

Information Accessibility Lab

Last updated: 14 February 2003 Revision: 03

Project Objectives

- Develop assistive instructional technology tools to aid sensorily impaired students. Specifically:
 - Create software that audibly describes graphs of mathematical functions.
 - Create software that sonically presents complex, multi-dimensional time-series data.
- Determine the limits of this technology's ability to provide an alternative and meaningful view of natural systems.

Sample Use Cases

- A student enters an algebraic equation into a graphing calculator equipped with this technology. The calculator responds with an audible, natural language description of the equation's curve, e.g., "The curve is a parabola. It rises progressively more steeply to both left and right. It's lowest point is ..."
- A software application interactively presents multi-dimensional time-series data using pitch, spatial direction, intensity and timbre to provide a highly descriptive representation of the data to an exploring student or other investigator.

Customers

- Vision impaired secondary school students and their teachers.
- Researchers attempting to elicit information from complex, multi-dimensional, time-series data.

Deliverables for Phase 1

- 2D graph description prototype.
- Original research findings related to sonic representation of scientific data.
- Prototype data-sonification software.
- Demonstration application using the developed sonification technology to provide an interactive simulation of a natural system.

			•	D :	4
MI	l∆et∧r	1 20	tor .	Phase	1
IVIII	COLUI	163		Hase	

	When	What	Confi - dence			
ET.2-L.2- IAL.1	Dec 31 02	MDE ¹ requirements.	Green			
ET.2-L.2- IAL.2	Mar 31 03	Initial research done.	Green			
ET.2-L.2- IAL.3	Sep 30 03	MDE prototype.	Green			
ET.2-L.2- IAL.4	Sep 30 03	Sonification prototype specification.	Green			
ET.2-L.2- IAL.5	Sep 30 03	Sonification prototype.	Green			

Math Description Engine

People

- Project Manager: Dr. Robert Shelton, Johnson Space Center, 281.483.2901, robert.o.shelton1@jsc.nasa.gov
- Endorsee: Dr. Robert Shelton
- Alternate contact: Stephanie Smith, Johnson Space Center, 512.291.1454, <u>stephanie.l.smith1@jsc.nasa.gov</u>

Partnerships

 Research, Rehabilitation and Training Center (RRTC) on Blindness and Low Vision at Mississippi State University.

Technologies

- Artificial intelligence. Computed fuzzy reasoning.
- Emerging multi-sensory technology.
- Data mining research and techniques.
- Acoustical displays.

Quality Assurance

Informal project team testing of all Phase 1 deliverables.

Dependencies

 Ready availability, low cost and good team understanding of the core technologies expected to comprise the system.

Assumptions

- Adequacy of commercial commodity computers to process the required data and algorithms.
- Effective rendition of sonic output and control of a dynamic simulation is possible using the precision available in current computer systems.