM=1
1030 FOR K=1 TO N
1040 TERM=TERM*A/K
1050 SUM=SUM+TERM
1060 NEXT K
1070 PB1=TERM/SUM
1080 AR=A*(1-PB1)
1090 PB2=PB1/(1-A/N+A*PB1/N)
1100 PB3=1-EXP(-A)*(SUM-TERM)
1110 RETURN
1300 REM Finite-source formulas
1305 RHOP=A/M
1310 TERM=1
1320 SUM=1
1330 FOR K=1 TO N
1340 TERM=TERM*RHOP*(M+1-K)/K
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1350 SUM=SUM+TERM
1360 NEXT K
1370 PB4=TERM/SUM
1380 AE=A/(1+(1-PB4)*RHOP)
1390 RON=RHOP/N
1400 SUM=1
1410 TERM=1
1420 FOR K=1 TO M-N
1430 TERM=TERM*(M-N-K+1)*RON
1440 SUM=SUM+TERM
1450 NEXT K
1460 Y=1/SUM
1470 PB5=PB4/(Y+(1-Y)*PB4)
1480 AQ=A/(1+RHOP)
1490 TERM=(1-RHOP)^M
1500 FOR K=1 TO N
1510 TERM=TERM*(M-K+1)*RHOP/K/(1-RHOP)
1520 NEXT K
1530 SUM=TERM
1540 FOR K=N+1 TO M
1550 TERM=TERM*(M-K+1)*RHOP/K/(1-RHOP)
1560 SUM=SUM+TERM
1570 NEXT K
1580 PB6=SUM
1590 RETURN
2000 END


