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This note deals with the rate coefficient, k�t�, that deter-
mines the survival probability, S�t�, of an immobile absorber
which instantly annihilates at the first contact with one of the
freely diffusing point particles

S�t� = exp�− c �
0

t

k�t��dt�� . �1�

Here c is the concentration of the diffusing particles, which
are assumed to be uniformly distributed in space at t=0. For
a spherical absorber of radius a the exact solution for the rate
coefficient was found by Smoluchowski1

ksph�t� = 4�a2�D

�t
+ 4�Da . �2�

In what follows we suggest an approximate formula for k�t�
that generalizes the Smoluchowski solution to nonspherical
absorbers whose boundaries are not too rough. This formula
has been tested by comparison with known analytical and
numerical results as well as numerical results obtained by the
authors. Comparison shows that the formula provides a rea-
sonable approximation for the rate coefficient.

It is not obvious how to generalize the expression for the
rate coefficient in Eq. �2� to the case of nonspherical absorb-
ers. However, this expression looks quite general and sug-
gestive for generalization if one writes it in terms of the
surface area, A, of the absorber

k�t� = A�D

�t
+ �4�AD . �3�

This formula �i� reduces to the exact solution as t→0, k�t�
=A �D /�t, and �ii� satisfies the general relation,2 which
gives the asymptotic long-time behavior of the rate coeffi-
cient in terms of the plateau value k�=k���,

k�t� = k�	1 +
k�

4�D��Dt

, t → � . �4�

Below we first compare the approximate formula for the pla-
teau value

k� = �4�AD , �5�

which we will call the rate constant, with known analytical
and numerical results as well as with our numerical results
obtained by a finite difference method. Then we compare the
rate coefficient in Eq. �3� with the time-dependent solution
for k�t� obtained numerically for two nonspherical targets.

There is a general relation between k� and the capaci-
tance, C, of the absorber, k�=4�DC. Therefore, the relation
in Eq. �5� implies an approximate general formula for the
capacitance

C = �A/�4�� . �6�

This is another result of this note. We will use this formula
when comparing with known results.

We begin with oblate spheroid, which is obtained by
rotating an ellipse about its semiminor axis. The surface area
of the oblate spheroid, Aoblate, is given by

Aoblate = 2�a2	1 +
1 − �2

2�
ln�1 + �

1 − �
�
 , �7�

where �= �1−a2 /b2�1/2 is the eccentricity of the ellipse,
0���1, a and b are the semimajor and the semiminor axes,
respectively. The exact solution for the capacitance of the
oblate spheroid is known,3

Coblate
exact =

a�

arcsin���
. �8�

To compare the approximate general formula with the exact
result consider the ratio roblate���=koblate

approx/koblate
exact

=Coblate
approx/Coblate

exact given by

roblate��� =
arcsin���

�2�
	1 +

1 − �2

2�
ln�1 + �

1 − �
�
1/2

. �9�

For �=0 �sphere� the ratio is unity as it must be. The small-
� expansion of the ratio is given by

roblate��� = 1 +
2

945
�6 +

2

675
�8 + ¯ . �10�

The expansion begins with a term proportional to �6, and the
coefficient of this term is very small. In the opposite limiting
case, b=0 and �=1, the spheroid reduces to the disk for
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which the capacitance is known, Cdisk=2a /�. In this case
the ratio is approximately 1.1. Thus for oblate spheroid the
approximate formulas works reasonably well over the entire
range of �. The dependence of roblate���−1 is shown in
Fig. 1.

Next we compare our approximate formulas with the
exact results for prolate spheroid obtained by rotating the
ellipse about the semimajor axis. The area and capacitance3

of this spheroid, respectively, are

Aprolate = 2�a2�1 − �2	�1 − �2 +
arcsin���

�

 �11�

and

Cprolate
exact =

2a�

ln��1 + ��/�1 − ���
. �12�

The ratio, analogous to that discussed for the oblate spheroid,
is given by

rprolate��� =
1

2�2�
ln�1 + �

1 − �
�

�	1 − �2 +
1

�
�1 − �2arcsin���
1/2

. �13�

Again, the ratio is unity for �=0 �sphere�. The small-� ex-
pansion of the ratio is

rprolate��� = 1 −
2

945
�6 −

16

4725
�8 + ¯ . �14�

As for oblate spheroid, the expansion begins with a term
proportional to �6, and the coefficient of this term is very
small. As �→1 both the area in Eq. �11� and the capacitance
in Eq. �12� tend to zero. In this limiting case Eq. �13� takes
the form

rprolate��� =
���2

4
�1 − ��1/4 ln� 2

1 − �
� , �15�

and also tends to zero as �→1. As an estimate we indicate
that for b=0.1a��0.995� the ratio is approximately 0.85,
while the rate constant and the capacitance decrease approxi-
mately three times compared to their values for the sphere of

radius a��=0�. The dependence of rprolate���−1 is shown in
Fig. 1.

Another object for which an exact analytical solution for
the capacitance is known is a dumbbell composed of two
overlapping spheres �see Ref. 4 and references therein�. We
compare the approximate and exact expressions for the
dumbbell made of two equal spheres of radius a at three
intersphere separations: L /a=2,�3,�2, where L is the dis-
tance between the centers of the spheres. The first case
corresponds to two nonoverlapping spheres at contact. The
surface area of the dumbbell, A�L�, is given by A�L�
=�a2�1+L /2a�. Exact values of the capacitance, C�L�,
which will be used for comparison, can be found in Ref. 4.
These value are C�2a�=2a ln 2, C��3 a�1.345 a, and
C��2 a�1.293 a. Using these values we obtain for the ra-
tio, r�L�, of the approximate and exact expressions for the
rate constant and the capacitance: r�2a�1.02, r��3 a�
1.01, and r��2 a�1.005. As might be expected, the rela-
tive error of the prediction grows with separation and reaches
its maximum at L /a=2 �contacting spheres� where it is about
2%.

We have also performed numerical analysis for a linear
“molecule” composed of n overlapping equal-size spheres.
Intersphere separations were the same as for the dumbbell

FIG. 2. �a� Stationary rate constant k for a linear “molecule” absorber com-
posed of n overlapping spheres normalized to the Smoluchowski rate con-
stant, kSm=4�Da, for one sphere of radius a. Symbols show numerically
exact results for the following intersphere separations: L /a=2 �circles�,
L /a=�3 �triangles�, and L /a=�2 �squares�. Predictions of the approximate
formulas are illustrated by dotted lines. �b� Relative error of the approximate
formulas �5� for a linear “molecule” absorber as a function of the number n
of composing spherical units. Symbols correspond to different intersphere
separations.

FIG. 1. Relative error of the approximate formula �5� for oblate �solid line�
and prolate �dotted line� spheroidal absorbers as a function of the
eccentricity.
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model: L /a=2,�3,�2. In our numerical procedure, we took
advantage of the axial symmetry of the problem and used a
finite difference method with adaptive triangular meshing to
solve the corresponding two-dimensional partial differential
equation. Relative error of the obtained stationary rate con-
stant was 0.1%, which is sufficient to consider this to be
essentially an exact result. Figure 2 illustrates the depen-
dence of the stationary rate constant on the number of “at-
oms” in the “molecule” �Fig. 2�a�� and demonstrates the rela-
tive error of our approximate formula �Fig. 2�b��. Note that
for a “molecule” containing as many as seven “atoms,” the
rate constant almost triples the Smoluchowski value while
the relative error of the approximate formula is within rea-
sonable 7%.

The capacitance of a cube with side length a estimated
by different methods is equal to 0.66a �see Ref. 4 and refer-
ences therein�. Comparison shows that Eq. �6� gives about
5% larger value of the capacitance.

Let us also consider a cylindrical rod of radius a and
length L capped by semi-spheres. Our numerical analysis
using a finite difference method shows that the accuracy of
the approximate formula decreases with increasing rod
length, as expected. However, for L as large as 10a, where
the rate constant is almost three times larger than that for a
sphere, the relative error is only about 9%.

Finally, we analyze the accuracy of Eq. �4� for the time
dependent rate coefficient. We choose two highly nonspheri-
cal objects, namely: the dumbbell composed of two overlap-
ping spheres of radius a, with the distance L=�3 a between
their centers, and a cylindrical rod of radius a and length L
=5a capped by semispheres. The symmetry of Eq. �4� allows
us to plot it in a universal form, i.e., �k�t� /k�−1�kSm/k�,
where kSm=4�Da is the Smoluchowski rate constant, as a
function of dimensionless time Dt /a2. Numerical results
were obtained by a finite difference method. Figure 3 shows
remarkable accuracy of Eq. �4�. Note that the plot covers six
orders of magnitude in dimensionless time whereas the
renormalized rate constant change covers four orders of mag-
nitude.
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FIG. 3. Universal plot of the time-dependent rate coefficient k�t� as a func-
tion of dimensionless time Dt /a2 for two nonspherical absorbers: A dumb-
bell with intersphere separation L /a=�3 �circles� and a capped cylindrical
rod of length L /a=5 �triangles�.
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