HOM calculations and cavity measurements.

- 1. Cavity modeling.
- 1.1. Cavity HFSS calculations of the model with all couplers.
- 1.2. Single and double full size Cu cavity HOM measurements.
- 1.3. Analysis of the calculations and measurements.
- 2. 3 cell cavity tuning and cold tests.
- 3. Nb 9cell cavity RF QC during and after production.
- 3.1. Half cells and Dumbbells RF QC.
- 3.2. Incoming RF QC.1 day3.2. Main RF tuning after basic (80 micron) BCP.4 days
- 3.3 Final RF QC on dressed cavity.
 - 4. Cold tests.
 - 4.1. Vertical tests, Q vs. T (design Q>2e9 at 1.8K), Q vs. E (E_{acc}>15 MV/m) 4 days
 4.1. Horizontal test. 4 days

3rd Harmonic Module mini-Review. T. Khabiboulline. 11.08.2005.

1 day

Cavity HFSS calculations of the model with all couplers.

HFSS 3D 9 cells cavity model with:

- 2 High Order Mode (HOM) couplers,
- matched Main coupler port,
- different type of beam pipe terminations,
- distributed and phased current sources. Calculations in driven mode.

Single and double full size Cu cavity HOM measurements.

9 cells Cu cavity measurements with:

- 2 High Order Mode (HOM) couplers,
- Main coupler port with matched termination,
- Beam pipes with metal plates,

- Excitation and pick-up from different ports. Bead-pull and S-parameter measurements for single cavity and double cavity system.

Dipole modes with high Qext (single cavity).

2-nd dipole band "Pi" mode. F=5325.2 MHz. Q=14000.

2-nd dipole band "6/9Pi" mode. F=5418.7 MHz. Q=11600.

Analysis of the calculations and measurements.

Calculated R/Q (above) and measured Q-value for the dipole modes in a single Cu cavity (blue) or string of two cavities (yellow). Red markers show upper limit for Q, calculated from BBU instability. Measured Q-value is limited by Cu surface resistance (green).

Summary of HOM studies

- ✓ 1^{st} passband No problem. High R/Q, but all modes are dumped well below BBU limit.
- ✓ 2^{nd} No problem. Only pi-mode has high Q, but low R/Q.
- ✓ 3^{rd} No problem. Dumped well below of the limit
- ✓ 4^{th} No problem. Low R/Q and good damping.

✓ 5^{th} – Narrow band. Modes are really trapped in cavity (see picture), but most of them have low R/Q. Distribution very sensitive to errors in cell dimensions.

3 cell cavity tuning and cold tests.

- Tuning of the cavity to 3.9 GHz. 1st cold test before BCP.
- External 20 μ m BCP. Internal 20 μ m BCP. Heat treatment 10 hours at 600°C.
- Internal 83µm BCP. High pressure rinsing (HPR) with 1200 psi for 15 min.
- 2nd cold test. Rres=40 nOhms. Eacc=11.5 MV/m. Field emission (X-rays).
- 3rd cold test. Rres=70 nOhms. Eacc=11.5 MV/m. Field emission (X-rays).
- 4th cold test. Rres=200 nOhms. Eacc=12 MV/m. Field emission (X-rays). Degradation of the surface resistance indicates surface cleanness problem.
 - 5th cold test. Rres=140 nOhms. Eacc=12 MV/m. Field emission (X-rays).
 - Additional internal BCP and HPR at JLAB.
 - 6th cold test. Rres=50 nOhms. Eacc=12 MV/m. Field emission (X-rays).
 - 7th cold test. Rres=120 nOhms. Eacc=12 MV/m. Field emission (X-rays).
- 8th cold test after 2h HPR at FNAL. Rres=20 nOhms. Eacc=12.5 MV/m. No field emission (X-rays).

3rd Harmonic Module mini-Review. T. Khabiboulline. 11.08.2005.

3 cell cavity tuning and cold tests.

1.E+11

1.E+10

In multiple cold tests, after HPR at FNAL more than 2 hours, Rres < 20 nOhms, Eacc=19MV/m and Bmax=105 mT repeatedly achieved.

History of the 3-cell accelerator cavity.

Where	ВСР	HT	HPWR	Test Date	Test results
FNAL	No	No	No	01/21/04	Rres = 2000nW Ea=5.6 MV/m; Hpk(p /0)~30/60 mT
JLAB 02/25/04	Extrn~20 m m Int ~140 m m	2hrs@500 C 10hrs@600C	JLAB 15'@2 loc	03/17/04 04/19/04	Rres=60nW→ 200nW (after FE) Ea=11.5 MV/m; Hpk =60mT; Heavy X-ray
JLAB 06/10/04	Intern: ~30 m m	No	JLAB 30'@3 loc	07/02/04 07/19/04	Rres =70n₩→ 130n₩ (after HG) E=12.5 MV/m, Hpk(pi/0)=70/110mT; X-ray
FNAL 10/10/04	No	No	~1 hrs, movable	10/14/04	R_res=60 nW, E=12.8 MV/m, No X-ray
JLAB 10/26/04	Intern: 20 m m	No	JLAB 90'@7 loc	11/10/04 12/16/04	E= 5MV/m – vacuum leak E=15MV/m coupler problem
FNAL 01/30 /05	Internal: ~5 m m	No	~2hrs movable	02/08/05 02/21/05	R_res=6 n W , E=19MV/m, Hpk=105mT, No X-ray
FNAL 05/25/05	No	48hrs@120C	No	03/31/05	R_res = 16 n W , E=19MV/m, Hpk=105mT, No X-ray
ANL 06/01/05	1:1:2 12min(15C)	No	FNAL ~2.5hrs	06/09/05	R_res= 58 n W , E=12MV/m, Hpk(pi/0)=62/104mT; <mark>X-ray</mark>
FNAL 06/25/05	No →(HPWR 3hr	~6.5 hrs movable	07/05/05	R_res=10n W , E~19MV/m, No X-ray

Half cells and dumbbells RF QC.

RF QC sequence:

- Half cells frequency measurements
- Trim before welding if dF>5MHz.
- Dumbbell F_0 and F_{pi} measurements.
- Trim to make equator end flat.
- F_0 and F_{pi} measurements.
- Final trim.

36 JLAB Dumbbells.

7 FNAL and 36 JLAB Dumbbells after welding. dF<5 MHz 7 FNAL and 3

7 FNAL and 3 JLAB Dumbbells after trim.

Cavity tuning.

2 Cu 9cell cavities tuned. For Nb cavities F0=3900-7.5(cool+vac.)+13(BCP)=3905.5 MHz – expected cavity room temperature frequency before BCP.

Tuning tools.

