

ANSI/ASHRAE/IESNA Standard 90.1

U.S. Department of Energy Building Energy Codes Program

Produced by the Pacific Northwest National Laboratory

- Please be aware that all actual text and graphics from the 90.1 Standard are copyrighted by ASHRAE
 - -Text used verbatim from the Standard in these materials is marked in quotes
- 2001 NOTE: Red/underlined items in these materials illustrate 90.1-2001 requirements

- Per the requirement in the Energy Policy Act of 1992
 - DOE has "determined" that Standard 90.1-1999 saves energy over Standard 90.1-1989
 - States now have two years to notify DOE that they have adopted a commercial energy code that meets or exceeds Standard 90.1-1999

- For more information on the determination
 - www.energycodes.gov
- DOE estimates that, overall, Standard 90.1-1999 saves about 5% over Standard 90.1-1989
 - Savings are primarily associated with lighting and some mechanical equipment

Why is Standard 90.1 important?

- It replaces ANSI/ASHRAE/IESNA Standard 90.1-1989 and the codified version of Standard 90.1-1989 (the gray book)
- It is the reference standard for Chapter 7 of the 2001 IECC
- It is also the commercial energy reference in NFPA's family of codes

- Written in mandatory, enforceable language
- Contains true prescriptive path for envelope
- Mechanical and envelope sections heavily dependent on economic analysis
- Lighting section heavily dependent on lighting quality considerations
- Pays considerable more attention to existing buildings

How has it changed?

- Does not include lighting tradeoff software (LTGSTD)
- Does include a simplified mechanical systems approach for "simple" buildings
- Does include separate envelope requirements for non-residential, residential, and semi-heated spaces
- Is accompanied by ASHRAE Guideline 18 (ways to go beyond Standard 90.1) – in process
- Extends scope and coverage (alterations and additions)
- Includes international units
- Expands climate locations
- Is reorganized for ease of use

How is it the same?

- Contains separate envelope, HVAC, SWH, and lighting provisions
- Includes envelope tradeoff software (ENVSTD – new version)
- Contains an energy cost budget tradeoff method

How has stringency changed?

- Mechanical requirements generally more stringent (with exception of economizers)
- Envelope requirements a mixed bag some more stringent, some less, depending on economics
- Lighting requirements generally more stringent with exception of some building types and space types

How can I find out more about the differences?

- Excruciatingly detailed comparisons of Standards 90.1-1989 and 90.1-1999 may be found at http://www.energycodes.gov/ implement/determinations_com.stm
- PNNL is also working on comparisons of the 90.1-1999 Standard and Chapter 8 of the 2001 IECC

How can I get a copy?

 Standard 90.1, the Standard 90.1 Users Manual, and the ENVSTD software are available from ASHRAE

404-636-8400

Comparison of organization of sections of Standard 90.1

90.1-1989

- 4 Compliance
- 5 Electric power
- 6 Lighting
- 7 Auxiliary systems and equipment
- 8 Building Envelope
- 9 HVAC Systems
- 10 HVAC Equipment
- 11 SWH
- 12 Energy management ¹¹ ECB
- 13 ECB

90.1-1999

- 4 Administration and enforcement
- 5 Building envelope
- 6 HVAC
- 7 SWH
- 8 Power
- 9 Lighting
- 10 Other equipment

90.1-2001

Same as 90.1-1999 with the addition of Appendix F - Addenda

Standard 90.1

- Section 1 Purpose
- Section 2 Scope
- Section 3 Definitions, Abbreviations, and Acronyms
- Section 4 Administration and Enforcement
- Section 5 Building Envelope
- Section 6 Heating, Ventilating, and Air-Conditioning
- Section 7 Service Water Heating
- Section 8 Power

Standard 90.1

Section 9 - Lighting Section 10 - Other Equipment Section 11 - Energy Cost Budget Method Section 12 - Normative References Appendices A-D - Mostly envelope related Appendix E - Informative References Appendix F – Addenda Description Information

To provide minimum requirements for the energy-efficient design of buildings except low-rise residential buildings

Section 2 - Scope

- New buildings and their systems
- New portions of buildings and their systems (additions)
- New systems and equipment in existing buildings (alterations)

Section 2 – Scope (cont'd)

- Envelope
 - if heated by a heating system with an output capacity \$3.4 btu/h-ft² or
 - if cooled by a cooling system with a sensible output \$5 btu/h-ft²
- Virtually all mechanical and lighting systems are covered

- Too little heating or cooling
- Single-family, multifamily of three stories or less, manufactured or modular homes
- Buildings that don't use electricity or fossil fuel
- Equipment and portions of building systems that use energy primarily for industrial, manufacturing, or commercial purposes

Section 3 - Definitions, Abbreviations, and Acronyms

- Over 10 pages of definitions
- 1 page of abbreviations and acronyms
- Defined terms are italicized in text of standard

Section 4 – Administration and Enforcement

Specifies

- what applies to new buildings, existing buildings, additions, and alterations
- exemptions for envelope, HVAC, SWH, power, lighting, and other equipment alterations
- Discusses changes in space conditioning

Administration and Enforcement (cont'd)

Addresses

- compliance documentation
- labeling of materials and equipment
- fenestration, doors, insulation, mechanical equipment, and packaged terminal air conditioners
- alternative materials and methods of construction
- inspections

Section 5 – Building Envelope

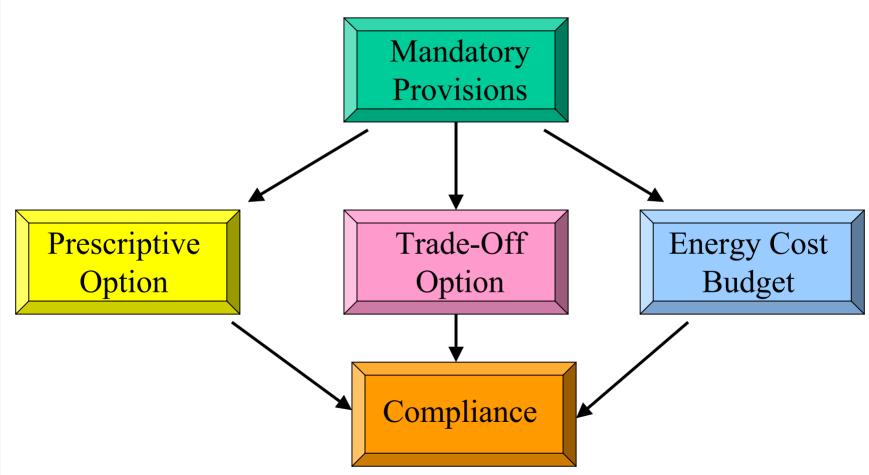
- General (Section 5.1)
 - Scope
 - Compliance
 - Climate
 - Space-Conditioning Categories and Basis
- Mandatory Provisions (Section 5.2)
 - Insulation
 - Fenestration and Doors
 - Air Leakage
- Prescriptive Building Envelope Option (Section 5.3)
 - Opaque Areas
 - Fenestration
- Building Envelope Trade-Off Options (Section 5.4)

Scope (Section 5.1.1)

- Envelope components that enclose
 - conditioned space
 - semi-heated space

- Requirements apply to three types of spaces
 - Nonresidential
 - Residential
 - Semi-heated
- Exceptions

Semi-heated space


 Has a heating system with a capacity > 3.4 Btu/h.ft² (10 W/m²) of floor area but is not conditioned space

Exceptions

- All semi-heated and unconditioned spaces to be clearly indicated on floors plans
- In climates > 1800 HDD65, space may be designated either semi-heated or unconditioned only if approved by the building official

Envelope Compliance Methods (Section 5.1.2)

Climate (Section 5.1.3)

Bins based on CDD50 and HDD65

- Locations listed in Appendix D
- If location not listed, select one with "closest" climatic conditions

CDD and HDD

- CDD50 = for any one day, when the mean temperature is > 50F, there are as many degree-days as degrees F temperature difference between mean temperature and 50F. Annual cooling degree days (CDD) are the sum of the degree-days over a calendar year.
- HDD65 = for any one day, when the temperature is < 65F, there are as many degree-days as degrees F temperature difference between mean temperature and 65. Annual heating degree-days (HDD) are the sum of the degree-days over a calendar year.

Space-Conditioning Categories and Basis Envelope Requirements Are Specified by Space-Conditioning Categories (Section 5.1.4)

- Each space to be included in a category
 - Nonresidential conditioned space
 - Residential conditioned space
 - Both nonresidential and residential semiheated space
- Spaces in climates > 1800 HDD65 assumed to be conditioned space unless
 - space will only be semiheated or unconditioned <u>and</u>
 - approved as such by the building official

Mandatory Provisions

- Insulation (Section 5.2.1) (Section 5.5.1)
 - Installation (Section 5.5.1.1)
 - Substantial contact (Section 5.5.1.2)
 - Recessed equipment (Section 5.5.1.3)
 - Location of roof insulation (<u>Section 5.5.1.4</u>)
 and insulation protection (<u>Section 5.5.1.5</u>)

Section 5.2.1 now simply refers to Section 5.5

Required in all compliance paths

Insulation Installation (Section 5.2.1.1) (Section 5.5.1.1)

- Per manufacturer's instructions
- Achieve rated R-value
- No open-blown or poured loose-fill insulation
 - when ceiling slope is > 3/12
- If eave vents installed
 - provide baffling of air vents "to deflect incoming air above the surface of the insulation"
- Metal buildings exception
 - If roof and wall insulation is "compressed between roof or wall skin and the structure,"

- Install insulation in a "permanent manner in substantial contact with inside surface"
- Flexible batt insulation in floor cavities
 - to be "supported in a permanent manner by supports no more than 24 in. o.c."

Recessed Equipment (Section 5.2.1.3) (Section 5.5.1.3)

- Do not recess equipment to affect insulation thickness
 - Lighting fixtures
 - HVAC equipment (includes wall heaters, ducts, and plenums)
 - Other
- Exceptions

Exceptions

When

- "Total combined area affected (include necessary clearances) is < 1% of opaque area of the assembly, **OR**
- Entire roof, wall, or floor is covered with insulation to the full depth required, OR
- Effects of reduced insulation are included in area-weighted calculations"

 Not "installed on a suspended ceiling with removable ceiling panels"

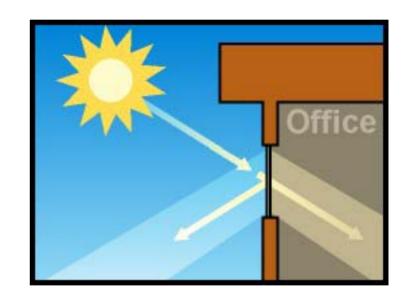
Mandatory Provisions Insulation Protection (Section 5.2.1.5) (Section 5.5.1.5)

- Cover exterior insulation with protective material
 - Sunlight
 - Moisture
 - Landscaping operations
 - Equipment maintenance
 - Wind
- Access to attics and mechanical rooms without damaging or compressing insulation
- "Insulation materials in ground contact to have a water absorption rate # 0.3% (ASTM C272)"

Mandatory Provisions Fenestration

Fenestration and Doors (Section 5.2.2) (Section 5.5.2)

- U-factors
 - NFRC 100 or
 - Assemblies listed in Appendix A
- SHGC
 - NFRC 200 or
 - Assemblies listed in Appendix A
- Visible Light Transmittance
 - NFRC 200 when building envelope trade-off option is used


U-factor

- Skylights determine for a slope of 20° above the horizontal
- Labeled and certified by manufacturer
- Exceptions
 - "Glazed wall systems in vertical fenestration and skylights" – may use U-factors in A.8.1
 - A.8.2 acceptable for other vertical fenestration
 - A.7 acceptable for opaque doors
 - NAGDM 105 acceptable for garage doors

Solar heat gain coefficient

- The glazing's effectiveness in rejecting solar heat gain
- Part of a system for rating window performance
 - used by NFRC
- Gradually replacing shading coefficient (SC) in product literature and design standards

- Overall fenestration area (NFRC 300)
 - SC X 0.86
 - SHGC for center of glass
- SHGC from A.8.1 for glazed wall systems in vertical fenestration and skylights
- SHGC from A.8.2 for other vertical fenestration

Visible light transmittance

- A measure of the amount of visible light that passes through fenestration
- Affected by:
 - composition of the glass
 - coatings
 - internal shading devices

Mandatory Provisions

Air Leakage (Section 5.2.3) (Section 5.5.3)

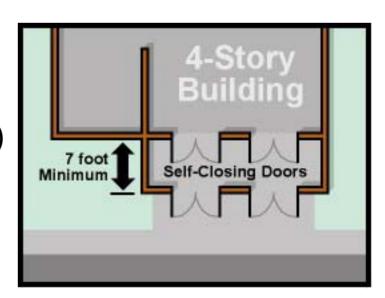
- Seal, caulk, gasket, or weatherstrip
 - openings and joints in building envelope
 - fenestration and doors per NFRC 400
 - loading docks in climates > 3600HDD
 - vestibules and doors separating conditioned space from exterior

Mandatory Provisions/Air Leakage Building Envelope Sealing (Section 5.2.3.1) (Section 5.5.3.1)

- Joints around fenestration and door frames
- Junctions between walls
 - and foundations
 - at building corners
 - and structural floors or roofs
 - and roof or wall panels
- Openings for "utility services through roofs, walls, and floors
- Site-built fenestration and doors
- Building assemblies used as ducts or plenums
- Joints, seams, and penetrations of vapor retarders
- All other openings in the building envelope"

Fenestration and Doors (Section 5.2.3.2) (Section 5.5.3.2)

- NFRC 400
- Labeled and certified by manufacturer
- Glazed swinging entrance doors and revolving doors – not to exceed 1.0 cfm/ft²
- All other products not to exceed 0.4 cfm/ft²
- Exceptions
 - "Field-fabricated fenestration and doors"
 - Garage doors NAGDM 105



- > 3600 HDD65
 - "Cargo doors and loading dock doors equipped with weatherseals
 - To restrict infiltration when vehicles are parked in the doorway"

Mandatory Provisions/Air Leakage Vestibules (Section 5.2.3.4) (Section 5.5.3.4)

- All exterior doors in tall buildings in cold climates must have a vestibule with
 - self-closing doors
 - interior and exterior doors must not be open at the same time
 - distance between interior and exterior doors not7 ft when in closed position (remember ADA!)

Vestibule exceptions

- Non-entrance doors (mechanical/electrical rooms)
- Vehicle and material handling doors and adjacent personnel doors OR revolving doors
- All doors in climates < 1800 HDD65 OR in buildings < 4 stories
- All doors that open into spaces < 3000 ft² OR into dwelling units

Prescriptive Building Envelope Option (Section 5.3)

WWR # 50% of gross wall area
Skylight-roof ratio # 5% of roof area
Each envelope component must separately meet
requirements

- 26 criteria sets for different climate types
 - Set = single page that summarizes all prescriptive requirements
 - Insulation levels for roofs, walls floors
 - Fenestration criteria

Specify

- R-values for walls, floors, and roofs
- U-factors for opaque doors
- U-factor and SHGC for fenestrationOR

Use

Pre-calculated assemblies from Appendix A

Envelope Prescriptive Option Opaque Areas (Section 5.3.1)

Compliance

- Meet or exceed minimum R-values in table
 - Only R-value of insulation, not to include air films, etc

OR

 Meet maximum U-factor, C-factor, or F-factor for the entire assembly

OR

- Perform area-weighted average U-factor, C-factor, or F-factor
 - Only if there are multiple assemblies within a <u>single</u> class of construction for a <u>single</u> space-conditioning category

Example Table B-13

TABLE B-13

Building Envelope Requirements (HDD65: 3601-5400, CDD50: 3601+)

	Nonresidential		Residential		Semiheated	
	Assembly	Insulation Min.	Assembly	Insulation Min.	Assembly	Insulation Min.
Opaque Elements	Maximum	R-value	Maximum	R-value	Maximum	R-value
Roofs						
Walls, Above Grade						
Walls, Below Grade						
Floors						
Slab-On-Grade Floors						
Opaque Doors						
	Assembly	Assembly Max.	Assembly	Assembly Max.	Assembly	Assembly Max.
	Manx. U	SHGC (All	Manx. U	SHGC (All	Manx. U	SHGC (All
	(Fixed/	Orientations/	(Fixed/	Orientations/	(Fixed/	Orientations/
Fenestration	Operable)	North-Oriented)	Operable)	North-Oriented)	Operable)	North-Oriented)
Vertical Glazing. % of Wall						
Skylight with Curb, Glass, % of Roof						
Skylight with Curb, Plastic, % of Roof						
Skylight without Curb, All, % of Roof						
* Exception to 5.3.1.2a applies.						

C-factor, F-factor


- C-factor (thermal conductance) time rate of steady-state heat flow through unit area of a material or construction, induced by a unit temperature difference between the body surfaces. Units of C are Btu/hft2BF. Note that C-factor doesn't include soil or air films.
- F-factor the perimeter heat loss factor for slab-on-grade floors, expressed in Btu/hft2 BF

Envelope Prescriptive Option Opaque Areas (Section 5.3.1)

- Roof Insulation (Section 5.3.1.1)
- Above-Grade Wall Insulation (Section 5.3.1.2)
- Below-Grade Wall Insulation (Section 5.3.1.3)
- Floor Insulation (Section 5.3.1.4)
- Slab-on-Grade Floor Insulation (Section 5.3.1.5)
- Opaque Doors (Section 5.3.1.6)

- Meet or exceed minimum R-value in table
- "Skylight curbs insulated to level of roofs with insulation entirely above deck or R-5, whichever is less"
- Roofs with insulation entirely above deck
 - R-value is for continuous insulation
 - Interruptions for mechanical equipment # 1% of surface of the total roof area

Roof Insulation (cont'd)

- Metal building roofs
 - First value is for
 - "insulation draped over purlins and then compressed when metal spanning members attached or
 - insulation hung between purlins provided there's a min. of 1" thermal break between purlins and metal spanning members
 - Second value is for double-layer installations with insulation installed parallel to the purlins"
- Attics and other roofs
 - R-value is for insulation installed both inside and outside the roof or entirely inside the roof cavity

Above-Grade Wall Insulation (Section 5.3.1.2)

- Meet or exceed R-value in appropriate table
- Mass walls
 - heat capacity determined from Table A-6 or A-7
 - R-value is for continuous insulation or when uninterrupted by framing other than metal clips no closer than 24 in. o.c. horizontally and 16 in. o.c. vertically
- Exception requirement of U-0.151

Above-Grade Wall Insulation (cont'd)

- R-values for
 - "Metal building wall = insulation compressed between metal wall panels and the steel structure
 - Steel-framed wall = uncompressed insulation installed in the cavity between steel studs
 - Wood-framed and other = uncompressed insulation installed in the cavity between wood studs"; also acceptable to be continuous insulation uninterrupted by studs

- Meet or exceed values in appropriate table in Appendix B
- R-value is for continuous insulation
- If framing is used, compliance is based on maximum assembly C-factor

Envelope Prescriptive Option Floor Insulation (Section 5.3.1.4)

- Meet or exceed values in appropriate table in Appendix B
- R-values for
 - Mass floors = continuous insulation; if framing is used, compliance is based on maximum assembly U-factor
 - Steel joist floors = uncompressed insulation or spray-on insulation, but is also acceptable for continuous insulation
 - Wood-framed and others = uncompressed insulation, but is also acceptable for continuous insulation

- Meet or exceed values in appropriate table in Appendix B (includes R-value and depth or width of insulation)
- "Be installed around the perimeter to the distance specified
 - Inside foundation wall extend downward from top of slab a minimum distance specified or to the top of the footing, whichever is less
 - Outside foundation wall extend from top of the slab or downward to at least the bottom of the slab and then horizontally toga a minimum distance specified"

Envelope Prescriptive Option Opaque Doors (Section 5.3.1.6)

Meet or exceed maximum
 U-factors in appropriate table in
 Appendix B

- Criteria apply to fenestration, including windows, glass doors, glass block, plastic panels, and skylights
- Compliance
 - Meet or exceed maximum U-factors in table
 - Meet or exceed minimum SHGC in table
 - Use NFRC ratings or default values in Appendix A

Envelope Prescriptive Option Fenestration (Section 5.3.2)

- Fenestration Area (Section 5.3.2.1)
- Fenestration U-Factor (Section 5.3.2.2)
- Fenestration Solar Heat Gain Coefficient (Section 5.3.2.3)
- Visible Light Transmittance (Section 5.3.2.4)

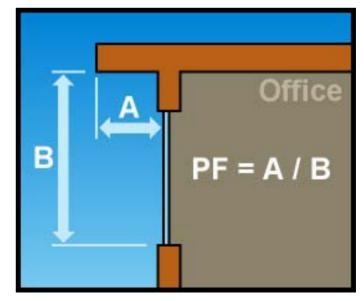
Fenestration Area (Section 5.3.2.1)

- Total vertical fenestration area to be
 - < 50% of gross wall area
 - including both fixed and operable vertical fenestration
- Total skylight area to be < 5% of gross roof area
 - glass skylights
 - plastic skylights with a curb
 - all skylights without a curb

Fenestration U-Factor (Section 5.3.2.2)

- NFRC or meet or exceed maximum U-factors in A-17
- Exception
 - "Vertical fenestration complying with Exception (c) to 5.3.2.3 to have a U-factor # U-factor specified for 40% of the gross wall area"

Fenestration SHGC (Section 5.3.2.3)


- Vertical fenestration
 - SHGC values < Table 5.3 (Appendix A-18) for appropriate total vertical fenestration area
- Skylights
 - SHGC values < Table 5.3 (Appendix A-18) for appropriate total skylight area
- "No SHGC requirements for semiheated spaces or for buildings in climates > 10800 HDD65"
- Exceptions

 Standard credits permanent overhangs by adjustment to SHGC

Size of overhang is determined by

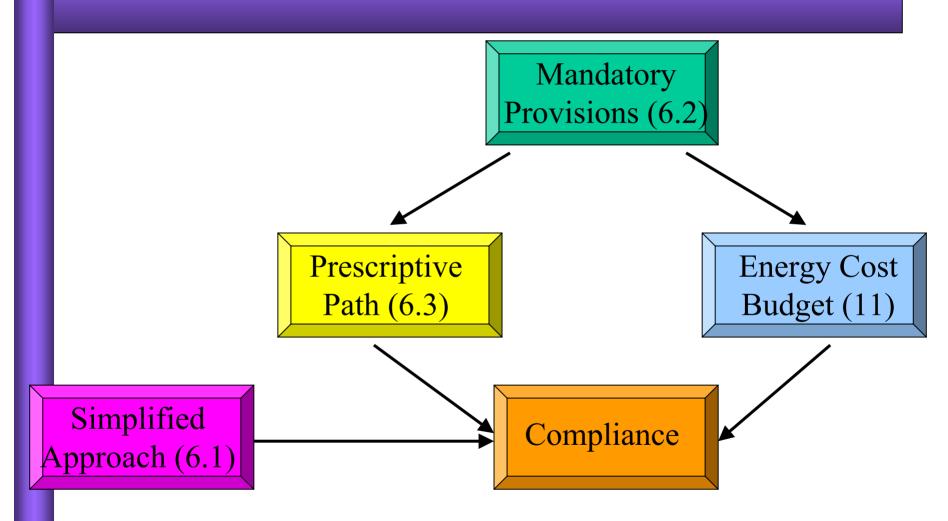
projection factor

Visible Light Transmittance (Section 5.3.2.4)

 No criteria in the Prescriptive Building Envelope Option, but there are "minimum criteria in the Building Envelope Trade-Off Option"

Trade-Off
Option

- Building complies if
 - It satisfies the provisions of 5.1 and 5.2


EPF = envelope performance factor

EPF is calculated using Normative Appendix C

"Schedules of operation, lighting power, equipment power, occupant density, and mechanical systems to be the same for proposed building and budget building"

Section 6 - HVAC Compliance

Simplified Approach Option (Section 6.1)

Simplified Approach

- Limited to...
 - buildings with 1 or 2 stories
 - buildings < 25,000ft²
 - single-zone systems
 - air-cooled or evaporatively-cooled only

Simplified (cont'd)

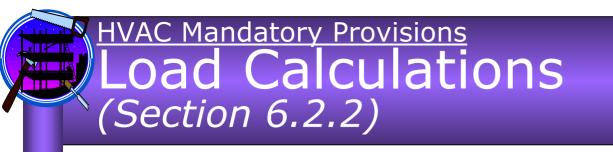
- Manual changeover or dual set-point thermostat
- Heat pump supplementary control
- No reheat or simultaneous heating and cooling for humidity control
- Time clocks (except hotel/motel...)
- Pipe and ductwork insulated
- "Ducted system to be air balanced to within 10% of design air flow rates"
- Interlocked thermostats to prevent simultaneous heating and cooling
- Exhausts (design capacity > 300 cfm unless continuous operation)
- Optimum start controls (design supply air capacity > 10,000 cfm)

Mandatory Provisions

- Mechanical Equipment Efficiency (Section 6.2.1)
- Load Calculations (Section 6.2.2)
- Controls (Section 6.2.3)
- HVAC System Construction and Insulation (Section 6.2.4)
- Completion Requirements (Section 6.2.5)

Required in both Prescriptive and ECB compliance paths

Equipment covered


- Package air conditioners
- Heat pumps
- Chillers
- Furnaces
- Boilers
- Heat rejection equipment
- Packaged terminal room air conditioners

Equipment covered for the first time in 90.1-1999

- Ground-source heat pumps
- Single- and double-effect absorption chillers
- Heat rejection equipment
- New categories for
 - hot water and steam boilers
 - replacement PTACs and PTHPs

HVAC Mandatory Provisions Mechanical Equipment Efficiency (Section 6.2.1)

- Tables 6.2.1A 6.2.1G
- Combination systems to meet all requirements for appropriate space heating or cooling category
- "Gas-fired and oil-fired forced air furnaces with input ratings \$ 225,000 Btu/h to have intermittent ignition or interrupted device and have either power venting or a flue damper
- All furnaces with input ratings \$ 225,000
 Btu/h, including electric furnaces, not located in conditioned space, to have jacket losses
 # 0.75% of the input rating"

 "Determined in accordance with generally accepted engineering standards and handbooks acceptable to the adopting authority"

HVAC Mandatory Provisions Controls (Section 6.2.3)

- Zone Thermostatic controls (Section 6.2.3.1)
 - Required for each zone
 - Dead Band controls
 - Set Point Overlap Restrictions
- Off-Hour controls (Section 6.2.3.2)
 - Automatic Shutdown
 - Setback Controls
 - Optimum Start Controls
 - Shutoff Damper Controls
 - Zone Isolation

HVAC Mandatory Provisions Controls (Section 6.2.3)

- Gravity Vent Controls <u>Ventilation</u>
 <u>System Controls</u> (Section 6.2.3.3)
 - Stair and Shaft Vent dampers
 - Gravity Hoods, Vents, and Ventilator Dampers
- Heat Pump Auxiliary Heat Control (Section 6.2.3.4)
- Enclosed Parking Garage Ventilation Controls (Section 6.2.3.5) - <u>deleted</u>

HVAC Mandatory Provisions Controls (Section 6.2.3)

- Humidifier Preheat Controls (Section 6.2.3.6) (6.2.3.5)
- Humidification and Dehumidification Controls (Section 6.2.3.7) (6.2.3.6)
- Freeze Protection and Snow/Ice Melting Systems (Section 6.2.3.8) (6.2.3.7)
- Ventilation Controls for High-Occupancy Areas (Section 6.2.3.9) (6.2.3.8)
- Exceptions

HVAC Mandatory Provisions/Controls Dead Band (Section 6.2.3.1.2)

- Thermostats must have a 5°F dead band
- Exceptions
 - "Thermostats that require manual changeover between heating and cooling modes
 - Special occupancy or applications where wide temperature ranges aren't acceptable" (e.g., retirement homes) and approved by adopting authority

- If limit switches, mechanical stops, or software programming for DDC systems are used
 - means will be provided "to prevent the heating set point from exceeding the cooling set point minus any applicable proportional band"

Off-Hour Controls (Section 6.2.3.2)

- Systems with heating/cooling capacity
 - $> 65,000 \text{ Btu/h} \text{ and fan } > \frac{3}{4} \text{ hp}$
 - Shall have the following off-hour controls
 - automatic shutdown
 - setback controls
 - optimum start controls
 - shutoff damper controls
 - zone isolation
- Exceptions, "HVAC systems
 - serving hotel/motel guestrooms
 - intended to operate continuously"

HVAC Mandatory Provisions/Controls Automatic Shutdown (Section 6.2.3.2.1)

- Controls to operate on different time schedules for seven different day-types per week and retain programming and time setting during loss of power for at least 10 hrs
- Each control to have
 - occupant sensor, OR
 - manually-operated timer with maximum two hour duration, **OR**
 - interlock to security system

Setback Controls (Section 6.2.3.2.2)

- Applies when heating systems are located where heating design temperature is # 40°F and cooling systems located where cooling design temperature < 100°F
- "Heating set point adjustable down to # 55°F
- Cooling set point adjustable up to \$ 90°F or to prevent high space humidity levels"
- Exception
 - "Radiant floor and ceiling heating systems"

Optimum Start Controls (Section 6.2.3.2.3)

- "Individual heating and cooling air distribution systems with
 - total design supply air capacity > 10,000 cfm
 - served by one or more supply fans"
- Control algorithm to at least "be a function of
 - difference between space temperature and occupied setpoint and amount of time prior to scheduled occupancy"

Shutoff Damper Controls (Section 6.2.3.2.4) (6.2.3.3.3)

- Motorized dampers for outdoor air supply and exhaust systems
- "Ventilation outside air dampers to be capable of automatically shutting off during
 - preoccupancy building warm up, cool down, and setback
 - (Except when ventilation reduces energy costs or when ventilation must be supplied to meet code requirements)
- Supply and exhaust dampers to have maximum leakage rate of 3 cfm/ft² at 1.0 in. w.g. when tested in accordance with AMCA Standard 500"

HVAC Mandatory Provisions/Controls Shutoff Damper Controls - Exceptions (Section 6.2.3.2.4) (6.2.3.3.3)

- Gravity dampers okay in buildings
 - < 3 stories in height</p>
 - of any height in climates < 2700HDD65
- Systems with design outside air intake or exhaust capacity # 300 cfm
 - if "equipped with motor-operated dampers that open and close when unit is energized and de-energized, respectively"

Each isolation area

- Maximum 25,000 ft² zone on one floor
- Ability to shut off airflow to isolation area
- Automatic shutdown device
- Central systems capable of stable operation for smallest isolation area

Motorized dampers

- can be "automatically closed during normal building operation
- interlocked to open as required by fire and smoke detection systems"

- "Motorized dampers to automatically shut when spaces served are not in use"
- Exceptions
 - Gravity dampers okay in buildings
 - < 3 stories in height
 - of any height in climates < 2700 HDD65

HVAC Mandatory Provisions/Controls Heat Pump Auxiliary Heat Control (Section 6.2.3.4)

- Controls to prevent supplementary heat when heat pump can handle the load
- Exception
 - Heat pumps
 - with minimum efficiency regulated by NAECA
 - with HSPF rating meeting Table 6.2.1B
 - ("Includes all usage of internal electric resistance heating")

HVAC Mandatory Provisions/Controls Enclosed Parking Garage Ventilation (Section 6.2.3.5) Deleted

- "Garage ventilation fan systems with total design capacity > 30,000 cfm" to have at least one automatic control
 - "capable of staging fans or modulating fan volume as required to maintain CO levels below ASHRAE Standard 62" (only applies to garages used predominantly by gasolinepowered vehicles)
 - "complying with 6.2.3.2.1 that's capable of shutting off fans or reducing fan volume during periods when garage is not in use"

HVAC Mandatory Provisions/Controls Humidifier Preheat (Section 6.2.3.6) (6.2.3.5)

 "Automatic valve to shut off preheat when humidification isn't required"

HVAC Mandatory Provisions/Controls Humidification and Dehumidification (Section 6.2.3.7) (6.2.3.6)

- Provide means to prevent simultaneous operation of humidification and dehumidification equipment
 - Limit switches, mechanical stops, or software programming (DDC systems)
- Exceptions
 - "Zones served by desiccant systems, used with direct evaporative cooling in series
 - Systems serving zones where specific humidity levels are required and approved by jurisdiction"
 - Computer rooms, museums, and hospitals

HVAC Mandatory Provisions/Controls Freeze Protection and Snow/Ice Melting Systems (Section 6.2.3.8) (6.2.3.7)

Automatic controls for

- Freeze protection systems
 - "outside air temperatures > 40°F or when conditions of protected fluid will prevent freezing"
- Snow- and ice-melting systems
 - "pavement temperature > 50°F and no precipitation is falling and outdoor temperature > 40°F"

HVAC Mandatory Provisions/Controls Ventilation Controls for High-Occupancy Areas (Section 6.2.3.9) (6.2.3.8)

- Systems with
 - "design outside air capacities > 3000 cfm and
 - serving areas having an average design occupancy density > 100 people per 1000 ft²
 - to have means to automatically reduce outside air intake below design rates when spaces are partially occupied
- Ventilation controls in compliance with ASHRAE Standard 62 and local standards
- Exception
 - Systems with heat recovery complying with 6.3.6.1"

HVAC Mandatory Provisions HVAC System Construction and Insulation (Section 6.2.4)

- General (Section 6.2.4.1)
 (Section 6.2.4.1.1)
- Duct and Plenum Insulation (Section 6.2.4.2) (Section 6.2.4.1.2)
- Duct Sealing (Section 6.2.4.3)
 (Section 6.2.4.2.1)
- Duct Leakage Tests (Section 6.2.4.4)
 (Section 6.2.4.2.2)
- Piping Insulation (Section 6.2.4.5)
 (Section 6.2.4.1.3)

HVAC Mandatory Provisions General (Section 6.2.4.1) (6.2.4.1.1)

- Insulation installed in accordance with industry accepted standards
- Insulation
 - Protected from damage due to sunlight, moisture, equipment maintenance, and wind
 - Exposed to weather to be suitable for outdoor service
 - "Covering chilled water piping, refrigerant suction piping, or cooling ducts located outside the conditioned space to include a vapor retardant located outside the insulation, all penetrations and joints of which to be sealed"

- All supply and return ducts and plenums to be insulated per Tables 6.2.4.2A and 6.2.4.2B
- Exceptions

Exceptions

- "Factory-installed plenums, casings, or ductwork furnished as part of HVAC equipment
- Ducts or plenums located in heated, semiheated, or cooled spaces
- For runouts < 10 ft in length to air terminals or air outlets, the R-value need not exceed R-3.5
- Backs of air outlets and outlet plenums exposed to unconditioned or indirectly conditioned spaces with face areas > 5 ft² need not exceed R-2; those # 5 ft² need not be insulated"

HVAC Mandatory Provisions/HVAC Insulation Duct Sealing (Section 6.2.4.3) (6.2.4.2.1)

- Table 6.2.4.3A
 - Seal level based on duct type (supply, exhaust, return) and duct location (outdoors, unconditioned spaces, conditioned spaces)
- Table 6.2.4.3B
 - lists sealing requirements based on seal level from Table 6.2.4.3A
- Requirements of 6.2.4.4
- Standard industry practice

Duct Leakage Tests (Section 6.2.4.4) (6.2.4.2.2)

- Designed > 3 in. w.c.
 - Leak tested
 - Representative sections \$ 25% of the total installed duct area shall be tested
 - Ratings > 3 in. w.c. to be identified on drawings
 - Maximum permitted duct leakage

Permitted duct leakage

$$L_{\text{max}} = C_{\text{L}} P^{0.65}$$

Where L_{max} = maximum permitted leakage in cfm/100 ft² duct surface area"

Piping Insulation (Section 6.2.4.5) (6.2.4.1.3)

Table 6.2.4.5

 Minimum pipe insulation thickness based on fluid design operating temperature range, insulation conductivity, nominal pipe or tube size, and system type (Heating, SWH, Cooling)

Exceptions

- Factory-installed
- Piping conveying fluids

- "Hot water piping between shut off valve and coil, not > 4 ft in length, when located in conditioned spaces
- Pipe unions in heating systems (steam, steam condensate, and hot water)"

Fluids

- "design operating temperature range between 60°F-105°F, inclusive"
- that haven't been heated or cooled through the use of nonrenewable energy or where heat gain or heat loss will not increase energy usage

- Record drawings
- Operating and maintenance manuals
- System balancing
- System commissioning

HVAC Mandatory Provisions/Completion Req Drawings (Section 6.2.5.1)

- Record drawings of actual installation to building owner within 90 days of system acceptance and include, as a minimum
 - "Location and performance data on each piece of equipment
 - General configuration of duct and pipe distribution system including sizes
 - Terminal air or water design flow rates"

 Operating and maintenance manuals to building owner within 90 days of system acceptance and include, as a minimum

- Measured and adjusted within 10% of design rates
 - Exception
 - "Variable speed, variable volume flow distribution systems need not be balanced upstream of a pressure independent device"
- Written report for conditioned spaces
 - $> 5000 \text{ ft}^2$

HVAC Mandatory Provisions/Completion Req Air System Balancing (Section 6.2.5.3.2)

- Minimize throttling losses
- For fans with system power > 1 hp
 - Adjust fan speed to meet design flow conditions
 - "variable flow distribution systems need not be balanced upstream of the controlling device"

HVAC Mandatory Provisions/Completion Req Hydronic System Balancing (Section 6.2.5.3.3)

- Proportionately balanced to minimize throttling losses
- "Pump impeller trimmed or pump speed adjusted to meet design flow conditions"
- Each system to have either "the ability to measure differential pressure increase across the pump or have test ports at each side of the pump"
- Exceptions

Exceptions

- "Pumps with pump motors # 10 hp
- When throttling results in < 5% of the nameplate hp draw, or 3 hp, whichever is greater, above that required if the impeller was trimmed"

- "Control elements are calibrated, adjusted, and in proper working condition"
- > 50,000 ft² conditioned area
 - Except warehouses and semiheated spaces
 - Requires commissioning plan

Prescriptive Path

- Economizers (Section 6.3.1)
- Simultaneous Heating and Cooling Limitation (Section 6.3.2)
- Air System Design and Control (Section 6.3.3)
- Hydronic System Design and Control (Section 6.3.4)
- Heat Rejection Equipment (Section 6.3.5)
- Energy Recovery (Section 6.3.6)
- Exhaust Hoods (Section 6.3.7)
- Radiant Heating Systems (Section 6.3.8)
- Hot Gas Bypass Limitation (Section 6.3.9)

Economizers (Section 6.3.1)

Prescriptive Path

- Air Economizers (Section 6.3.1.1)
 - Design Capacity
 - Control Signal
 - High Limit Shutoff
 - Dampers
 - Relief of Excess Outside Air
- Water Economizers (Section 6.3.1.2)
 - Design Capacity
 - Maximum Pressure Drop
- Integrated Economizer Control (Section 6.3.1.3)
- Economizer Heating System Impact (Section 6.3.1.4)

HVAC Prescriptive Path Economizers (Section 6.3.1)

- Climate and size dependent (Table 6.3.1)
- There are LOTS of exceptions
- Can use air economizers
 - 100% of design supply air
 - Sequenced with mechanical cooling equipment
 - High limit shutoff
 - Dampers
- Can use water economizers
 - 100% of expected system cooling load
 - Maximum pressure drop

HVAC Prescriptive Path/Air Economizers Design Capacity (Section 6.3.1.1.1)

 "System capable of modulating outside air and return air dampers to provide up to 100% of the design supply air quantity as outside air for cooling"

HVAC Prescriptive Path/Air Economizers Control Signal (Section 6.3.1.1.2)

- "Dampers capable of being sequenced with the mechanical cooling equipment and shall not be controlled by only mixed air temperature"
- Exception
 - "Systems controlled from space temperature (such as single-zone systems)"

- Automatically reduce outside air intake to "6.1.2 of ASHRAE Standard 62 when outside air intake will no longer reduce cooling energy usage"
- Control types for specific climates from Table 6.3.1.1.3A
- Settings from Table 6.3.1.1.3B

HVAC Prescriptive Path/Air Economizers Dampers (Section 6.3.1.1.4)

- Return air and outside air dampers to have maximum leakage rate of 20 cfm
- Return air and outside air dampers to meet the damper leakage specified in 6.2.3.3.4 (Table 6-B)

HVAC Prescriptive Path/Air Economizers Relief of Excess Outside Air (Section 6.3.1.1.5)

- "Means to relieve excess outdoor air during economizer operation to prevent overpressurizing the building
- Outlet located to avoid recirculation into the building"

HVAC Prescriptive Path/Water Economizers Design Capacity (Section 6.3.1.2.1)

System capable of

- cooling supply air by indirect evaporation and
- "providing up to 100% of expected system cooling load at outside air temperatures of 50°F dry bulb/45°F wet bulb and below"

Exception

 or meet "100% of expected cooling load at 45°F dry bulb/40°F wet bulb"

- Precooling coils and water-to-water heat exchangers to have either
 - Water-side pressure drop of < 15 ft of water **OR**
 - Create a secondary loop so the coil or "heat exchanger pressure drop isn't seen by the circulating pumps when the system is in normal cooling mode"

HVAC Prescriptive Path/Water Economizers Integrated Economizer Control (Section 6.3.1.3)

- Economizers must be "integrated with mechanical cooling systems and be capable of providing partial cooling even when additional mechanical cooling is required"
- Some exceptions to this

HVAC Prescriptive Path/Water Economizers Economizer Heating System Impact (Section 6.3.1.4)


- Designed so economizer operation "doesn't increase the building heating energy use during normal operation"
- Exception
 - Where heating is allowed by 6.3.2

Simultaneous Heating and Cooling Limitation (Section 6.3.2)

- Zone Controls (Section 6.3.2.1)
- Hydronic System Controls (Section 6.3.2.2)
 - Three-Pipe System
 - Two-Pipe Changeover System
 - Hydronic (Water Loop) Heat Pump Systems
- Dehumidification (Section 6.3.2.3)
- Humidification (Section 6.3.2.4)

Simultaneous Heating and Cooling Limitation (Section 6.3.2)

- Zone controls capable of operating in sequence the supply of heating and cooling energy to the zone to prevent
 - reheating,
 - recooling,
 - mixing, or
 - simultaneously supplying air previously heated or cooled
- Hydronic system controls to prevent reheating or recooling of fluids

- Dehumidification controls for humidistats to prevent reheating, mixing, etc
- Humidification controls

HVAC Prescriptive Path Zone Controls (Section 6.3.2.1)

- Capable of operating in sequence the supply of heating and cooling energy to the zone
- Controls prevent
 - Reheating
 - Recooling
 - Mixing or simultaneously supplying air previously heated or cooled
 - Other simultaneous operation of heating and cooling systems to the same zone
- Exceptions

HVAC Prescriptive Path Zone Controls - Exceptions

- "Zones for which volume of air that is reheated, recooled, or mixed is no greater than the larger of the following
 - Volume of outside air to meet 6.1.3 of ASHRAE 62 for the zone
 - 0.4 cfm/ft² of zone conditioned floor area <u>with several</u> conditions
 - 30% of zone design peak supply
 - 300 cfm for zones whose peak flow rate totals no more than 10% of the total fan system flow rate
 - Any higher rate that can be demonstrated to jurisdiction to reduce overall system annual energy usage...
- Zones where special pressurization relationships, crosscontamination requirements, or code-required minimum circulation rates are such that the variable air volume systems are impractical
- Zones where at least 75% of the energy for reheating or for providing warm air in mixing systems is provided from a site-recovered or site solar energy source"

HVAC Prescriptive Path Hydronic System Controls (Section 6.3.2.2)

 Limit heating and cooling of fluids previously heated or cooled mechanically per 6.3.2.2.1 and 6.3.2.2.3

HVAC Prescriptive Path Three-Pipe System (Section 6.3.2.2.1)

 No common return system for both hot and chilled water

HVAC Prescriptive Path Two-Pipe Changeover System (Section 6.3.2.2.2)

- Common distribution system acceptable if
 - deadband from one mode to another is
 \$ 15°F outside air temperature
 - controls to allow operation of \$ 4 hours before changing over
 - reset controls so heating and cooling supply temperatures at changeover point no more than 30°F apart

HVAC Prescriptive Path Hydronic (Water Loop) Heat Pump Systems (Section 6.3.2.2.3)

- Controls to provide "heat pump water supply temperature deadband of at least 20°F between initiation of heat rejection and heat addition by central devices"
- Cooling tower bypass or cooling tower isolation dampers
- "A two-position valve at each hydronic heat pump for hydronic systems having a total pump system power > 10 hp"
- Exception
 - If system loop temperature optimization controller is used, deadband < 20°F is allowed

HVAC Prescriptive Path Dehumidification (Section 6.3.2.3)

- Humidistatic controls to prevent
 - Reheating
 - Mixing of hot and cold air streams
 - Heating and cooling of same air stream
- Exceptions

Dehumidification exceptions

Systems

- capable of reducing supply air flow to 50%, or to minimum ventilation
- under 6.67 tons that can unload at least 50%
- smaller than 3.3 tons
- Process applications
- 75% of reheat or recool energy is recovered or solar

HVAC Prescriptive Path Humidification (Section 6.3.2.4)

 "Systems with hydronic cooling and humidification systems designed to maintain inside humidity at > 35°F dewpoint temperature shall use a water economizer if required by 6.3.1"

Air System Design and Control (Section 6.3.3)

- Fan Power Limitation (Section 6.3.3.1)
- Variable Air Volume Fan Control (Section 6.3.3.2)
 - Part-Load Fan Power Limitation
 - Static Pressure Sensor Location
 - Set Point Reset

HVAC Prescriptive Path Air System Design and Control (Section 6.3.3)

- HVAC systems with total fan system power > 5 hp to meet 6.3.3.1 and 6.3.3.2
 - Fan Power Limitation
 - VAV Fan Control

HVAC Prescriptive Path Fan Power Limitation (Section 6.3.3.1)

- Table 6.3.3.1
 - By supply air volume and allowable nameplate motor power (constant volume and variable volume)
- Allowable fan system power may be adjusted in certain situations

Part-Load Fan Power Limitation (Section 6.3.3.2.1)

- Individual VAV fans with motors \$30 hp
 - "Have other controls and devices to result in fan motor demand # 30% of design wattage at 50% of design air volume when static pressure set point = 1/3 of total design static pressure, based on manufacturer's certified fan data"

- Placed so controller set point is # 1/3 the total design fan static pressure
 - Except for digital control systems with zone reset capabilities where it may be at the fan discharge
- If this results in the sensor being located downstream of major duct splits, install multiple sensors in each major branch

Set Point Reset (Section 6.3.3.2.3)

- "For systems with direct digital control of individual zone boxes reporting to the central control panel
 - Static pressure set point reset based on zone requiring the most pressure"

HVAC Prescriptive Path Hydronic System Design and Control (Section 6.3.4)

- Hydronic Variable Flow Systems (Section 6.3.4.1)
- Pump Isolation (Section 6.3.4.2)
- Chilled and Hot Water Temperature Reset Controls (Section 6.3.4.3)
- Hydronic (Water-Loop) Heat Pump
 Systems (Section 6.3.4.4)

HVAC Prescriptive Path Hydronic System Design and Control (Section 6.3.4)

- "HVAC hydronic systems with total pump system power > 10 hp shall meet 6.3.4.1 - 6.3.4.4"
 - Hydronic Variable Flow Systems
 - Pump Isolation
 - Chilled and Hot Water Temperature Reset
 - Hydronic (Water-Loop) Heat PumpSystems

HVAC Prescriptive Path Hydronic Variable Flow (Section 6.3.4.1)

- HVAC pumping systems to include control valves
 - Designed to modulate or step open and close as a function of load
 - Designed for variable fluid flow
 - Capable of reducing flow rates to # 50% of design flow rate
- "Individual pumps serving variable flow systems with a pump head > 100 ft and motor > 50 hp
 - Have controls and/or devices resulting in pump motor demand # 30% of design wattage at 50% of design water flow"

Hydronic Variable Flow – Exceptions

- Systems where
 - "Minimum flow is < minimum flow required by equipment manufacturer for proper operation of equipment served by the system"
 - Total pump system power # 75 hp
- Systems that include # 3 control valves

HVAC Prescriptive Path Pump Isolation (Section 6.3.4.2)

- If chilled water plant has more than one chiller or boiler plant has more than one boiler
 - Provide for flow reduction when chiller or boiler is shut down

Chilled and Hot Water Temperature Reset Controls (Section 6.3.4.3)

- Affects systems with design capacity
 - > 300,000 Btu/h
 - "To include controls to automatically reset supply water temperatures by representative building loads (including return water temperature) or by outside air temperature"
- Exceptions
 - Would result in improper operation
 - Hydronic systems with variable flow

HVAC Prescriptive Path Hydronic (Water-Loop) Heat Pump Systems (Section 6.3.4.4)

- For heat pump loops with total pump system power > 10 hp
 - Two-position valves at each hydronic heat pump must be provided and interlocked to shut off water flow to the heat pump when the compressor is off
 - This basically converts the system into a variable flow system. As such, these systems must also comply with 6.3.4.1

HVAC Prescriptive Path Heat Rejection Equipment (Section 6.3.5)

- "Applies to heat rejection equipment used in comfort cooling systems such as
 - air-cooled condensers
 - open cooling towers
 - closed-circuit cooling towers
 - evaporative condensers
- Exceptions
 - Heat rejection devices included as an integral part of equipment listed <u>devices</u> whose energy usage is included in Tables 6.2.1A-6.2.1D"

HVAC Prescriptive Path Fan Speed Control (Section 6.3.5.2)

- Each fan powered by a motor \$ 7.5 hp have
 - capability to operate fan at # 2/3 full speed
 - "controls to automatically change the fan speed to control the leaving fluid temperature or condensing temperature/pressure of the heat rejection device"
- Exceptions

Exceptions

- Condenser fans serving multiple refrigerant circuits or flooded condensers
- Installations located in climates > 7200 CDD50
- 1/3 of the fans on a multiple fan application speed controlled

Exhaust Air Energy Recovery (Section 6.3.6.1)

- Incorporate exhaust air energy recovery in systems with
 - \$ 70% outside air and \$ 5000 cfm total
 - 50% energy recovery effectiveness
- Exceptions

DIE IN THE PARTY OF THE PARTY O

Exceptions

- Lab systems meeting 6.3.7.2
- Systems
 - "serving uncooled spaces that are heated to < 60°F
 - exhausting toxic, flammable, paint or corrosive fumes or dust"
 - Requiring dehumidification that employ series-style energy recovery coils wrapped around the cooling coil
- "Commercial kitchen hoods classified as Type 1 by NFPA 96
- Where > 60% of outdoor heating energy is provided from site-recovered or site solar energy
- Heating systems in climates < 3600 HDD65
- Cooling systems in climates with a 2.5% cooling design wet-bulb temperature < 65°F
- Where largest exhaust source is < 75% of the design₁₅₅ outdoor airflow"

Heat Recovery for Service Water Heating (Section 6.3.6.2)

- Condenser recovery required if
 - 24 hrs per day and
 - heat rejection > 6,000,000 Btu/h and
 - SWH load > 1,000,000 Btu/h

HVAC Prescriptive Path Kitchen Hoods (Exhaust) (Section 6.3.7.1)


- Hoods > 5000 cfm to be "provided with makeup air sized for at least 50% of exhaust air volume that is a) unheated or heated to more than 60°F and b) uncooled or cooled without the use of mechanical cooling
- Exceptions
 - Where hoods are used to exhaust ventilation air that would otherwise exfiltrate or be exhausted by other fan systems
 - Certified grease extractor hoods that require a face velocity no greater than 60 fpm"

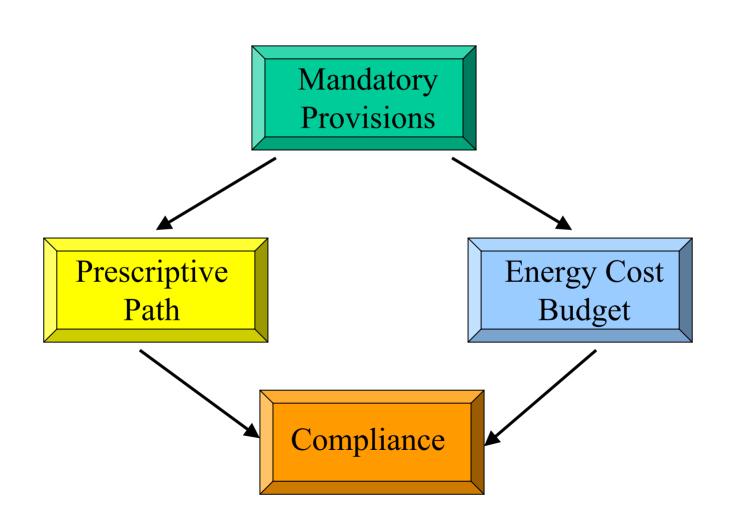
HVAC Prescriptive Path Fume Hoods (Exhaust) (Section 6.3.7.2)

- Hood systems with a total exhaust rate
 > 15,000 cfm to have ONE of the following features
 - Operation to < 50% design flow OR
 - Direct make up at least 75% of exhaust rate at specified conditions **OR**
 - Heat recovery for make-up air

Radiant Heating Systems (Section 6.3.8)


- Required for unenclosed spaces except loading docks with air curtains
- "Radiant heating systems that are used as primary or supplemental enclosed space heating must be in conformance with the governing provisions of the standard"

- Not used (including other evaporator pressure control systems) "unless system is designed with multiple steps of unloading or continuous capacity modulation"
- Exception
 - "Unitary packaged systems with cooling capacities # 90,000 Btu/h"


Section 7 - Service Water Heating

- General (Section 7.1)
- Mandatory Provisions (Section 7.2)
 - Sizing of systems Load Calculations
 - Equipment efficiency
 - Service hot water piping insulation
 - System controls
 - Pools
 - Heat traps
 - Space heating and water heating
 - Service water heating equipment
- Prescriptive Path (Section 7.3)

SWH Compliance (Section 7.1.2)

<u> oad Calculations</u> (Section 7.2.<u>1)</u>

Mandatory Provisions

 In accordance with manufacturer's published sizing guidelines or generally accepted engineering standards and handbooks

Equipment Efficiency (Section 7.2.2)

- Table 7.2.2
- Equipment not listed in Table 7.2.2 has no minimum performance requirements
- Exception

Exception

- Water heaters and hot water supply boilers > 140 gal storage capacity don't "have to meet <u>standby loss</u> requirements when
 - tank surface is thermally insulated to R-12.5, and
 - a standing pilot light isn't installed, and
 - gas- or oil-fired water heaters have a flue damper or fan-assisted combustion"

Service Hot Water Piping Insulation (Section 7.2.3)

- Table 6.2.4.5, Section 6
- Circulating water heater
 - Recirculating system piping, including supply and return piping
- Nonrecirculating storage system
 - First 8 ft of outlet piping
 - Inlet pipe between storage tank and heat trap
- Externally-heated pipes (heat trace or impedance heating)

System Controls (Section 7.2.4)

- Temperature Controls (Section 7.2.4.1)
- Temperature Maintenance Controls (Section 7.2.4.2)
- Outlet Temperature Controls (Section 7.2.4.3)
- Circulating Pump Controls (Section 7.2.4.4)

- To "allow for storage temperature adjustment from 120°F or lower to a maximum temperature compatible with the intended use
- Exception
 - If manufacturer's installation instructions specify a higher minimum thermostat setting to minimize condensation and resulting corrosion"

Temperature Maintenance Controls (Section 7.2.4.2)

- Automatic time switches or other controls
 - "Set to switch off usage temperature maintenance system during extended periods when hot water is not required"

- Automatic time switches or other controls
 - To limit maximum temperature of water in faucets in public facility restrooms to 110°F

SWH Mandatory Provisions Circulating Pump Controls (Section 7.2.4.4)

 To limit operation to "a period from the start of the heating cycle to a maximum of five minutes after the end of the heating cycle"

SWH Mandatory Provisions POOIS (Section 7.2.5)

- Pool heaters to have readily accessible on-off switch
- Pool heaters fired by natural gas to NOT have continuously burning pilot lights
- Vapor retardant pool covers required (unless recovered or solar heat)
- Time switches required

SWH Mandatory Provisions Heat Traps (Section 7.2.6)

- Noncirculating systems to have heat traps on both the inlet and outlet piping as close as practical to storage tank (if no integral heat traps)
 - Either a device specifically designed for this purpose or
 - "Arrangement of tubing that forms a loop of 360° or piping that form the point of connection to the water heater includes a length of piping directed downward before connection to the vertical piping of the supply water or hot water distribution system, as applicable"

Space Heating and Water Heating (Section 7.3.1)

Prescriptive Path

- "Gas- or oil-fired space heating boiler system (complying with Section 6) is allowed to provide total space heating and water heating when **ONE** of the following conditions is met"
 - Single boiler or component that is heating the service water has a certain standby loss in Btu/h

- Jurisdiction agrees use of a single heat source will consume less energy than separate units
- Energy input of the combined boiler and water heater system is < 150,000 Btu/h
- Instructions for determining standby loss are included in this Section

Standby loss equation

- Standby loss not exceeding
 - (13.3 x pmd + 400) / n; where pmd is probable maximum demand in gal/h and n is the fraction of the year when outdoor daily mean temperature is > 64.9°F



Service Water Heating Equipment (Section 7.3.2)

 "Equipment used to provide the additional function of space heating as part of a combination (integrated) system shall satisfy all requirements for service water heating equipment"

Section 8 - Power

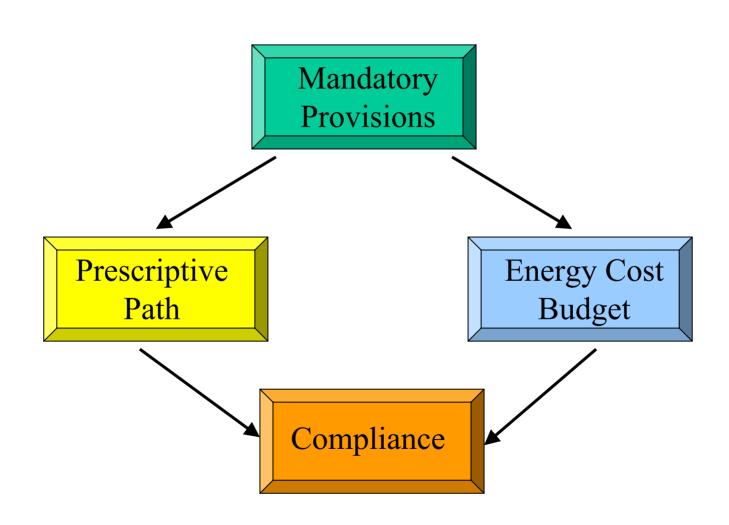
- Voltage drop
- Completion requirements

Voltage Drop (Section 8.2.1)

- Two types of conductors
 - Feeder conductors
 - Run between the service entrance equipment and the branch circuit distribution equipment
 - 2% maximum voltage drop allowed
 - Branch circuit conductors
 - Run from the final circuit breaker to the outlet or load
 - 3% maximum voltage drop allowed

- Owner gets information about the building's electrical system
 - Record drawings of actual installation within 30 days

- Manuals


Section 9 - Lighting

- General Application (Section 9.1)
- Mandatory Provisions (Section 9.2)
 - Lighting controls
 - Tandem wiring
 - Exit signs
 - Installed interior lighting power
 - Luminaire wattage
 - Exterior building grounds lighting
- Prescriptive Path (Section 9.3)
 - Interior Lighting Power Allowance
 - Building Area Method
 - Space-by-Space Method
 - Exterior Lighting Power Allowance

Lighting compliance

Lighting general application

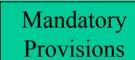
- Interior spaces of buildings
- Exterior building features
- Exterior grounds lighting powered through building
- Exceptions
 - Emergency lighting
 - Lighting required by life safety statute
 - Lighting within living units of buildings
 - Decorative gas lighting

Lighting changes between 90.1-1989 and 90.1-2001

- More efficient lighting
 - Less power allowed
- No lighting control credits
 - Lighting power allowance now based only on connected lighting power
- No control points for spaces
- No separate lighting controls for daylighted spaces

Lighting changes between 90.1-1989 and 90.1-2001 (cont'd)

- Automatic shutoff controls required
- Most exterior power requirements replaced with minimum <u>efficacy</u> requirements
 - Parking garages included in interior lighting
- Interior power requirements updated
 - More stringent requirements
 - Area factors no longer need to be calculated
 - Building area allowances no longer depend on size
- Additional power allowances for certain specialty lighting


Lighting scope

- New construction
- Existing nonresidential and high-rise residential
 - If \$ 50% of existing luminaires are replaced
 - If renovation increases lighting power
- Control must be readily accessible and located so occupants can see the controlled lighting

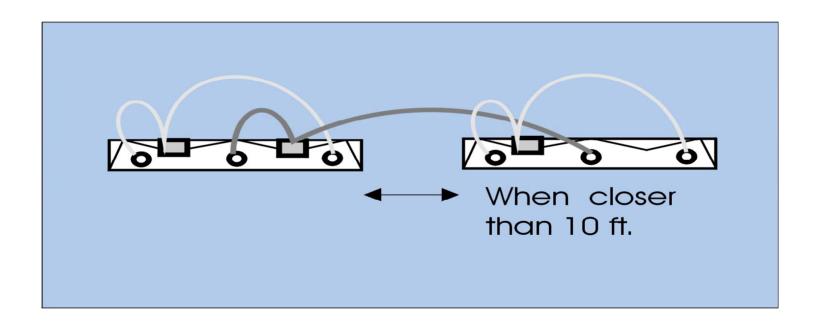
Mandatory Provisions

- Automatic Lighting Shutoff (Section 9.2.1.1)
- Space Control (Section 9.2.1.2)
- Exterior Lighting Control (Section 9.2.1.3)
- Additional Control (Section 9.2.1.4)

- Applies to buildings > 5000 ft²
 - Time-scheduling devices that accommodate separate schedules for each floor or each space > 25,000 ft² OR
 - Occupant-sensing devices that turn off lights in each controlled space within 30 minutes of last occupant detection **OR**
 - Signal from another control or alarm system that indicates area is unoccupied

Lighting Mandatory Provisions Space Control (Section 9.2.1.2)

- At least one for each room or space enclosed by ceiling-height partitions
- Readily accessible to occupants
 - Except for safety or security
- In spaces # 10,000 ft², each control can serve a maximum of 2500 ft²
- In spaces > 10,000 ft², each control can serve a maximum of 10,000 ft²


Lighting Mandatory Provisions Exterior Lighting Control (Section 9.2.1.3)

- Photocells or astronomical time switch required
- Seven-day electrically-driven, mechanical clocks with trippers, astronomical dial, and four-hour spring-wound storage
- Seven-day or calendar year, electronic programmable time switches with astronomic correction and battery backup
- Any of the timers above with a photocell (in place of astronomical correction)
- Exceptions lighting for
 - Covered vehicle entrances
 - Exits from buildings or parking structures
 (where required for safety, security, or eye adaptation)

Lighting Mandatory Provisions Additional Control (Section 9.2.1.4)

- Many special lighting applications must be controlled separately
 - Display/accent lighting
 - Case lighting
 - Hotel/motel guest room lighting
 - Task lighting
 - Nonvisual lighting
 - Demonstration lighting

Lighting Mandatory Provisions Tandem Wiring (Section 9.2.2)

Tandem Wiring Exceptions (Section 9.2.2)

- Separated surface or pendant luminaires
- Recessed luminaires more than 10 ft apart
- Other luminaires
 - With three-lamp ballasts
 - On emergency lighting circuits
 - With no available pair
 - With one lamp, high frequency, electronic ballast

- Exit signs operating at > 20 W must have a source <u>efficacy</u> \$ 35 lumens/W
- LED lamps okay
- CF lamps with electronic ballasts usually okay
- Majority of incandescent lamps not okay

- The ratio of light output to watts input
 - lumens per watt
- The higher the efficacy, the more efficient the light source
 - -40 watt incandescent = 480 lumens
 - -40 watt fluorescent = 2640 lumens

Lighting Mandatory Provisions Installed Interior Lighting Power (Section 9.2.4)

- Includes all permanent and portable interior lighting intended for general, ambient, or task illumination
- Includes lamp, power used by ballast, the control (when applicable), current regulators, and any other power draws associated with the lighting system
- Exception

 "If 2 or more independently operating lighting systems in a space can be controlled to prevent simultaneous operation, can base IILP on lighting system with highest wattage"

Lighting Mandatory Provisions Luminaire Wattage (Section 9.2.5)


- Standard incandescent = max. labeled wattage of the luminaire
- Luminaires with ballasts = wattage of the lamp/ballast combination
- Line voltage track = min. 30 W per foot
- Low voltage track = transformer wattage
- All others as specified

Lighting power development concept

- Create building space models to calculate power densities with:
 - Current product performance data
 - Updated efficacy and loss factors
 - New building construction data
 - IES-recommended light levels
 - Professional lighting design consensus

Lighting Mandatory Provisions Exterior Building Grounds Lighting (Section 9.2.6)

- Luminaires that operate at > 100 W = efficacy > 60 lumens/W
- Exceptions
 - Traffic signals
 - Lighting within outdoor signs
 - Lighting used to illuminate public monuments or registered historic landmarks
 - If an occupancy sensor or motion sensor controls the lighting application

Lots of exemptions

- Calculation methods
 - Building area
 - Space-by-space
 - Trade-offs of interior lighting power allowance among portions of the building for which a different calculation method has been used is not permitted

Lighting power allowance exemptions

- Theatrical, stage, film, and video production
- Medical and dental procedures
- Exhibit displays for museums monuments, and galleries
- Plant growth or maintenance
- Integral to equipment or instrumentation installed by manufacturer
- Integral to both open and glass-enclosed refrigerator and freezer cases
- Retail display windows, provided the display is enclosed by ceiling-height partitions
- Interior spaces specifically designated as registered interior historic landmarks
- Integral part of advertising or directional signage
- Exit signs
- Sale or lighting educational demonstration systems
- Athletic playing areas with permanent facilities for TV broadcasting
- Casino gaming areas
- For use in areas specifically designed for the visually impaired

Building Area Method (Section 9.3.1.1)

- Used for projects involving
 - An entire building
 - A single, independent, and separate occupancy in a multi-occupancy building
- Gross lighted area is multiplied by allowance from Table 9.3.1.1
- Limitations
 - Insensitive to specific space functions and room configurations
 - Generally is more restrictive
 - Does not apply to all building types but "selection of a reasonably equivalent type" is permitted

- Sum of total lighted area of a building
 - Measured from the exterior faces of the exterior walls or from the centerline of walls separating buildings
- Used in the building area method of determining interior lighting power allowance

Lighting Prescriptive Path Building area allowances

Table 9.3.1.1 – here's a sample

Building Type	Lighting Power Density (W/ft²)
Automotive Facility	1.5
Convention Center	1.4
Court House	1.4
Dining: Bar Lounge/Leisure	1.5
Dining: Cafeteria/Fast Food	1.8
Dining: Family	1.9
	1.5

Space-by-Space Method (Section 9.3.1.2)

- Identify different building types in your project
- Divide gross lighted area of the building into each of the space types
- Calculate lighting power allowance by multiplying area of space type by lighting power density for that specific space type
- Sum all the allowances
- Advantages
 - More flexible
 - Applicable to all building types
 - Accounts for room geometry (e.g., lighting needs of enclosed office vs. open office)

Additional Interior Lighting Power (Section 9.3.1.2.1)

- An increase in the ILPA is allowed for specific space functions when using the space-by-space method
 - Decorative 1.0 W/ft² in space used
 - Fluorescent designed to eliminate glare .35 W/ft²
 - Lighting equipment installed in retail spaces specifically to highlight merchandise in specific space used
 - Additional 1.6 W/ft² times the area of specific display, or
 - Additional 3.9 W/ft² times the area of specific display for fine merchandise

Exterior Building Lighting Power (Section 9.3.2)

- Sum of all lighting power allowances for applicable exterior applications
- Building Surface Requirements
 - Building entrance with canopy 3 W/ft²
 - Building entrance 33 W/linear ft
 - Building exit 20 W/linear ft
 - Building facades 0.25 W/ft²
- Exceptions, when equipped with a control device

Exceptions

- When equipped with a control device
 - Specialized signal, directional, and market lighting associated with transportation
 - Public monuments
 - Registered historic landmark structures or buildings
 - Lighting integral to advertising signage

Section 10 - Other Equipment

- Changes between 90.1-1989 and 90.1-1999
 - No transformer recommendations and requirements
 - No subdivision of electrical feeders or provisions for check metering
 - Motor efficiency levels are higher and correspond to EPAct (only requirement in this section)
 - Motor efficiency requirement now covers all relevant motors, even if they're part of equipment rated elsewhere in the Standard
 - No exemption for motors running < 1000 $_{209}$ hrs/yr

Section 11 - Energy Cost Budget Method

- The ultimate trade-off method allowing you to trade-off across building systems through the use of annual, hourly simulation tools and a baseline building.
- The only real way to deal with unique designs, renewables, high-efficiency equipment, etc.
- The basis of the energy portion of the LEED rating
- Limits allowable energy costs of the design to those of a building meeting the Standard

Section 12 - Normative References

- Normative (read "mandatory") reference documents
- Includes test methods, rating procedures, and other standards

Assembly U-Factor, C-Factor, and F-Factor Determination (Normative Appendix A)

Includes pre-calculated U-factors,
 C-factors, and F-factors

- Above-grade walls
- Below-grade walls
- Floors
- Slab-on-grade floors
- Opaque doors
- Fenestration

Building Envelope Criteria (Normative Appendix B)

- Actual prescriptive requirements tables for 26 different climate bins
- These are in an appendix because they would have taken up too much space in Chapter 5 and would have broken up the continuity of the text of the Standard

Methodology for Building Envelope Trade-Off Option in Subsection 5.4 (Normative Appendix C)

- The gory details of how the envelope trade-off option is implemented
- For those familiar with the "old" ENVSTD trade-off, this new trade-off allows trade-offs between roof and wall elements. The "metric" of trade-off is ultimately an energy dollar trade-off.

Climate Data (Normative Appendix D)

- Climatic data for a number of US,
 Canadian, and international locations
- HDD65 and CDD50 for use in envelope calculations
- Heating and cooling design temperatures and the old "number of hours between 8 am and 4 pm with Tdb between 55 and 69" for HVAC calculations

Informative References (Informative Appendix E)

- Other useful references that are not mandatory
- In general, these are not consensus documents so ASHRAE procedures do not allow them to be mandatory references

Informative References (Informative Appendix F)

 Information on addenda to 90.1-1999