Charge-Coupled Devices (CCDs)

What they areWhy they are ubiquitousAnd who's the competitionHow they can be improved

CCDs – just keep going and going...

P. Denes Engineering Division Lawrence Berkeley National Laboratory

Standard Detector

man

BERKELEY LAB

Scientific CCDs

Dumbbell nebula - LBNL CCD Blue: H-α at 656 nm Green: SIII at 955 nm Red: 1.02 mm

- CCD invented in 1969 by Boyle and Smith (Bell Labs) as alternative to magnetic bubble memory storage
- LST ("Large Space Telescope" later Hubble) 1965 – how to image?
 - Film was obvious choice, but -It would "cloud" due to radiation damage in space Changing the film in the camera not so trivial
 - 1972 CCD proposed

Conventional 3-Phase CCD

- Noiseless, ~lossless charge transfer
- High gain charge-to-voltage conversion $\Delta V = q/C_{FD}$
- Output amplifier (source follower, or ...) on-chip

Many ways to do this

Several architectures

Full frame

Frame transfer Rapid shift from image to storage Slower readout of storage during integration

Interline

Surface vs buried channel CCD

- MOS capacitor
- Potential maximum at Si – SiO₂ interface
 - CTE < 1 due to trapping at interface
- Potential maximum not at Si
 – SiO₂ interface

CCD.ppt P. Denes

 CTE typically > 99.9999%

Frontside/Backside Illumination

Imaging Detectors

2D segmented Si

CCD.ppt P. Denes

2D segmented Si attached to 2D segmented Si

2D segmented Si attached to 1D segmented Si or other electronics

Monolithic Image Sensors

- Passive Pixel Sensor
- Proposed 1968
- No Reset, no in-pixel amplifier

- Active Pixel Sensor
- Also proposed 1968
- Many ways to make the photodiode

CCD vs APS

- APS transfers a *voltage* down the column
- CCD (noiselessly) transfers a *charge* down the column
- APS can be more sensitive (source follower does not have to drive off-chip)
- APS fill factor < 1 in general</p>
- Photogate APS like a matrix of individual CCDs
- Backside illumination attempted for APS, work-in-progress

Sensor with pixel pitch P

Sensor

- "Quantum efficiency"
 - Probability of detection
 - Energy spread
- Point spread function (PSF)
- Conversion gain (may be in readout) Volts / ____ (electron, eV, ...)
- "Well depth" Q_{MAX}
- Noise contribution, σ_{SENSOR}

Front-end readout

• Noise contribution, σ_{ELEC}

Readout

- Full-scale V_{MAX}
- Speed MPix/s (less ambiguous than fps)

System

CCD.ppt P. Denes

- Frequency-dependent DQE or equivalent
- \Rightarrow Dynamic Range = min(Q_{MAX}, V_{MAX}) / $\sigma_{SENSOR} \oplus \sigma_{ELEC}$

" $dB'' = 20 \log_{10} (DR)$ "bits" = \log_2 (DR)

CMOS, CMOS "opto" and CCD processes

CMOS driven by constant field scaling $V \rightarrow V / \kappa$ $t_{OX} \rightarrow t_{OX} / \kappa$ Gate $\rightarrow 7$ n+ S n+ D W_{D} p substrate Doping - $N_A \rightarrow \kappa N_A$ Channel Length L \rightarrow L / κ

	CCD	CMOS	
t _{ox} (Å)	500 - 1000	50	
Well depth (µm)	2.5	0.5 deeper for RF	
Implant (µm)	~1 channel stop	0.1 S/D implants	
V	≥10	<3.3 <2.5 <1.x	
Poly layers	3 (2)	1 2 for analog	
Subst. quality	Low leakage	Don't care Except opto	

Triple Poly CCD Process

CCD.ppt P. Denes

- Low noise (noiseless charge transfer, do everything to make C_{FD} small in order to get large conversion gain)
- Fill-factor = 1 (for backside illumination)
- Linear and easy to calibrate
- Long history of scientific use
- Large area devices easier (cheaper) to develop as CCDs than as state of the art CMOS devices
 - Readily wafer scale
- Commercially produced

Very Large Format CCDs (and CMOS imagers)

- Fairchild Wafer Scale Full Frame CCD
 - 9216 x 9216 x 8.75 µm pixel
 - 80.64 x 80.64 mm² size CCD
 - Eight 3-stage output amplifiers
 - Readout noise < 30e- @ 2/fps

- Cypress CYIHDS9000
 - 3710 x 2434 x 6.4 µm pixel
 - 23.3 x 15.5 mm² size APS
 - 0.13 µm imaging CMOS process

- Canon 16.7 MPix
 - 36 x 24 mm² 4992 x 3328
- Kodak 39 MPix
 - 36 x 48 mm²

Electron-Multiplying CCDs

TC285SPD-30 1004 x 1002 PIXEL IMPACTRON[™] CCD IMAGE SENSOR

Sensor Topobgy diagram

- Long serial register with avalanche multiplication pixels
- Gain (1+ε)^N ε~1%
- Good for single-photon sensitivity
- Nonetheless, current devices have limited (≤ 12 bit) dynamic range
- Excess noise factor, F

EM CCD

PARAMETER	MIN	TYP**	^a MAX	UNIT
Charge multiplication gain**	1	200	2000	-
Excess noise factor for typical CCM gain (Note 2)	1	1.4		-
Dynamic range without CCM gain		66		dB
Dynamic range with typical CCM gain (Note 3)		72~	12 bits	dB
Charge conversion gain without CCM gain (Note 4)		14		uV/e
τ Signal-response delay time (Note5)		16		ns
Output resistance (Note 6)		320		Ω
Amp. Noise-equivalent signal without CCM gain *		20		e
Amp. Noise-equivalent signal with typ. CCM gain *			1.0	e

PARAMETER	UNIT	MIN	TYPICAL	MAX
Output amplifier responsivity, HR amplifier (normal mode) (see note 1)	μV/e ⁻	-	5.3	-
Output amplifier responsivity, LS amplifier (normal mode) (see note 1)	μV/e ⁻	-	1.1	-
Multiplication register gain, LS amplifier (high gain mode) (see notes 2, 3 and 4)		1	-	1000
Peak signal - 2-phase IMO	e ^{-/} pixel	90k	130k	-
Charge handling capacity of multiplication register (see note 5)	e ^{-/} pixel	-	800k	-
Readout noise at 50 kHz with CDS, HR amplifier (normal mode) (see note 6)	e ⁻ rms	-	2.2	
Readout noise at 1 MHz with CDS, HR amplifier (normal mode) (see note 6)	e ⁻ rms	-	5.4	-
Amplifier reset noise (without CDS), HR amplifier (normal mode) (see note 6)	e ⁻ rms	-	50	-
Readout noise at 50 kHz with CDS, LS amplifier (normal mode) (see note 6)	e ⁻ rms	-	6	-
Readout noise at 1 MHz with CDS, LS amplifier (normal mode) (see note 6)	e ⁻ rms	-	14	-
Amplifier reset noise (without CDS), LS amplifier (normal mode) (see note 6)	e ⁻ rms	-	120	-
Readout noise at 1 MHz (high gain mode) (see note 6)	e ⁻ rms	-	<1	-
Maximum frequency (settling to 1%), HR amplifier (see notes 6 and 7)	MHz	-	-	3
Maximum frequency (settling to 5%), HR amplifier (see notes 6 and 7)	MHz	-	-	4.5
Maximum frequency (settling to 1%), LS amplifier (see notes 6 and 7)	MHz	-	-	9
Maximum frequency (settling to 5%), LS amplifier (see notes 6 and 7)	MHz	-	-	15
Maximum parallel transfer frequency (see note 1)	MHz	-	1.6	-
Dark signal at 293 K (see note 8)	e ^{-/} pixel/s	-	400	800
Dark signal non-uniformity (DSNU) at 293 K (see note 9)	e ^{-/} pixel/s	-	60	-
Excess noise factor (see note 10)		-	$\sqrt{2}$	-

TI-TC285 1004x1002

CCD.ppt P. Denes

Personal Prejudice

CMOS has overtaken CCD in the consumer market

- short integration time leakage is not that important
- very high speed not required
- Limited analog performance ok <10 bits linear, ~16 bits logarithmic
- Pixels! "The triumph of marketing over physics" E. Fossum
- CCDs will continue to dominate size x dynamic range
 - *size x dynamic range x speed are what is needed by the scientific community*

Direct x-ray detection

x-ray view of the galactic center

- Well established use of CCDs in x-ray astronomy
- Excellent spectroscopic resolution possible

Intrinsic resolution in Si

- Excellent spectroscopic resolution
- But only if not piled-up low rate or fast readout
- $N_{\gamma,MAX} = Well Depth / (E_{\gamma}/3.6 eV)$
 - 1000
 - \Rightarrow 9-10 bit ADC OK

Would really profit from high-speed readout as S/N is so
 high
 CCD.ppt P. Denes

Back-illumination preferred

CCD.ppt P. Denes

erere

Radiation Damage

- Ionization damage
 - Charge trapping in gate oxide
 Threshold shift
 - Damage at the SiO₂ Si interface
 - ★ Surface dark current
 - ★ Surface mobility loss
 - CCDs have thick oxides

Flux for 1 Rad in gate oxide

.....

- CCD on high-resistivity, fully depleted silicon
 - No thinning needed
 - Good red (and blue) response
 - No field free regions for diffusion ⇒ good PSF
- Bias depletes substrate independently of clock voltages

PSF – measured with pinholes at UCO Lick

1st x-ray images in LBNL CCD

CCD.ppt P. Denes

650 µm thick CCD

⁵⁵Fe K_{α} and K_{β}. Resolution ~ 126 eV at 5.6 keV

CCD.ppt P. Denes

Back-illuminated CCDs for low-energy e⁻

Thin entrance windows also good for electrons

- Window should be thin enough to allow electrons to penetrate
- Device should be thick enough to avoid radiation damage
- Excellent S/N (3.6 eV/e-h pair)
 - Well depth

 δ -doping ~15 Å

Nikzad et al SPIE 97

CCDs are wonderful

But they are slow

- Parallel exposure
- Serial readout
- Vertical clock
- Horizontal clock
- External, high resolution ADC

Now it gets more difficult

Increase ADC speed

Increase readout/ADC speed

- Dalsa FT50M
- 1024 x 1024 x 5.6 µm pixel
- Frame transfer / 2 ports
- 100 fps = 100 MPix/s
- 11.1 bits [67 dB] at 30/60 fps
- 10.1 bits [61 dB] at 50/100 fps

~ √rate

- \sqrt{kTC} Noise contribution from M_R (reset switch) removed by CDS (correlated double sampling measure V_R and V_R + V_S)
- Noise contributions from M_s (source follower)
 - Thermal noise $V_n^2 \sim 4kT\gamma g_m \int H^2(f) df$
 - 1/f noise $V_n^2 \sim \frac{K}{C_{OX}WL} \int H^2(f) \frac{1}{f} df$
 - Noise from current source

- Reset and output transistors need room
- Want to minimize C_{FD}
- Need space for the output stage!

One way to gain space

Figure 4 Depiction of the region around the output circuit

MIT Lincoln Labs multi-port CCD

For example

- Fairchild 456
- 512 x 512 x 8.7 µm pixel
- Interline transfer / 32 ports
- 1000 fps = 250 MPix/s
- On-chip current sources for 3-stage output ⇒ 2.5 Watts

At some point, adding more ADC ports becomes a connection nightmare \rightarrow integrated circuit solution needed.

Fully column-parallel

- 1 ADC/column
- Bump bonding required
- No source-follower
- Example developments for ILC Vertex Detector
 - 50 MHz column readout
 - 4-5 bits dynamic range

Precedent

- 1996 SLD Vertex Detector
- 3 x 10⁸ pixels
- 96 x 3.2 MPix x 20 µm CCD

Tomorrow – ATLAS Pixel

(Almost) Column Parallel CCDs

Solution chosen

- Speed increased by N_{PORTS}
- N_H *large* enough to minimize the number of ADCs needed
- N_H small enough to ensure fast readout
- Wire bonding still possible

Prototype – 480 x 480 x 30 µm pixels

Constant area taper

- 10 pixels/SR
 - 300 µm output pitch

LBNL Fast CCD Camera

CCD.ppt P. Denes

- Goals:
- 200 MPix / s
- $\bullet \geq 14$ bits (84 dB)

Proof-of-concept

- LDRD (internal lab R&D)
- 30 µm pixels
- funding limited 480 x 480 device slipped onto 4k CCD run
- custom readout IC

Prototype devices with 30 µm pixels Metal strapped and not (a)CP and 4-port

CCD readout for the SNAP focal plane

CCD.ppt P. Denes

SNAP requirements

- 16 bit dynamic range at 100 kHz
- 4 channels per chip
- low power
- space qualified

Fast CCD (benefit from SNAP development)

- 16 channels per chip
- ADC pitch < 300 μm (to match 300 μm output pitch) actual: 235 μm
- 10 x speed \Rightarrow DR = 16/ $\sqrt{10}$ bits

Structure of circuit lends itself to future designs

Floating Point Readout

CCD Readout IC ("CRIC")

rere

CCD.ppt P. Denes

 $0.25 \ \mu m \ CMOS$

Full-scale signal in CRIC

CCD.ppt P. Denes

Measured Performance

- 3.6 µV/ADU ~ 1 e⁻
- Noise ~2.2 e⁻ 300
- Noise ~1.9 e⁻ 140K
- INL <2 bits max</p>
- DNL << 1 bit</p>
- Crosstalk < 1 ADU (one channel at zero, adjacent full scale)
- 15 mW/channel

On spec

CCD.ppt P. Denes

- Complete demonstrator camera
- LBNL thick CCD
 - visible light + phosphor
 - x-rays
 - low energy electrons
- Commercializeable
- Phosphor development

In general – what is needed to make CCDs fast?

- Poly gates are resistive (1000 x metal)
- To 1st order, distributed network of R_{POLY}xC_{OVERALP} dominates speed of clock propagation
- Metal strapping needed for high speed
 - opaque for front illumination
 - topological considerations

Speed Limit

Ultimate limitation is CTI (1 – CTE) vs speed

Charge transfer: + $-\frac{\partial n}{\partial t} = \mu_{Si} \left(\frac{q}{C} \frac{\partial}{\partial x} \left[n \frac{\partial n}{\partial x} \right] - \frac{\partial}{\partial x} \left[n \frac{\partial V_c}{\partial x} \right] + \frac{kT}{q} \frac{\partial^2 n}{\partial x^2} \right)$

Self-inducedDrift due toThermaldrift (concentrationelectrodediffusiongradient of charge)fringe field

Time constants all $\propto L^2C_{EFF}$ Typically ns or sub-ns, but

Time Constants
4.6
6.9
9.2
11.5
13.8

Conclusions (1)

- Conflicting process requirements for CCD and CMOS imagers ⇒ both will fill important roles
 - Could combine the two, but there is no commercial driver
 - Lab-foundry developments of CMOS on CCD, but ...
- CCDs will continue to be the best for max(area, pixels, dynamic range, speed)
 - Our community can push that
- Development area #1 speed (combination of micro-electronics and CCD optimization)
- Development area #2 why just silicon?
 - Ge CCD spectroscopy, x-rays
- Improving CCDs and the ubiquitous detector maximizes dBang/d\$
 - Provided it is done in such a way as to benefit the whole community

(not just for CCDs – more general)

- A straightforward sophisticated detector (a 'simple' custom sensor with a 'simple' custom readout chip) ~ 8-10 FTEyr and needs 2-3 years to complete
- Specific detector developments should be run as a project
- R&D base support is needed at a relatively modest level
- Projects need to address community access
 - Commercialize if possible often difficult
 - If labs build and support instruments then
 - ▲ Need a way to support that (\$)
 - ▲ Other labs need to sign up early 10 at once \neq one 10 times

