
Reasoning About Action II:
The Quali�cation Problem

Matthew L. Ginsberg
David E. Smith

Computer Science Department

Stanford University

Stanford, California 94305

Reasoning About Action II:

The Quali�cation Problem

Abstract

We present a computationally e�ective approach to representing and reasoning about actions

with many quali�cations. The approach involves treating actions as quali�ed not by speci�c

facts that may or may not hold when the action is executed, but instead as potentially

quali�ed by general constraints describing the domain being investigated. Speci�cally, we

suggest that the result of the action be computed without considering these qualifying domain

constraints, and take the action to be quali�ed if and only if any of the constraints is violated

after the computation is complete.

Our approach is presented using the framework developed in [6], where we discussed a

solution to the frame and rami�cation problems based on the notion of possible worlds, and

compared the computational requirements of that solution to the needs of more conventional

ones. In the present paper, we show that the domain constraint approach to quali�cation,

coupled with the possible worlds approach described earlier, has the remarkable property that

essentially no computational resources are required to con�rm that an action is unquali�ed.

As before, we also make a quantitative comparison between the resources needed by our

approach and those required by other formulations.

1 Introduction

1.1 The problem

An important requirement for many intelligent systems is the ability to reason about actions

and their e�ects on the world. There are several di�cult problems involved in automating

reasoning about actions. The �rst is the frame problem, �rst recognized by McCarthy [13].

The di�culty is that of indicating all those things that do not change as actions are performed

and time passes. The second is the rami�cation problem (so named by Finger [3]); the

di�culty here is that it is unreasonable to explicitly record all those things that do change

as actions are performed and time passes. The third problem is called the quali�cation

problem. The di�culty is that the number of preconditions for each action is immense.

McCarthy �rst identi�ed the quali�cation problem in 1977 [10] in the context of the

missionaries and cannibals puzzle. He noted that in order to be able to use a boat to cross

a river one would need

. . . a quali�cation that the vertical exhaust stack of a diesel boat must not be

struck square by a cow turd dropped by a passing hawk or some other event that

no-one has previously thought of. [10]

1

A more familiar example of the quali�cation problem (also due to McCarthy) is the

\potato in the tailpipe" problem. One precondition to being able to start a car involves

having the key turned in the ignition, but there are many others. For example, there must

be gas in the tank, the battery must be connected, the wiring must be intact, and there

can't be a potato in the tailpipe. It would hardly be practical to check all of these unlikely

quali�cations each time we were interested in using the car.

To describe the quali�cation problem more formally, we will use a simple situation cal-

culus to talk about the world. Let the predicate holds(p; s) indicate that the proposition p

holds in the state s. We also denote by p(a) the preconditions of an action a, and by C(a)

the set of consequences of the action a given that the preconditions hold.1 An action can

now be characterized by an axiom or axioms of the following form:

c 2 C(a) ^ holds(p(a); s)! holds(c; do(a; s));

where do(a; s) refers to the situation after the action a has been performed. The quali�cation

problem is that there are a great many clauses appearing in the complete precondition p(a).

It is di�cult to enumerate them all, and computationally intractable to check them all

explicitly.

This overall problem consists of three distinct di�culties:

1. The language or ontology may not be adequate for expressing all possible quali�cations

on the action a,

2. It may be infeasible to write down all of the quali�cations for a even if the ontology is

adequate, and

3. It may be computationally intractable to check all of the quali�cations for every action

that is considered.

In this paper we will be concerned only with the second and third of these issues { how to con-

veniently express quali�cations and how to reason with them in a computationally tractable

way. We will not consider the problem of recognizing or recovering from quali�cations that

cannot be described within the existing ontology or language of a system.

1.2 The default approach

There has been a recent resurgence of interest in problems of commonsense reasoning about

actions and their consequences. Several authors [9, 12, 11, 15] have suggested that the qual-

i�cation problem can be e�ectively addressed by grouping together all of the quali�cations

for an action under a disabled predicate. This predicate is then assumed false by default

in any particular situation. For example, given an action a with explicit preconditions p(a),

explicit consequences C(a) with c 2 C(a) and additional quali�cations q(a), we could write

holds(p(a); s) ^ :disabled(a; s) ! holds(c; do(a; s))

holds(q(a); s) ! disabled(a; s);

1This description of an action is the one we used in [6].

2

A B

Figure 1: Move A to B's location

A B

Figure 2: The dumbbell problem

together with the default rule
: :disabled(a; s)

:disabled(a; s)

In other words, if the action's preconditions hold in state s, and the action is not disabled,

then the consequences will hold in the state resulting from the execution of the action. The

advantage of this approach is that a system does not need to reason about all of the obscure

quali�cations that might prevent each action from being executed. They can be assumed to

be false, unless the contrary has been shown by some form of forward inference.

Unfortunately, there are still some serious di�culties with this approach. Consider a

simple blocks world consisting of a oor with two blocks on it, as shown in Figure 1, and

a single operation move(b; l) that moves the block b to location l. One quali�cation on this

action is that the intended destination for a move operation must be vacant. We might

express this as:

holds(on(x; l); s)! disabled(move(y; l); s): (1)

If x is in some location l, the action of moving y to that location is disabled.

Now suppose that we complicate matters by allowing blocks to be connected together as

shown in Figure 2. (We will henceforth refer to this as the dumbbell problem.) If we try to

move the block A to the location occupied by B, B moves also, and will therefore not be in

the way when A arrives. In this case, the fact that B is in the way is not a quali�cation on

the action. So we need to modify (1) to become:

on(x; l) ^ :connected(x; z)! disabled(move(z; l)); (2)

indicating that an object at the destination of an intended motion disables that action unless

it is connected to the object being moved. (We have dropped the situation variable in (2)

in the interests of simplicity.)

3

A B C

Figure 3: The blocked dumbbell problem

The \blocked dumbbell" problem shown in Figure 3 requires that we introduce still more

quali�cations on the move operator. Now the presence of C blocks the action, since B is

unable to move to its new location. We have to modify (2) to produce something like:

on(z; l0) ^ connected(x; y) ^ :connected(y; z) ^

induced-position(y; l0; move(x; l))! disabled(move(x; l)): (3)

This axiom states that a move action will be disabled if an object connected to the object

being moved is prevented from reaching its new location.

The increased complexity is a consequence of the fact that the disabling rules (2) and

(3) need to anticipate the rami�cations of the move action, but the possible rami�cations

become increasingly numerous and complicated as the complexity of the domain increases.

In addition to these epistemological problems, this complexity also leads to computational

di�culties. As the number of rami�cations grows, it becomes impractical to forward chain

on the direct results of an action in order to determine and record which of the subsequent

actions may be blocked.

As an example, suppose that we are working in a blocks world domain containing n

blocks. If none of the blocks is connected to any other, then for some speci�c block b, there

will be n � 1 locations to which b cannot be moved because these locations are occupied

by other blocks. Since there are n � 1 disablers for the action of moving each block, there

will o(n2) disablers that must be computed and stored for the entire domain. (This result

continues to hold if some of the blocks are connected together.)

In Section 5, we will discuss a backward chaining approach to this problem, and show

that it, too, su�ers from severe computational di�culties.

Implemented systems for reasoning about action have taken a similarly \exhaustive" ap-

proach to dealing with quali�cation. In strips [2] or QA-3 [7], for example, all quali�cations

need to be listed explicitly.2 The computational properties of approaches such as these are

comparable to those of the default approach we have described in this section.

1.3 Approach

In the examples above, the move operation always failed because there was something in the

way. It would therefore seem that we should be able to derive the above quali�cations from

2Although these approaches do not use a disabled predicate, they could easily be modi�ed to do so. No

nonmonotonic reasoning would be needed, because they maintain complete descriptions of their domains.

4

more general constraints on the world. In the blocks world, one of the domain constraints is

that an object cannot be in two places at once. Another domain constraint is that no two

objects can ever be in the same place at the same time. We could state these formally as:

on(x; l) ^ l 6= l0 ! :on(x; l0)

on(x; l) ^ z 6= x ! :on(z; l): (4)

If we try to move a block to a location that is already occupied, the resulting world will

be in contradiction with the domain constraint (4). We conclude that the action cannot be

performed.

A similar argument can be made for the potato in the tailpipe problem. In this case, it

is inconsistent for an engine to be running with a blocked exhaust. It follows that a car with

a blocked exhaust cannot be started.

Unfortunately, there is a serious aw in these arguments. The trouble is that we have

not distinguished between things that an action can change (rami�cations) and those that

prevent it from being carried out (quali�cations). In our blocks world example, it may very

well be that a block in the way will defeat a move operation. On the other hand, it might

be the case that the robot arm is su�ciently powerful that any block in its way simply gets

squashed or knocked aside. Given only the domain constraint, we have no way of knowing

which is the case.

The same is true for the potato in the tailpipe problem. Given a car with a potato in its

tailpipe, how are we to know whether turning the key in the ignition will have no e�ect, or

will blow the potato out of the tailpipe? Surely a potato in an exhaust nozzle of the space

shuttle would not prevent it from taking o�, but nowhere have we provided any information

distinguishing the two cases.

The problem is essentially this: Given that the results of an action may include arbitrary

inferential consequences of the explicitly stated results, we need to distinguish legitimate

quali�cations for an action from possible rami�cations of the action.3

One solution to this problem is to explicitly identify, for each potential rami�cation of

an action, whether or not it can act to qualify the action in question. Unfortunately, the

number of potential rami�cations of an action grows exponentially with the complexity of the

domain [6], so that any approach to the formalization of action that requires the exhaustive

enumeration of all of an action's rami�cations will become computationally intractable when

dealing with complex domains.

The approach we will take to this problem is to indicate, for each possible action, which

subset of the domain constraints can potentially block the action. In our blocks world

example, the domain constraint that no two things can be in the same place at the same

time quali�ed the failing move operations. In the car example, the constraint about exhaust

blockages leads to the quali�cation.

3The situation is not quite this simple, since in many cases it may be desired for the rami�cations and

quali�cations of an action to interact. The self-ful�lling dumbbell problem is one example; in Section 3.1 we

introduce a set of examples involving self-defeating actions.

5

We will describe this approach in terms of an extension to our earlier work on the frame

and rami�cation problems [6]. In that work we showed how the result of an action could be

taken to be the nearest possible world in which the explicit consequences of the action held.

The possible worlds here are those de�ned by Lewis [8] and explicated in [4]. For example,

imagine a robot considering moving a bookcase from one location to another. The expected

result would be the nearest world to the current one in which the bookcase was at its new

location. In this world, the bookcase would no longer be at its old location, and everything

on or in it would also be at the new location. Furthermore, heating ducts and pictures might

be covered in this new world as a consequence of the new position of the bookcase.

In [6], we also developed a method for e�ciently computing these possible worlds. It

involves examining proofs of the negation of the explicit consequences of an action, and

removing one premise from each such proof. We review the de�nition of possible worlds

and the mechanism for computing them in Section 2, and will rely on this information in

subsequent sections.

Before proceeding, however, there are some general issues that should be discussed. First,

we should emphasize that there is no intrinsic connection between describing quali�cation in

terms of domain constraints and the possible worlds construction of [4, 6]. The approach we

will present can be incorporated into any approach to reasoning about action that is based

on domain constraints. The reason we discuss our solution in terms of the possible worlds

construction is that the computational properties of this approach combine conveniently with

domain constraint descriptions.

Second, there are signi�cant shortcomings involved in thinking of quali�cation in terms

of domain constraints. The reason is that a domain constraint such as that appearing in (4)

is instantaneous, describing a restriction on the state of the world at a moment in time. It

conveys no information at all about the underlying reason for any particular quali�cation,

and gives no indication of what the result will be if we attempt a quali�ed action, such as

that of Figure 1.

If we want to predict the result of an action such as this, we will in general need a

more detailed description of our domain. In Figure 1, for example, we might describe the

move action in terms of forces and accelerations, allowing us to determine the results of the

quali�ed action.4 Perhaps A bumps into B and stops, perhaps B is displaced after all, or

perhaps one of the blocks is damaged as a result of the impact.

This redescription, however, is also in terms of instantaneous domain constraints (New-

ton's third law, in this case). If we want to determine the result of attempting a quali�ed

action, this sort of an ontological shift will be needed. The reason for this is that we need to

work with a level of description su�ciently detailed that the action being considered is not

quali�ed. We see from this that, short of working at a level of detail su�cient to guaran-

tee that no action is ever quali�ed, the problem of identifying quali�ed actions will persist.

The approach we will describe in this paper can identify quali�ed actions using a domain

description at any level of detail. In addition, the ability to identify quali�ed actions at a

4Yoav Shoham has also suggested using this reformulation to determine whether or not the action was

quali�ed in the �rst place.

6

high level of abstraction can be used to determine under what circumstances a more detailed

formulation must be considered.

1.4 Organization

Section 2 provides an overview of the possible worlds construction developed in [6]. In Section

3, we show how quali�cations can be succinctly described by associating a set of qualifying

domain constraints with each action, and show how this approach can be used to deal with

examples like the dumbbell and blocked dumbbell problems.

Section 4 discusses the implementation of our ideas, and presents several examples of

the approach in action. A remarkable feature of the approach we are proposing is that it

takes essentially no longer to check an unquali�ed action to see if it is quali�ed and to then

compute the result than it does to merely compute the result itself.

In Section 5, we present a comparison between the computational requirements of our

inferential approach and those of the \exhaustive" approach presented in Section 1.2 and used

in existing systems. We also compare our approach to the \partially exhaustive" approach

introduced in Section 3.2.

Finally, in Section 6 we discuss some epistemological issues arising out of our approach,

describe some di�culties with it, and suggest some alternatives for consideration.

2 Possible worlds

Our solution to the quali�cation problem can be best understood within the framework

provided by an existing method for reasoning about action. The framework that we will

use for this purpose is the one based on possible worlds and discussed in [6]. That work is

reviewed briey here. The essential idea is to take the result of an action to be the nearest

possible world in which the explicit consequences of the action hold.

This possible world cannot be constructed merely by inserting the consequences of the

action into the database, since the database may become inconsistent if we do so. In the

blocks world, for example, the consequence of moving a block b to a location l is that the

block is located at its new location: on(b; l). This is inconsistent with the fact on(b; l0) giving

the block's original location.

The essential idea is that if our world description S is inconsistent with the consequences

C of some action, we work with a maximal subset of S that is consistent with C.

2.1 Formalization

Suppose, then, that we are given an initial world description in the form of some set S of

facts, and that C is some collection of facts that we wish to add to S, even though the set

S [C may be inconsistent. We will de�ne a potential world for C in S to be any consistent

7

subset of S [C that contains C, and a nearest potential world, or possible world to be a

maximal such consistent subset.5

As discussed in [6], there is one additional subtlety that we need to consider. Speci�cally,

there will often be facts that will always hold, so that we want to consider only subsets of

S [C that contain them. Domain constraints such as (4) often have this property; we can

expect (4) to hold independent of the modi�cations we might make to our world description.

We cater to this formally by supposing that we have identi�ed some set P containing these

protected facts.

This leads us to de�ne possible worlds as follows:6

De�nition 2.1 Assume given a set S of logical formulae, a set P of the protected sentences

in our language, and an additional set C. A possible world for C in S is any subset T � S[C

such that:

1. C � T ,

2. P \ S � T ,

3. T is consistent, and

4. T is maximal subject to these constraints.

We will denote the set of all possible worlds for C in S by W (C;S).

We discuss in Section 2.3 the problem of generating possible worlds automatically. The

basic idea is to detect potential contradictions by examining proofs of the negations of facts

in C, and to manipulate the database in such a way that all of these proofs fail.

To use these ideas to reason about action, we de�ne the result of an action a in a situation

s, which we will denote by r(a; s), to be the intersection of the possible worlds associated

with its set of consequences C(a). Formally,

r(a; S) =

�
S; if W = �;T
fw 2 Wg; otherwise.

(5)

The set W is given by

W = W (C(a); S); (6)

and is the collection of possible worlds in which the consequences of the action hold.

2.2 An example

As an example of this construction, consider the scenario in Figure 4, repeated from

[6]. The domain contains a table, a chest, a plant, a portrait and a bookcase (which itself

5Note that both potential worlds and possible worlds need not be closed under logical deduction, and

also that they will in general be uncommitted on sentences that are logically independent of S. The more

accurate phrase \possible partial world" seems rather unwieldy, however.
6This de�nition is related to one appearing in [1]. It is shown in [4] to be equivalent to ideas appearing

earlier in Reiter's default logic [14].

8

��@@��@@��@@��@@��@@��@@

��
��@@��@@��@@��@@��@@��@@

��@@

h

bb""

B
B
BB �

�
��

@@
@@
@@

��
��
��

'$h.�
�
�
�HH

@
@@�

���
�

�
�s

Figure 4: A household domain

contains a bird and a television). Ventilation for the room is provided by a pair of ducts

under the oor; if both of these are blocked, the room becomes stu�y. Putting an object on

the table will obscure the picture.

Formally, the initial situation shown in the �gure can be described as follows (the * and

symbols should be ignored for the moment):

on(bird,top-shelf) rounded(bird)

*# on(tv,bottom-shelf) rounded(plant)

on(chest,floor)

* on(plant,duct2) duct(duct1)

on(bookcase,floor) duct(duct2)

* blocked(duct2) in(bottom-shelf,bookcase)

:obscured(picture) in(top-shelf,bookcase)

:stuffy(room)

(7)

There are also the associated domain constraints:

on(x; l) ^ l 6= l0 ! :on(x; l0) (8)

on(x; l) ^ z 6= x ^ l 6= floor ! :on(z; l) (9)

rounded(l) ! :on(x; l) (10)

duct(d) ^ 9x:on(x; d) ! blocked(d) (11)

9x:on(x; table) $ obscured(picture) (12)

blocked(duct1) ^ blocked(duct2) $ stuffy(room) (13)

9

The �rst domain constraint indicates that an object can be in only one place at any given

time, and the second that two di�erent objects cannot be in the same place (except for the

oor, which can support many objects). The third indicates that no object can be on top of

a rounded object (the bird cage and the plant both �t this description). Domain constraint

(11) indicates that anything on a duct blocks it. The �nal two domain constraints de�ne

the conditions under which the portrait will be obscured or the room will be stu�y.

There is a single action in this domain, that of moving an object from one location to

another. We will denote this action by move(x; l), where x is the object being moved and l

is the intended destination. The preconditions given for the move action in [6] were that the

object being moved be clear, that its destination either be clear or be the oor, and that no

attempt be made to place an object on top of a rounded object:

p(move(x; l)) � clear(x) ^ [clear(l) _ l = floor] ^ :rounded(l): (14)

The consequence of the action is that the object is relocated at its destination:

C(move(x; l)) = fon(x; l)g:

Note that the given precondition is intended to be complete, in the sense that its satisfaction

is su�cient to guarantee the success of the action.

Assuming that we are not prepared to drop the domain constraints appearing at the

end of the above description, there is a unique possible world corresponding to the new fact

on(tv; table), the consequence of moving the television to the table. This possible world

corresponds to the removal of the facts indicating that the television is on the bottom shelf of

the bookcase and that the picture is not obscured. It is necessary to remove these facts since,

in light of the domain constraints indicating that an object can be in only one place at any

given time and that anything on the table obscures the picture, they are each inconsistent

with the new location of the television.

There are two possible worlds corresponding to moving the television to duct 1. In one

of these (marked with a # in the domain description), the room becomes stu�y; in the other

(marked with a *), the ventilation system displaces the plant from duct 2. In the absence of

additional information allowing us to select between these two possible worlds (how heavy

is the plant?), we take the conservative approach of removing from the domain description

facts marked with either a # or a *.

Note that we have de�ned an action whose consequences have no possible world as having

no e�ect on the domain being investigated; in [6], this was justi�ed by an argument that,

\an action whose consequences have no possible world is e�ectively impossible." It is our

intention in the current paper to show that this e�ective impossibility captures the essence

of the quali�cation problem: that quali�cations on actions correspond to an attempted

violation of the constraints on the domain being investigated.

2.3 Automatic generation of possible worlds

In [4, 6], we discussed the automatic construction of the possible worlds for C in S. The

basic idea is to remove from S just enough to invalidate any proof of :c for each c 2 C. To

10

formalize the construction, we need the following de�nitions:

De�nition 2.2 Let C and S be sets. We de�ne a proof set for C to be any subset T of

S � C such that:

1. T \ P = �. All of the sentences in T are unprotected.

2. T [P [C is inconsistent. The negation of some sentence in C follows from the facts

in T and the protected sentences in our language.

3. T is minimal subject to these conditions. The proof set does not contain any extraneous

or irrelevant sentences, so that removing any sentence from it will invalidate the proof.

De�nition 2.3 Let A = fSig be a collection of sets. A hitting set for A is any set H such

that H \ Si 6= � for every i.

Theorem 2.4 Given sets of sentences C and S, let fSig be the set of all proof sets for C

in S. Then the possible worlds for C in S are precisely those sets of the form

S [C �H

for some minimal hitting set H for fSig.

A proof of this result can be found in [4] or [6].

As an example, consider the action of moving the television to the table in our household

domain. In the initial situation, there are two proofs that the television is not on the table.

One uses the fact that the television is in the bookcase, and can be in only one place at a

time. The other uses the fact that the picture is not obscured, as it would be if something

were on the table. The proof sets for on(tv; table) in our initial situation are therefore:

S1 = fon(tv; bottom-shelf)g

S2 = f:obscured(picture)g

The minimal hitting set for these two proof sets is

H = fon(tv; bottom-shelf);:obscured(picture)g;

and it follows from this that the unique possible world for on(tv; table) is as described in

Section 2.2.

In this example, the computational e�ort involved in constructing the possible world was

incurred in the construction of the various proof sets, as opposed to the combinatoric manip-

ulations needed to generate the minimal hitting sets appearing in Theorem 2.4. We assumed

in [6], and will continue to assume in the current paper, that the hitting set construction

does not involve substantial computation.

11

A B

C

Figure 5: Move A onto B

3 Quali�cation

3.1 The basic problem

Instead of considering the complex household domain of Section 2.2, suppose that we

consider the extremely simple example of a quali�ed action shown in Figure 5. The initial

situation is given by:

* on(A; floor)

* on(C;B) (15)

on(B; floor);

and there are the two domain constraints

on(x; l) ^ l 6= l0 ! :on(x; l0) (16)

on(x; l) ^ z 6= x ^ l 6= floor ! :on(z; l); (17)

indicating, respectively, that blocks can be in only one place at a time, and that no two

blocks can be in the same place at the same time (except for the oor).

The move action is described by

p(move(x; l)) � clear(x) (18)

C(move(x; l)) = fon(x; l)g;

where we are treating the fact that the target block must be clear as a quali�cation rather

than as an explicit precondition.

Suppose that we now attempt to move block A onto block B. Since the precondition to

the action is satis�ed (that A, but possibly not B, be clear), we proceed by constructing the

nearest possible world in which the result of the action, on(A;B), holds. This possible world

involves removing from our world description the two facts marked with a * in the domain

description (15). We remove the fact that A is on the oor because it conicts with the

domain constraint (16) saying that a block can be in only one place at a time. The fact that

C is on B is removed because of (17), which says that B can support only one other block.

12

A B
s s
s s

� �

� �

Figure 6: Move A halfway to B

The di�culty is that because of the domain constraint (17) indicating that a block can

support only one other, the quali�cation to the action (that block B is already occupied) is

defeated as a rami�cation of the result of the action. Requiring that nothing be removed

from the original database in the possible world construction is also unacceptable, since the

fact giving A's original location should be removed when A is moved.

Overturning the fact that A was originally on the oor is an intended rami�cation of the

move operator; overturning the fact that B was originally occupied is not. Furthermore, the

information supplied is completely symmetric with respect to these two facts, so that it will

not be possible to resolve this problem without introducing additional information.

Before proceeding, however, we should note that the problem is not simply to determine

which of a set of domain facts are \rami�cations" and which others are \quali�cations",

since these two sets may overlap. In the dumbbell problem of Figure 2, for example, the

rami�cation of moving A (that B moves as well) should overcome the quali�cation.

The \dual" to this situation is one where a rami�cation of the action introduces a quali-

�cation. In the pulley problem shown in Figure 6, for example, moving A toward B causes B

to occupy A's intended destination. Although the action initially appears to be unquali�ed,

the quali�cation arises and the action is blocked. We will refer to actions such as this as

self-defeating.

3.2 Protecting domain facts

One solution to the problem of distinguishing quali�cations from rami�cations is to use the

possible worlds construction to describe the results of an action, but to treat some of the

domain facts as protected when the action is executed.

We might, for instance, require that on(x; l) be protected if we move a block z with z 6= x,

so that only the location of the block being moved can change. In Figure 5, there will now

be no possible world corresponding to the result on(A;B), since the fact giving C's original

location is protected. Since the result of an action for which there are no possible worlds is

de�ned by (5) to be the same as the situation in which the action was attempted, the action

e�ectively fails in this case.

Formally, we introduce a new predicate protected(f; a). The intention is that

protected(f; a)

13

indicates that the fact f is protected when we consider a potential action a. In the blocks

world, we would have:

x 6= z ! protected(on(x; l); move(z; l0)): (19)

The location of a block x is protected when we attempt to move another block z. The incor-

poration of this rule into our system will result in behavior equivalent to that corresponding

to (1).7

Once again, however, it may be extremely di�cult to determine which domain facts are

protected for any particular action. In the dumbbell problem of Figure 2, we have a domain

constraint stating that, \B's location is two units to the right of A's." There is no formal

way to distinguish this from our earlier constraint, \B's location is not the same as A's."

The fact that we distinguished the two domain constraints (16) and (17) by isolating the

domain fact giving B's location does not help us. Instead, we need to modify (19) to become:

x 6= z ^ :connected(x; z)! protected(on(x; l); move(z; l0)): (20)

Note, however, that the information in (20) above is su�cient to describe the blocked

dumbbell problem of Figure 3. Although B's location is not protected when we attempt to

move A, C's location is protected, and the action fails.

The approach represented by (19) and (20) is capable of dealing with the blocked dumb-

bell problem in a simple way because it allows us to identify potential quali�cations on the

action in question; whether or not these actually qualify any particular instantiation of the

action is then determined in light of the rest of the domain facts.

We see that this \protection" approach provides us some relief from the need to explicitly

list all of the quali�cations to an action. The approach also has computational advantages

over the approach described in Section 1.2, where one must examine all possible disablers in

order to determine if a particular action fails. In the protection scheme, only those disablers

that are relevant to the action in question will be tested.

Unfortunately, the protection approach also runs into trouble in complex situations.

Suppose we return to the household domain pictured in Figure 4, and consider once again

the action of moving the television to duct 1. Suppose also that we add the domain constraint

that the ventilation system is su�ciently powerful to displace any light objects:

stuffy(room)^ duct(d) ^ on(x; d)! :light(x): (21)

We also assume that the plant is light:

light(plant): (22)

The result of moving the television to duct 1 is now for the plant to be dislodged, so that

the plant's location should not be protected for the action of moving the television to the

duct.

7There is a di�erence between a \disabling" approach and the current one in that we need to provide

metalevel information in the form of a rule such as (19), while disablers are generally base-level facts. The

computational properties of the two approaches are identical, however.

14

The plant's location is protected, however, if we attempt to move the television to duct

2 instead of duct 1. We see from this example (and the preceding one) that it will not in

general be possible to delimit the potential quali�cations to an action simply by examining

the action itself; once again, we also need to consider the rami�cations of the action's success.

We will refer to this approach as partially exhaustive. We will describe as exhaustive

formalisms such as that described in Section 1.2, which require that the user specify the

quali�cations precisely. In an exhaustive description, if an indicated quali�cation occurs, the

action is blocked. The protection approach allows us merely to identify potential quali�ca-

tions; whether or not any of these succeed in blocking the intended action is determined in

light of the rest of the domain facts.

3.3 Manipulating domain constraints

We argue in [6] that any approach to the formalization of action that requires the enumeration

of all of the rami�cations of actions will su�er from severe computational problems when

dealing with complex domains. Unfortunately, it does not appear to be possible to extend

the formalism of the last section to deal in a thoroughly non-exhaustive fashion with the full

range of examples that we have considered.

As evidenced by the �nal household example of the last section, the problem is that

determining whether or not a speci�c fact such as on(plant; duct2) quali�es an action such

as move(tv; duct1) depends not merely on the action and the fact, but on the fashion in

which they interact. The attempt to move block A to block B's location in Figure 3 fails not

simply because of C's location, but because C gets in the way. In the simple quali�cation

problem in Figure 5, moving A once again fails because C gets in the way. Similarly for the

self-defeating pulley problem in Figure 6. The action in the dumbbell problem in Figure 2

succeeds because B doesn't get in the way.

Rather than think of the action as being quali�ed by domain facts, suppose that we think

of it as being quali�ed by the domain constraints. The approach we propose is this: Given

an attempt to move a block to another location, imagine that the domain constraint (17) did

not exist, so that many blocks could occupy identical locations. Now construct the result of

the action, including all of its rami�cations. If, in the resulting world, the domain constraint

(17) is still not violated, the action was not quali�ed: Nothing got in the way. If the success

of the action involves violating the constraint (17), something did get in the way, and the

action should be quali�ed.

Here is the formal version of this solution. We describe an action a using a precondition

p(a), a consequence set C(a), and a quali�cation set Q(a). The quali�cation set contains

those domain constraints that can qualify the success of the action.

Given an action a, we replace (6), de�ning W , the set of possible worlds for an action,

to be the set of all elements of W (C(a); S � Q(a)) in which the elements of Q(a) continue

to hold:

W = fV 2 W (C(a); S �Q(a))jV [Q(a) is consistentg: (23)

15

A B

C

Move A onto B with C in the way

B

A/C

A

Domain constraint violated

Figure 7: A quali�ed action

We now continue to take the result of the action to be

r(a; S) =

�
S; if W = �;T
fw 2 Wg; otherwise,

as in (5). Note that if the consequences of an action necessarily conict with the domain

constraints, so that W (C(a); S) = �, we get r(a; S) = S using either the original de�nition

(6) or the revision (23).

We now reexamine the examples we have considered thus far, showing that this new

de�nition does indeed give us the desired result in all cases. The description of the move

operator is given by:

p(move(b; l)) � clear(b)

C(move(b; l)) = fon(b; l)g

Q(move(b; l)) = f8x; z; l0:on(x; l0) ^ z 6= x ^ l0 6= floor! :on(z; l0)g: (24)

We have made the quanti�er in (24) explicit in order to make it clear that the quali�ca-

tion set consists of universally quanti�ed domain constraints, as opposed to any particular

instantiations thereof.

The precondition is simply that the block being moved be clear, and the consequence is

that the block is at the destination of the move operation. The quali�cation set consists of

the single domain constraint stating that only one block can be in any particular location at

any given time. In other words, the action will be quali�ed if something gets in the way.

We begin with the simple example of Figure 7. The initial state is given by:

* on(A; floor) (25)

16

A B

Move A to B's location

A B

Domain constraint intact

Figure 8: An unquali�ed action

on(B; floor)

on(C;B):

We now attempt to move A onto B.

To construct the possible world for on(A;B), we must remove the fact that A is on the

oor, since the domain constraint indicating that A can be in only one place at a time is not

in the quali�cation set Q(move). But we do not need to remove the fact that C is also on top

of B, since the domain constraint that two blocks cannot coincide is not being considered.

The resulting world is shown in Figure 7, where the � labelling (25) indicates, as before, that

this sentence has been removed from our world description. The domain constraint (17) is

violated in this world, and the action is therefore quali�ed.

As a second example, consider the dumbbell problem, which is repeated in Figure 8. The

initial state is given as:

* on(A; l1)

* on(B; l2)

connected(A;B):

We also need axioms describing the connected predicate. We might have8:

connected(x; y) ^ on(x; l1) ! on(y; l2) (26)

connected(x; y) ^ on(x; l2) ! on(y; l3): (27)

We assume that the axioms describing connection and the fact connected(A;B) are all

protected.

Even in the absence of the domain constraint saying that two blocks cannot both be

located at l2, on(B; l2) is inconsistent with the consequence on(A; l2) because of the domain

8An alternative formulation would describe the connected predicate arithmetically, assigning a numeric

position to objects in our domain. We are using the description given only for reasons of simplicity.

17

A B C

Move A to B's location

A B/C

Domain constraint violated

Figure 9: The blocked dumbbell

constraint (27) describing the e�ect of the connection between A and B. Thus (17) continues

to hold, and the action is not quali�ed. The result is given by:

on(A; l2)

connected(A;B):

Using (27), we can now derive on(B; l3) from these two facts, so that B's new location is a

rami�cation of the move action. See Figure 8.

In the blocked dumbbell problem (Figure 9), the initial description is:

* on(A; l1)

* on(B; l2)

on(C; l3)

connected(A;B):

As above, B must move when A does, since the two blocks are connected. But C will not

be dislodged if we ignore the domain constraint in Q(a). (The only reason it has to move is

that it cannot remain at B's implied destination.) Thus the domain constraint is violated in

the resulting world and, as depicted in Figure 9, the action fails.

The pulley problem shown in Figure 10 is somewhat di�erent. Here, the initial description

is9:

* on(A; l1)

* on(B; l2)

pulley(A;B):

If we denote by l4 the location halfway between l1 and l2, the axioms describing the pulley

system are:

pulley(x; y) ^ on(x; l1) ! on(y; l2) (28)

pulley(x; y) ^ on(x; l4) ! on(y; l4): (29)

9Once again, an arithmetic description could be used instead.

18

A B
q q
q q
� �
� �

Move A halfway to B

A/Bq q
q q
� �
� �

Domain constraint violated

Figure 10: The pulley

Ignoring the domain constraint stating that blocks cannot coincide, the possible world

relocating A halfway between l1 and l2 removes the facts marked with a � above; the domain

constraint (17) is violated in this world, since the physics of the pulley system implies that

both blocks must be located at l4.

Finally, consider the action of moving the television to duct 1 in the household scenario

of Figure 4. Since the two worlds constructed in Section 2.2 did not involve a violation of the

domain constraint (9), this action succeeds.10 If, on the other hand, we were to attempt to

move the television directly to duct 2 (i.e., on top of the plant), the domain constraint would

be violated, since only one object can be on top of the duct. The action would therefore fail.

4 Implementation

4.1 Quali�cation determination

We have seen that in order to determine whether or not an action a is quali�ed, we need to

see if the domain constraints in Q(a) are violated in the possible worlds resulting from the

execution of the action.

A na��ve implementation of this idea would involve constructing these possible worlds

while ignoring the facts in Q(a), and then attempting to prove the negations of the domain

constraints that had been previously ignored. Assuming that all of these domain constraints

remained valid, the result of the action could be evaluated by recomputing the possible

worlds while considering the qualifying domain constraints.

Fortunately, there is a much cheaper way of performing this computation. In computing

and recomputing the possible worlds, we need to investigate the proof sets for the conse-

quences of the action. Suppose that instead of ignoring the qualifying domain constraints in

10As before, we are unable to determine whether the plant moves or the room becomes stu�y.

19

Q(a) during the initial calculation, we treat them simply as unprotected.11 Having done so,

we can divide the proof sets for C(a) into two groups: those that contain elements of Q(a),

and those that do not. We will call members of the �rst group quali�cation proof sets, and

members of the second group rami�cation proof sets.

Now the initial computation of the possible worlds can proceed simply by considering the

rami�cation proof sets, those that do not intersect Q(a). In addition, examination of the

complete collection of proof sets allows us to determine whether or not the qualifying domain

constraints hold in the resulting possible worlds (avoiding the computational expense of a

call to a theorem prover). The basic reason for this is that a qualifying domain constraint

q will remain consistent with a possible world whenever that possible world corresponds to

a hitting set that intersects all of the proof sets constructed for C(a), as opposed to simply

the rami�cation proof sets.

Formally, we have the following:

De�nition 4.1 Let C, S and Q be sets. We de�ne a rami�cation proof set for C to be any

subset T of S �C such that:

1. T \ P = �,

2. T [(P �Q) [C is inconsistent, and

3. T is minimal subject to these conditions.

De�nition 4.2 Let C, S and Q be sets. We de�ne a quali�cation proof set for C to be any

subset T of S �C such that:

1. T \ P � Q. All of the sentences in T are either unprotected or elements of Q.

2. T \ P 6= �,

3. T [(P �Q) [C is inconsistent, and

4. T is minimal subject to these conditions.

Note that the collections of rami�cation and quali�cation proof sets depend on S, Q and T .

These sets will be identi�ed by context in the examples of interest to us.

With these de�nitions, we now have the following:

Theorem 4.3 Let a be an action, and S a state. Now de�ne fHig to be the collection of

minimal hittings sets for the rami�cation proof sets for C(a). The possible worlds corre-

sponding to the result of the action are now given by

S [C(a)�Hi;

for those Hi that intersect all of the quali�cation proof sets for C(a) in S.

11The time needed to generate the proof sets is independent of which sentences are protected, since this

only a�ects whether or not a particular sentence is included in a particular proof set. The search space of

possible proofs of negations of elements of C is unchanged.

20

Proof. We know that we can construct the possible worlds corresponding to the result of

the action by �rst constructing the worlds while ignoring the domain constraints in Q(a),

and then removing those worlds in which these domain constraints are invalid.

If we ignore the domain constraints in Q(a), then any proof of the negation of some

element of C(a) that depends on one of these domain constraints will fail. It follows from

this that the possible worlds constructed while ignoring the domain constraint correspond

exactly to the minimal hitting sets for the rami�cation proof sets for C(a) in S.

Next, note that given such a minimal hitting setH, the possible world S[C(a)�H�Q(a)

will be consistent with Q(a) if and only if S [C(a)�H is consistent, and this will be true

just in case H intersects all of the proof sets for C(a) in S.

It is clear that H will intersect all of these proof sets if and only if it intersects all of the

quali�cation proof sets and all of the rami�cation proof sets. Since H intersects all of the

rami�cation proof sets by construction, the theorem follows.

Note the tremendous computational import of this result: The quali�cation check incurs

essentially no additional computational cost if the action being investigated is unquali�ed.

This is a result of the fact that the expensive operation in computing the result of an action

is the construction of the proof sets for its consequences, and not in the resulting hitting

set calculation. This is in stark contrast with the computational requirements of previous

descriptions of quali�cation.

4.2 Examples

Once again, we work through the various examples we have considered thus far, showing our

method at work.

The dumbbell We begin with the dumbbell problem of Figure 8. Recall that we are

trying to move block A to l2; there are three distinct proofs that it is not already there,

leading to the proof sets:

S1 = fon(A; l1)g

S2 = fon(B; l2); qg

S3 = fon(B; l2)g

The �rst proof argues that A cannot be at l2 because it is located at l1, and can be

in only one place at any given time (this domain constraint is protected, and is not in the

quali�cation set for the move action). The second proof is based on the fact that B is at l2,

and only one block can be at that location (we are denoting the domain constraint stating

this by q). The �nal proof is somewhat more subtle, and is based on the fact that if A were

at l2, then B would have to be at l3 because of the connection between them. But B is known

to be at l2, and can be in only one place at a time.

Of these three sets, S1 and S3 are rami�cation sets, and S2 is a quali�cation set. The

unique minimal hitting set for the two rami�cation sets is given by:

H = fon(A; l1); on(B; l2)g:

21

Since H intersects S2, the action succeeds, and the result is as described in Section 4.2.

The blocked dumbbell Next, consider the blocked dumbbell of Figure 9. Now, there are

four proofs that A is not located at l2:

S1 = fon(A; l1)g

S2 = fon(B; l2); qg

S3 = fon(B; l2)g

S4 = fon(C; l3); qg

The �rst three proofs are unchanged from the dumbbell problem. The fourth one argues

that since C is at l3, and only one block can be in any speci�c location, B must not be at

l3. From this point, the proof proceeds as for S3.

Since the new proof set S4 is a quali�cation proof set, the hitting set H is the same as in

the previous example. Since H does not intersect S4, the action fails.

The pulley Next, consider the pulley of Figure 10. There are three proofs that A is not

located at l4 (the point halfway between A and B's initial locations):

S1 = fon(A; l1)g

S2 = fon(B; l2)g

S3 = fqg

The �rst proof, as usual, simply notes that A is elsewhere. The second is like S3 in the

dumbbell examples, noting that B is in the wrong place. The third is a consequence of the

fact that, were A to be at l4, the physics of the pulley system would force a violation of the

qualifying domain constraint.

Here, S1 and S2 are the rami�cation proof sets. Since their minimal hitting set misses

S3, the action fails.

We have been assuming throughout this analysis that the connection represented by the

domain fact pulley(A;B) is protected. If, however, pulley(A;B) is not protected, the proof

sets become the following:

S1 = fon(A; l1)g

S2 = fon(B; l2); pulley(A;B)g

S3 = fq; pulley(A;B)g

Now there are two hitting sets, given by

H1 = fon(A; l1); on(B; l2)g

and

H2 = fon(A; l1); pulley(A;B)g:

Of these, only H2 hits S3, so we conclude that the action is not quali�ed, and the unique

possible world resulting from its execution has the domain facts on(A; l1) and pulley(A;B)

removed. A moves and the pulley breaks, but B stays where it is.

22

The household domain Finally, we consider the action of moving the television to duct

1 in the household scene of Figure 4. There are three proofs that the television is not located

on duct 1:

S1 = fon(tv; bottom-shelf)g

S2 = f:stuffy(room); blocked(duct2)g

S3 = f:stuffy(room); on(plant; duct2)g

In the �rst, we note that the television is elsewhere. In the second, we use the facts that

the room is not stu�y and the other duct is already blocked. The third uses the facts that

the room is not stu�y and that the plant is on the other duct, from which it follows that the

other duct is blocked.

All of these sets are rami�cation proof sets. It follows that the action is unquali�ed, and

that the result is as described in Section 2.2.

4.3 Explaining failures

An attractive property of the earlier descriptions of quali�cation using domain facts was that

they identi�ed the speci�c fact that was blocking a quali�ed action. This property is shared

by the construction we are proposing.

If a set H that hits all of the rami�cation proof sets misses some quali�cation proof

set, there are two possibilities. If the quali�cation proof set contains facts other than the

qualifying domain constraint, then these facts are the collective cause of the quali�cation. If

no such facts exist, the proposed action is in direct conict with the domain constraints.

We have seen examples of both of these possibilities. In the blocked dumbbell problem,

the proof set that was missed by the hitting set was

S4 = fon(C; l3); qg:

This correctly identi�es on(C; l3) as the source of the problem.

The pulley problem (with the pulley fact protected) is somewhat di�erent. Here, the

problematic proof set is given by

S3 = fqg:

This indicates that the action is in direct conict with the domain constraint, and there is

therefore no possible world in which it succeeds.

5 Comparison with other approaches

Existing approaches to quali�cation proceed by explicitly indicating under what circum-

stances the action is quali�ed; if none of these circumstances can be proven to have arisen,

the action is assumed to be unquali�ed. We have referred to this as the \exhaustive" ap-

proach to quali�cation because of the need to list all of the quali�cations explicitly. If any

of the listed quali�cations is present, the action is blocked.

23

This is in contrast with the \partially exhaustive" approach of Section 3.2. There, we were

able to merely indicate which domain facts would potentially qualify the action by conicting

with possible rami�cations of it. In contrast with the exhaustive approach, however, a

potential quali�cation will only block an action if the success of the action is inconsistent

with the quali�cation because of a domain constraint. We refer to this approach as partially

exhaustive because of the need to explicitly delimit the potential quali�cations.

The fully non-exhaustive, or inferential approach that we �nally proposed in Section

3.3 takes a more relaxed view, enabling us to determine inferentially which domain facts

potentially qualify the action in question.

In this section, we compare these three approaches. As in [6], we are interested in the

additional computational resources needed by the various methods in order to both describe

the quali�cations on an action, and to determine whether or not any particular action is in

fact quali�ed.

This comparison extends the comparison appearing in [6], which discussed the compu-

tational properties of various solutions to the frame and rami�cation problems. We will

continue, therefore, to use the notation of the previous paper:

1. The number of distinct action types in the domain will be denoted by �.

2. The number of relation symbols in the domain will be denoted by r.

3. The number of explicit consequences of an action will be denoted by x. This is the

size of an average consequence set; note that x has no correlation with the number of

rami�cations of a typical action.

4. The average time needed to investigate the truth or falsity of any particular domain

fact (presumably using a backward-chaining theorem prover) will be denoted by t.

5. Finally, the ratio of the number of domain constraints needed to describe a domain

to the number of monotonic persistence rules needed will be denoted by �. Since we

will generally need �r monotonic persistence conditions, it follows that there will be

��r domain constraints describing the domain under consideration. It was shown in

[6] that � � 1 in general, and argued that � will be small for large domains.

5.1 Space requirements

We �rst consider the amount of space needed to represent quali�cation information using

the three approaches. For the exhaustive approach, for example, we showed in [6] that an

action might have up to 2�� distinct rami�cations. Since any of these might qualify it, there

may be up to 2�� distinct quali�cation conditions (\disablers") on any particular action. In

general, of course, things will not be this bad, and we will therefore assume that there are

only �2�� distinct quali�cation conditions on each action, where � is some number less than

1.

24

The partially exhaustive approaches will, in the worst case, also need to explicitly list all

of the quali�cations to any particular action. In general, however, we expect there to be some

simpli�cation because the quali�cations are being interpreted using domain constraints. The

example in Section 3.2 is typical: The blocked dumbbell problem can be described using the

single quali�cation (20) in the partially exhaustive approach, but will require both (2) and

(3) in the exhaustive approach.

In [6], the factor � was introduced to represent the expected savings obtained by using

an approach to the rami�cation problem that selected rami�cations inferentially from a

potentially larger set using domain constraints. Selecting among potential quali�cations

using domain constraints seems similar, and we can therefore expect the space requirements

of the partially exhaustive approach to be only � those of its exhaustive counterpart.

The inferential approach is rather di�erent. Here, we simplify the computation by taking

advantage of the fact that many apparently distinct disabling conditions are consequences

of a single domain constraint. We will see in Section 6.3 that there are situations in which

it is not possible to derive all of the disabling conditions in this fashion; for the time being,

we will de�ne as uniform any domain in which this can in fact be done.

In a uniform domain, we address the quali�cation problem by identifying, for each action

type a, which of the ��r domain constraints are in Q(a). This will require us to list as

many as �a2r domain constraints in the various Q(a)'s, although it is likely that a domain

constraint will only be in Q(a) if it involves a relation symbol appearing in a's consequence

set C(a). In general, therefore, we can expect to need to list at most x�ar domain constraints

in order to describe Q(a) for each action, where x is the number of consequences in a typical

C(a).

Theorem 5.1 In a uniform domain, the space requirements of the various approaches to

the quali�cation problem are given by:

space exhaustive partial inferential

worst case �2�� �2�� ��2r

typical case ��2�� ���2�� x��r

It is only the inferential approach that does not su�er from an exponential deterioration

in performance as the domain becomes increasingly complex.

5.2 Time

As we have already shown in Section 4, the inferential approach requires no additional time

to determine that an action is unquali�ed. The exhaustive approach is not so e�ective, since

each of the disabling conditions needs to be checked. This will cost time t2�� in the worst

case, and �t2�� on average.

The partially exhaustive approach also needs no additional time to determine if an action

is quali�ed. If the action is quali�ed, the approach will be somewhat faster than the original

possible worlds formalization described in [6], since the possible worlds construction can be

25

A B

Figure 11: The dumbbell problem

curtailed early. If the action is unquali�ed, there will be no interaction between the possible

worlds construction and the list of potential quali�cations.

Theorem 5.2 In a uniform domain, the time needed to con�rm that an action is unquali�ed

(above and beyond the time needed to compute its result) is given by:

time exhaustive partial inferential

worst case t2�� 0 0

typical case �t2�� 0 0

6 Epistemological issues

6.1 Alternative approaches

Describing quali�cation in the fashion we have suggested is a fairly nonintuitive approach;

it may seem more attractive to salvage the exhaustive approach in some way.

Suppose we return to the dumbbell problem, repeated in Figure 11. One possible way

to treat this would be to view the motion as a continuous instead of as a discrete process,

considering the action of moving A �rst halfway to B, and noting that A's �nal destination

is clear as a result.

We have two objections to this. The �rst is that it is not clear that this solves the

problem: What if A and B were extremely close when the action began? What if they were

touching? Indeed, why doesn't the action remain quali�ed because of the presence of the

rod joining A and B together?

Our second objection is that there are physical systems and implementations where mo-

tion really is quantized. It may not be meaningful to discuss the possibility of moving A

\halfway" to B.

By assuming that the motion is continuous, we are in e�ect changing the language we

are using to describe the situation and action in question. Another such ontological shift,

mentioned in the introduction, involves solving the dumbbell problem by describing the

situation in terms of forces and accelerations. Although the approach of describing a physical

system in a more detailed way (i.e, with forces instead of move operators) will generally be

sound, this redescription can increase the complexity of the axiomatization enormously.

For problems as simple as the dumbbell problem, it should be unnecessary to describe the

26

situation at this level of detail. In addition, as mentioned in Section 1.3, it is not clear that

the ontological shift does not reintroduce similar problems at the more detailed level.

The construction we have proposed, although counterintuitive, provides a satisfactory

description of quali�cation without requiring an ontological shift.

6.2 Preconditions as quali�cations

An issue we have left principally unaddressed is that of precisely when it is possible to view

a given precondition as a quali�cation. There are in fact two issues here: when it is possible

to drop a precondition, rederiving it inferentially, and when it is advisable to do so.

The preconditions that cannot be viewed as quali�cations are those that reect informa-

tion not found elsewhere in the database. In our description of our household domain, for

example, the precondition to the move action given in (18) was that the object being moved

be clear. We can easily imagine a robot capable of moving stacks of objects; if our robot

lacks this ability, we must say so explicitly. We cannot drop the precondition that the object

being moved be clear unless we are prepared to describe the physics of the robot's arm in a

way that would entail this precondition.

The question of when it is useful to interpret a precondition as a quali�cation is a much

more delicate one. In the computational discussion of Section 5, for example, we assumed

throughout that the action being executed was not quali�ed, so that the total time needed

to evaluate the action was approximately

2t��;

which is the expression given in [6] as the time needed to compute the result of the action.

In the inferential approach we have described, the time needed to evaluate a quali�ed

action will also be 2t��, since the result must still be constructed in order to determine

that the action is quali�ed. Since simply checking for the quali�cation as one of p explicit

preconditions will take time at most tp, it may often be advisable to retain as preconditions

those quali�cations that are reasonably likely to hold.

6.3 Di�culties

The approach we have presented draws its computational power from the fact that many

apparently distinct preconditions to an action may in actuality be manifestations of a small

number of domain constraints. We have represented this information by associating a set of

qualifying domain constraints with each action.

In some cases, the simple approach we have described may be unable to characterize

the domain e�ectively. For example, the quali�cation set may itself depend on information

appearing elsewhere in the database. In our household domain, we might want to have

Q(move(b; l)) = f8x; z; l0:on(x; l0) ^ z 6= x ^ l0 6= floor! :on(z; l0)g

27

if the object b being moved is too heavy to be displaced by the ventilation system, but

Q(move(b; l)) = f8x; z; l0:on(x; l0) ^ z 6= x ^ l0 6= floor! :on(z; l0);

blocked(duct1) ^ blocked(duct2)$ stuffy(room)g

if it is not. (This example is similar to one suggested by Vladimir Lifschitz.)

This can be formalized by introducing a metalevel (or modal) relation Q(a; q) which holds

if q is a qualifying domain constraint for the action a. Now we can handle the above example

by writing

Q(move(b; l);8x; z; l0:on(x; l0) ^ z 6= x ^ l0 6= floor! :on(z; l0));

together with

light(b)! Q(move(b; l); blocked(duct1) ^ blocked(duct2)$ stuffy(room)):

A potential di�culty with this approach is that it requires that we prove sentences of

the form Q(a; x) in order to determine whether or not an action a is quali�ed. This addi-

tional invocation of a theorem prover potentially invalidates the discussion of computational

complexity underlying Theorem 4.3.

A more serious di�culty stems from the fact that, as mentioned in Section 6.2, there

are many quali�cations which simply do not arise as consequences of domain constraints.

In our household domain, the bookcase may simply be too heavy to move, and there may

be no domain constraint corresponding to this. For a fact such as this, there is essentially

no choice but to explicitly label it as a precondition to the action being considered. The

example in Section 6.2 is similar; there, we remarked that the robot's inability to move a

stack of blocks did not correspond to any domain constraint.

It seems, however, that preconditions that are truly independent of domain constraints

are rare. Consider the example of the preceding paragraph: The immobility of the bookcase

is a consequences of the fact that heavy objects cannot be moved. Given such a domain

constraint, the construction we have described could be applied to the potential action of

moving the bookcase, and would identify its weight as the source of the problem.

7 Conclusion

In this paper, we have presented a computationally viable method for dealing with the

quali�cation problem. Our approach to quali�cation allows us to determine inferentially

under what circumstances a particular action will be quali�ed, avoiding the need to list

explicitly all of the obstacles that any particular action might encounter. Since actions in

complex domains will have a tremendous number of potential rami�cations, and since any

of these rami�cations will potentially qualify the action itself, deriving the quali�cations

inferentially is of comparable importance to avoiding the need to explicitly list all of the

action's rami�cations.

28

We went on to describe an implementation of our ideas incorporating the possible worlds

construction presented in [6]. Remarkably, the approach we presented incurs essentially no

computational cost for actions that are not in fact quali�ed.

The solution we have proposed to the quali�cation problem is included in the possible

worlds planning system discussed in [5]. There, the possible worlds approach is also used

to focus planning search; for any goal or subgoal, we construct the closest possible world

to the current state of the planner for which the goal holds, using this to select between

competing subgoals or planning actions. This planning system and the control procedure

based on nearness of possible worlds are described in detail in [5].

Acknowledgement

This work has been supported by DARPA under grant number N00039-86-C-0033 and by

ONR under grant number N00014-81-K-0004. We would like to thank the Logic Group for

providing, as ever, a cooperative and stimulating | and demanding | environment in which

to work. We would like to speci�cally thank Yoav Shoham for comments on some of our

examples, and would especially like to thank Vladimir Lifschitz for many useful discussions;

it was Vladimir who introduced the dumbbell problem during a discussion at the Timberline

planning workshop.

References

[1] R. Fagin, J. Ullman, and M. Vardi. On the semantics of updates in databases. In

Proceedings Second ACM Symposium on Principles of Database Systems, pages 352{

365, Atlanta, Georgia, 1983.

[2] R. Fikes and N. J. Nilsson. STRIPS: A new approach to the application of theorem

proving to problem solving. Arti�cial Intelligence, 2:189{208, 1971.

[3] J. J. Finger. Exploiting Constraints in Design Synthesis. PhD thesis, Stanford Univer-

sity, Stanford, CA, 1987.

[4] M. L. Ginsberg. Counterfactuals. Arti�cial Intelligence, 30:35{79, 1986.

[5] M. L. Ginsberg and D. E. Smith. Possible worlds planning. In preparation.

[6] M. L. Ginsberg and D. E. Smith. Reasoning about action I: A possible worlds approach.

Arti�cial Intelligence, 35:165{195, 1988.

[7] C. C. Green. Theorem proving by resolution as a basis for question-answering systems.

In B. Meltzer and D. Mitchie, editors, Machine Intelligence 4, pages 183{205. American

Elsevier, New York, 1969.

29

[8] D. Lewis. Counterfactuals. Harvard University Press, Cambridge, 1973.

[9] V. Lifschitz. Formal theories of action. In Proceedings of the 1987 Workshop on the

Frame Problem in Arti�cial Intelligence, Lawrence, Kansas, 1987.

[10] J. McCarthy. Epistemological problems of arti�cial intelligence. In Proceedings of the

Fifth International Joint Conference on Arti�cial Intelligence, pages 1038{1044, Cam-

bridge, MA, 1977.

[11] J. McCarthy. Circumscription { a form of non-monotonic reasoning. Arti�cial Intelli-

gence, 13:27{39, 1980.

[12] J. McCarthy. Applications of circumscription to formalizing common sense knowledge.

Arti�cial Intelligence, 28:89{116, 1986.

[13] J. McCarthy and P. J. Hayes. Some philosophical problems from the standpoint of

arti�cial intelligence. In B. Meltzer and D. Mitchie, editors, Machine Intelligence 4,

pages 463{502. American Elsevier, New York, 1969.

[14] R. Reiter. A logic for default reasoning. Arti�cial Intelligence, 13:81{132, 1980.

[15] Y. Shoham. Chronological ignorance. In Proceedings of the Fifth National Conference

on Arti�cial Intelligence, pages 389{393, 1986.

30

