

Analytical Results from Samples Collected February 2008 at the Cactus Flat Main Lake Depression, Nevada Test and Training Range

Sam Earman Ronald L. Hershey Todd Mihevc

April 2008

Revision 1.0

prepared by

Desert Research Institute, Nevada System of Higher Education

prepared for U.S. Bureau of Land Management THIS PAGE INTENTIONALLY LEFT BLANK

LIST OF FIGURESi	iii
INTRODUCTION	1
SAMPLING	3
Water Samples	3
Soil/Sediment Samples	6
Collection	6
Processing	6
Analytical Results	7
Organic Chemicals	8
Inorganic Chemicals	8
SUMMARY	9
REFERENCES	9
APPENDIX 1. Final report of the California Animal Health & Food Safety Laboratory	
System regarding samples collected at the NTTR in July 2007.	1
APPENDIX 2. Excerpt of chemical data for a water sample collected from the Cactus Flat	
Main Lake depression on the NTTR in July 2007 2	20
APPENDIX 3. Chemical Data from samples collected by DRI at the NTTR in February	
2008	23
APPENDIX 4. Chain-of-Custody Forms for Samples Collected at the NTTR by DRI in	
February 2008	28

CONTENTS

LIST OF FIGURES

1a.	Overview map showing the location of samples collected by the Desert Research Institute (DRI) on the NTTR in February 2008. Except for the airfield (labeled), black lines indicate locations of roads. The red polygon represents the boundary of the Tonopah Test Range (located within the NTTR)
1b.	Close-up view of a portion of the area shown in Figure 1a, focusing on the NTTR airfield and the playa and Main Lake depression to the northeast, with locations of samples collected by DRI in February 2008
1c.	Close-up view of the a portion of the area shown in Figure 1b, focused on the Main Lake depression and immediate vicinity, with locations of samples collected in and around the depression collected by DRI in February 2008

THIS PAGE INTENTIONALLY LEFT BLANK

INTRODUCTION

This report presents the analytical results from water, sediment, and soil samples collected during February 2008 at the Cactus Flat Main Lake depression on the Nevada Test and Training Range (NTTR). The NTTR is located in southern Nevada 130 km north of Las Vegas, and occupies 11,700 km². The U.S. Bureau of Land Management's (BLM) Nevada Wild Horse Range comprises nearly 1,900 km² within the northern portion of the NTTR; it is occupied by approximately 1,100 wild horses. Between July 20 and 25, 2007, 71 horses associated with a herd of 250 were found dead in the extreme northwest area of the NTTR near a previously excavated depression located in Cactus Flat at a dry lake bed approximately 5 km northeast of an airstrip managed by the NTTR (Figure 1a).

The Main Lake depression was excavated for a project by the U.S. Department of Energy. The Main Lake depression has been used by wildlife as a consistent source of drinking water, as normal precipitation has kept ample water in the depression. Because of recent drought conditions, the water was approximately 0.3 m deep when the dead horses were found (Ronald Lowndes, Sandia National Laboratories, personal communication, 2008).

Toxicology reports prepared by the California Animal Health and Food Safety (CAHFS) indicated that high levels of nitrate (NO₃⁻) and nitrite (NO₂⁻) are the most probable cause of death, primarily because tests for botulin, anatoxin-a, and microcystins, and GC/MS screening for organic compounds were all negative. Nitrate concentrations were reported at 3,670, 3,940 and 3,440 ppm for samples water-2, pond-6, and pond-8, respectively (California Animal Health & Food Safety Laboratory System, 2007); this report is provided in Appendix 1, see page "6 of 8" in the report for the nitrate data. Nitrite levels in these three waters were proportionally high, at approximately 50, 848, and 825 ppm, respectively (California Animal Health & Food Safety Laboratory System, 2007). [Note that nitrate concentrations can be converted to nitrate-as-nitrogen (NO₃-N) concentrations by multiplying them by 0.226; nitrate-as-nitrogen (NO₃-N) concentrations can be converted to nitrate concentrations were also present in markedly high concentration, with 2,100 mg/L of chloride, and 2,100 mg/L of sulfate (see Appendix 2).

The Cactus Flat Main Lake depression was commonly used by the herd, suggesting that their sudden mortality could have been caused by rapid contamination of this water supply. The concentration of nitrate and nitrite could also have been further increased by evaporation in the dry lake bed. However, precipitation since September 2007 has increased the water-level in the depression, altering the conditions from those when the horses died.

Nitrates are commonly found in desert environments (Walvoord *et al.*, 2003). Natural sources occur in precipitation as both dry and wet deposition, and through biological fixation of N_2 from the atmosphere. In desert soils, water flux beneath the root zone further concentrates salts, including nitrate (Tyler *et al.*, 1996; Hartsough *et al.*, 2001). Groundwater discharge and evaporation at terminal lakes also concentrates nitrates (Tyler *et al.*, 1997; Blank *et al.*, 1999). One important anthropogenic (man-made) source of nitrate in arid environments is agriculture return flow (McMahon *et al.*, 2006). The goal of this project is to measure nitrogen compound concentrations in various media (e.g., soil, water, sediment) in the vicinity of the depression and to evaluate whether these compounds originated from natural or anthropogenic sources.

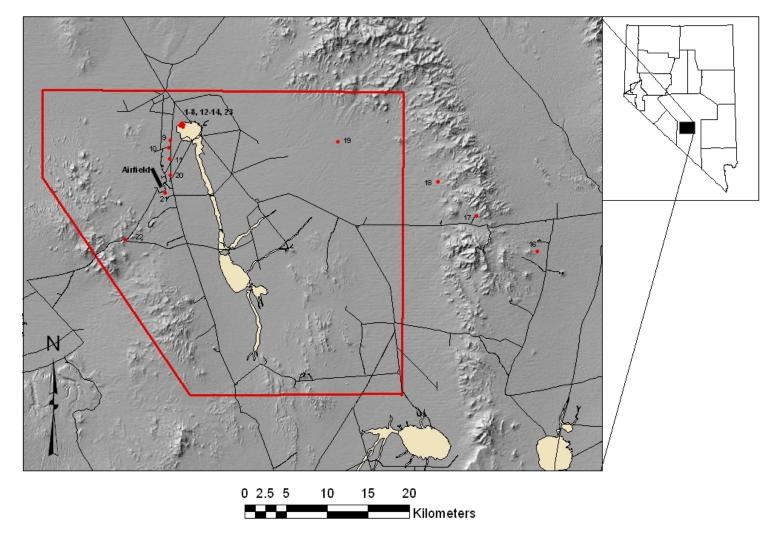


Figure 1a. Overview map showing the location of samples collected by the Desert Research Institute (DRI) on the NTTR in February 2008. Except for the airfield (labeled), black lines indicate locations of roads. The red polygon represents the boundary of the Tonopah Test Range (located within the NTTR).

SAMPLING

Samples were collected at 22 sites (Figure 1a, b, c). Of the 22 samples collected, seven were waters (five springs were sampled, and samples were collected from two depths in the depression), and the remaining 15 samples were sediments, with four obtained from the bottom of the Main Lake depression, and the remaining 11 collected from culverts or natural drainages (five from culverts and six from drainages). Of the 11 drainage/culvert samples, nine were collected from locations between the airstrip and the depression, with the remaining two samples collected northeast of the depression. Because analyses have different collection requirements, more than one sample was typically collected at each site. When water samples were collected, electrical conductivity (EC), pH, and temperature were measured in the field.

A list of the sample sites and the types of samples collected at each site is given in Appendix 3, along with analytical results and values for blank and duplicate samples [note that for these samples, a 'duplicate' sample is an independently-prepared sample from the same site rather than a second analysis of the same sample]. A description of the sample collection, storage, preparation, and analysis procedures for each type of sample is given below. All samples were tracked with chain-of-custody forms and a custody seal was placed on the sample container at the time of sampling, such that the sample container could not be opened without breaking the seal. Chain-of-custody documentation for all samples is provided in Appendix 2.

Water Samples

Water samples were analyzed for major-ion chemistry, trace element content, the isotopic composition of dissolved nitrogen compounds, glycols, petroleum hydrocarbons, and screened for semi-volatile organic compounds.

Samples for major-ion chemistry analysis were collected in two 500 mL poly bottles. The water placed in one of the two bottles was filtered through a 0.45 μ m polyethersulfone (PES) filter and then acidified with 10 drops of reagent-grade nitric acid. The water in the second bottle was unfiltered and unacidified. In the field, samples were stored in insulated coolers to maintain a temperature as close to 4 °C as possible. After transport to Reno, Nevada, samples were stored in a refrigerator until transferred to the Desert Research Institute (DRI) Analytical Chemistry Laboratory for analysis.

Samples for trace element analysis were collected in pre-cleaned, acid-rinsed, 500 mL poly bottles after being filtered through a pre-cleaned 0.45 μ m PES filter. Each sample had 5 mL of Seastar Baseline trace-metal-grade nitric acid added after collection. In the field, samples were stored in insulated coolers to maintain a temperature as close to 4 °C as possible. After transport to Reno, samples were stored in a refrigerator until transferred to the DRI Ultra-Trace Chemistry Laboratory for analysis. Samples from the Main Lake depression contained significant amounts of fine (<0.45 μ m) sediment. Because addition of acid (standard metals sample preservation technique) to samples in the field could dissolve some of the suspended material, or release metals adsorbed on the suspended material into solution, aliquots of unfiltered, unacidified water were filtered through 0.1 μ m polycarbonate membranes in the laboratory filtered samples are more representative of actual dissolved trace

element concentrations; the concentrations measured in the field-filtered and acidified samples are more representative of the dissolved trace-element concentrations that might result from raw, unfiltered watering-hole water encountering the low-pH environment of a horse's stomach (see Merritt, 2003).

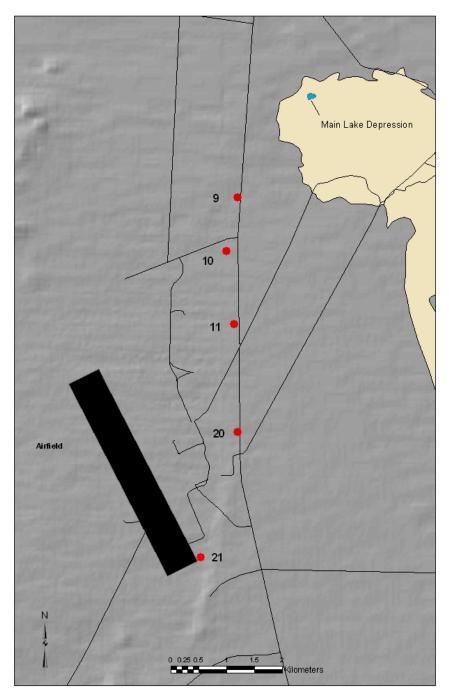


Figure 1b. Close-up view of a portion of the area shown in Figure 1a, focusing on the NTTR airfield and the playa and Main Lake depression to the northeast, with locations of samples collected by DRI in February 2008.

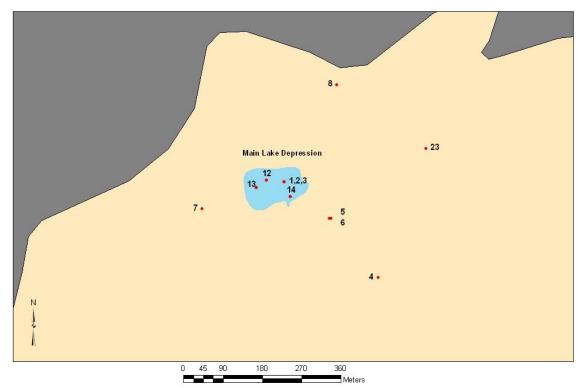


Figure 1c. Close-up view of the a portion of the area shown in Figure 1b, focused on the Main Lake depression and immediate vicinity, with locations of samples collected in and around the depression collected by DRI in February 2008.

Samples for nitrogen isotope analysis were collected in 7.6 L poly containers to obtain sufficient N to allow isotopic analysis. Most water was filtered through a 0.2 μ m cartridge filter prior to collection; the two watering-hole water samples contained too much fine sediment for field filtration, so they were collected after filtration through a 0.45 μ m cartridge filter. In the field, samples were stored in insulated coolers to maintain a temperature as close to 4 °C as possible. After transport to Reno, samples were stored in a refrigerator until transferred to the Purdue Stable Isotope (PSI) facility at Purdue University for analysis. Samples were conveyed to PSI in insulated coolers packed with ice, and shipped via overnight delivery service. PSI was notified of the fact that the two watering-hole water samples had not been filtered through 0.2 μ m filters, and the decision was made for PSI to perform the filtration in the laboratory as part of their sample processing.

Samples for semi-volatile organic screening were collected in 1 L amber glass bottles. The remaining samples for organics analysis were collected in 40 mL volatile organic analysis (VOA) vials. Samples for total petroleum hydrocarbons extractable (TPH-E) and total petroleum hydrocarbons purgeable (TPH-P) were collected in individual VOA vials that had been pre-filled with hydrochloric acid. Vials were filled so as to eliminate headspace without overfilling (which could have caused some of the preservative acid to be lost). Samples for glycol analysis were collected in a VOA vial with no acidification. In the field, samples were stored in insulated coolers to maintain a temperature as close to 4 °C as possible. After transport to Reno, samples were stored in a refrigerator until transferred to

Alpha Analytical in Reno for analysis (glycol analyses were performed by Zalco Laboratories in Bakersfield, CA, under subcontract to Alpha Analytical; all other organics analyses were performed in-house at Alpha Analytical).

Soil/Sediment Samples

Collection

Samples of soil and sediment were analyzed for major-ion chemistry, trace element content, the isotopic composition of dissolved nitrogen compounds, glycols, petroleum hydrocarbons, and screened for semi-volatile organic compounds.

Two 0.95 L glass jars were filled with soil/sediment for major-ion chemistry analysis. In the field, samples were stored in insulated coolers to maintain a temperature as close to 4 °C as possible. After transport to Reno, samples were stored in a refrigerator until transfer to the DRI Soils Laboratory for preparation of soil extracts.

For trace element analysis, approximately 1 L of soil/sediment was placed in plastic bags; sampling was conducted to avoid contamination from metal implements. The Main Lake depression sediment samples were collected in a PVC sampler. In all other cases, the upper surface was frozen solid, so a rotary hammer was used to break up the frozen crust (approximately 15 cm thick). Once the upper layer was broken apart, the exposed material was soft, and plastic implements were used to scrape away several inches of the surface material in an effort to remove any soil that might have been in contact with the metal of the rotary hammer. In the field, samples were stored in insulated coolers to maintain a temperature as close to 4 °C as possible. After transport to Reno, samples were stored in a refrigerator until transfer to the DRI Ultra-Trace Chemistry Laboratory for preparation of soil extracts.

For nitrogen isotope analysis, four 1 L glass jars were filled with soil/sediment. In the field, samples were stored in insulated coolers to maintain a temperature as close to 4 °C as possible. After transport to Reno, samples were stored in a refrigerator until transferred to the PSI facility at Purdue University for analysis. Samples were conveyed to PSI in insulated coolers packed with ice, and shipped via overnight delivery service.

For organics analyses, two soil/sediment samples were collected in glass jars. Soil from one jar (collection volume 0.24 L) was used for the TPH-E and TPH-P analyses, as well as the semi-volatile screening. Soil from the second jar (collection volume 0.12 L) was used for glycol analysis. In the field, samples were stored in insulated coolers to maintain a temperature as close to 4 °C as possible. After transport to Reno, samples were stored in a refrigerator until transferred to Alpha Analytical in Reno for analysis (glycol analyses were performed by Zalco Laboratories in Bakersfield, CA, under subcontract to Alpha Analytical; all other organics analyses were performed in-house at Alpha Analytical).

Processing

Analysis of major-ion chemistry and trace elements were performed on soil extracts prepared at DRI; all other sample processing was carried out by the laboratory to which the samples were submitted. All soil extracts were made using a 1:10 soil:liquid ratio by weight.

For major-ion analyses, two types of extracts were prepared; one extract was prepared using deionized (DI) water, the other using a 0.5 M KCl solution. The DI water extract was used for the determination of pH, Ca^{2+} , Mg^{2+} , Na^+ , K^+ , Cl^- , HCO_3^- , SO_4^{-2-} , NO_2^- , and NO_3^- . The KCl extract was used for the determination of NH_4^+ , O-PO₄, and total dissolved P. These analyses were conducted by the DRI Analytical Chemistry Laboratory after preparation of the extracts. Soil/sediment was passed through a 2 mm sieve to integrate the sample, and approximately 4 g of the integrated sieved soil/sediment was collected, which was placed in a poly centrifuge tube. Forty milliliters of liquid were added to the tube, at which point the tube was capped and placed flat on a shaker table and agitated for 15 hr. Samples were centrifuged for 30 min at 3,500 rpm, and then filtered through a 0.45 µm filter. Low-nitrogen filters were used for samples destined for nitrogen analysis. The filtrate was transferred in a poly bottle to the DRI Analytical Chemistry Laboratory for analysis.

For trace element analyses, extracts were prepared using deionized (DI) water. All extract preparation was performed wearing gloves and using nonmetallic laboratory equipment. Approximately 4 g of soil/sediment were removed from each sample container. This material was placed in a pre-cleaned, acid-rinsed, poly centrifuge tube. Forty milliliters of DI water were added to the tube, at which point the tube was capped and placed flat on a shaker table and agitated for 15 hr. Samples were centrifuged for 10 min at 2,500 rpm and then filtered through a pre-cleaned 0.45 µm filter into a pre-cleaned, acid-rinsed, poly centrifuge tube. Samples that were cloudy after the 0.45 µm filtration were filtered through a pre-cleaned 0.1 µm filter. After filtration, 400 µL of Seastar Baseline trace-metal grade nitric acid were added. A set of additional extracts were made using samples of sediment from the Main Lake depression. For these additional samples, 400 µL of Seastar Baseline trace-metal grade nitric acid were added to the sediment/DI water mixture prior to shaking. The acidified extracts were prepared because pH has a significant impact on metal solubility and mobility. As a result, metal uptake from the water in the low-pH horse stomach could differ from that predicted using a DI water soil extract. The acidified extracts were prepared to mimic the most acidic conditions that might be present in a horse stomach (see Merritt, 2003). Samples were then transferred to the DRI Ultra-Trace Chemistry Laboratory for analysis.

Analytical Results

Because not all analyses have been completed (i.e., nitrogen isotopes), and other analyses have only recently been completed, a detailed interpretation of the analytical results is not possible at this stage. A report with more detailed evaluation will be issued in the summer 2008; this section gives only a brief discussion of some of the more notable results from the chemical analyses.

Of first note is that dissolved solids concentrations in the Main Lake depression were much lower in the samples DRI collected in February 2008 (total dissolved solids [TDS] <1,000 mg/L; see Table 2A of Appendix 3) than that observed in summer 2007 (TDS > 31,000 mg/L). This difference in concentration is likely the result of evaporative concentration during the summer months affecting the earlier samples, while DRI's samples were collected at a time when evaporation was low and the depression had received dilute inflow of rainwater greatly increasing the volume of water in the depression (the water depth in February 2008 was approximately 2 m).

Organic Chemicals

Data for organic chemicals are given in Table 3 of Appendix 3. There were no positive results for glycols (components of aircraft de-icing agents), although many glycols undergo relatively rapid natural biodegradation, with laboratory half-lives of one to 12 days in aerobic water, and 0.2 to four days in soils (U.S. Environmental Protection Agency, 2000). There were also no semivolatile organic compounds identified, and gasoline-range hydrocarbons were not identified in any of the samples.

Five culvert sediment samples tested positive for low concentrations of oil-range organic chemicals (15 to 90 mg/kg), and one of the samples also contained low concentrations of diesel-range organic chemicals (13 mg/kg). These samples were collected in natural drainages between the airfield and the Main Lake depression. They were collected near roads for ease of access, but were collected up-elevation of the roads so that they would not be influenced by runoff from the roads. It is likely that these occurrences of organic chemicals are the result of runoff from the airfield that incorporates oil from small drips from vehicles (e.g., Lopes and Dionne, 1998; Bris *et al.*, 1999; Lau and Stenstrom, 2005). Neither the watering-hole water nor the watering-hole sediment tested positive for oil-range or diesel-range organic chemicals.

Inorganic Chemicals

As mentioned previously, the samples collected from the Main Lake depression in February 2008 are relatively dilute and do not now appear to contain dissolved concentrations of any individual compound sufficient to be acutely toxic to horses (results are given in Table 2 of Appendix 3).

The February 2008 nitrate concentrations in the watering-hole water samples (6.4 and 11.8 mg/L) are moderately high for natural waters. Nitrate concentrations (as N) in the extracts from sites 4, 7, and 8 (drainage channels near the Main Lake depression; concentrations were 130, 1,927, and 355 mg/kg, respectively) are higher than would be expected in a typical near-surface desert soil (Leatham *et al.*, 1983; Walvoord *et al.*, 2003; McMahon *et al.*, 2006), and bear further investigation. The forthcoming nitrogen isotope analyses will help to determine if the source of these high nitrate values is natural or anthropogenic. Although arsenic concentrations in the watering-hole water (25.4 and 24.6 μ g/L) are above the drinking-water standard for humans of 10 μ g/L, they are below the recommended level for livestock of 200 μ g/L (Lopes and Dionne, 1998).

An issue complicating assessment of possible toxicity to horses is that the wateringhole water contains significant amounts of suspended solids. Even after field filtration through a 0.45 µm filter, the watering-hole water samples contained enough suspended sediment that they were opaque. Because metals tend to have positive charges and soil/sediment particles tend to have negatively charged surfaces, under typical conditions for natural waters, many metals tend to adsorb onto sediment particles preferentially to being dissolved in water. However, at low pH (as could be encountered in a horse stomach), the solubility of metals is greatly increased. As a result, introducing water with relatively low dissolved metals content, but with a high suspended sediment content, into the acidic environment of the stomach could lead to an in-stomach solution with greatly elevated dissolved metals levels. Watering-hole water subjected to acidification had aluminum concentrations of 21.7 and 28.4 mg/L (see Table 4A of Appendix 3), above the recommended level for livestock of 5.0 mg/L (Soltanpour and Raley, 1993), but no assessment has been made as to whether or not these levels would be acutely toxic.

SUMMARY

Twenty-two samples were collected at the NTTR in February 2008 to help determine possible causes of the death of 71 horses in July 2007, including seven water samples and 15 samples of soil or sediment. This report provides a compilation of the data available to date, and a preliminary discussion of some analysis results of interest. Water in the Cactus Flat Main Lake depression was significantly less saline in February 2008 than in summer 2007, likely because of low evaporation and dilution by recent precipitation. Some sediment samples in drainage channels near the depression had higher-than-expected levels of nitrate, and some drainage channel sediments also tested positive for low levels of organic chemicals associated with motor oil (one sample also had a low level of diesel-type organic chemicals). However, the levels of nitrate in the Main Lake depression waters and sediments were lower than the anomalous concentrations observed in the drainages, and neither the waters nor the sediments from the depression contained detectable amounts of oil or diesel-type organic chemicals.

REFERENCES

- Blank, R.R., J.A. Young, and F.L. Allen, 1999. Aeolian dust in a saline playa environment, Nevada, USA: *Journal of Arid Environments*, 41(4): 365-381.
- Bris, F.-J., S. Garnaud, N. Apperry, A. Gonzalez, J.-M. Mouchel, G. Chebbo, and D.R. Thévenot, 1999. A street deposit sampling method for metal and hydrocarbon contamination assessment: *The Science of the Total Environment*, 235(1-3): 211-220, doi:10.1016/S0048-9697(99)00192-8.
- California Animal Health & Food Safety Laboratory System, 2007. Accession Summary T0701789.
- Hartsough, P., S.W. Tyler, J. Sterling, and M. Walvoord, 2001. A 14.6 kyr record of nitrogen flux from desert soil profiles as inferred from vadose zone pore waters: *Geophysical Research Letters*, 28(15): 2955-2958.
- Lau, S.-L. and M.K. Stenstrom, 2005. Metals and PAHs adsorbed to street particles: *Water Research*, 39(17): 4083-4092, doi:10.1016/j.watres.2005.08.002.
- Leatham, S., L.N. Huckins, and R.L. Jacobson, 1983. Nitrate in Nevada playas: Desert Research Institute Publication No. 41086.
- Lopes, T.J. and S.G. Dionne, 1998. A review of semivolatile and volatile organic compounds in highway runoff and urban stormwater: U.S. Geological Survey Open-File Report 98-409.
- McMahon, P.B., K.F. Dennehy, B.W. Bruce, J.K. Böhlke, R.L. Michel, J.J. Gurdak, and D.B. Hurlbut, 2006. Storage and transit time of chemicals in thick unsaturated zones under rangeland and irrigated cropland, High Plains, United States: *Water Resources Research*, 42(W03413).

- Merritt, A.M., 2003. The equine stomach: A personal perspective (1963-2003): *Proceedings*, 49th Annual Convention of the American Association of Equine Practitioners, 2003.
- Soltanpour, P.N. and W.L. Raley, 1993. Livestock drinking water quality: Colorado State University Cooperative Extension Livestock Management Series Report no. 4.908.
- Tyler, S.W., J.B. Chapman, S.H. Conrad, D.P. Hammermeister, D.O. Blout, J.J. Miller, M.J. Sully, and J.M. Ginanni, 1996. Soil-water flux in the southern Great Basin, United States: Temporal and spatial variation over the last 120,000 years: *Water Resources Research*, 32(6): 1481-1499.
- Tyler, S.W., S. Kranz, M.B. Parlange, J. Albertson, G.G. Katul, G.F. Cochran, B.A. Lyles, and G. Holder, 1997. Estimation of groundwater evaporation and salt flux from Owens Lake, California, USA: *Journal of Hydrology*, 100: 110-135.
- U.S. Environmental Protection Agency, 2000. Preliminary data summary: Airport deicing operations (revised): Office of Water Report EPA-821-R-00-016.
- Walvoord, M.A., F.M. Phillips, D.A. Stonestrom, R.D. Evans, P.C. Hartsough, B.D. Newman, and R.G. Striegl, 2003. A reservoir of nitrate beneath desert soils: *Science*, 302(5647): 1021-1024.

APPENDIX 1. Final report of the California Animal Health & Food Safety Laboratory System regarding samples collected at the NTTR in July 2007. Samples were collected by the California Animal Health & Food Safety Laboratory System on behalf of the U.S. Bureau of Land Management; collection was concurrent with the sample described in Appendix 2).

Final Report Printed: 08/15/07

(This report supersedes all previous reports for this accession)

Emailed Copy. A signed original is on file. California Animal Health & Food Safety ACCESSION#:T0701789 Laboratory System (CAHFS) - Tulare District: 18830 Road 112 County: NEVADA Tulare, CA 93274 Case Coordinator: RMOELLER (559) 688-7543 Submitter Owner: MARIAN VANDERSCHRAAF DVM BUREAU OF LAND MANAGEMENT CALIF DEPT OF FOOD AND AG LAS VEGAS FIELD OFFICE 18830 ROAD 112 4707 N TORREY PINES DR TULARE, CA 93274 LAS VEGAS, NV 89130 Agent or Collector: Species: NONAPPLICABLE Reference Number: Herd/Flock ID: Date Taken: Date Received: 07/25/07 9 Specimens submitted: 5 pond, 2 dirt, and water-2 Approved by: Robert Moeller, DVM LABORATORY FINDINGS/DIAGNOSIS 1. Evaluation of environmental samples from Nellis Air Force Base: a. Botulism toxin testing Dirt sample: negative for Botulinum toxin b. Anatoxin A testing (Water samples 1 and 2): Not detected. c. Microcystin testing (Water samples 1 and 2): not detected
d. Salt screen (Water samples 1 and 2): see report, not significant
e. Salt screen (Pond sample 5-9; pond scum): See report. f. Nitate/Nitrite levels Water sample 1: 5 ppm nitrate/not detected nitrite ** g. Nitrate/Nitrite levels Water sample 2: 3670 ppm nitrate/50 ppm nitrite, probable toxic levels h. Extended heavy metal screen dirt samples (#3 & 4): See report i. Extended heavy metal screen on Pond samples 5-9: See report j. Organic compound screen on Water samples: Negative k. Nitrate screen on dirt(Sample 3 & 4) and pond scum (Sample 6 and 8): Sample 6 pond scum: 3940 ppm nitrate and 848 ppm nitrite
Sample 8 pond scum: 3440 ppm nitrate and 825 ppm nitrite

- Sample 4 Wet muck from edge at pond bank interface: 498 ppm nitrates

ACCESSION SUMMARY

Microcystin was not detected in the water samples. The salt screens of the water appear to have levels of the various elements at levels that would not be considered toxic. The pond scum samples (sample 5-9) have more elevated levels of the various elements but it is doubtful that the horse would be drinking a large amount of these samples. I am currently performing nitrate testing on the water samples (Sample 1 and 2), these results are pending.

08/03/07

The nitrate/nitrite levels in water sample 2 are very high. These levels are a concern and may be a factor in the deaths of the horses. The first water sample is low in nitrates, it is unknown why this has happened. I feel that this sample should be similar to the composite water sample. However it is possible that the nitrate may stratify in the water column resulting in the very high levels at various levels in the water. I would recommend that several water samples be taken at various depths in the pond to see if the water is stratifying. It is possible that the horses are coming to the pond and either mixing the water column or drinking at deeper depths that other animals are not drinking at which would result in the ingestion of possible toxic levels of nitrates. Water having this high of nitrates and nitrites would not be safe to drink for humans, cattle or sheep. Unfortunately, we known little about nitrates in horses and what would be toxic to them (I did a literature search (pubmed) and could not identify any articles dealing with nitrate toxicity in horses that have been written over the past 30 years). We are performing some organic screens on the water samples to see if we can identify a possible organic compound from which the nitrates could originate from.

08/08/07 The GC/MS screen was negative for possible organic compounds in the water.

08/15/07 Final report.

The pond muck (Sample 6 and 8) had very high nitrate and nitrite levels which could contribute to nitrate/nitrite toxicity. The dirt at the pond interface samples (Samples 4) contained 498 ppm nitrate and no nitrites. It is felt that these levels of nitrate and nitrite are toxic and may have contributed significantly to the death of the horses. From the samples submitted, I cannot determine the source of nitrates. It is possible that environmental conditions were just right to cause natural nitrogen fixing bacteria to multiply and elevate the levels of nitrates and nitrites in the water. It is possible that the poor water conditions and markedly depleted water hole may have had a high organic matter overload resulting in the production of nitrates and nitrites. I cannot also preclude nitrogen sources that could be manmade or natural. Further on the ground investigation for these sources will have to be performed to exclude these as possible sources of the nitrates and nitrites in the water. If a source is identified, please let me know since nitrate toxicity cases in horses are rare. If you wish more testing on some of the other samples please contact us as soon as possible.

тохісоьоду

Anatoxin-a was not detected in the submitted water samples at or above the indicated method detection limit. The samples were also negative for the listed microcystins.

The detected mineral contents of the various environmental samples are unremarkable. None of the metals included in our extended heavy metal screen are at sufficiently high concentrations to cause concern.

The detected nitrate/nitrite concentrations in water sample #2 (composite sample) would certainly be toxic for ruminants. The lack of data related to the toxicity of nitrates and nitrites to horses makes interpretation more problematic. Given the very high ocular fluid nitrate results and the rather high concentrations in the one water sample, nitrate/nitrite intoxication is possible in this case. Please note the higher nitrite concentrations detected in the "scum" samples. The relatively high nitrite concentrations re-enforce the suspicion of nitrate/nitrite intoxication.

No toxic compounds were detected using our gas chromatography - mass spectrometry (GC/MS) organic chemical screen for the two water samples. The GC/MS screen is designed to potentially detect a large number of organic compounds belonging to diverse chemical classes (pesticides, environmental contaminants, drugs and natural products).

Please note the pH values for the two water samples.

MDL = method detection limit (lowest concentration detectable by our test method).

HEAVY METALS- EXTENDED

Specimen Type Elements MDL 1-WATER 2-WATER		Ba 0.01 PPM < 0.01 PP 1.04 PPM		< 0.03 PP
Elements	Co		Cu	Fe
MDL	0.03 PPM		0.01 PPM (0.02 PPM
1-WATER	< 0.03 PP		< 0.01 PP	< 0.02 PP
2-WATER	< 0.15 PP		0.07 PPM	53.2 PPM
Elements	Hg	Mn		Ni
MDL	0.1 PPM	0.004 PPM		0.03 PPM
1-WATER	< 0.1 PPM	< 0.004 P		< 0.03 PP
2-WATER	< 0.5 PPM	1.81 PPM		< 0.15 PP

Elements MDL 1-WATER 2-WATER			V Zn 0.03 PPM 0.01 PPM < 0.03 PP < 0.01 PP 0.50 PPM 0.2 PPM
Specimen Type Elements MDL 3-DIRT 4-DIRT	As 150 PPM	Ba .5 PPM 132 PPM 29 PPM	Be Cd .1 PPM 1.5 PPM 1.4 PPM < 1.5 PPM < .1 PPM < 1.5 PPM
Elements	Co		Cu Fe
MDL	1.5 PPM		.5 PPM 10 PPM
3-DIRT	< 1.5 PPM		12.0 PPM 17500 PPM
4-DIRT	< 1.5 PPM		3.6 PPM 1490 PPM
Elements	Hg	Mn	Mo Ni
MDL	5 PPM	.2 PPM	10 PPM 1.5 PPM
3-DIRT	< 5 PPM P	368 PPM	< 10 PPM 14 PPM
4-DIRT	< 5 PPM	133 PPM	< 2 PPM < 1.5 PPM
Elements	Pb	Tl	V Zn
MDL	60 PPM	5 PPM	1.5 PPM .5 PPM
3-DIRT	< 60 PPM	40 PPM	30 PPM 57.3 PPM
4-DIRT	< 15 PPM	< 5 PPM	< 1.5 PPM 6.2 PPM
Specimen Type Elements MDL 5-POND 6-POND 7-POND 8-POND 9-POND	As 2.5 PPM	Ba 0.25 PPM 15.9 PPM 43.6 PPM 43.8 PPM 80.5 PPM 68.7 PPM	BeCd0.05 PPM0.75 PPM< 0.05 PP <
Elements	Co	Cr	CuFe0.25 PPM0.5 PPM1.9 PPM1560 PPM4.1 PPM4160 PPM2.3 PPM4460 PPM9.0 PPM8330 PPM7.8 PPM6970 PPM
MDL	0.75 PPM	0.75 PPM	
5-POND	1.4 PPM	1.6 PPM	
6-POND	3.6 PPM	4.0 PPM	
7-POND	2.9 PPM	4.4 PPM	
8-POND	5.5 PPM	7.8 PPM	
9-POND	4.4 PPM	6.7 PPM	

Elements	Hg	Mn	Mo	Ni
MDL	2.5 PPM	0.1 PPM	1 PPM	0.75 PPM
5-POND	< 2.5 PPM	55.4 PPM	2 PPM	3.1 PPM
6-POND	< 5 PPM	162 PPM	< 2 PPM	6.6 PPM
7-POND	< 2 PPM	173 PPM	3 PPM	6.8 PPM
8-POND	< 5 PPM	300 PPM	5 PPM	12.5 PPM
9-POND	< 2 PPM	282 PPM	3.8 PPM	9.7 PPM
Elements	Pb	Tl	V	Zn
MDL	2.5 PPM	2.5 PPM	0.75 PPM	0.25 PPM
5-POND	< 2.5 PPM	5.1 PPM	4.0 PPM	6.2 PPM
6-POND	< 5 PPM	11 PPM	11.7 PPM	14.1 PPM
7-POND	< 2 PPM	11 PPM	8.7 PPM	20.0 PPM
8-POND	< 10 PPM	19 PPM	16.0 PPM	32.7 PPM
9-POND	< 10 PPM	15 PPM	12.8 PPM	28.3 PPM

ANATOXIN-A Specimen	Information	Result	MDL
Id	Type		
1-WATER	WATER	Not Detected	0.01 ppm
2-WATER	WATER	Not Detected	0.01 ppm

MICROCYSTINS WATER MICROCYSTIN LR MICROCYSTIN LA MICROCYSTIN YR MICROCYSTIN RR SPECIMEN.ID MDL 1 ppb 1 ppb 1 ppb 1 ppb 1-WATER Not Detected Not Detected Not Detected Not Detecte 2-WATER Not Detected Not Detected Not Detected Not Detecte

d

		•	1	
1	٢		1	
1				

NITRATE SCREEN WATER SPECIMEN.ID M 1-WATER 2-WATER	ſDL	Nitrate Conf. Req'd Conf. Rq'd	Nitrite 1 ppm Not Detected Conf. Req'd
DIRT SPECIMEN.ID M 4-DIRT	ÍDL	Nitrate Conf. Req'd	Nitrite 10 ppm Not Detected
WATER-POND SPECIMEN.ID M	/ T-T	Nitrate	Nitrite
6-POND 8-POND	6-POND	Conf. Req'd Conf. Req'd	Conf. Req'd Conf. Req'd

NITRATE CONFIRMAT WATER SPECIMEN.ID MDI 1-WATER 2-WATER	Nitrate	Nitrite 1 ppm Not Detected 50 ppm
DIRT SPECIMEN.ID MDI 4-DIRT	Nitrate 100 ppm 498 ppm	
WATER-POND SPECIMEN.ID MDI 6-POND 8-POND	Nitrate 1000 ppm 3940 ppm 3440 ppm	Nitrite 500 ppm 848 ppm 825 ppm

SALT SCREEN

Specimen Type			
Salts	Calcium	Magnesium	Phosphorus
MDL	0.05 PPM	0.05 PPM	0.05 PPM
1-WATER	23.0 PPM	1.70 PPM	< 0.05 PP
2-WATER	80.8 PPM	52.6 PPM	4.4 PPM
Salts	Potassium	Sodium	Sulfur

Salts	Potassium	Sodium	Sulfur
MDL	0.3 PPM	4 PPM	0.07 PPM
1-WATER	6.4 PPM	47 PPM	11.7 PPM
2-WATER	153 PPM	4800 PPM	624 PPM

Specimen Type Salts MDL 5-POND 6-POND 7-POND 8-POND 9-POND	WATER-POND Calcium 1 PPM 2670 PPM 23800 PPM 7570 PPM 15600 PPM 13700 PPM	Magnesium 1 PPM 1050 PPM 2560 PPM 3230 PPM 5380 PPM 4790 PPM	Phosphorus 1 PPM 79 PPM 249 PPM 227 PPM 453 PPM 358 PPM
Salts	Potassium	Sodium	Sulfur
MDL	6 PPM	80 PPM	1.4 PPM
5-POND	1110 PPM	6000 PPM	645 PPM
6-POND	2530 PPM	4130 PPM	369 PPM
7-POND	3170 PPM	6150 PPM	474 PPM
8-POND	5230 PPM	7290 PPM	477 PPM
9-POND	4500 PPM	6040 PPM	385 PPM

ACCESSION#: T0701789 PAGE: 7 of 8

pH Specimen Information Results ID Type 1-WATER WATER 7.57 2-WATER WATER 8.77

CAHFS #F

08/15/07

ORGANIC COMPND BY REQUEST WATER GC-MS Screen SPECIMEN.ID MDL 1-WATER Negative 2-WATER Negative

BACTERIOLOGY

CLOSTRIDIUM BOTULINIUM - TOXIN TESTING (T) Specimen Information Results ID Type 4-DIRT DIRT Negative for Botulinum toxin

CLINICAL HISTORY

Water samples from Nellis Air Force Base where horse die off has occurred. Sample #1 Pond water sample Sample #2 Composite water sample (top, middle, and bottom layers) Sample #3 Dirt from lake bed Sample #4 Wet muck at water/bank interface Sample #5 Water (pond) scum Sample #6 Pond water scum Sample #7 Pond water scum Pond water scum Sample #8 Sample #9 Pond water scum Request a mineral screen on water samples and dirt. Blue/green algae evaluation on water samples and pond scum.

CONTACT LOG SUMMARY

Report		Date Reported
Preliminary	4	08/08/07-
Preliminary	3	08/03/07-
Preliminary	2	08/01/07-
Preliminary	1	07/30/07-

SPECIMEN SUMMARY

Specimen Type	Breed	ID		Age	Sex	Qty
WATER	ENVIRONMENTAL	Multiple	IDs			2
DIRT	ENVIRONMENTAL	Multiple	IDs			2
WATER-POND	ENVIRONMENTAL	Multiple	IDs			4
WATER-POND	ENVIRONMENTAL	Multiple	IDs			5

APPENDIX 2. Excerpt of chemical data for a water sample collected from the Cactus Flat Main Lake depression on the NTTR in July 2007. Sample was collected on behalf of the U.S. Air Force; collection was concurrent with the samples described in Appendix 1.

THE LEADER IN ENVIRONMENTAL TESTING

CSC Applied Technologies LLC P.O. Box 569 Indian Springs, NV 89018 Attention: Cynthia Lang

Project ID: Gun Pit North End

Report Number: PQG0762

Sampled: 07/23/07 Received: 07/25/07

		INOR	GANICS					
Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PQG0762-01 (NS070723-01,2,3,4	4 - Water)							
Reporting Units: mg/l								
Chloride	EPA 300.0	P7G2505	50	2100	100	7/25/2007	7/25/2007	
Fluoride	EPA 300.0	P7G2505	1.0	5.0	10	7/25/2007	7/25/2007	
Nitrate/Nitrite-N	EPA 300.0	P7G2505	20	1000	100	7/25/2007	7/25/2007	
Nitrate-N	EPA 300.0	P7G2505	10	1000	100	7/25/2007	7/25/2007	
Nitrite-N	EPA 300.0	P7G2505	10	18	100	7/25/2007	7/25/2007	
Sulfate	EPA 300.0	P7G2505	50	2100	100	7/25/2007	7/25/2007	
Total Dissolved Solids	SM2540C	P7G2801	200	31000	10	7/27/2007	7/27/2007	
Sample ID: PQG0762-01 (NS070723-01,2,3,4	4 - Water)							
Reporting Units: pH Units								
рН	EPA 150.1	P7G2521	NA	8.95	1	7/25/2007	7/25/2007	HTI
Temp. at time of pH Analysis (°C)	EPA 150.1	P7G2521	NA	20.3	1	7/25/2007	7/25/2007	HTI

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

CSC Applied Technologies LLC P.O. Box 569 Indian Springs, NV 89018 Attention: Cynthia Lang

Project ID: Gun Pit North End

Report Number: PQG0762

Sampled: 07/23/07 Received: 07/25/07

		MF	ETALS					
Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PQG0762-01 (NS070723-01,2,3,4	- Water)							
Reporting Units: mg/l								
Barium	EPA 200.7	7G27136	0.010	0.66	1	7/27/2007	7/29/2007	
Beryllium	EPA 200.7	7G27136	0.0020	0.0070	1	7/27/2007	7/29/2007	
Cadmium	EPA 200.7	7G27136	0.0050	ND	1	7/27/2007	7/29/2007	
Chromium	EPA 200.7	7G27136	0.0050	0.053	1	7/27/2007	7/29/2007	
Copper	EPA 200.7	7G27136	0.010	0.12	1	7/27/2007	7/29/2007	
Iron	EPA 200.7	7G27136	0.040	71	1	7/27/2007	7/29/2007	
Magnesium	EPA 200.7	7G27136	0.020	59	1	7/27/2007	7/29/2007	
Manganese	EPA 200.7	7G27136	0.020	1.9	1	7/27/2007	7/29/2007	
Mercury	EPA 245.1	7G26065	0.00020	ND	1	7/26/2007	7/26/2007	
Nickel	EPA 200.7	7G27136	0.010	0.060	1	7/27/2007	7/29/2007	
Selenium	EPA 200.7	7G27136	0.010	0.076	1	7/27/2007	7/29/2007	
Zinc	EPA 200.7	7G27136	0.020	0.30	1	7/27/2007	7/29/2007	
Sample ID: PQG0762-01 (NS070723-01,2,3,4	- Water)							
Reporting Units: ug/l								
Antimony	EPA 200.8	7G27145	40	ND	20	7/27/2007	8/1/2007	RL1
Arsenic	EPA 200.8	7G27145	20	540	20	7/27/2007	8/1/2007	
Thallium	EPA 200.8	7G27145	20	ND	20	7/27/2007	8/3/2007	RL1

APPENDIX 3. Chemical Data from samples collected by DRI at the NTTR in February 2008.

Table 1. General sample site descriptions for samples collected by DRI at the NTTR inFebruary 2008.

Sample Number	Sample	Collection Date	Collection Time	UTM N (NAD 83) ¹	UTM E (NAD 83) ¹		Elevation
	Description	2/6/2008	9:20	522881	4188970	(ft) 5,340	(m) 1,628
1	Main Lake depression water, 2 m depth					,	,
2	Main Lake depression water, 0.3 m depth	2/6/2008	10:45	522881	4188970	5,340	1,628
3	Main Lake depression sediment	2/6/2008	12:30	522881	4188970	5,340	1,628
4	Drainage sediment	2/6/2008	13:30	523095	4188751	5,317	1,621
5	Drainage sediment	2/6/2008	14:15	522984	4188885	5,316	1,620
6	Drainage sediment	2/6/2008	14:45	522987	4188885	5,316	1,620
7	Drainage sediment	2/6/2008	15:10	522692	4188908	5,310	1,618
8	Drainage sediment	2/6/2008	15:30	523000	4189191	5,328	1,624
9	Culvert sediment	2/6/2008	16:00	521543	4187128	5,343	1,629
10	Culvert sediment	2/6/2008	16:30	521365	4186168	5,361	1,634
11	Culvert sediment	2/6/2008	16:50	521491	4184865	5,418	1,651
12	Main Lake depression sediment	2/7/2008	7:30	522839	4188972	5,311	1,619
13	Main Lake depression sediment	2/7/2008	8:10	522815	4188961	5,317	1,621
14	Main Lake depression sediment	2/7/2008	9:25	522894	4188937	5,320	1,622
16	Cedar Wells Spring water	2/7/2008	11:30	566251	4173559	6,364	1,940
17	Rose Spring water	2/7/2008	13:00	558836	4177875	7,145	2,178
18	Corral Spring water	2/7/2008	14:45	554177	4182033	6,596	2,010
19	Silverbow Spring Tank water	2/7/2008	16:30	541960	4186893	5,965	1,818
20	Culvert sediment	2/8/2008	7:15	521555	4182892	5,476	1,669
21	Culvert sediment	2/8/2008	8:30	520887	4180677	5,474	1,668
22	Cactus Spring water	2/8/2008	11:15	516060	4174979	6,274	1,912
23	Drainage sediment	2/8/2008	12:20	523204	4189046	5,341	1,628

Note that there is no sample number 15

¹UTM: Universal Transverse Mercator coordinate system

(N = northing, E = easting; NAD 83 = North American Datum of 1983)

Table 2A. Major-ion chemical data for water samples collected by DRI at the NTTR in February 2008.

							Temp-						NO3 ⁻ (as								NO2	NH ₃	PO4 3-	Dissolved	
Sample	Sample			Field EC ¹	Lab EC ¹	Field DO ²	erature	SiO ₂	HCO3.	CO32.	CI	SO42.	N)	NO3	Na⁺	K*	Ca ^{2*}	Mg ²⁺	F	Br	(as N)	(as N)	(as P)	Р	Total P
Number	Description	Field pH	Lab pH	(µS/cm)	(µS/cm)	(mg/L)	(°C)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
1	Main Lake depression water, 2 m depth	8.47	8.69	1209	1210	0.47	4.5	-	550	NA	65	58	6.4	28.4	274	13.4	13.3	1.4	0.65	0.03	1.54	0.45	0.490	0.73	6.0
2	Main Lake depression water, 0.3 m depth	8.69	8.59	1139	1210	9.2	1.1	-	559	NA	46	39	11.8	52.2	259	12.7	12.3	1.2	0.75	0.02	0.091	0.36	0.512	0.84	4.9
16	Cedar Wells Spring water	7.55	7.93	702	715	5.56	11.3	-	325	NA	28	76	1.9	8.6	58.7	0.8	85.6	12.9	0.50	0.29	0.001	0.005	0.006	NA	0.010
17	Rose Spring water	7.22	7.85	634	649	4.47	12.8	-	316	NA	24	55	0.9	4.2	44.4	1.9	85.1	11.4	0.35	0.29	< 0.001	0.003	0.008	NA	0.013
18	Corral Spring water	7.07	7.75	665	677	3.56	5.5	-	268	NA	37	83	0.1	0.4	76.1	2.8	67.8	7.0	0.95	0.40	< 0.001	0.005	0.007	NA	0.010
19	Silverbow Spring Tank water	7.33	7.93	430	440	10.4	1.2	-	205	NA	22	33	0.3	1.2	45.2	2.0	43.2	7.8	0.36	0.20	< 0.001	0.005	0.008	NA	0.016
22	Cactus Spring water	7.2	7.80	560	565	0.8	15.5	-	222	NA	26	76	0.0	0.0	56.3	2.6	59.5	7.6	0.71	0.17	< 0.001	0.008	0.001	NA	0.002

NA: not applicable ¹EC: electrical conductivity

²DO: dissolved oxygen

Table 2B. Major-ion chemical data for soil/sediment samples collected by DRI at the NTTR in February 2008.

									NO3 ⁻ (as								NO2	NH ₃	PO4 3-	Dissolved
Sample	Sample		Lab EC ¹	SiO ₂	HCO ₃ [−]	CO32-	CI	SO42-	N)	NO ₃	Na⁺	K⁺	Ca ²⁺	Mg ²⁺	F'	Br	(as N)	(as N)	(as P)	Р
Number	Description	Lab pH	(µS/cm)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
3	Main Lake depression sediment	9.51	456	412	1438	501.4	80.4	110	3.3	14.4	1005	54	11	2	15	<0.2	0.0	3.6	7.7	8.2
4	Drainage sediment	7.70	968	313	352	NA	145	3379	128	567	1399	158	489	19	4	0.2	0.4	1.1	0.4	0.6
5	Drainage sediment	7.89	797	333	451	NA	14.2	3024	11.8	52.3	1241	152	271	8	3	<0.2	1.1	25.0	0.6	0.8
6	Drainage sediment	9.18	335	371	1044	200.0	34.9	227	27.6	122	670	53	30	1	11	<0.2	0.2	1.2	3.9	4.1
7	Drainage sediment	7.31	2850	282	242	NA	1940	3802	1901	8416	3802	279	1862	74	5	0.6	0.2	1.8	0.1	0.3
8	Drainage sediment	8.43	966	314	666	14.8	461	1872	351	1552	1911	123	74	3	10	0.2	0.1	0.4	0.7	0.8
9	Culvert sediment	8.44	180	346	652	13.8	30.7	78.6	33.5	148	293	46	66	4	18	<0.2	0.1	0.3	3.7	4.0
10	Culvert sediment	8.52	150	345	668	21.7	3.8	77.1	7.0	31.0	265	46	48.8	3	18	<0.2	0.1	1.0	3.7	4.0
11	Culvert sediment	7.89	78	207	399	NA	3.8	9.0	4.9	21.8	80	46	58	4	2	<0.2	0.0	0.7	2.6	2.9
12	Main Lake depression sediment	9.43	414	364	1399	386.1	79.3	133.0	1.5	6.5	929	52	9	1	13	1.4	0.1	8.2	7.5	8.0
13	Main Lake depression sediment	9.29	436	364	1586	311.3	109	200	3.4	15.3	980	53	8	1	12	<0.2	0.1	12.7	6.5	7.1
14	Main Lake depression sediment	8.97	286	275	1290	131.0	21.2	83.6	9.0	39.7	636	53	15.3	2	8.9	0.2	0.7	7.0	4.8	5.2
20	Culvert sediment	7.74	159	198	408	NA	50.1	85.4	54.2	240	175	81	90	7	3	<0.2	0.1	0.9	3.6	3.9
21	Culvert sediment	7.83	106	191	587	NA	7.3	10.3	0.1	0.4	87	65	95	9	2	<0.2	0.2	4.8	2.6	3.3
23	Drainage sediment	9.25	304	377	1202	232.5	13.8	96.2	6.1	27.0	686	51	14	1	12	<0.2	0.1	0.6	4.2	4.5
NIA: not on	licablo																			

NA: not applicable

All values reported were measured on soil extracts made with a 10:1 ratio (by mass) of deionized water:soil, and are converted to show mass in the soil

¹EC: electrical conductivity

Table 3A. Organic chemical data for water samples collected by DRI at the NTTR in February 2008.

			TPH-E ^{2,3}	TPH-E ^{2,3}	TPH-P ^{2,6}				
Sample	Sample	TICs1	(DRO)⁴	(ORO)⁵	(GRO) ⁷	Diethylene	Ethylene	Propylene	Triethylene
Number	Description	(semivolatile)	mg/L	mg/L	mg/L	glycol ⁸	glycol ⁸	glycol ⁸	glycol ⁸
1	Main Lake depression water, 2 m depth	none found	ND	ND	ND	ND	ND	ND	ND
2	Main Lake depression water, 0.3 m depth	none found	ND	ND	ND	ND	ND	ND	ND

Note that organic analyses were not performed on spring waters (samples 16, 17, 18, 19, and 22) ND: non detect

¹TICs: Tentatively identified compounds, analyzed by EPA Method SW8270; detection limit is 20 µg/L

²TPH: Total petroleum hydrocarbons, analyzed by EPA Method SW8015B

³-E: extractable

⁴DRO: diesel range organics, detection limit is 0.5 mg/L

⁵ORO: oil range organics, detection limit is 0.5 mg/L

⁶-P: purgable

⁷GRO: gasoline range organics, detection limit is 0.5 mg/L

⁸Analyzed by EPA Method 8015B, detection limit is 5 mg/L

Table 3B. Organic chemical data for soil/sediment samples collected by DRI at the NTTR in February 2008.

			TPH-E ^{2,3}	TPH-E ^{2,3}	TPH-P ^{2,6}	Diethylen			
Sample	Sample	TICs1	(DRO)⁴	(ORO)⁵	(GRO) ⁷	е	Ethylene	Propylene	Triethylene
Number	Description	(semivolatile)	mg/kg	mg/kg	mg/kg	glycol ⁸	glycol ⁸	glycol ⁸	glycol ⁸
3	Main Lake depression sediment	none found	ND	ND	ND	ND	ND	ND	ND
4	Drainage sediment	none found	ND	ND	ND	ND	ND	ND	ND
5	Drainage sediment	none found	ND	ND	ND	ND	ND	ND	ND
6	Drainage sediment	none found	ND	50	ND	ND	ND	ND	ND
7	Drainage sediment	none found	ND	ND	ND	ND	ND	ND	ND
8	Drainage sediment	none found	ND	ND	ND	ND	ND	ND	ND
9	Culvert sediment	none found	13	90	ND	ND	ND	ND	ND
10	Culvert sediment	none found	ND	50	ND	ND	ND	ND	ND
11	Culvert sediment	none found	ND	32	ND	ND	ND	ND	ND
12	Main Lake depression sediment	none found	ND	ND	ND	ND	ND	ND	ND
13	Main Lake depression sediment	none found	ND	ND	ND	ND	ND	ND	ND
14	Main Lake depression sediment	none found	ND	ND	ND	ND	ND	ND	ND
20	Culvert sediment	none found	ND	15	ND	ND	ND	ND	ND
21	Culvert sediment	none found	ND	24	ND	ND	ND	ND	ND
23	Drainage sediment	none found	ND	ND	ND	ND	ND	ND	ND

ND: non detect

¹TICs: Tentatively identified compounds, analyzed by EPA Method SW8270; detection limit is 1,300 µg/kg

²TPH: Total petroleum hydrocarbons, analyzed by EPA Method SW8015B

³-E: extractable

⁴DRO: diesel range organics, detection limit is 10 mg/kg

⁵ORO: oil range organics, detection limit is 10 mg/kg

⁶-P: purgable

⁷GRO: gasoline range organics, detection limit is 10 mg/kg

⁸Analyzed by EPA Method 8015B, detection limit is 15 mg/kg

Table 4A. Trace element data for water samples collected by DRI at the NTTR in February 2008.

Sample	Sample	Be	Al	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Sr	Мо	Ag	Cd	Sn	Sb	Ва	TI	Pb	U	As	Se
Number	Description	(ppb)																					
	Main Lake depression water, 2 m depth, centrifuged, lab filtered																						
1	0.1 µm, acidified	<10	52.6	32.2	<10	1.6	15.7	<10	<10	15.6	1.2	94.0	50.9	<10	<10	<10	1.8	13.3	<10	<10	5.1	25.4	<20
	Main Lake depression water, 2 m depth, field filtered 0.45 µm,																						
1A	acidified, centrifuged, lab filtered 0.1 µm	4.8	21674	52.2	2.0	955.3	2034	9.1	6.8	54.2	41.4	495.9	22.8	<10	1.2	<10	5.7	418.8	<10	46.3	6.8	30.3	<20
	Main Lake depression water, 0.3 m depth, centrifuged, lab filtered																						
2	0.1 µm, acidified	<10	94.0	34.7	<10	3.1	30.5	<10	<10	10.2	1.1	76.0	26.8	<10	<10	<10	1.3	11.0	<10	<10	3.4	24.6	<20
	Main Lake depression water, 0.3 m depth, field filtered 0.45 µm,																						
2A	acidified, lab filtered 0.1 μm	5.4	28381	51.2	5.8	1172	6803	11.2	17.8	60.2	68.1	406.3	6.1	<10	<10	<10	<10	399.3	<10	53.6	5.7	23.5	<20
16	Cedar Wells Spring water	<1	<1	6.1	<1	1.7	<1	<1	<1	<1	1.4	1230	2.4	<1	<1	<1	<1	56.4	<1	<1	8.9	2.6	<5
17	Rose Spring water	<1	<1	<1	<1	<1	<1	<1	<1	<1	6.5	1110	1.6	<1	<1	<1	<1	4.2	<1	<1	13.5	1.1	<5
18	Corral Spring water	<1	<1	1.6	<1	<1	<1	<1	<1	<1	4.1	595.1	14.7	<1	<1	<1	<1	4.7	<1	<1	24.3	9.8	<5
19	Silverbow Spring Tank water	<1	1.5	4.0	<1	<1	10.9	<1	<1	2.1	1.5	316.4	1.1	<1	<1	<1	<1	34.6	<1	<1	3.5	14.9	<5
22	Cactus Spring water	<1	<1	<1	<1	143.4	387.5	<1	<1	<1	<1	983.8	12.1	<1	<1	<1	<1	35.8	<1	<1	9.2	<1	<5

Table 4B. Trace element data for soil/sediment samples collected by DRI at the NTTR in February 2008.

Sample	Sample	Be	AI	V																			
Number	Description	(ppb)	(ppb)	(ppb)	Cr (ppb)	Mn (ppb)	Fe (ppb)	Co (ppb)	Ni (ppb)	Cu (ppb)	Zn (ppb)	Sr (ppb)	Mo (ppb)	Ag (ppb)	Cd (ppb)	Sn (ppb)	Sb (ppb)	Ba (ppb)	TI (ppb)	Pb (ppb)	U (ppb)	As (ppb)	Se (ppb)
3	Main Lake depression sediment	<10	2629	666	<10	89.9	1018	<10	<10	76.9	48.1	114	67.1	<10	<10	<10	<10	56.1	<10	<10	15.0	178	<50
ЗA	Main Lake Depression sediment, 1% HNO3 extract	308	1641192	1294	176	146857	58561	1155	786	322	1791	65050	<100	<100	137	<100	<100	33314	<100	1565	196	656	<2000
4	Drainage sediment	<10	57.1	142	<10	<10	16.0	<10	<10	15.0	<10	4250	214	<10	<10	<10	<10	67.1	<10	<10	<10	62.3	<50
5	Drainage sediment	<10	42.0	358	<10	50.9	27.4	<10	<10	71.6	32.1	324	223	<10	<10	<10	<10	97.9	<10	<10	<10	134	<50
6	Drainage sediment	<10	231	512	<10	33.2	92.3	<10	<10	63.1	33.7	110	53.7	<10	<10	<10	<10	39.7	<10	<10	<10	151	<50
7	Drainage sediment	<10	16.2	315	<10	<10	<10	<10	<10	15.3	12.9	14096	288	<10	<10	<10	<10	164.2	<10	<10	<10	153	314
8	Drainage sediment	<10	980	1051	<10	23.9	396	<10	<10	47.5	<10	224	137	<10	<10	<10	<10	28.5	<10	<10	<10	335	<50
9	Culvert sediment	<10	62.5	323	<10	36.7	38.7	<10	<10	32.3	30.1	179	<10	<10	<10	<10	<10	56.3	<10	<10	<10	77.1	<50
10	Culvert sediment	<10	1424	643	<10	26.1	819	<10	<10	16.5	27.3	134	<10	<10	<10	<10	<10	14.8	<10	<10	<10	135	<50
11	Culvert sediment	<10	158	39.2	<10	34.9	55.1	<10	<10	29.1	20.6	120	<10	<10	<10	<10	<10	39.1	<10	<10	<10	11.1	<50
12	Main Lake depression sediment	<10	156	544	<10	117	109	<10	<10	97.9	58.0	268	56.8	<10	<10	<10	<10	98.6	<10	<10	16.4	142	<50
12A	Main Lake depression sediment, 1% HNO ₃ extract	550	2270388	239	231	90832	80957	820	968	297	2153	55731	<100	<100	130	<100	155	34864	<100	1697	263	487	<2000
13	Main Lake depression sediment	<10	2486	677	<10	81.0	487	<10	<10	64.3	34.1	147	65.8	<10	<10	<10	<10	59.9	<10	<10	15.1	159	<50
13A	Main Lake depression sediment, 1% HNO3 extract	458	2035221	1323	215	121865	75591	874	882	346	2042	63521	<100	<100	135	<100	<100	33198	<100	1751	234	552	<2000
14	Main Lake depression sediment	<10	176	756	<10	61.9	160	<10	<10	65.4	39.0	134	69.5	<10	<10	<10	12.7	56.6	<10	<10	14.5	272	<50
14A	Main Lake depression sediment, 1% HNO ₃ extract	320	1465462	2694	153	196881	529978	1354	744	508	2611	82914	<100	<100	124	<100	<100	31909	<100	1519	183	743	<2000
20	Culvert sediment	<10	192	96.8	<10	41.3	81.5	<10	<10	44.5	40.5	141	<10	<10	<10	<10	<10	43.6	<10	<10	<10	50.0	<50
21	Culvert sediment	<10	54.9	75.8	<10	30.8	150	32.2	15.3	47.1	122	200	10.7	<10	<10	<10	<10	47.6	<10	<10	<10	21.9	<50
23	Drainage sediment	<10	1040	496	<10	55.3	517	<10	<10	75.4	76.3	157	39.8	<10	<10	<10	10.1	50.7	<10	<10	<10	141	<50

Except as noted, all values reported were measured on soil extracts made with a 10:1 ratio (by mass) of deionized water:soil, and are converted to show mass in the soil

Table 5. Duplicate sample data for major-ion analyses.

								NO ₃								NO ₂	NH ₃	PO43-	Dissolved
Sample		Lab EC ¹	SiO ₂	HCO3	CO32-	CI	SO42-	(as N)	NO ₃	Na⁺	K⁺	Ca ²⁺	Mg ²⁺	F'	Br ⁻	(as N)	(as N)	(as P)	Р
Description	Lab pH	(µS/cm)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
6-Drainage sediment	9.18	335	371	1044	200	35	227	28	124	670	53	30	1.0	11	<0.2	0.2	1.2	3.9	4.1
6D-Drainage sediment	9.12	306	333	1103	172	29	198	20	89	672	49	14	1.4	9.9	<0.2	0.2	0.4	3.9	4.2
10-Culvert sediment	8.52	150	345	668	21.7	3.8	77.1	7.0	31	265	46	48.8	3.0	18	<0.2	0.1	1.0	3.7	4.0
10D-Culvert sediment	8.57	143	303	688	26.6	3.5	19.1	6.7	30	288	29	14.3	1.1	20	<0.2	0.1	0.2	4.7	5.1
14-Main Lake depression sediment	8.97	286	275	1290	131	21	84	9.0	40	636	53	15.3	2.1	9.00	0.2	0.7	7.0	4.8	5.2
14D-Main Lake depression sediment	8.95	270	255	1313	121	13	51	1.6	7	601	48	14.0	1.3	9	<0.2	0.7	7.0	4.9	5.4

All values reported were measured on soil extracts made with a 10:1 ratio (by mass) of deionized water:soil, and are converted to show mass in the soil ¹EC: electrical conductivity

Table 6. Duplicate sample data for trace element analyses.

Sample																						
 Description	Be (ppb)	Al (ppb)	V (ppb)	Cr (ppb)	Mn (ppb)	Fe (ppb)	Co (ppb)	Ni (ppb)	Cu (ppb)	Zn (ppb)	Sr (ppb)	Mo (ppb)	Ag (ppb)	Cd (ppb)	Sn (ppb)	Sb (ppb)	Ba (ppb)	TI (ppb)	Pb (ppb)	U (ppb)	As (ppb)	Se (ppb)
5-Drainage sediment	<10	42	358	<10	51	27	<10	<10	72	32	324	223	<10	<10	<10	<10	98	<10	<10	<10	134	<50
5D-Drainage sediment	<10	96	288	<10	80	71	<10	<10	85	45	642	187	<10	<10	<10	<10	117	<10	<10	<10	115	<50
20-Culvert sediment	<10	192	97	<10	41	81	<10	<10	45	41	141	<10	<10	<10	<10	<10	44	<10	<10	<10	50	<50
20D-Culvert sediment	<10	186	71	<10	42	71	<10	<10	36	30	124	<10	<10	<10	<10	<10	39	<10	<10	<10	37	<50

All values reported were measured on soil extracts made with a 10:1 ratio (by mass) of deionized water:soil, and are converted to show mass in the soil

APPENDIX 4. Chain-of-Custody Forms for Samples Collected at the NTTR by DRI in February 2008.

Division of Hydrologic Sciences755 E. Flamingo Road2215 Raggio ParkwayLas Vegas, NV89119Reno, NV702-895-0450775-673-7362

SOP.SCGW Version 2.1

Project No	ı.	Project Na	me 2 Mj1	t-af	7 54	mple	Pur	chase Order No.						4		LYSIS IVESTED	SAMPLE TAG VERIFI- CATION	:		
	(signature) 7M	1				V							MA		{					
STA No.	Date	Time		STATIO	N DESCF			No. of Contain- ers	TA	AG NUMBER	रऽ	Ø	¥Ç	¥ /				REMARK	s	
1	2/1/03	09.20	. -	Pou	nd -	6		3	DRIO	802112	6-01	-	$\langle [$							
2	2/6/08	10.45	2 -	- Po	nd -	1		3			02		ζ							
			·			den atomic en come									Δ	Inha	Analytic	el Sam	le Rec	eint
							ariste – e unigenetatione fo									ipna i	MACCELY EAC	a. Dani		orp
															S	ecurit	y Seale:	YB	5	N
															F	ozen	1007	YE		Ś
														-	<u> </u>	emper	ature –		12	°C
																<u> </u>				
Relinquisi	hed by (signa	ature) M.A		Date 2//////	Time 2/2:00	Received by		Elio	1	shed by (signalu	re)	l		Date	Tim	e Re	ceived by (signa	lure)		
Relinquis	hed by (signa	ature)		Date	Time		(signature)	FIN		shed by (signalu	re)		· 1	Date	Tim	e Re	ceived for lab. b	y (signature)	· .	
Form of S	Shipment				I	I			Date	Time	Remarks			I		l				
Signature	- 					Date			_ <u></u>	<u> </u>										

D	11	H	n	g	n	f,	2	-	n	9	41	^	2	
υ	u	H		ы						α	u	v		٠

CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778

Page: 1 of 1

NV WorkOrder : DRI08021127

T 1 00

,				Т	EL: (775) 355-104	44 FAX:	(775) 355-0406		Rej	port Due By :	5:00 PM O	n: 25	-Feb-08
Client:			Report Atte	ntion	Pho	ne Num	nber	EMail Address						
Desert Researc	h Institute		Sam Earman	n	(775	5) 673-74	415 x	searman@dri.edu						
2215 Raggio Pa	arkway		Todd Mihev	/c	(775	5) 673-73	362 x	mihevc@dri.edu		I	EDD Required : N	0		
Reno, NV 8951	2										Sampled by : T	odd Mihevc		
PO :	-										Cooler Temp	Samples Rece	eived	Date Printed
											12 °C	11-Feb-08	3	11-Feb-08
Client's COC #: n	one	Job :	TTR Nitrate	Samplir	ıg						12 C			11 1 00 00
	one = Final Rpt, MBL			•	<u> </u>	· · · · · · · · · · · · · · · · · · ·					12 C			11 1 00 00
Client's COC # : n QC Level : S3				•	<u> </u>				Requested	Test				11 1 00 00
QC Level : S3				urrogate	<u> </u>	3	TPH/E_W	TPH/P_W	Requested	Test				
	= Final Rpt, MBL	K, LCS, MS/	MSD With S	urrogate	s Bottles	тат	TPH/E_W	TPH/P_W	Requested	Test			Sample	Remarks
QC Level : S3 Alpha	= Final Rpt, MBL Client Sample ID	K, LCS, MS/	MSD With S Collection	urrogate No. of	s Bottles		TPH/E_W	TPH/P_W GAS-N	Requested	l Testa			Sample	

Samples brought in by client. No ice. : **Comments:**

	Signature	Print Name	Company	Date/Time
Logged in by:	Killinay	K Murray	Alpha Analytical, Inc.	2/11/08 1255

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report. Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other Matrix Type : AQ(Aqueous) AR(Air) SO(Soil) WS(Waste) DW(Drinking Water) OT(Other)

Division of Hydrologic Sciences755 E. Flamingo Road2215 Raggio ParkwayLas Vegas, NV 89119Reno, NV 89512702-895-0450775-673-7362

SOP.SCGW Version 2.1

Project No.	Project Na		Ni	turk	e 54	Purch	ase Order No.							ANALY	ESTED	SAMPL TAG VERIFI CATIOI	E N		
Samplers (signature)	all	11	2h	Pei				DRI	2803	14(Э		5/1		9/				
STA No. Date	Time		STATIO		RIPTION	9	No. of Contain- ers	ТА	g numbe	ERS	Ø	¥.	Ž.S.	¥ 	./		REM	ARKS	
3 7400	2/ <u>2</u> :30 13:30		-Pon - Pri - Dri	1.00	<u>Sed</u> - <u>Sed</u>	7	22	-0	۱ 2										
6 76/08 7 2/6/08	14:45	67	- 1	41N ~ 4(W 41N -	- 5 40 -540 - 540		222	-00	2 4 5							Tei	Fro	Securi	Alpha
8 7/408 9 7/408	1530 16:00 16:30	89-	- Dri - Cul	4 jw - 5		l	221	-0								Temperature	zen Ice?	Ś	ha Ana
10 -7400 11 ² /6/09 12 ² /7/00	1630 1650 0730	11 - 12-	- CUL - CUL - Pon		ed Sel		22	- C - C								re	~~	Jeals?	Strep 8
13 7709 14 7709 20 2/8/08	0910 092 17K	13 14 20	- Pon - Pon - 0	al	Sied Sied Sied		2 2	(1								YES	YES	Sample
21 2/2/2 23 2/2/2	830 1220	21 23	-Ci - N	stu -	5-ed 5-ed - 5-od	,	2		7 4 5							 	Z	Z	Kecelpu
Relinquished by (signa	M	ha	Date 2/ / ///06 Date	Time /200 Time	Xat	y (signature)	Ala	sa	ed by (signat				Date Date	Time		ived by (signa			
Form of Shipment								Date	Time	Remarks								• .	
Signature					Dale								-						

Division of Hydrologic Sciences755 E. Flamingo Road2215 Raggio ParkwayLas Vegas, NV 89119Reno, NV 89512702-895-0450775-673-7362

SOP.SCGW Version 2.1

Project No		Project Nar 77	R Nitvetz	Pi	urchase Order No.			A	REQ	LYSIS UESTED	SAMPLE TAG VERIFI- CATION	
Samplers	(signature)	nlıl	notre				/	\int	63	7		
STA No.	Date	Time	STATION DESCR	IPTION	No. of Contain- ers	TAG NUMBERS	Dru	X			REM	ARKS
1	7./03	09.20	1 - Pond	2	2	DR108021128-01					·	
2	76/08	10:45	2 - Pond	<u>(</u>	2	02						
				**************************************	· .		 	+				
							<u> </u>		$\left - \right $			
									+			
									+			
								A	lpha	Analy	rtical Sampl	e Receipt
							<u> </u>	S	ecuri	ity Sec	<u>197 YES</u>	00
								F	roze	n ice?	<u></u>	
								+	+			7
								T	emp	eratur		
Relinquist	hed by (signal	lure)	Date Time 2/1/01 12:02	Received by (signature)	N. Kaloa	Relinquished by (signature)		Date	Time	Rece	lved by (signature)	
Relinquisi	hed by (signa	lure)	Date Time	Received by (signature)	Km	Relinquished by (signature)	· · ·	Date	Time	Rece	vived for lab. by (signature)
Form of S	ihipment					Date Time Remarks						
Signature	1			Dale								

Billing Information :

CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778

WorkOrder : DRI08021128

NV

Report Due By : 5:00 PM On : 25-Feb-08

,				Т	EL: (775) 355-10	044 FAX:	(775) 355-0406	ł	keport Due By :	5:00 PM (Jn : 2 :	5-reb-vð
Client:			Report Atte	ntion	Pho	one Nur	nber	EMail Address		-			
Desert Research	h Institute		Sam Earma	n	(77:	5) 673-7	415 x	searman@dri.edu					
2215 Raggio Pa	rkway		Todd Mihev	/C	(77:	5) 673-7	362 x	mihevc@dri.edu		EDD Required : N	0		
Reno, NV 89512	2		L							Sampled by : T	odd Mihevc		
PO :	-									Cooler Temp	Samples Red	ceived	Date Printed
Client's COC # : no	one	Job :	TTR Nitrate	Samplir	ng					7 °C	11-Feb-0	08	11-Feb-08
QC Level: S3	= Final Rpt, MBL	K, LCS, MS/	MSD With S	urrogate	S								
					- 547 8 2 T				Requested To	ests		Au 11	
Alpha Sample ID	Client Sample ID	Matr	Collection ix Date	No. of Alpha		ТАТ	BNA_TIC_ W					Samp	e Remarks
DRI08021128-01A	1-Pond 6 Ft.	AQ	02/06/08 09:20	2	0	10	x						
DRI08021128-02A	2-Pond 1 Ft.	AQ	02/06/08 10:45	2	0	10	x						

Comments: Samp

Samples brought in by client. No ice. See Roger and Randy prior to SVOC extraction. :

	Signature	Print Name	Company	Date/Time
Logged in by:	Kelunay	K Muray	Alpha Analytical, Inc.	2/11/08 1310

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report. Matrix Type : AQ(Aqueous) AR(Air) SO(Soil) WS(Waste) DW(Drinking Water) OT(Other) Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other

Division of Hydrologic Sciences755 E. Flamingo Road2215 Raggio ParkwayLas Vegas, NV 89119Reno, NV 89512702-895-0450775-673-7362

SOP.SCGW Version 2.1

Project No		Project Nam	e Nitrate	Purchase	e Order No.				_	REG	ALYSIS QUESTED	SAMPLE TAG VERIFI- CATION	
	(signature)	nlul	Matre					/	N	ſ¢\$	and the second s		
STA No.	Date	Time	STATION DESCR	IPTION	No. of Contain- ers	TAC	S NUMBERS	D	X	7/		REMARK	s
1	70/03	09.20	1 - Pond		2	DRI08	021128-01						
2	4/08	10:45	2 - Pond	1	2		02						
					· ·								
									· ·	_			
									- A	1ph:	Analy	tical Sample	Receipt
				· · · · · · · · · · · · · · · · · · ·					5	Secu	ity Sea	137 YES	00
							÷			roze	n Ice?	1.3	
				· · · · · · · · · · · · · · · · · · ·			·		r	Fem	peratur		<u>°</u> ¢
								+					
Relinquist	hed by (signa	ture)	Date Time 2/// 7/1/04 12:09	Received by (signature)	Chia	Relinquish	ed by (signature)	. I I	Date	Tim	le Rec	l eived by (signature)	
Relinquisi	hed by (signa	ture)	Date Time	Received by (signature)		Relinquish	ed by (signature)	· · · · · · · · · · · · · · · · · · ·	Date	Tim	ne Rec	eived for lab. by (signature)	
Form of S	ihipment			<u> </u>	· · · · · · · · · · · · · · · · · · ·	Date	Time Remarks						
Signature				Date									

 Division of Hydrologic Sciences

 755 E. Flamingo Road
 2215 Raggio Parkway

 Las Vegas, NV
 89119
 Reno, NV
 89512

 702-895-0450
 .775-673-7362

SOP.SCGW Version 2.1

Project No.	-	Project Na	me R	Nit.	ute :	Surgely-	Purchase C	order No.							ANALYSI REQUES		SAMPLE TAG VERIFI- CATION		
Samplers (m	Me	ha			1						/	AND A	J.	 Q			/	
STA No.	Date	Time		STATIC	N DESC	RIPTION		No. of Contain- ers	TA	G NUMBER	S	0	Þ	Ł	Z /	/		REMARKS	
1	2/1/8	09:20	1-	Par	1-6	0		6	DR108	1021127	-01								
2	2/6/8	10:45	2-	Pono	2 - 1	//		6			02		_						
				,,,			· .												
															A	lpha	Analyt	ica! San	ipte Re
															S	ecur	ity Seal	Q Y	35
															F	roze	n lee?	<u> </u>	ES.
															_	Temŗ	erature	بيويين	K
				•															
Relinquist	ed by (signa	ture) Neh	, A	Date 2//	Time /20(Received by (signa		Salu		ned by (signature	B)		Da	te	Time	Rece	ived by (signatur	8)	
Relinquish	ned by (signa	ture)		Date	Time	Received by (signa	ture fun		Relinquish	ted by (signature	e)		Da	le	Time	Rece	ived for lab, by (s	lignature)	
Form of SI	hipment			1		<u> </u>			Date	Time	Remarks			L _					
Signature						Dale				L									

I

Division of Hydrologic Sciences755 E. Flamingo Road2215 Raggio ParkwayLas Vegas, NV89119Reno, NV702-895-0450775-673-7362

SOP.SCGW Version 2.1

Project No		Project Na	R Nitrate Sampling	Purchase Order No.			A	ANALYSIS REQUESTED	SAMPLE TAG VERIFI- CATION
Samplers	(signature)	-				/	er all		
STA No.	Date	Time	STATION DESCRIPTION	No. of Contain- ers	TAG NUMBE		X		REMARKS
1	4/03	09:20 16:45	1-Paid-6' 2-Pond -1'						
16 17- 18	2/7/08	1315 145D	17-Spring-CW 17-Spring-RS 10-Deviay-CS				· · · ·		
19 22	2/2/08 2/8/08	16:30	19-5pring - 5BT 22-5pring - CH		-				
									· · · · · · · · · · · · · · · · · · ·
							-		
$ \Lambda$	ed by (signal) MiM	ure) Acher	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 fliss	Relinquished by (signal	al d	Date 2/2/18	3:00	elved by (signature)
Rin	ed by (signal	L.M.	MSM J25/08 (11:00) Received by (sign	alure)	Relinquished by (signat		Date	\downarrow	eived for lab. by (signature)
Form of S	nipment		Date	5		Relinge to DHS	ish 5 water	Lab (se	+2 on 2/28/08 =)
Signature							`		

Division of Hydrologic Sciences 755 E. Flamingo Road 221 Las Vegas, NV 89119 Rer 702-895-0450 775

2215 Raggio Parkway Reno, NV 89512 775-673-7362 SOP.SCGW Version 2.1

Project No.		Purchase Order No.				ANALYSIS REQUESTED	SAMPLE TAG VERIFI- CATION
	TTR Nitmate Stryly		-		1-7-		
Samplers (signature)	I AM 1			/			
STA No. Date	Time			/ x	K / /		
3 1408	/2-30 STATION DESCRIPTION	No. of Contain- ers	TAG NUMBERS				REMARKS
3 2/6/08	1230 3-Pard - Sel	1					· · · · · · · · · · · · · · · · · · ·
4 2/108	1330 4 - Drain - Sed	1					
5 2/1/08	1415 5 - DLAIN -Sed	1					
6 2/6/03	1445 (0 - 1) VAIN -SEC						
7 2/1/08	1510 7 - Dr410 - Sed	1					
8 2/6/07	1530 8 - DrAIN - Sed	1					
9 2/6/08	400 9 - Cul - Sed						
10 2608	1630 10 - Cut - sed	/					
11 2/4/2	1650 11 - Cy - Sud	/					
110		1					
Relinquished by (signal		atur(d)	Relinquished by (signature)		1 1		ived by (signature)
Idd	Mily 2/2/09.3 (- C		150	×	/	20°Sm	
Relinguished by (signat	ure) Date Time Received by (sign	alure)	Relinquished by (signature)		Date	lime Rece	ived for lab. by (signature)
Form of Shipment	I I I		Date Time Rem	narks			ED ON 2/23; MOST
			- 5a	il still i	\sim DRI	CUSTOPY	
Signature	Dale			10 1100 1			
L							

 Division of Hydrologic Sciences

 755 E. Flamingo Road
 2215 Raggio Parkway

 Las Vegas, NV
 89119
 Reno, NV
 89512

 702-895-0450
 -775-673-7362

SOP.SCGW Version 2.1

Project No.	Project Nar	ne TR	Nitu		Sign M	Purchase (Order No.								LYSIS	SAMPLE TAG VERIFI- CATION		
Samplers (signalure)	OTA I	M	h		Simp 1	J					/) J					/	
STA No. Date	Time	معتقد	STATIO	N DESCR	IPTION		No. of Contain- ers	TA	G NUMBE	RS(<u> </u>	v [%] /					REMARKS	
12 2/7/08 13 2/7/08	0730 0810	12- 13-	-Pour	1-5.	ed, ev(
17 18708	0925	14	- 10m	1-5	~~{ 													
· · · · · · · · · · · · · · · · · · ·																		
															-			
					······································													
Relinquished by (signa	(M	he	Date 2/22/08		Received by (signate	<u></u>		6-	ed by (signatu			21	213		380	ceived by (signalu		
Relinquished by (signa	iture)		Date	Time	Received by (signatu	ire)		Relinquist Date	ed by (signatu Time	Pemerke			Date	Tim		ceived for lab. by		
Form of Shipment					Dale					SOIL	1 E 511	KTRI U I	kers N D1	реі 1 с	LINQU	SHED ON 1	2/23, M	105 F
Signature																		

Division of Hydrologic Sciences755 E. Flamingo Road2215 Raggio ParkwayLas Vegas, NV89119Reno, NV702-895-0450775-673-7362

SOP.SCGW Version 2.1

Project No		Project Nar	TR Natiaty Strapy	Order No.				ANALYSIS REQUESTI	
Samplers	(signature)	h -	Maker						
STA No.	Date	Time	STATION DESCRIPTION	No. of Contain- ers	TAG NUMBE	RS		.	REMARKS
20	2/8/02	0715	20-CULIFSEd	1					
21	3/2/08	083	21-CULU-Sel	1					
12	2khx	1220	23-dhow-Sel	1					
	1010								
Relinquis	hed by (signal	iure) Mix	Law 2/27/28 09.30		Refinquished by (signatu	ure)	Date 2/123	time SZO3Ph	Received by (signature)
Relinquis	hed by (signa	lure)	Date Time Received by (signature)		Relinquished by (signal	ure)	Date	Time	Received for lab. by (signature)
Form of S	Shipment		l		Date Time	Remarks ONLY EX	<i>tRACTS</i>	RELIN	QUISHED ON 2/23; MUST
Signature	,		Date		<u>.</u>	SOIL STIL	L IN	DRI CU	· 5700 Y

Division of Hydro1ogic Sciences755 E. Flamingo Road2215 Raggio ParkwayLas Vegas, NV 89119Reno, NV 89512702-895-0450775-673-7362

SOP.SCGW Version 2.1

1

Project No.	Project Na	R Nitrate Sa	meling	Purchase Order No.						A	ANAL REQU	YSIS VESTED	SAMPLE TAG VERIFI- CATION	
Samplers (signalure)	2									y y /				
STA No. Date	Time	STATION DESCRI	PTION	No. of Contair ers	-	tag numbe	ERS	//	, v			.	REMARKS	
1 ×/6/03	69:20 16:45	1-Poid-6 2-Pond -1		1	_									
16 2/1/08	17:30	16-Spring-c		/	/									
18 2/2	1450	13- Spria	-05											
22 2/8/00	16:30	19-5pring)- 22-5pring-	- C4											
		· /												
Relinquished by (signa	ture) Mi her	Date Time	Received by (signatur	Mill	Relinq	ulshed by (signa	ture)			Date	Time	Rec	elved by (signature)	
Relinquished by (signa	lure)	Date Time	Received by (signatu	<i>ff(CCC</i> ire)	Relino	uished by (signa	lure)			Date	Time	Red	alved for lab. by (signature)	
Form of Shipment		<u>II</u>			Date	Time	Remarks R e	lis	qui	h s	s ring	e 1.	42 on 2/28/08	
Signature			Dale		l				\					

6306-646-8350

.

 Division of Hydrologic Sciences

 755 E. Flamingo Road
 2215 Raggio Parkway

 Las Vegas, NV 89119
 Reno, NV 89512

 702-895-0450
 .775-673-7362

SOP.SCGW Version 2.1

.

Project No.	~	Project Nai		trut	r 76 Su	renoliz	Purchase O	rder No.					\square		YSIS JESTED	SAMPLE TAG VERIFI- CATION	
Samplers (sign			1.00	ul.	$\mathcal{N}_{l_{i}}$	implin i have	- 1		- 0 (1.44			and				
STA No. E	Date	7ime		STATIO	N DESCRI	IPTION		No. of Contain- ers		LAB NUMBEI	RS	N.				RE	MARKS
1 2/	6/08	09:22	- /	- Po	not.	-6		3	678	317							
2 7	11	10:45	2	-Po	nd -	-1		3	67	818							
16 2	100	17:30	16	- \$5	print	-CW		3	678	819	- <u>1</u> - 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-		 				
173	1/18	1315	[17		16 jeg	-125		3	68:			_	 -				
182	17/05	01450	18	-3f	ring	-05		3		821			 				
19 9	19/08	15:30	19.	<u>-5b</u>	ing-	<u>-5B1</u>		3		822			 				
22 2	-/8/08	1115	22	- <u>Śp</u> i	ring .	- CA		3	67	1823			 				<u> </u>
												+	 				
			.		<u></u>	Penducha							 				
												-	 				
							andar/11/2012.000000.0000000										
						<u></u>			14.	· .							
Relinquished	by (signal	ure) Mi	h	Date	тіте 0 ⁰	Received by signali	me) Mil) N	Relinquishe	d by (signatu	ure)		Date	Time		eceived by (signature)	
Relinquished	by (signal	ure)	•	Date	Time	Received by (signati	ure)		Relinquishe	d by (signate	ure)	ŗ	Date	Time	e R	eceived for lab. by (sign:	ilure)
Form of Shipr	ment			1	I <u></u>	I <u></u>			Date	Time	Remarks	5	 				
Signature						Dale							 				

Location: Device ID: Employee: RNOA RNOA-POS2 223675

FEDEX Express Package - Dropped Off 958920919812 958920919823 958920919764 958920919775 958920919786

Total Pieces: 5

Subject to additional charges. See FedEx Service Ruide at fedex.com for details. All merchandise sales final.

Visit us at: <u>fedex.com</u> Or call 1.800.GoFedEx 1.800.463.3339

February 11, 2008 5:19:01 PM

Location: Device ID: Employee:

RNOA RNOA-POS2 223675

FEDEX Express Package - Dropped Off 958920919797 958920919801

Total Pieces: 2

Subject to additional charges. See FedEx Service Guide at fedex.com for details. All merchandise sales final.

Visit us at: <u>fedex.com</u> Or call 1.800.GoFedEx 1.800.463.3339

February 11, 2008 5:16:22 PM

FedEx

real					
	Package/Er	nvelope	Freight	Expedited	Office/Print Services 🎉
	Ship 🕨	Track 🚽		Manage 🕨	Business Solutions +
Track Shipments/FedEx Kinko's Summary Results	Orders				(I) Printable Version (?) Quick Help
Single piece shipments					

Go

Tracking number 🔜	Status	Date/Time	Destination Mar	Service	Signature Proof	
					Image	View
958920919812	Delivered	Feb 12, 2008 2:22 PM	WEST LAFAYETTE, IN	III FedEx Express	Yes	▼
958920919823	Delivered	Feb 12, 2008 2:22 PM	WEST LAFAYETTE, IN	🖩 FedEx Express	Yes	V
958920919764	Delivered	Feb 12, 2008 2:22 PM	WEST LAFAYETTE, IN	I FedEx Express	Yes	<u></u>
958920919775	Delivered	Feb 12, 2008 2:22 PM	WEST LAFAYETTE, IN	III FedEx Express	Yes	2
958920919786	Delivered	Feb 12, 2008 2:22 PM	WEST LAFAYETTE, IN	III FedEx Express	Yes	I
958920919797	Delivered	Feb 12, 2008 2:22 PM	WEST LAFAYETTE, IN	FedEx Express	Yes	হ
<u>958920919801</u>	Delivered	Feb 12, 2008 2:22 PM	WEST LAFAYETTE, IN	III FedEx Express	Yes	~

Español | Customer Support | FedEx Locations Search

Account numbe	r
	d Signature Proof of Delivery only)
Click <u>here</u> if you have more than one ac	count number for these shipments.
View signature proof results E-mail signature proof results	Track more shipments/orders

Global Home | FedEx Mobile | Service Info | About FedEx | Investor Relations | Careers | fedex.com Terms of Use | Privacy Policy | Site Map This site is protected by copyright and trademark laws under US and International law. All rights reserved. © 1995-2008 FedEx