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PART 9

AN OVERVIEW OF SCIENTIFIC UNCERTAINTIES IN BENEFIT ESTIMATION

John S. Evans
Katherine Walker

I. INTRODUCTION

The basic components of quantitative risk assessment are

exposure assessment and hazard assessment. Exposure assessment

involves estimation of the concentrations of pollutants to which

individuals or populations are exposed. Hazard assessment is

concerned with estimation of the health risks associated with

given patterns of exposure.

For an exposure to occur one or more persons must come into

contact with the pollutant. Therefore, exposure assessment

involves (at least implicitly) not only determination of the

spatial and temporal pattern of pollutant concentrations but also

analysis of human activity patterns. See, for example,

Ott (1980) and Duan (1981). The spatial and temporal aspects of

the field of pollutant concentrations are typically estiamted by

measurement, modelling or some combination of the two.

Hazard assessment is the determination of the health risks

posed by exposure to the pollutant concentrations obtained from

the exposure analysis. The steps involved in hazard assessment

depend largely on the type of toxicity being considered

(carcinogenic or noncarcinogenic) but generally include
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estimation of dose and the toxic potency of the pollutant.

Determination of the human potency of pollutants itself may

involve several steps -- e.g., determination of animal potency,

extrapolation from animal to man, and extrapolation from high to

low dose.

Each step in risk assessment involves some uncertainty, and

the uncertainties in each phase of the analysis combine to

produce a final risk estimate which is uncertain. Several

methods are available for analysis of the propagation or

cascading of uncertainty. To illustrate the propagation of

error, we introduce a simple model which has been used by Crouch

and Wilson (1981) to estimate the risk:

(1)

where is the human potency (cases per mg/kg per day), C is the

concentration of the pollutant in the media of interest to which

people are exposed (mg/m3 in air or mg/1 in water), and is the

parameter which relates exposure to dose rate ((mg/kg per day)

per mg/m3 in air or (mg/kg per day) per mg/1 in water).

In a simple multiplicative model such as this, the

propagation of error may be analyzed with Gauss' Law of Error

Propagation:

(2)
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which may be re-expressed as:

Thus if (cc/a) = 0.05, (cc/C) = 0.10, and (ag/8) = 0.30:

*P
P 0.0025 + 0.0100 + 0.0900

(3)

= 0.32 (4)

In risk assessment, however, it is common for uncertainties to be

large in comparison with central estimates of parameters.

Although, as Seiler (1982) has demonstrated, Gauss' Law of Error

Propagation can be extended to cover large errors, a more common

form of error analysis involves the use of lognormal

distributions to characterize key parameters. See, for example,

Crouch and Wilson (1981). If the uncertainties in a, C and B are

characterized as lognormal, then

";nP = 'in8 + c;nC + c;nB (5)

And, if for example a is known to within a factor of 1.2, C is

known to within a factor of 2.0, and is known to within a

factor of 5.0 (i.e., ulna = 0.18, 01nC = 0.69 and = 1.61),

then:

1

clnP c 0.0324 + 0.4761 + 2.5921 2 = 1.7609 (6)

Equation (6) indicates that the risk, P, could be estimated to

within a factor of  or 5.8 Both (4) and (6) illustrate an
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important general feature of uncertainty analysis -- when one

component of error is large relative to other components it may

dominate the uncertainty in the final risk estimate.

Of course (1) is highly simplified. A somewhat more

comprehensive model might be:

(7)

Here, both air and water exposures are considered as well as the

possibility that a potency factor may not be available from

epidemiological analysis of human exposures in the range of

concentrations of interest. In this case, a potency factor from

animal bioassay, Bar may have to be used in conjunction with an

interspecies conversion factor, Char and a low dose extrapolation

factor, E. Recognizing that caCa + is simply the dose rate,

d, (7) could be re-expressed as a purely multiplicative model in

which error propagation could be analyzed using (3) or (5).

Other methods of error analysis are available for more

complex models of risk. See, for example, Fiering et al.

(1982). However, it is not our intent to review methods of error

analysis, but rather to use these simple approaches to analyze

and illustrate the propagation of uncertainty in risk assessments

of toxic compounds in air and water.

The sections which follow discuss the components of typical

risk assessments for toxic compounds: environmental transport

and fate modelling, dose estimation, epidemiology and animal
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bioassay. The focus in each section is on sources of uncer-

tainty. In addition, the problems of interspecies conversion and

low-dose extrapolation and the attendant uncertainties are

briefly reviewed.
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II. EXPOSURE ASSESSMENT

Exposure assessment often begins with estimation of the

concentrations in air or water which are expected to result from

specified patterns of emissions. The primary tools used in such

estimation are air and water pollution models. The basic air and

groundwater models are discussed below.

Air Pollution Dispersion Models

Air pollution dispersion models provide a link between pol-

lutant emissions and exposures estimates necessary for risk

assessment. In order to be most useful, the models should pro-

vide data in an appropriate form and for the same conditions

likely to be encountered in situations requiring risk assessment;

- short and long term averaging periods

- receptors near and far from source

- urban and rural areas

- complex (mountains, valleys, near large bodies of water),
and smooth terrain

- non-reactive and reactive pollutants.

The ability of air pollution dispersion models to provide

accurate concentration estimates under all the conditions listed

above is limited. Gaussian dispersion models in particular were

developed with certain conditions in mind, and provide the best

results when these conditions are met. By examining briefly the

mathematical and scientific basis for dispersion models, this

section attempts to promote an understanding of the conditions
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under which dispersion models are most valid. The section

concludes with estimates of model accuracy reported in the

scientific literature.

Air pollution dispersion models may be divided into two

broad categories -- those suitable for estimating exposures near

to the source and those suited for predicting exposures at long

distances from the source. The meteorological conditions and

processes which govern pollutant transport and dispersion differ

in the near and far field. The exact dividing point between

short and long range is not well defined, but has been estimated

by Turner (1979) to be roughly 50 km.

Gaussian dispersion models are most commonly used for

modeling concentrations within short ranges of a source. The

UNAMAP (User's Network for Applied Modeling of Air Pollution)

series of Gaussian models has been widely used to help current or

proposed sources meet regulatory requirements under the Clean Air

Act (CAA). Advection-dispersion models based on numerical

approximation solutions to advection dispersion equations have

also been developed and are theoretically better able to simulate

three-dimensional dispersion than their Gaussian counterparts.

However, they generally require more complete data, are not as

routinely available, and have not been verified in as many field

situations as the Gaussian models (Mahoney, 1979, and Turner,

1979). They will therefore not be discussed further in this

review.
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Table 1. Domains of Validity of Air Pollution Transport Models

SPACE

Long range (regional, mesoscale) >50 km
Near-field/short-range <50 km

TIME

Short term
Long term

3 hr, 24 hr
month, year
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The discussion of long range transport models will focus on

the Lagrangian (moving coordinate system) rather than Eulerian

(fixed coordinate system) numerical advection-dispersion models,

again because of the relative limited availability of such models

for routine use (Bass, 1981). Several Lagrangian models are

currently operational and easily applied to long range transport

problems (Bass, 1981).

Gaussian Dispersion Models

The Gaussian dispersion model has been called the basic

"workhorse" of air pollution dispersion modeling (Hanna, et al.,

1982). With the passage of the 1970 and 1977 Clean Air Act

amendments, the requirements for dispersion modeling to maintain

air quality and to support new source permits has increased.

This increasing demand for modeling has had the beneficial

effects of spurring the development of the UNAMAP series and

encouraging better validation and field verification of the

models. However, the modeling demands have also created the

temptation to apply models to situations for which they are not

particularly valid and to use their results without proper regard

for their accuracy. The purpose of this discussion is to develop

an understanding of the accuracy of the Gaussian dispersion

models as applied to various field conditions.
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The basic form of the Gaussian model (for a conservative

pollutant with complete reflection at the ground surface) is:

where

C is the time averaged concentration of pollutant

(mass/length3);

( 8 )

x, y, and z are the distances downwind, crosswind, and

vertically upward, respectively (length);

H is the effective source height above ground level (H is

equal to the sum of the physical stack heighth, and the plume

rise AH) (length);

Q is the source strength (mass/time):

ay is the standard deviation of the time-averaged plume

concentration distribution in the vertical direction (length);

u' is the time-averaged wind speed at the level H

(length/time, usually 10 minute or one hour averages) (Spengler,

et al., 1982).

The equation states that the concentration observed at a

given distance from a source is a function of the initial peak

center line concentration, the height of the plume and the

horizon and vertical spread of the plume. The model assumes

complete reflection of the plume at the ground surface.

The amount of plume rise, AH, is determined by the plume's

initial momentum and buoyancy and by the stability of the

atmosphere. The formulae for calculating plume rise require

input of stack physical dimensions, effluent exit velocity,
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temperature and density, atmospheric stability data, and mean

wind speed at the height of the stack.

The dispersion parameters y and s, describe the spread

of the plume in the horizontal and vertical directions as a

function of distance from the source and atmospheric turbulence,

although dispersion is a function of both local and larger scale

atmospheric turbulence. For modeling purposes, turbulence is

more commonly characterized in terms of atmospheric stability;

the greater the stability, the less vertical mixing of the

atmosphere and therefore the less turbulence. Atmospheric

stability has been divided into seven classes (A-G) ranging from

extremely unstable (A) to extremely stable (G). Values of y

and s as a function of stability class have been documented in

the form of standard curves, the most common of which are those

developed by Pasquill-Gifford and Turner.

The average wind speed,u',atstack height is usually not

measured directly but is estimated from wind speed at 7 to 10

meters above the ground using the power law formula:

(9)

where,

z = height to which wind speed extrapolated

p = parameter which varies as the function of stability

class and site (urban/rural)

ulo = wind speed at 10 meters usually obtained from regional

weather station.

591



The Gaussian model is based on the basic diffusion equations

and a set of simplifying assumptions which are presented in

Table 2. With a few exceptions, these assumptions are not easily

classifiable as "protective" or "unprotective". The conservation

of mass assumption, unless modified by the use of a decay term

tends to result in the over-estimation of concentrations. The

use of simple stability-based dispersion parameters in conditions

for which dispersion is dominated by other turbulence factors

(complex terrain, layer scale atmospheric motion) may also result

in the over-estimate of ambient concentrations. The effect of

the other assumptions is dependent upon the conditions under

which the model is applied.

Most Gaussian dispersion models require similar meteorologi-

cal and emissions data. The meteorological data required include

wind speed, direction, stability class and mixing layer depth.

Models used for predicting long-term average concentrations may

require monthly or yearly windroses for speed and direction and

stability classes. Precipitation records may also be necessary

to assess the probability of pollutant wash out near the source.

The emissions data required includes physical stack parameters

(height, diameter), stack gas exit velocity and temperature, and

source strength.

Standardized current and historical measures of surface

level and upper air meteorological parameters are available from

a number of national data bases. The National Climatic Center in

Ashville, North Carolina maintains current and historical records

of measured values of wind speed and direction, stability
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Table 2. Basic Assumptions of Gaussian Model

Assumption Comment

1) Plume centerline originates at a point,
to equilibrium height and is parallel
to ground

2) No mass is lost to ground or by
conversion

3) Wind speed is uniform, parallel to
ground and constant

4) No dispersion/diffusion in direction
of wind flow

5) Concentrations decay from plume
centerline concentration in
Gaussian (bivariate normal) manner
in the y and z directions

6) Steady-state emissions

7) Concentrations described by Gaussian
form are time-averaged concentrations
(usually over 10 min. or 1 hour)

Conservative

Conservative
under certain
conditions

Sources: Spengler, et al. (1982) , Mahoney (1974)
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classes, and upper air parameters. The Center also tabulates

windroses (speed, direction, stability) over five and ten year

periods for use in predicting long-term average concentrations.

The National Weather Service (NWS) records wind speed and direc-

tion, temperature, pressure dewpoint, and precipitation on an

hourly basis at stations throughout the country. Upper air

observations of temperature, humidity, wind speed and direction,

and height of pressure surface levels are obtained from approxi-

mately 130 radiosonde (radio transmitters carried aloft by bal-

loons) and 70 Pilot balloon (PIBAL) stations. Since 1969, the

Environmental Meteorological Support Units (MSU) set up by the

NWS in cooperation with the EPA have provided upper air observa-

tions in 17 major urban areas. Although these sources of data

may not be suitable for all site-specific applications of

Gaussian models, they provide a first approximation of meteoro-

logical conditions for most sites.

On-site measurements can be taken to supplement these data

if necessary. For instance, when sources are located in complex

terrain -- valleys, mountains, or near large bodies of water --

regional meteorological data are more likely to be unrepresenta-

tive of conditions at the site. On-site data do not always

assure greater reliability. Disadvantages of on-site data

include potential lack of standardized instrument exposure, main-

tenance and calibration, and the lack of long historical records

of climatological parameters.

Gaussian dispersion models are most valid when estimates of

pollutant concentrations relatively near the source are needed.

Mahoney (1974) suggested that the most appropriate application of
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Gaussian models is within 250 meters to 20 km of a source (see

Table 3). At distances close (1250 m) to the source, models are

less capable of accounting for local turbulence effects created

by the presence of the source (building wake and down wash). At

increasing distances from the source, large scale motions in the

atmosphere begin to play a more important role in plume transport

and dispersion; these effects are generally not reflected in the

dispersion estimates based on local classification of stability.

Gaussian dispersion models have been successfully applied to

both single and multiple source problems. Turner (1979) catego-

rizes the UNAMAP models into four groups; models for continuous

elevated releases over relatively level countryside; models for

elevated releases in urban areas over relatively level terrain;

models developed for non-level terrain; and finally, models for

transportation sources. Modeling pollutant dispersion in non-

level or complex terrain is still one of the greatest weaknesses

of Gaussian dispersion models, particularly when estimates of

short term, peak exposures are necessary.

Both short- and long-term average pollutant concentrations

have been estimated using Gaussian dispersion modeling. The

Environmental Protection Agency's National Ambient Air Quality

Standards require averaging periods as short as 1 hour for ozone

and carbon monoxide concentration that are not to be exceeded

more than once a year. Other standards, such as the nitrogen

dioxide standard, require that concentrations be averaged over

one year.
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Table 3. Validity of Gaussian Model vs. Domain in Which it is
Applied

Distance Applicability Comments/Reasons

<250 m Questionable usefulness Effect on turbulence
of local urban
influences (building
wake effects, etc.).

250 m - 2 km

2 - 10 km

10 - 20 km

> 20 km

> 100 km

Some usefulness

Best usefulness

Some useful

Less useful

Not appropriate

Best reliability of
uz' ay estimates.

Projections for cJz,
less well

Little data available
for verification of
dilution rate esti-
mates. Rate of
vertical plume spread
diminishes resulting
in further transport
of plume.

Concentrations con-
trolled by details of
wind trajectories and
vertical mixing.

Source: Mahoney (1974).
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There are three major sources of error in model predictions.

One is the representativeness of the model of real conditions --

the ability of the model to account for complexities in emission,

transport, dispersion and chemical transformation or decay of the

plume that differ from the relatively simple conditions under

which the model was developed. The second major source of uncer-

tainty in model predictions lies in the accuracy, resolution and

representativeness of available meteorological and emission data.

Finally, the world is stochastic and any individual prediction

may be different from the actual state of nature simply by

chance.

A primary limitation of the model is that the dispersion

parameters as a function of stability class do not adequately

account for dispersion that occurs as a result of processes in

the upper atmosphere, changes in meteorological conditions at

greater distances from the source, and in uneven terrain. The

Gaussian model assumes continuous flow parallel to the ground and

dispersion parameter estimates are based on empirical observa-

tions of non-buoyant emissions over short time periods, low

elevations, and stability conditions close to the source (Smith,

1980). Consequently, Gaussian models do not generally represent

flow and dispersion well for tall stacks (>150 m), in mountains

or valleys, in urban areas, or near land water interfaces

(Turner, 1979). There are several methods, other than Pasquill-

Gifford, for deriving stability class and dispersion parameters.

Although these are more accurate, they require data which are not

often available.
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Because Gaussian models were developed for steady-state

emissions and continuous flow, they generally do not accurately

describe exposures from short term releases, Estimates for

1 hour or 24 hour peak exposures are then likely to be less

accurate than longer term average exposures from continuous

releases. The continuous flow assumption also means that

Gaussian models do not describe dispersion well under calm or

near calm conditions, or when the wind direction is highly

variable.

Gaussian models do not simulate well loss of a pollutant

through processes of chemical and physical transformation, decay,

rainout, adsorption and impaction. Some of the UNAMAP models

have attempted to account for losses through all mechanisms by

incorporating a single exponential decay term (Turner, 1979).

This inability to account for pollutant losses is one of the most

important sources of uncertainty for models dealing with large

residence times (large regions or long averaging times);

although dispersion dominates pollutant concentrations in the

early stages after emission, chemical and physical transforma-

tions play an increasingly important role after a few hours or

days (Mahoney, 1974, Smith, 1980). Consequently, unless models

are calibrated, the assumption of no or limited loss for sub-

stances which are in reality reactive is likely to be quite

conservative.

While meteorological data necessary to run Gaussian disper-

sion models is readily available from national and regional

databases, the data are not necessarily representative of the

site being modeled. The differences between vertical wind speed
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profile, the prevailing winds, and stability classes may be quite

marked even over distances of a few miles. Meteorologic data

taken at stations located near large bodies of water or at rural

locations can be particularly unrepresentative of conditions at

inland or urban sites.

Wind direction is one of the most significant sources of

error in model predictions, particularly of short term exposures

or exposures at specific receptor sites. Longer term average

exposures are determined on the basis of historical windrose

tabulations and tend to be more accurate. Inaccuracies in pre-

dictions of wind direction may result from using regional rather

than site-specific meteorological data or from use of surface

wind data to predict wind direction at the height of the plume

centerline. Wind direction changes as a function of height, so

surface wind data may not accurately describe the direction of

plume transport, especially in the case of highly elevated

sources.

Errors in wind speed can also contribute to uncertainty in

exposure predictions. The use of power law calculations to

extrapolate from wind speeds measured at 7-10 meters to several

10's of meters can be inaccurate especially for short averaging

periods (Turner, 1979).

Several authors have studied the accuracy of various

Gaussian models (Table 4). The table is not exhaustive; it

provides rough estimates of accuracy for best and worst condi-

tions. The estimates of accuracy range from 10-20% for "research

grade" predictions to over 100% for more typical applications.
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Table 4. Error Estimates for Gaussian Models

Condition Percentage Error Source

1) Research grade observations
from near surface sources,
flat terrain

10-20% Pasquill
(1979)

2) Most "real world" applica-
tions to elevated plumes
with few supporting
meterologic data

a) 1 hour average

b) long term average

c) urban regional
average concentrations

100%

>100%

520%

&20%

Pasquill
(1974)
Ruff
(1980)
Bowne
(1981)
Pasquill
(1974)
Mahoney
(1974)

3) Multiple source model
(various conditions)

20-100% Mahoney

Sources: American Meterological Society (1981)
Mahoney, J.R. (1974)
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As might be expected, predictions become more accurate as aver-

aging times and areas increase. These results were presented in

most cases without specific reference to the pollutants being

modeled, but are probably most representative of inert tracers.

It is likely that errors would be greater for applications

involving highly reactive pollutants.

Long-Range Transport Models

The need for long range transport models has been growing in

recent years because of concerns about the role of long distance

transport of sulfur and nitrogen oxides in acid rain and the

contribution of distant sources to the degradation of visibility

in our national parks (Bass, 1981, Hanna, et al., 1982). Long

range transport models may also have an important role to play in

risk assessment.

Long-range transport models are not as well developed as

Gaussian dispersion models. One reviewer noted that there is "no

definitive model for long-range transport and diffusion" (Hanna,

et al., 1982). The models are in their "adolescent" stage,

"promising, but not mature" and therefore have a somewhat limited

history of application (Bass, 1981).

Of the long-range transport models that have been developed,

the Lagrangian models appear to be most "mature". The advantages

of Lagrangian models over other long-range transport models

(e.g., numerical advection-dispersion models) are that they are

operational, readily available and relatively easy for the non-

specialist to understand and apply. Models for predicting short-

term and long-term average concentrations are both available.
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In Lagrangian models, pollutant concentrations are charac-

terized with reference to Lagrangian coordinates. Changes in

concentration over time and space are described as if from the

perspective of the moving parcels of air rather than in relation-

ship to fixed x, y and z axes.

"The Lagrangian variable trajectory plume model repre-
sents a continuous plume emitted by a point source by the
transport and dispersion of a succession of discrete plume
elements (air parcels or massless trajectory points). These
plume elements are advected and diffused by a spatially and
temporally varying wind field. Each plume element carries
an independent time history -- plume chemistry, dry deposi-
tion and scavenging. The time-average ground-level impact
of the continuous plume at a given point is simulated by
combining the contributions from all elements that indepen-
dently traverse that point during the specified averaging
time." (Bass, 1981).

Proponents claim that the models are able to simulate both

small scale diffusion and the large scale meander believed to be

largely responsible for long-range transport and dispersion

(Hanna, et al., 1982). However, there appears to be little

agreement on how these processes can or should be incorporated

into the models (Bass, 1981).

A common form of Lagrangian dispersion models is the "Puff"

model in which the continuous plume is represented by a series of

puffs. The model assumes that: (1) puff diffusion is similar to

plume diffusion; (2) at long ranges, plume dispersion may be

described as some function of the Pasquill-Gifford dispersion

parameters or as a function of time (e.g., ay = 0.5 t (sec),

(Heffter, 1980); (3) pollutants are confined to the mixing

layer.
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The meteorological data required by the puff model are

similar to those required by the Gaussian model, although they

are used differently. Wind speed and direction data from surface

and radiosonde stations are used to generate windfields.

Windfields describe the spatial and temporal variations in wind

speed and direction and are used to predict the transport and

dispersion of the plume. When measured data are not available

for regions within the windfield, data interpolated from adjacent

regions must be used. Finally, the models require estimates of

mixing layer depths over the model region.

As with Gaussian models, uncertainty in the Lagrangian model

predictions are related to the ability of the model to mathemati-

cally simulate complex, real-world conditions and the availabili-

ty of reliable data. An important source of uncertainty in the

models is that the parameters used to describe diffusion and

dispersion are still quite crude; they are not well founded

theoretically or empirically. They cannot account well for the

effect of windshear resulting from vertical variations in wind

speed and direction. Dispersion parameters are consequently

likely to underestimate dispersion. Model predictions are parti-

cularly sensitive to uncertainties in dispersion parameters for

averaging periods less than 24 hours (Hanna, et al, 1982).

The inability of the models to describe vertical wind speed

and direction shear may also result in significant error in

prediction of plume trajectory. Trajectory error is generally

greater under stable than in neutral or unstable conditions

(Bass, 1981).
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Upper air observations are critical for predicting plume

transport, yet the twice daily radiosonde observations from sta-

tions typically 300-500 km apart effectively limit the temporal

and spatial resolution of the windfield. Data extrapolated from

surface station observations or predicted from numerical weather

prediction models have been used to supplement upper air observa-

tions but the reliability of such data has not been fully tested.

Accurate description of windfields is particularly troublesome in

complex terrain and during "active weather conditions".

Information on the accuracy of long-range transport predic-

tions is extremely limited especially for short-term (3-24 hour

averages. The difficulty and expense of data collection has led

to a dearth of adequate tracer field monitoring studies, neces-

sary for model verification. The ongoing Cross Appalachian

Pollution Transport Experiment (CAPTEX) is designed to provide

such data. Numerical analysis of model sensitivity has conse-

quently been more common, but according to Bass (1981), little of

the work in this area has been reported in the open literature.

The results of some field verification studies for long- and

short-term long-range transport models have been reported by

Bass (1981) and are shown in Table 5. In general, the perform-

ance of long-range transport models is worse than that of

Gaussian models. Predictions are particularly poor for short-

term averages. For instance, experiments designed to predict

three-hour concentrations at ground-level in the Northern Great

Plains -- an area that has been relatively well characterized in

plume transport studies -- found that predicted concentrations

frequently differed from observed concentrations by more than a
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Table 5. Empirical Estimates of the Accuracy of
Long-Range Transport Models

A. Short Term Models:

Model/Conditions

Weekly averages of
Krypton-85 transport
of 1000 km (H version
of model)

B. Long Term Models:*

Model

Western European LTRAP
data base, EURMAP-1
model

NADB and EPRI/SURB data
bases for eastern U.S.
Lagrangian Puff model
with more complex
vertical diffusion

Results

50% within
factor of 2

Source

Heffter (1977)

90% within
factor of 10

Correlation
Coefficient

SO2 0.7-0.8

SO4 0.6-0.7

so2 0.7+

so4 0.6-0.8

Mancuso
(1979)

Meyers,
et al.
(1979)

*Monthly--Averaged --Ground-level Concentrations

Source: Bass (1981).
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factor of two (Bass, 1981). Again, these results are derived

from studies of primary pollutants or inert tracers and it is

anticipated that errors would be greater for reactive pollutants.

GROUND-WATER MODELS

Ground-water supplies drinking water for roughly half the

United States population (Konikow, 1981). Increasing concerns

about the contamination of this supply with toxic chemicals has

led to greater pressure on ground-water modeling to provide

information for the prevention management, or cleanup of con-

tamination problems. The long time frames involved and the

expense of exploratory drilling and testing for physical char-

acterization of sites make model simulation a theoretically

attractive management tool for both existing and proposed sites.

The need for ground-water modeling for routine application

to field studies of contaminant migration has generally out-

stripped the development of the necessary models and data to run

them (Anderson, 1979 and Konikow, 1981). Ground-water modeling,

like long-range transport modeling for air pollutants, is still

in relatively early stages of development. There is no equiva-

lent among ground-water models of the Gaussian models that are

widely used in air pollution dispersion modeling. Instead, there

is greater emphasis placed on more complex numerical advection

dispersion models for which there are still substantial theoreti-

cal and practical, (e.g., data requirements) limitations.

Ground-water modeling shares with air pollution dispersion model-

ing limited capability to provide accurate results under complex
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real-world conditions -- long distances, multiple dimensions,

complex geological conditions, reactive contaminants, and multi-

ple sources. This limitation is particularly severe in the use

of modeling to predict movement and concentration of plumes.

The EPA has begun in the last few years to evaluate existing

ground-water modeling capabilities and to develop guidelines for

the appropriate application of models to risk assessment for

field situations (JRB, 1982). As yet, though, no coherent

framework for evaluating the use and performance of ground-water

modeling seems to exist.

The following sections seek to develop an understanding of

the uncertainties in ground-water modeling and their effect on

uncertainties in risk assessments. The analysis begins with a

presentation of the theoretical bases and data requirements for

ground-water models and is followed by a discussion of the

present application of models, the major sources of error and

estimates of the magnitude of the error in model outputs.

An understanding of the basic structure and use of ground-

water models is helpful for clarifying the sources of error in

modeling contaminant transport. The following introduction is a

brief overview of a complex subject; readers interested in more

complete reviews should refer to valuable works by Anderson

(1979), Faust and Mercer (1980), Mercer and Faust (1980 a,b),

Pope-Reid (1982), Freeze and Cherry (1979) or Konikow (1981).
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Two basic processes govern the transport of contaminants in

ground-water;

1) advection: movement of a solute attributable to the bulk

motion of flowing ground-water the rate of which is

controlled by the average linear velocity of the water.

2) hydrodynamic dispersion: process in which the solute is

spread out in directions other than that dominated by

ground-water flow and which results from mechanical mixing

in the soil and to a lesser extent from molecular diffusion.

Most models developed to study contaminant transport in

ground-water consist of solutions to partial differential

equations describing both advection and dispersion (Anderson,

M.P., 1979). In some models, advection equations alone may be

used to describe solute transport.

The advection or flow equation for flow in a non-

homogeneous, anisotropicl medium has the following general form:

where:

T = transmissivity (aquifer by
hydraulic conductivity)

h = head (Length)

S = specific storage (Length-l)

W = volume flux per unit area

(10)

x = longitudinal distance (L)

y = transverse distance (L)

t = time

608



Hydraulic conductivity is a poorly understood property which

describes the ability of the geological medium to conduct fluid.

It is a function of both the porous medium and the fluid

transmitted. The head is a measure of the potential energy in

the ground-water system and is estimated by the height to which

water will rise in a open stand-pipe. The change in head over a

distance of hydraulic gradient is the driving force for

ground-water flow in the flow equation.

The dispersion equation, also known as the mass transport

equation, estimates contamination concentration changes in time

and space:

(11)

where:

C = concentration of chemical in the ground water (M/L3)

D = coefficient of hydrodynamic dispersion (L2/T)

V = ground-water velocity (L/T)

R= rate of removal of solute from
ground-water

The coefficient of hydrodynamic dispersion describes the

tendency of the medium to spread out a contaminant in directions

other than those produced by the principle direction of ground-

water flow and is a function of the fluid velocity and the

dispersivity of the medium. Dispersivity is a property of the

medium relating hydrodynamic dispersion to the velocity of

ground-water flow and like hydraulic conductivity is physically

poorly understood.
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Ground-water velocity is often determined using Darcy's Law:

(12)

where:

V = ground-water velocity (L/T)

K = hydraulic conductivity (L/T)

rl = porosity (percent void space in total volume)

A = cross sectional area of the aquifer (L2)

In sum, the data required to study contaminant transport

using the advection-dispension equations generally include (Pope-

Reid, 1982):

Boundary conditions: information on the geometry of the

ground-water system, initial head distributions, location

and type of flow at the boundaries (impervious, constant

flux, etc.).

Physical characteristics of the system: hydraulic

conductivity, porosity, compressibility.

Flow variables: Darcy (average) velocity in any coordinate

direction, coefficient of hydrodynamic dispersion

(advection-dispersion models only).

The difficulty of obtaining the necessary data poses the

greatest obstacle to the use of ground-water models for the study

of contaminant transport (Anderson, M.P., 1979). No national

data bases comparable to those available for air pollution dis-

persion models exist for ground-water contaminant transport
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models. While there are published data available for some soil

properties, (e.g., porosity and hydraulic conductives), data must

in general be obtained from each site.

The flow and dispersion equations may be solved analytically

or numerically. In analytical models, the equations are solved

exactly, but usually after they have been simplified by assuming

idealized conditions, e.g., steady state conditions for ground-

water velocity and dispersion, and an aquifer of infinite extent.

Analytical solutions of the equations are also used to

verify the results of the approximation techniques used to solve

the equations in numerical models.

Numerical models employ any of several techniques for

approximating the partial differential equations. The finite

difference method, method of characteristics, and finite element

are the most common. In the finite difference method the con-

tinuous function is approximated by a series of linear difference

equations (Pope-Reid, 1982). The method of characteristics is

similar but involves the additional step of expressing the par-

tial differential equations as their "characteristic" set of

ordinary differential equations which are then solved by finite

difference methods. In the finite element method the partial

differential equations are first transformed into integral form

in order to be solved. A fourth method for solving the disper-

sion equation is Monte Carlo simulation (e.g., discrete parcel

random walk) in which dispersion is treated as a random rather

than deterministic process (Pope-Reid, 1982).
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Function does not necessarily follow form in the case of

ground-water contaminant transport models. Unlike air pollution

dispersion modeling, in which the Gaussian model is particularly

suited to certain distance ranges and Lagrangian models to

others, it is difficult to judge which type or combination of

ground-water models might be best suited for a specific applica-

tion. The model chosen depends on the model application, the

availability and quality of input data, the skill and experience

of the modeler, and the nature and accuracy of the model solution

desired. The apparent reason for this lack of generalization

about ground-water models lies in the fact that the models have

largely been developed on a case by case basis for specific

applications. There have been few attempts to evaluate the

validity of the models for general applications.

Anderson (1979) makes a broad distinction between the uses

of advection dispersion models and advection models. Advection-

dispersion models are most appropriate for small or local scale

problems (a few meters) and should be used when detailed investi-

gation of the spread of the plume is desired. Numerical tech-

niques are usually necessary to solve the dispersion equation.

Advection models using analytical or numerical solutions may

be used alone or in conjunction with water quality (surface

water) models for larger or regional scale problems (100 m -- a

few kilometers) to provide a first approximation of average

change in water quality or solute travel times. They are most

appropriate when the effects of dispersion may safely be ignored

(over large distances and rapid ground-water flow).
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Although this distinction is not rigid, there appears to be

a consensus that advection-dispersion models are more appropriate

than advection models for tracking toxic contaminant plumes

(Anderson, 1979; Konikow, 1981: JRB, 1982; Mercer and Faust,

1980c). The preference for the more complex models appears to be

based on their more "realistic" underpinnings. However, there

has been relatively little evidence presented to show that the

predictions of advection dispersion models are necessarily always

better than those of the simpler models, particularly under

complex field conditions.

Gorelick (1983) has recently reviewed several innovative

approaches by various authors to the use of modeling for managing

ground-water quality. In these instances, ground-water and/or

surface-water models have been developed in conjunction with

various optimization techniques (e.g., linear and quadratic pro-

gramming). Thus, theoretically, allowing important policy and

financial constraints to play a role in water resource and qual-

ity management. The basic problem addressed by these hybrid

models consisted of managing the joint use of an aquifer for

waste disposal and drinking water while maintaining acceptable

water quality at supply wells. While these models are very

promising tools for water quality management, they are still in

relatively early stages of development. While this discussion

illuminates some of the possible applications for ground-water

quality management, it would be misleading to suggest that the

ready application of modeling techniques will provide a practical

and realistic solution for managing contamination problems.

There are several serious constraints on the application of
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ground-water modeling to the water quality management which can

generate considerable uncertainty in model results. The con-

straints include the availability and quality of input data, in

the estimation of model parameters in the ability of the model to

mathematically represent complex, non-idealized conditions, in

the basic stochastic nature of ground-water/solute transport, and

finally in the accuracy of the numerical approximations tech-

niques.

At the outset, many models which require numerical solutions

are subject to errors that arise from the approximation tech-

niques used to solve the advection dispersion equations. These

numerical/mass balance errors are typically on the order of 10-

15% and generally consist of two types: (1) numerical dispersion

in which the contamination front predicted by the model is more

smeared or dispersed than predicted by exact analytical solutions

to the equations and (2) numerical oscillation in which the

numerical solution overshoots and undershoots the values obtained

analytically (Anderson, 1979; Pope-Reid, 1982). The finite dif-

ference method is particularly prone to these errors, while the

finite element is less susceptible and the discrete parcel random

walk method effectively eliminates them.

The data required to run the models present a far more

serious problem.

"We need, as a minimum, the permeability and porosity
of the media and the hydraulic head gradients all in three
dimensions. In addition, we need to know the sorptive
characteristics of the media along all paths, and we need to
estimate the variable rates at which the solidified wastes
will enter the transporting fluids. Needed, in particular,
is information on the distribution and extent of major
heterogeneities. The need for such data severely taxes both
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the available data base and the technology for generating
it. Most of the requisite available data have such large
error limits that their usefulness in predictive models is
limited." (Bredehoft, et al. in Anderson, 1979).

The velocity distribution and dispersivities necessary to solve

the advection and dispersion equations are particularly difficult

to obtain. According to Anderson (1979), "[t]o date, there are

no well-tested, standard techniques for acquiring these data."

Velocity may be measured directly using tracers but is more

commonly determined indirectly using measurements of heads,

hydraulic conductivity and Darcy's Law. The hydraulic con-

ductivities used are either spatially averaged values obtained

from analysis of field tests or are fitted parameters determined

from the trial and error adjustment (calibration) of hydraulic

conductivities until a flow model simulates the head distribution

observed in the field.

The uncertainties in the velocity distribution and conse-

quently in the rate of contaminant transport derive directly from

the problems in describing the spatial variation in hydraulic

conductivity. Inhomogeneities in the porous medium, such as

"stringers" of more permeable materials or pockets of less per-

meable material, play a critical role in contaminant transport

and dispersion. The difficulties in accurately representing

these inhomogeneities can therefore effectively limit the pre-

dictive capabilities of the models.
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Porosity, which is also required to compute ground-water

velocities using Darcy's Law, further contributes to uncertainty

in contaminant transport modeling. It can vary by several orders

of magnitude over small distances, thus reducing the validity of

average values measured in the lab or field.

Measurement of dispersivity, which is used to estimate the

magnitude of contaminant transport attributable to hydrodynamic

dispersion, is also very difficult. The primary problem is that

the magnitude of the dispersivity measured depends highly on the

scale on which the measurements are made (Anderson, 1979); Pope-

Reid, 1982). Dispersivity measured in small scale laboratory and

in larger scale field tests can yield values for the same medium

that differ by several orders of magnitude. For instance, values

obtained from laboratory tests typically range from low2 to

1.0 centimeters whereas field tests yield values in the range of

10-100 meters (Anderson, M.P., 1979). A major reason for the

disparity in the results appears to be that laboratory tests are

unable to account for the effects of large-scale inhomogeneities

in the aquifer. Dispersivities may also be determined in the

process of calibrating a model but again, as fitted parameters,

they may not accurately describe the actual geological condi-

tions.

There are also practical limits to the amount of data that

can be collected to characterize a site. Not only is drilling

expensive, but the number of boreholes that would theoretically
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be necessary to characterize the spatial inhomogeneities that are

so often crucial for ground-water flow and contaminant transport

could change the geological properties of aquifer (Fiering,

Personal communication, 1983).

A successful application and calibration of model for a

given site depends heavily on the expertise and experience of the

modeler at estimating the missing parameters of the model -- the

gaps left by field measurements. The importance of the modeler

to "intelligent" model use makes what Anderson (1983) calls the

"institutionalized black boxing" of models so dangerous. The

temptation for anyone to run complex models without the necessary

training or understanding of the limitations of the results is

great and indeed encouraged by current regulatory interest in the

use of ground-water models.

As the discussion of data requirements shows ground-water

flow contaminant transport models are by necessity simplified

representations of complex hydrogeological conditions and

processes. Faithful mathematical simulation of all processes

affecting contaminant transport would not necessarily assure

better results. However, additional assumptions that are

commonly made to simplify more complex existing conditions that

either poorly characterized or poorly understood contribute to

the errors in and unreliability of model outputs. However,

because of burdensome data requirements, one or two dimensional

models are commonly used to represent three dimensional systems.

When three dimensional transport is important, such models are

likely, on average, to over-estimate concentrations at any given

node. Another major source of error in the theoretical basis for
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contaminant transport models lies in their inability to account

accurately for the complex reactions that a chemical undergoes

while in the soil. As in air pollution-dispersion models a

single reaction term may be incorporated to represent chemical

reactions, precipitation, absorption, desorption, ion exchange,

volatization, etc. The incorporation of these processes into

contaminant transport models has been effectively stymied by the

paucity of experimental laboratory or field studies on the nature

and rates of these reactions (Anderson, 1979).

The common assumption that the chemical species of interest

in a modeling situation is non-reactive (i.e. is not broken down

or adsorbed to the soil) is likely to be very conservative.

Anderson (1979) reported the results of a sensitivity analysis of

an advection model developed at Oregon State University and used

to predict the quantity and quality of leachate produced by a

sanitary landfill. The analysis demonstrated the importance of

biodegradation and adsorption in determining the contamination

detected.

"Moderate degradation in the landfill removed essen-
tially all of the contaminant, thereby producing virtually
contaminant-free leachate. Moderate degradation occurring
only in the soil below the landfill almost eliminated con-
taminants from the ground-water discharge, while weak
degradation of the contaminant in the soil eliminated 86% of
the contaminant ...In contrast, the results were relatively
insensitive to changes in ground-water velocity and water-
table fluctuations".

Finally, ground-water models are in general deterministic

while the hydrogeologic and chemical processes they are developed

to represent are generally stochastic.
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How good, then is the output of current ground-water models

for use in risk assessment? In contrast to Gaussian dispersion

models, estimates of the magnitude of the errors associated with

contaminant transport models are not readily available. Data can

be found on numerical errors and on the differences between

concentrations observed in the field and simulated during model

calibration but there is a dearth of information on the magnitude

of the errors that might be expected when models are used under

"real world" conditions (few data, complex geology, etc.) to

predict contaminant transport over extended time periods or dis-

tances. This paucity of data reflects the relatively recent

arrival of ground-water modeling to the regulatory arena; and the

difficulties in running and testing the application of the models

has not been as routine or widespread as it has been for air

pollution dispersion models. The systematic evaluation of

ground-water models necessary to provide perspective on the

appropriate role of the models in risk assessment and in the

management of hazardous waste has not been done.

The most common error estimates that appear in the litera-

ture describe the ability of the models to reproduce existing

conditions at a site (e.g., the existing contamination phases).

Under the "best" conditions (for instance, during the research

and development of a model, with adequate data) models can be

expected to reproduce existing conditions relatively well.

Table 6 presents the error estimates for several analytical and

numerical models that have been field tested (Pope-Reid, 1982).

The errors range from about 5 to 30 percent but unfortunately,

neither the source of the errors nor the outputs to which they
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apply are always indicated. They are believed to reflect both

numerical/mass-balance errors as well as differences between

simulated and observed values.

In most contaminant transport models, mass balance errors

alone are on the order of 10-15% (Anderson, 1979; Pope-Reid,

1982). Konikow and Bredehoft (1974) used a solute transport

model to study the effects of irrigation on the distribution of

dissolved solids in the ground-water of an alluvial aquifer in

Colorado. The finite difference method was used for the disper-

sion equation. When the model was calibrated, it reproduced the

dissolved solids concentration within 10% of the observed values

about 80% of the time (Anderson, 1979).

The more interesting and more perplexing question for risk

assessment concerns the accuracy of model predictions over time

and space. Unfortunately, the error estimates given above for

models that have been calibrated for specific sites provide

limited insight into the ability of the model to predict the

movement and concentration of ground-water contaminants. One

would expect the agreement between observed and simulated values

to be reasonably good when the model is calibrated. During

calibration, the parameters of a model are adjusted until the

model simulates observed field conditions as well as possible.

The extension of the model to areas where contaminant plumes have

not been found and studied is a very different problem. Here,

all the uncertainties created by the difficulty of characterizing

flow and contaminant transport chemical interaction, deposition

and decay in complex three-dimensional systems come into play.
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Even the calibration process may lead future predictions astray

since the physical properties of the aquifer can become fitted

parameters whose relationship to actual field conditions is un-

certain; some authors have expressed the concern that different

fitted values of hydraulic conductivity, for instance, can yield

the same head distribution.

An additional problem is that, strictly speaking, predic-

tions should be made for periods of time only as long as the

period of observation for the aquifer or site. In practice,

however, this advice is often not followed since historical data

on ground-water flow or contaminant levels is available for

relatively short periods of time and even then for few sites.

For proposed sites these data are especially rare. Since ground-

water contamination problems may span decades, there is a strong

incentive to apply models to periods exceeding those for which

there is adequate data.

To date, few authors have been willing to estimate the

likely accuracy of ground-water model predictions for "real-

world" applications. One modeler pessimistically estimated that

under typical field conditions with few data, model predictions

could be off by as much as two or three orders of magnitude.3 In

a recent editorial, Anderson (1983) argued restraint in the use

of ground-water models:

It is clear that models must be used in conjunction with
field studies and in fact, field studies to help resolve the
questions about dispersion and chemical reactions in the
subsurface are in progress and in planning. Until the
results of these studies are in, the promotion of ground-
water models for contaminant transport applications should
be viewed with extreme caution.
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The time when ground-water modeling can be used routinely

for ground-water contamination problems, even by qualified

modelers, is still a good way off.

Concentration, Exposure and Dose

Environmental fate and transport models yield spatial and

temporal fields of ambient concentration estimates. But hazard

assessment typically requires as an input some estimate of either

exposure or dose. Exposure analysis involves consideration of

human activity patterns and dietary habits in conjunction with

the estimation of ambient concentrations. Dose estimation goes

one step further -- taking into account human metabolism.

Dose is a complex function of absorption, metabolism and

excretion rates, which themselves are influenced by age, sex,

stature and activity level. Although the details of absorption,

metabolism and excretion are known for certain chemicals, for

most, it is impossible to carry out a full analysis. Therefore,

for risk assessment, a simplified estimate based solely on the

concentration in air or water and volumetric rate of intake

(liters of air breathed/day, liters water/day) is commonly made.

All of the chemical inhaled or ingested is assumed to be

absorbed. For carcinogenic risk assessment, dose rate is usually

expressed in the form compatible with EPA carcinogenic potency

estimates derived from animal bioassays involving uniform life-

time exposure -- mg/kg bodyweight/day or mg/m2 surface area/day.
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The EPA has adopted the International Commission on

Radiological Protection (IRCP) "reference man" as a basis for

converting exposure to dose rate (Federal Register, November 28,

1983: Norman, Charles; EPA Exposure Assessment Group, July 1983).

The "reference man", a composite of individuals in various coun-

tries and time periods, basically represents a Caucasian male,

20-30 years of age, of Western European or North American origins

(ICRP), 1981). Table 7 presents the physical characteristics and

estimates of daily air and fluid intake for the reference man.

The dose rate estimate, d (mg/kg per day), for the

"reference man" would then be:

d = 0.33 C, + 0.028 C, (13)

where is the concentration of the contaminant in air

and C,(mg/L) is its concentration in water. This dose rate

estimate is obviously appropriate for estimating the risk faced

by a hypothetical "reference man" exposed to identical airborne

concentrations in all microenvironments and deriving his entire

fluid intake from equally contaminated sources. Several

conceptual generalizations would seem necessary to make this dose

rate estimate useful for risk assessment.

First, it is likely that the risk faced by a biologically-

average person is of more interest than the risk faced by the

ICRP "reference man". Therefore, in principle, the metabolic

coefficients 0.33 and 0.028 should be adjusted to reflect a

weighted average of the values appropriate for various demo-

graphic (age - sex - and racial) groups. In practice, such an

adjustment is not commonly made and is not believed to be impor-
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Table 7. Physiological Parameters for ICRP Standard Reference
Man

Height

Body Weight

170 cm

70 kg

Total Fluid Intake 1.95 L/day

Tap Water 0.15 L.day

Volume of Air Breathed/day

8 hr. working "light" activity 9.6 m3
8 hr. non-occupational activity 9.6 m3
8 hr. resting 3.6
Total 23 Y3m /day
% total air breathed at work 42

Source: International Commission on Radiological Protection,
1981. Report of the Task Group on Reference Man. Publication
No. 23. Pergamon Press, New York, New York, 480 pp.
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tant since any bias introduced by use of doses appropriate for a

"reference man" is thought to be very small in comparison with

the uncertainty typical in estimates of risk.

Concerns that the 70 kg male may not adequately represent

more susceptible or sensitive individuals in the population has

led to the use of the 10 kg child in some risk assessments.

Children have a higher air and fluid intake on a body weight

basis than adults (Severn, 1983). However, this is relevant only

if one is interested in the distribution of risk among the popu-

lation, or if potencies are strongly dependent upon age at expo-

sure, as is believed to be the case for at least one carcinogen,

ionizing radiation.7 For most carcinogens, data on potency as a

function of age at exposure are unavailable.

To estimate the distribution of risks for various age-groups

in the population , it is also necessary to rely on a model of the

dynamics of risk. Two such models have been advanced in the area

of radiation carcinogenesis. The absolute risk model assumes

that after a latency period, 1 (yr), thought to be about 2 years

for leukemia or bone cancer and 10 years for most solid tumors,

incremental annual risks are constant throughout a plateau, or

expression-period, p (yr). The plateau period is now thought to

be 25 years for leukemia and bone cancer and the remainder of

lifetime for most solid tumors. The relative risk model assumes

that after the latency period incremental annual risks increase

roughly in proportion to baseline cancer risks.

These models provide a basis for projecting cancer risks in

future time periods and also for estimating the contributions of
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doses received in past time periods to current cancer risks.

They give an indication of the appropriate averaging-time for

cancer dosimetry. If the models are correct, and applicable to

other carcinogens, then the appropriate averaging times are

roughly 25 years for leukemia and bone cancers and about 55 years

for most solid tumors.8

Similarly, the assumption that 100% of the contaminant

inhaled or ingested is absorbed and reaches the target tissues

would seem quite crude. Absorbtion, metabolism, and excretion

strongly influence the dose actually reaching the target tissue.

Although there is a compelling need for the incorporation of

these rates into quantitative risk assessment, the necessary

supporting data are lacking for most chemicals. Since 100%

absorption does not occur for all chemicals and because metabo-

lism and excretion of a substance is likely to decrease the doses

actually reaching the target tissue, the use of 100% absorption

assumption usually overestimates the dose.

It might seem that this would lead to overestimation of

risk. But, this is not always the case. What is important is

the correspondence between the dosimetry used in the derivation

of potency estimates and the dosimetry used in risk assessment.

If potency has been estimated from analysis of past human expo-

sures, no bias will result if similar measures of dose or expo-

sure were used in both components of the analysis. If, on the

other hand, potency has been estimated from analysis of animal

data, the accuracy of the animal analogy becomes important. As
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long as the relationships between amount of contaminant inhaled

or ingested and dose to target tissues are similar for man and

the test species, no bias will result.

Recently, a great deal of attention has been devoted to

indoor air pollution. It has been estimated that the average

person in the U.S. spends more than 75% of the time indoors.

Again, it would seem that dose estimates based upon outdoor

concentrations of toxic pollutants might yield biased risk esti-

mates. However, the existence and extent of bias depends entire-

ly upon the relationship between outdoor and indoor concentra-

tions. For many pollutants the only difference in indoor and

outdoor concentrations is due to the capacitance effect of struc-

tures. For these pollutants, although pulses may be damped and

there may be lags in the time patterns of exposure, long-term

indoor averages are virtually identical to long-term outdoor

averages. Although under non-linear does response curves with

short biological averaging times this could lead to bias, in most

circumstances it would not. For other pollutants, deposition on

surfaces and/or reaction with structural materials and furnish-

ings may lead to depletion of contaminants. For these, indoor

concentrations might be substantially less than those outdoors

causing risk estimates based upon outdoor exposures to be biased

upwards.
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III. HAZARD ASSESSMENT

Potency Estimation

The final step in risk assessment is to apply estimates of,

the potency of a given substance in humans. The methods for

estimating which differ depending on the source of data and

on the form of toxicity, are discussed briefly below.

Epidemiologic studies and animal bioassays are the two pri-

mary sources of potency estimates. Because they eliminate the

need to extrapolate results from animals to humans, epidemiologic

studies are preferable to animal studies. However, there are

relatively few compounds for which valid epidemiologic data

exist. Less than thirty of the 70,000 chemicals in commercial

use in the U.S. have been definitely associated with cancer in

humans (Tomatis, 1978 in NRC, 1983). The human data for other

toxic effects, such as teratogenicity and neurotoxicity are even

more limited.

When epidemiologic data are available they must be used

cautiously. Many epidemiologic studies require retrospective

analysis of the health effects of occupational exposures to toxic

compounds. In these studies the comparability between workers

and the general population is a source of uncertainty.

In occupational epidemiology, a critical issue is selection

of an appropriate control group. In addition, the comparability

of exposures of workers and members of the public is at issue. A

working population is generally exposed to much higher concentra-
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tions than the general population albeit for 8 hours a day and

for less than lifetime. Retrospective epidemiologic studies

typically have little data on the nature and level of historical

exposure of the study populations and must therefore develop

associations on the basis of current exposure measurements. For

diseases with long latency periods, like cancer, current expo-

sures may be poor surrogates for the relevant measures of dose,

especially if exposures have changed appreciably over the years.

In general, the use of imprecise measures of exposure tends to

bias risk estimates towards zero. Prospective studies (studies

which measure current exposures and monitor incidence of disease

forward in time) eliminate this problem but are expensive, time

consuming and as a result are far less common.

Inherent limitations of epidemiologic studies further

restrict their usefulness in risk assessment. Difficulties in

obtaining and following up a large enough study population to be

able to detect an effect, in defining exposed and unexposed

populations, in describing the nature and levels of exposures

over the study period and in controlling for exposures to con-

founding factors -- factors which are associated with both the

exposure and the disease (e.g. smoking) generate considerable

uncertainty in the existence and the strength of an effect

detected (Weinstein, 1979). Rarely can the magnitude of that

uncertainty be estimated. In addition, the long latency periods

between exposures and the appearance of statistically detectable

630



effects and the time and expense involved in large epidemiologic

studies make it unpractical for most decisions requiring risk

assessment to await the outcome of epidemiologic studies

(Weinstein, 1979).

Toxicity testing in animals is far more common than epi-

demiologic studies. Approximately 7000 substances have been

investigated in animal bioassays, of these, 1500 are reported to

be carcinogenic (Maugh, 1978 in NRC 1983). However, there are

several sources of uncertainty in the use of animal data as a

basis for human potency estimates. First, the doses administered

to the animals are typically much higher than those encountered

in the environment. Therefore, models must be relied upon to

provide estimates of animal potency at low dose rates. Second,

the effects in genetically homogeneous populations must then be

extrapolated to a heterogeneous human population. Furthermore,

although the National Cancer Institute has developed standardized

designs for carcinogenesis bioassays, problems in design and

execution of the studies can greatly affect confidence in the

observed results.

Two critical steps in the development of potency estimates

are low dose extrapolation and, for animal data, interspecies

comparison or scale up of results.

Low Dose Extrapolation

Both epidemiological and animal studies typically involve

health effects of exposure to concentrations that are typically a

few orders of magnitude greater than those encountered in the

general environment. In order to estimate the risks of long-term
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exposures to low concentrations, it has been necessary to develop

methods for extrapolating from the existing experimental data.

Several mathematical models have been developed for this

purpose. All of the models widely used in regulatory applica-

tions are non-threshold models -- models for which there is no

dose below which the risk is assumed to be zero (Anderson, 1983).

The choice of this class of models has been based on prevailing

theories of carcinogenesis and on current practical obstacles to

identifying thresholds for carcinogens. A widely held belief is

that most forms of carcinogenesis involve interaction with, and

irreversible damage to DNA, a process for which there is theo-

retically no threshold dose. Even if thresholds exist, it is not

currently feasible to design experiments capable of detecting

them.

One of the earliest procedures for low dose extrapolation

was developed by Mantel-Bryan in 1961 (Hogan and Hoel, 1982).

The Mantel-Bryan method is based on the assumption that the

relationship between the logarithm of dose and the probability of

response is approximately described by the cumulative normal

distribution. The Mantel-Bryan estimate of an upper bound on

risk at low doses is found by extrapolating along a line of slope

one9 from an upper confidence limit (99%) on the proportion of

animals observed with tumors at a given exposure level to the

dose level of interest. The Mantel-Bryan procedure is no longer

commonly used because it often does not fit the data well in the

experimental dose range, is not well supported by any biological

theory of carcinogenesis, and (although it is inherently
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conservative) often gives less conservative results than more

recently developed models. (Hogan and Hoel, 1982).

More common are the so called "hit" models which assume that

carcinogenesis involves a finite number of interactions or "hits"

of the substance with the target tissue before an identifiable

tumor develops. The most basic of the hit models and one which

has been used in risk assessment by EPA is the one-hit model.

The model, which assumes that only one dose related stage is

necessary to induce cancer, has the following mathematical form:

P (d) = 1 - exp (-8d) (14)

where P(d) is the projected risk at dose level, d,; 8 is the

unknown model parameter and d the expected number of hits. In

the low dose region this becomes P(d) x Bd, a simple linear

model. The one-hit model is not considered to be as flexible as

the other linear non-threshold models to be discussed. Because

it only has one parameter, 8, it often is not able to fit the

experimental data well; particularly if the data have strong

upward curvature. (Crump and Howe, 1980).

The gamma multi-hit model, developed by Cornfield and

Van Ryzin, assumes that the initiation of cancer requires a

series of k hits and incorporates spontaneous cancer incidence

using what is known as Abbot's Correction Factor (Hogan and Hoel,
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1982). The most general form of the model, in which k can assume

non-integer values, is:

P(d) = (15)

where 6 and k are model parameters and I'(k) is the gamma

function. Cooper (1983) has derived a form of the model

appropriate for integral numbers of hits:

P(d) = 1
1-exp(Bd) 1 + d+F (Bd)2 + ... + +- Wk (16). .

where ,6 and k are model parameters. The parameters in this

version of the model are readily interpretable; f3d is the

expected number of hits from a dose d, and k is the number of

hits required to initiate a tumor. While the gamma multi-hit

model is more flexible for fitting experimental data, persistent

doubts about the model have precluded its widespread acceptance

(Hogan and Hoel, 1982).

The Weibull model has the following form:

P(d) = 1 - exp(-f3dm) (17)

where 6 and m are model parameters (FSC, 1980). The model is

linear when m=1, concave when m<l and convex when m>l. To date

the Weibull has not found widespread use in risk assessment for

environmental cancer.

The last of the models to be discussed is the one that is

primarily used by the EPA for risk assessment (Anderson 1983).
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The multistage model, developed by Armitage and Doll (1961) and

later modified by Crump (1980), assumes that carcinogenesis

occurs as a series of stages or events. Each event or stage is

assumed to be independent and additive and their rate of

occurrence is linearly related to dose:

P(d) = 1 - &(B,d+B,d +-Bkdk)l
(18)

where k is the unknown number of stages. At low doses the model

can be approximated by P(d), = Bid, a simple linear model. The

upper 95% confidence limit on 61 commonly is used to develop an

upper bound estimate of potency. Use of the multistage model has

been defended on the basis of the model's biological plausibility

and flexibility in fitting data in the experimental dose ranges.

Critics, however, have questioned the relevance of the model for

carcinogens for which interaction with DNA does not appear to be

a critical step -- a problem with all of the "hit" models (Hogan

and Hoel, 1982).

Given current understanding of process carcinogenesis, there

is no scientific basis for determining which model is most

appropriate for low dose extrapolation. The models in most cases

fit the data in the experimental dose ranges equally well. The

problem is that at low doses the estimate of risk is strongly

dependent upon the choice of model.

Figures 1 and 2 illustrate the wide variation that exists

among risk estimates given by various models at low doses. At

doses in the experimental range the models give similar estimates

of risks. However, the variability among estimates of risk
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Low Dose Risk Estimates for Saccharin Under
Various Dose-Response Models
lor et al., Toxic. Applied Pharmicology, 29, 154,
ract 200, 1974
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Dose (ppm)

Figure 2. Lose Dose Risk Estimates for DDT Under Various
Dose-Response Models

Source: Tomatis et al., Int. J. Cancer, 10, 489, 1972
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increases dramatically with decreasing dose. At risk levels of

significance for regulatory purposes (10B3 - 10B6 lifetime risks)

the associated dose levels may vary by several orders of

magnitude.

One point concerning low-dose extrapolation must be appre-

ciated. The attributable risk due to exposure is well known at

two points: zero dose and in the range of experimental doses.

Intuitively it is obvious that in an absolute sense the uncer-

tainty surrounding an estimate of risk becomes quite small as the

dose approaches zero. The absolute uncertainty about risk is

also small in the center of the range of experimental doses.

Quite the opposite is true if ratios of potency estimates are

compared. As the dose approaches zero, an approximate upper

bound on potency is given by 61, the slope of the one hit model.

However the lower bound on low dose potency near zero dose is

zero. And the ratio of these potency estimates is infinite.

Choice of model is obviously a crucial issue in cancer risk

assessment. Since there is no clear scientific basis for model

selection some have suggested that central estimates of risk

should be based upon a weighted average of the risks given by

several plausible models:

P(d) = wlPl(d) + wzPs(d) + ... + wnPn(d) (19)

where PI(d) is the estimate of risk given by model 1, w1 is the

probability that model 1 is correct, and so forth. The weights

of course would be subjective probability estimates. Harrison

(1983) has noted that because the one-hit model typically gives

risk estimates orders of magnitude above those given by the
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multi-stage, Weibull and multi-hit models, the central risk

estimate would reduce to:

P(d) M wlPl (d) (20)

The practical difficulty in this approach lies in determina-

tion of the set of plausible models and the vector of subjective

weights, wl, ~2, ..., wn* Decision analytic approaches would be

required to estimate the weights (see, for example, Morgan,

Henrion, and Morris (1981). The results would be sensitive to

the composition of the group of experts chosen. And, therefore,

the results might be difficult to defend as a basis for public

policy. However if a central estimate of risk is required, there

is no better alternative.

Recognizing the difficulty in determining the weights,

Wlr W2r =--I Wnr the EPA has taken the strategy of giving

approximate bounds on potency, rather than a central estimate of

potency and an estimate of the uncertainty in the potency esti-

mate. The approximate bounds are zero and a 95% confidence

interval estimate of 1 from (6), the multi-stage model.

.Interspecies Extrapolation

One of the most uncertain steps in risk assessment involves

inference of human potency, fihr from estimates of potency derived

from animal data. As we noted in an earlier paper (Evans et al.,

1982):

"The most common assumption to make, but one that is none-
the less difficult to use, is to assume that one species is
like another. In Figures 3 and 4 we illustrate the problems
with this assumption. Figure 3 is a rat; Figure 4 is a man,
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they do not look alike and we must be tolerant of the often
expressed doubts by intelligent members of the public and
explain ourselves well. In using a rat to tell us about
men, we do not imply that a rat is an embryonic man (about
to turn into a prince by a magic wand) nor that a man is an
overgrown rat, but to use the known fact that some of the
metabolic processes and cell structure are the same. Ulti-
mately, however, the use of such an analogy must rest on
data on other chemicals, accompanied by careful interpreta-
tion..."

The species most commonly used in cancer bioassays are rats

and mice. As Table 8 indicates, there are many differences

between rats, mice and men. Most estimates of human potency from

animal potency have been based upon the assumption of equal

sensitivity of both species. And the issue has been cast in

terms of selecting the appropriate measure of dose. As Table 9

indicates, the estimates of human potency derived in this way are

strongly dependent upon the measure of equivalent dose which is

used to make the comparison. For example, estimates of human

potency derived from studies of mice would be approximately 40

times lower if based on mg/(kg-day) than if based upon mg/kg.

Similarly, human potency estimates from mice based on

would be about 3.5 times lower than those based upon mg/kg and

11.5 times higher than those based upon mg/(kg-day). Concerning

this dilemma, Hogan and Hoe1 (1982) note:

"In order to realistically choose among these competing
dosage scales, it is necessary to compare actual human
cancer risks derived from epidemiologic studies with the
various animal-based estimates that would be produced with
the different dosage scales under consideration. Unfortu-
nately, very little data are available for making these
types of comparisons."

Several attempts have been made to compare animal-based

estimates of potency with those from epidemiology. A 1975

National Academy of Science (NAS) study of the health hazards of
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Table 8. Body Weights, Life Expectancies and Ranges of Intake
of Air, Water and Food for Rats, Mice and Men

Mouse Rat Man

Weight (kg) 0.025 0.25 70

Lifelength (yr) 1.75 2.0 70

Air Intake (m3/day) 0.04 0.2 15

Water Consumption (L/day) 0.005 0.015 2.5

Food Consumption (kg/day) 0.005 0.015 1.5

Surface Area (m2) 0.0075 0.0357 1.8

Source: Crouch and Wilson (1979)
Friedrich et al. (1966)

Table 9. Ratios of Lifetime Dose (mg) Required to Produce
a Unit Dose in Rat or Man to Lifetime Dose Required
to Produce a Unit Dose in a Mouse

Measure of Dose
or Dose Rate Man Rat Mouse

mg/kg 2.8 x 103 10.0 1

mg/ (kg-day) 1.1 x 105 11.0 1

mg/ (m2-day) 9.6 x 103 5.4 1
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pesticides compared animal-based and human estimates of potency

for benzidine, chlornaphazine cigarette smoke, aflatoxin Bl, DES

and vinyl chloride. Using the mg/kg measure of dose equivalence,

the animal and human potency estimates were within a factor of

ten of each other, with the exception of those for DES and vinyl

chloride. The epidemiologic estimates of risks for vinyl

chloride were a factor of 500 lower than those predicted on the

basis of animal data. A reanalysis of these data by Hoel indi-

cated that when either the mg/(kg-day) or mg/(m2-day)  measures of

dose were used animal-based and epidemiologic estimates of human

potency tended to agree within a factor of ten (Hogan and Hoel,

1982).

Figures 5 through 8 from Crouch and Wilson (1979) illustrate

the results of an analysis which extends the NAS data set to

include nine additional chemicals (acrylonitride, arsenic,

benzene, chloroform, 3-3'-dichlorobenzidine, ethylenedibromide,

lead acetate, saccharin and radiation. The figures, which are

based upon mg/(kg-day), illustrate clearly the approximate nature

of current models for interspecies extrapolation. Note that the

best-fit lines of unit slope (dashed lines on Figures 5 and 6)

indicate constant relative potencies between Osborne-Mendel and

Fischer rats and those in B6C3F1 mice of 0.40 and 4.5 respective-

ly. In general, the estimates of potency in rats based upon

potency in mice appear to be within a factor of ten of the

measured potencies in rats. The correlation between potency in
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Potency in Mouse Bm (lifetime probability of
cancer per mg/(kg-day).

Figure 5. Carcinogenic Potencies in
Osborne-Mendel Rat Versus B6C3F1 Mouse.

Potency in Mouse 6m (lifetime probability of
cancer per mg/(kg-day).

Figure 6. Carcinogenic Potencies in
Fisher 344 Rat Versus B6C3F1 Mouse

Source: Crouch and Wilson (1979)
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PPotency in Rat s+ (lifetime probability of
cancer per mg/(kg-day).

Figure 7. Carcinogenic Potency in Human Versus Rat

Potency in Mouse-Em (lifetime probability of
cancer per mg/(kg-day).

Figure 8. Carcinogenic Potency in Human Versus
Mouse.

Source: Crouch and Wilson (1979)
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humans and mice is not as good. In more recent work, Crouch and

Wilson (1981) have suggested that it is appropriate to use unity

as a central estimate of Kha (with dose expressed as mg/(kg-

day)), and that an approximate estimate of 1nK is 1.25.

DuMouchel and Harris (1983) have published an article

describing an empirical Bayes' method for combining evidence from

tests in several species. The new approach may eventually lead

to more precise estimates of human potency. In an illustrative

example, Harris and DuMouchel indicated that 95% confidence

intervals for potency of diesel emissions could be reduced to a

factor of approximately 9, i.e. ln 1.1. However, at present

it would seem that interspecies extrapolation is one of the

weakest links in the risk assessment process.

Discussion

Attempts to assess quantitatively the risks to human health

from chemical contamination resulting in exposures at low dose

rats are fraught with uncertainty. The amount of uncertainty

depends upon the contaminant, the pathways, the expected doses

and dose rates, and the nature and extent of toxicological/epide-

miological evidence.

Transport and dispersion models for non-reactive pollutants

are better developed than those for pollutants which are

chemically reactive or which are lost in transport due to

deposition or absorption. Air pollution models are, in general,

much better developed than ground-water models. Thus, estimates

of the concentrations of conservative pollutants in ambient air

are likely to be more precise than either estimates of the
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concentrations of reactive pollutants in air or estimates of the

concentrations of pollutants transported by ground-water.

Because interspecies extrapolation introduces uncertainty,

risk estimates based on potency estimates derived from human data

should, in principle, be more precise than those based upon

potency estimates derived from animal data. However there are

only about thirty contaminants for which human data exist. And

the estimates of human exposures in these retrospective epide-

miological studies are often so poor that the theoretical advan-

tage in precision may be offset.

When expected doses and dose rates are orders of magnitude

below those which were observed in epidemiology and/or bioassay,

large uncertainties in estimates of low dose potency are intro-

duced. The magnitude of these uncertainties increases dramati-

cally as the differences between the expected environmental

concentrations and the concentrations observed in epidemio-

logy/bioassay increases.

The uncertainties in assessment of human health risks would

not present a severe problem for policy analysis if their magni-

tudes could be estimated well. Techniques such as statistical

decision analysis are well suited for policy analysis under

uncertainty. And, if the magnitudes of the uncertainties in the

components of risk could be estimated, methods for analysis of

propagation of uncertainty could be used to derive estimates of

the overall uncertainty.

However, as our investigation demonstrates, estimates of the

uncertainties in many of the components are not widely available.
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There are some estimates of the accuracy of air pollution trans-

port models. And there are a few estimates of the precision of

predictions of ground-water models. Data on about twenty chemi-

cals provide rough estimates of the uncertainty introduced by

interspecies potency extrapolation.

But there are many problems with these uncertainty esti-

mates. They, in many cases, are not applicable to the situations

of interest. For example, they may apply only to prediction of

the transport of conservative pollutants. Or they may apply only

to predictions of concentrations very close to the emissions

source. And, in the case of interspecies extrapolation, they may

not adequately reflect the variability of uncertainty and its

dependence upon the specific contaminant, pathway, and test

species involved.

Finally, the uncertainty introduced in low dose extrapola-

tion is, at best, difficult to quantify. And it is virtually

impossible to verify. The relationship between low-dose potency

and the potency observed at high dose is dependent upon the

choice of dose-response model. And this choice is subjective.

No data or theory exist which unambiguously support the choice of

a particular model.

Therefore, it would seem that in most cases overall uncer-

tainties in risk assessment would be dominated by the uncertainty

in determination of low-dose potency estimates and that, at

present, it would be quite difficult to generate defensible

estimates of the overall uncertainties due to the difficulty in

estimating the uncertainty in determination of low dose potency.
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NOTES

1. Variable aquifer material and hydraulic properties as a
function of horizontal and vertical distance.

2. Personal comunication. William Rohrer, Senior Environmental
Scientist, Pope-Reid Associates, Inc., St. Paul, Minnesota,
July 1983.

3. Ibid.

4. See, for example, BEIR I (1972) and BEIR III (1980) reports
of the National Academy of Sciences.

5. The average remaining length of life under the 1970 U.S.
Life Table and age structure of the 1970 Census is about
45 years. Life expectancy at birth is approximately
70 years.

6. That is, for each tenfold reduction in dose, the probability
of response is decreased by one standard normal deviate.
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PART 10

THE VALUE OF IMPROVED EXPOSURE INFORMATION
IN BENEFIT-COST ANALYSIS OF TOXIC SUBSTANCES

John Evans

I. INTRODUCTION

Decisions about the control of toxics and hazardous wastes

often must be made amidst great uncertainty. In many cases

relationships between emissions and exposures, exposures and

doses, and doses and health risks are poorly understood. In

addition there are complex issues surrounding the valuation of

risks to human health. The resulting uncertainty complicates

decision making. One issue which often arises is how to deter-

mine when it is appropriate to collect additional information.

Intuition suggests that a decision maker should collect

additional information only if the value of the information is

greater than the cost of obtaining it. Unfortunately this prin-

cipal is often ignored.

Statistical decision analysis provides a framework for

decision making under uncertainty and a method for estimating the

value of information. (See, for example, Raiffa, 1968.) This

paper illustrates how this method can be used to estimate the

value of improved estimates of exposure.
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II. ANALYTICAL FRAMEWORK

Implicit in any framework for decision making under uncer-

tainty is the notion that even the best decisions may have bad

outcomes. Additional information may be valuable because it may

reduce the likelihood of bad outcomes. Its value depends upon

both the incremental costs of these bad outcomes and the reduc-

tion in the probability of their occurrence.

An example may clarify this point. Table 1 gives the con-

trol costs and health risks associated with three strategies for

the control of toxic emissions from a hypothetical industrial

source. Under the assumption that each unit health risk corres-

ponds to a one unit social cost total costs are minimized by

selection of control strategy B.

This problem did not involve uncertainty and the decision

was simple to make. In contrast, consider the situation in which

this same decision must be made on the basis of imperfect infor-

mation concerning health risks. See Table 2.

Here 2 is an unbiased, but imprecise, estimate of the true

health risk. (i is normally distributed with mean 1 and standard

deviation s.) Figure 1 shows the total cost estimate for each

strategy as a function of the health risk estimate. Analysis of

the figure indicates that estimated total costs are minimized

under the following decision rules. If fi is less than 0.50

select strategy A. If it is between 0.50 and 1.40 select stra-

tegy B. Otherwise select strategy C.
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Table 1. Hypothetical Control Costs and Health Risks
without Uncertainty

Strategy Control Cost Health Risk Total Cost

A 0 1.00 1.00

B 0.25 0.50 0.75

C 0.81 0.10 0.91

Table 2. Hypothetical Control Costs and Health Risks
with Uncertainty

Health Risk Total Cost
Strategy Control Cost Estimate Estimate

A 0 1.00 i;

B 0.25 0.50 6

1.00 ;;

0.25 + 0.50 i

C 0.81 0.10 ; 0.81 + 0.10 ;;
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Total Cost Estimate

3.0

2.0

1.0

0
0 3.0

Figure 1. Dependence of Costs on Health Risks
-- Hypothetical Case

1.0 2.0

Health Risk Estimate, $
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If the true health risk were known, strategy B would be

selected. Uncertainty in the estimates of health risks leads to

random, and sometimes incorrect, decisions. The cost of this

randomness may be determined by comparing the expected total cost

of decisions made under uncertainty with the cost of decisions

made under uncertainty would be:

(1)

The components of this equation are the probabilities and

costs of choosing strategies A, B and C, respectively. With

perfect information, strategy B would always be chosen, with a

cost of 0.75. The difference between the expected total cost

under uncertainty and the cost with perfect information is:

(2)

This quantity is known by decision analysts as the expected

opportunity loss, EOL, or expected value of perfect information,

EVPI. It is the most that a rational decision maker should be

willing to pay to eliminate uncertainty.

The expected opportunity loss depends upon both the incre-

mental costs associated with bad decisions and the probabilities

of making bad decisions. These probabilities depend upon the

amount of uncertainty in the health risk estimates. Figure 2

illustrates the dependence of the expected opportunity loss upon

the degree of imprecision in health risk estimates. Notice the

sensitivity of the expected opportunity loss to the standard

deviation of the risk estimates.
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Expected Opportunity Loss

Uncertainty in Risk Estimates, S$

Figure 2. Dependence of Expected Opportunity Loss on
Uncertainty in Risk Estimates -- Hypothetical
Case
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The example illustrates how uncertainty leads to incorrect

decisions and to increased total costs. It also demonstrates

that with information about the degree of uncertainty and the

costs of incorrect decision making it is possible to estimate the

expected value of perfect information.

In more realistic cases, it will be possible to reduce, but

not eliminate, uncertainty. A more appropriate measure of the

value of information in these cases is the difference between the

expected opportunity loss without the information and the expec-

ted opportunity loss with the information. In the sections which

follow we develop an approach for addressing this more complex

case and demonstrate the application of our approach.
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III. PROPOSED APPROACH

Our approach for estimating the value of improved exposure

estimates in support of environmental decision making involves

five steps.

(1)

(2)

(3)

(4)

(5)

for

Estimate the uncertainty in health risk estimates made on

the basis of current exposure estimates.

Calculate the expected opportunity loss associated with

decisions made under the current level of uncertainty.

Estimate the uncertainty in health risk estimates which

would remain once exposure estimates were improved.

Calculate the expected opportunity loss associated with

decisions made under the reduced level of uncertainty.

Estimate the value of improving exposure estimates by

comparing (2) and (4).

To apply this framework to the problem of decision making

toxic air emissions one must consider the sources of uncer-

tainty in health risk estimates. Five steps are involved in the

estimation of health risks under alternative control strategies.

One

(1)

(2)

(3)

(4)

(5)

must estimate:

the emissions expected under each control strategy,

the contribution of emissions to ambient concentrations,

the contribution of changes in ambient concentrations to

changes in human exposures,

the contribution of changes in exposures to changes in

doses, and

the contribution of changes in dose to changes in risks.
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Each of these steps involves uncertainty. The efficiencies

of various control strategies are not precisely known. There are

uncertainties in the models used to predict transport and disper-

sion of pollutants. The behavior patterns of people are not well

known and it is these patterns which determine the relationship

between concentrations and exposures. Breathing rates, clearance

parameters, and other factors which govern the dose received from

a given exposure are somewhat uncertain. And finally, models of

dose-response are subject to many uncertainties. For many pollu-

tants the dynamics of dose-response and the functional form of

the relationship between dose and response, are poorly under-

stood. In addition, the parameters of dose-response models must

often be estimated from very limited data.

To estimate the uncertainty in health risk estimates it is

necessary to first evaluate the uncertainty in each of these

elements. Once these have been evaluated, methods for the analy-

sis of propagation of uncertainty may be employed to determine

both the total uncertainty and the contribution of each element

to the total. (See for example, Bevington, 1969.) For example,

under a proportional model of risk, one of several methods may be

used to analyze the propagation of uncertainty. With a propor-

tional model the health risk, fi, is estimated as the product of

potency, $ and dose, 8. If the errors in B', and D are small

(compared to their typical values), independent, and symmetric

then Gauss' Law of Error Propagation gives:
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(3a)

(3b)

where aR2 is the variance of the distribution of risk estimates,

c$ and agr2 are the variances of the estimates of the total

dose to the population and the potency of the chemical for the

biologically average individual, respectively, and 8, B and p

are the mean values of these same quantitities. Alternatively,

if the estimates of and D are thought to be distributed

approximately lognormally around their medians, then:

(4a)

(4b)

where I$,,, f3h and D, are the geometric means (or medians) of

the distributions of estimates of risks, potency and dose and

Dfnct 0 fnit and cfni are the variances of the distributions of

the natural logarithms of these quantities.
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These methods would permit one to estimate the fraction of

total uncertainty due to uncertainty in dose estimates, and

therefore to estimate the value of improving dose estimates.

More advanced methods, such as Monte Carlo simulation, could be

used to analyze the propagation of uncertainty in more complex

models of risk.

One additional complexity must be considered. Our analysis

has been based upon the assumption that the form of the dose-

response model is known and that the only sources of uncertainty

are uncertainties in the dose estimates and in the potency esti-

mates. This is not always the case.

The bulk of our knowledge about the risks associated with

exposure to environmental carcinogens comes from either small

rodent bioassay or occupational epidemiology. In both cases the

doses and dose rates tend to be several orders of magnitude above

those likely to be encountered in the ambient environment. This

would not present difficulties for risk assessment if the shape

of dose-response curves were known. However, neither theory nor

empirical evidence provides unambiguous support for one model.

(See, for example, Van Ryzin, 1980.)

To illustrate the difficulty this presents for risk

assessment consider the following example. Imagine that only two

models of dose-response were plausible: a proportional model and

a kth order model. See Figure 3. In order for these two models

to give similar estimates of risk in the range of experimentally
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Health Risk Estimate

Dose or Exposure Level

Figure 3. Dependence of Health Risk Estimate on Choice
of Dose-Response Model
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observed doses, their parameters must be related. Thus their

estimates of low dose potency and of risks at low doses are also

related:

(5a)

(5b)

Where p is the number of orders of magnitude that ambient doses

are below experimental doses, and da is the level of typical

ambient doses. It is obvious from these relationships that when

ambient doses are several orders of magnitude below experimental

doses, the uncertainty as to the form of the dose-response model

may lead to quite large uncertainties in health risk estimates.

A simple modification to our approach for estimation of the

value of improved exposure estimates accommodates this additional

complexity. In the case of model uncertainty the probability

density function for health risk estimates is generated using:

(6)

which involves a sum of products of conditional probability

density functions and estimates of the probabilities that each of

k possible models is correct. The remainder of the analysis is

unchanged.
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