#### Focal Plane Layout with Fixed Filters





#### Step and Stare and Rotation







# New Technology CCD's



- New kind of CCD developed at LBNL
- Better overall response than more costly "thinned" devices in use
- High-purity silicon has better radiation tolerance for space applications
- CCD's can be abutted on all four sides enabling very large mosaic arrays
- Measured Quantum Efficiency at Lick Observatory (R. Stover):



# LBNL CCD's at NOAO





Science studies to date at NOAO using LBNL CCD's:

- 1) Near-earth asteroids
- 2) Seyfert galaxy black holes
- 3) LBNL Supernova cosmology



Blue is H-alpha Green is SIII 9532Å Red is Hell 10124Å.

Cover picture taken at WIYN 3.5m with LBNL 2048 x 2048 CCD (Dumbbell Nebula, NGC 6853)

See September 2001 newsletter at http://www.noao.edu

## **Integral Field Unit Spectrograph**



- Integral field unit based on an imager slicer- Data cube.
- Input aperture is 3" x 3" reduces pointing accuracy req.
- Simultaneous SNe and host galaxy spectra.
- Internal beam split to visible and NIR: 3500-17000Å.



#### What makes the SN measurement special? Control of systematic uncertainties



At every moment in the explosion event, each individual supernova is "sending" us a rich stream of information about its internal physical state.



#### Lightcurve & Peak Brightness

# **Science Reach**



#### SNAP parameters from 2000 supernovae including systematics

|                                                  | <b>s(W</b> <sub>M</sub> ) | <b>s(W</b> <sub>w</sub> ) | s(w) | <b>s(</b> w´) |
|--------------------------------------------------|---------------------------|---------------------------|------|---------------|
| w=-1                                             | 0.02                      | 0.04                      |      |               |
| w=-1; flat                                       |                           | 0.01                      |      |               |
| w=const; flat                                    |                           | 0.02                      | 0.08 |               |
| flat; $\Omega_{M}$ known; w=const                |                           |                           | 0.03 |               |
| flat; $\Omega_{M}$ known; w(z)=w <sub>0</sub> +w | N <sup>´</sup> Z          |                           | 0.06 | 0.19          |

Key Cosmological Studies

- Type II supernovae
- Weak lensing
- Strong lensing
- Galaxy clustering
- Structure evolution
- Star formation / reionization

# **SNAP: The Third Generation**





mass density

## From Ground to Space





Deep SN surveys represent a major advance in understanding dark energy SNAP Cosmology Fitting Working Group



Time variation w' is a critical clue to fundamental physics.

- Deep surveys of galaxies and SN to z>1
- Large scale structure formation
- CMB constraints from  $z_{lss} = 1100$

#### **New** parametrization

 $w(a) = w_0 + w_a (1 - a)$ 

Linder 2002 PRL; astro-ph/0208512

- Model independent, 2D phase space
- Well behaved at high z
- More accurate reconstruction
- More sensitive to data!

## **Evolving Equation of State**





 $w(a) = w_0 + w_a(1-a)$ 

Accurate to 3% in EOS back to z=1.7 (vs. 27% for  $w_1$ ). Accurate to 0.2% in distance back to  $z_{lss}=1100$ !

## **SN + CMB Complementarity**





SNAP tightly constrains dark energy models.

SNAP+Planck have excellent complementarity, equal to a prior  $s(W_M)$ £0.01.

Frieman, Huterer, Linder, & Turner 2002

SNAP+Planck can detect time variation w´ at 99% cl (e.g. SUGRA).

## **Expansion History of the Universe**





SNAP will map the expansion history, uncovering physics just like the thermal history revealed early universe physics.

### **Density History of the Universe**



**SNAP** 

## **Present Day Inflation**





SNAP will map the expansion history precisely and see the transition from acceleration to deceleration.

## **Beyond Dark Energy**





## **Primary Science Mission Includes...**

## Requiring complementary measurements of cosmological parameters, Dark Matter, Dark Energy,...

Type Ia supernova calibrated candle: Hubble diagram to z = 1.7

Type II supernova expanding photosphere: Hubble diagram to z = 1 and beyond.

#### Weak lensing:

Direct measurements of P(k) vs z Mass selected cluster survey vs z

Strong lensing statistics:  $\Omega_{\Lambda}$ 

10x gains over ground based optical resolution, IR channels + depth.

Galaxy clustering:

 $W(\Theta)$  angular correlation vs redshift from 0.5 to 3.0

# Weak lensing galaxy shear observed from space vs. ground







# Wide, Deep, Colorful



- 9000 times the area of Hubble Deep Field
- 15 sq.deg. to AB mag R=30 (scan 28, coadd 31)
- 300 sq.deg. to AB mag R=28
- 9 bands from 3500-17000Å
- Time domain survey
- Feed NGST, CELT (as Palomar 48" to 200", SDSS to 8-10m)
- Guest Survey program
  - Quasars to z=10

Galaxy morphology, evolution studies, merger rate to coadd m=31

Stellar populations, distributions, evolution

**Epoch of reionization thru Gunn-Peterson effect** 

Low surface brightness galaxies in H<sup>2</sup> band, luminosity function

**Ultraluminous infrared galaxies** 

Kuiper belt objects; Proper motion, transient, rare objects

## **SNAP and the Community**



#### Resource Book on



Contributions from the Snowmass 2001 Workshop on the Future of Particle Physics



edited by Eric Linder Lawrence Berkeley National Laboratory

#### **APS/DPF meeting – April 2003**

Dark Energy in the Next Generation (session U12) Kallosh & Linde Albrecht Seljak Jain Bernstein Linder Caldwell Haiman Tegmark

## **Resource for the Science Community**

#### **For Cosmologists**

- Mapping the expansion history of the universe through the accelerating phase back into the decelerating epoch
- Precision determination of cosmological parameters

#### **For Astronomers**

- SNAP main survey will be 5000x larger (and as deep) than the biggest HST deep survey, the ACS survey
- Complementary to NGST: target selection for rare objects
- Can survey 300 sq. deg. in a year to J=28 (AB mag)
- Archive data distributed
- Guest Survey Program

Whole sky can be observed every few months

#### **For Fundamental Physicists**

- Exploring the nature of dark energy
- Testing higher dimension theories
- Testing alternate theories of gravitation







