2006 DOE Hydrogen Program Dimensionally Stable High Temperature Membranes

Cortney Mittelsteadt Giner Electrochemical Systems 4/16/06

This presentation does not contain any proprietary or confidential information

Project ID # FCP 16

Overview

Timeline

- Begin 4/3/2006
- Review 4/2/2009
- <10% Complete

Budget

- Total project funding (to 2009)
 - \$899K DOE Funding
 - \$529K Recipient
 - 37% Cost Share
 - \$150K 2006

Barriers addressed

- A. Durability
- B. Cost

Technical Targets (DOE 2010 Targets)

- 0.10 S/cm at 1.5 kPa H_2O Air inlet - $<$40/m^2$
- > 5000 h lifetime
- Stability in Condensing conditions

Partners

General Motors

Objectives

Overall:

Generate 2-dimensional and 3-dimensionally stable PEMs (2DSM and 3DSM, respectively) that meet DOE targets for performance, cost and durability.

2006

2DSM: Determine the effect of pore size and substrate thickness on conductivity, water uptake and mechanical properties for two-dimensional stable membranes3DSM: Determine polymerization pathways for bulk polymerization of perfluorosulfonic acids.

2007

2DSM: Demonstrate DOE target feasibility for performance 3DSM: Conduct bulk polymerization of PFSA in micro-supports 2008-9

2DSM: Demonstrate DOE target for durability, outline pathway for costs 3DSM: Demonstrate Ability to make in large scale, meet DOE performance targets

Approach: Lower EW of perfluorosulfonic Acid ionomers to increase low RH conductivity and support the ionomer with two and three-dimensional non-ionic materials

- Two Dimensionally Stable Membrane
 - Generate Supports
 - Thickness and Pore Size
 - Incorporate Ionomers
 - 700 to 1100 EW PFSA
 - Characterize
 - Performance
 - Durability
 - Cost

Mag:700 kV:20 plasma clean, bottom surface 10 µm

- Three Dimensionally Stable Membrane
 - Develop Bulk Polymerization Methods
 - Polymerize in Selected Supports
 - Characterize
 - Performance
 - Durability
 - Cost

Technical Accomplishments/

Progress/ResultsTwo Dimensionally StableThree DimensionallyMembranesMembra

- Measured greatly improved mechanical strength
- Demonstrated *no* x-y swelling up to 120°C
- Fabricated 50 cm² MEAs for fuel cells and electrolyzers

plasma clean, bottom surface

Three Dimensionally Stable Membranes

- Purified Ionomer
- Generated oligomers

Mag:700

kV:20

10 um

Accomplishments/Progress

Dimensional and mass increase of composite membranes consisting of 1100 EW PFSA incorporated in 8- μ m polyimide support seen in adjacent figure.

Mag:700 kV:20 plasma clean, bottom surface 10 um

Surface Tension leads to uniform filling of holes during casting

Porous Support

•polyimide

•50% open

•20µ holes

•8µ thick

Addition of more ionomer leads to desired PEM thickness

Future Work

- 2006
 - Highlights will be to fabricate and characterize matrix of 2DSM
 - Pore size
 - EW
 - Thickness
 - Bulk Polymerization for 3DSM
- 2007
 - Demonstrate ability to make performance targets
- 2008
 - Demonstrate ability to make cost and durability targets

Summary

RELEVANCE: PFSA's are currently the best PEM candidates in terms of low RH performance and chemical stability. However they still do not reach DOE performance and durability targets.

APPROACH: Extend the limit of PFSA's by increasing mechanical stability with nonionomer support structures.

TECHNICAL ACCOMPLISHMENTS:

- Two Dimensionally Stable Membranes currently being generated
 - Perfect x-y dimensional stablility during hydration/dehydration cycling
 - Optimization of controllable parameters beginning
- Work on Three Dimensionally Stable Membranes just getting underway
- JUST GETTING STARTED

Critical Assumptions and Issues

• Cost of the Micro-supports

 Current laser machining is greater than the cost of DOE targets for membrane cost

• Assuming a membrane that does not swell in the x-y plane will lead to greater durability.

- Some freeze-thaw and RH cycling already accomplished

Bulk Polymerization of PFSA yet to be shown
Oligomers generated during first attempt

