Some Expected Characteristics of Lunar Dust: A Geological View Applied to Engineering

Kenneth W. Street, Christian M. Schrader and Doug Rickman

Compared to the Earth the geologic nature of the lunar regolith is guite distinct. Even though similar minerals exist on the Earth and Moon, they may have very different properties due to the absence of chemical modification in the lunar environment. The engineering properties of the lunar regolith reflect aspects of the parent rock and the consequences of hypervelocity meteor bombardment. On scales relevant to machinery and chemical processing for In-Situ Resource Utilization, ISRU (such as water production), the lunar regolith compositional range is much more restricted than terrestrial material. This fact impacts predictions of properties required by design engineers for constructing equipment for lunar use. In this paper two examples will be covered. 1) Abrasion is related to hardness and hardness is a commonly measured property for both minerals and engineering materials. Although different hardness scales are routinely employed for minerals and engineering materials, a significant amount of literature is available relating the two. As one example, we will discuss how to relate hardness to abrasion for the design of lunar equipment. We also indicate how abundant the various mineral phases are and typical size distributions for lunar regolith which will impact abrasive nature. 2) Mineral characteristics that may seem trivial to the non-geologist or material scientist may have significant bearing on ISRU processing technologies. As a second example we discuss the impact of traces of F-, Cl-, and OH-, H2O, CO2, and sulfur species which can radically alter melting points and the corrosive nature of reaction products thereby significantly changing bulk chemistry and associated processing technologies. For many engineering uses, a simulant's fidelity to bulk lunar regolith chemistry may be insufficient. Therefore, simulant users need to engage in continuing dialogue with simulant developers and geoscientists.

1

Some Expected Characteristics of Lunar Dust: A Geological View Applied to Engineering

Kenneth W. Street

Tribology and Mechanical Components Branch NASA – John Glenn Research Center Cleveland, OH 44135 USA 216-433-5032 kenneth.w.street@nasa.gov

Christian M. Schrader

BAE Systems NSSTC/NASA - Marshall Space Flight Center Huntsville AL 35805 256-961-7883

Doug Rickman

National Space Science and Technology Center NASA - Marshall Space Flight Center Huntsville, AL 35805 USA 256-961-7889 doug.rickman@nasa.gov

Presented at the Geological Society of America Meeting Houston TX, October 9, 2008

2

Lunar Geologic History

Initial lunar rock ~ norite.

Subsequent basaltic volcanic (& other) flows.

Hypervelocity impacts largely destroyed original rock. Resulting broken geologic material = regolith.

Except for some outcrops in or around the mare,

All interactions with people and equipment will be with regolith!

Subsequent Geologic Processing

Particle Size -

- Net result of continuing meteor bombardment.
- Surface of Moon is ground mixture of fragments.
- Mixture believed to be meters deep everywhere.
- For Apollo mission samples
 - typical <u>average</u> particle sizes from ~ 30 to 100 um.

Subsequent Geologic Processing

Sorting -

All Terrestrial particles are sorted. Based on size, shape and composition.

No Terrestrial segregation processes operate in a vacuum.

Energy input lunar surface sufficient to cause particle motion. Can mix but not sort.

What designers can expect: for any reasonable sized sample from top few meters it is possible, and even probable to have: Particles of all size ranges and Any lunar component in the sample.

Significant Lunar Minerals Physical Properties.

Mineral	Mohs	Mode: Cleavage	Mode: Fracture	
Anorthite	6	{001} p, {010} g	Conchoidal to uneven; brittle	Α
Bytownite	6.0-6.5	{001} p, {010} g	Conchoidal to uneven; brittle	Μ
Labradorite	7	{001} p, {010} g	Conchoidal to uneven; brittle	Μ
Olivine	6.5-7.0	-	-	Μ
Fayalite	6.5-7.0	{010} moderate, {100} weak	Conchoidal	-
Forsterite	6.5-7.0	{100}, {010} i - g; {001} po -f	Conchoidal	-
Clinoenstatite	5.0-6.0	{110} g - p	Brittle	Μ
Pigeonite	6	{110} p	Conchoidal to uneven; brittle	Μ
Hedenbergite	6	{110} g	Conchoidal to uneven	Μ
Augite	5.5-6.0	{110} g	Uneven	Μ
Enstatite	5.0-6.0	{210} g - p	Conchoidal	Α
Spinel	7.5-8.0	No cleavage	Conchoidal	m
Hercynite	7.5-8	No cleavage	Uneven	m
Ulvospinel	5.5-6.0	No cleavage	Uneven	m
Chromite	5.5	No cleavage	Uneven	m
Troilite	4	No cleavage	Uneven	t
Whitlockite	5	No cleavage	Uneven to sub-conchoidal	t
Apatite	5	No cleavage	Uneven to conchoidal	t
Ilmenite	5.5	No cleavage	Conchoidal	m
Native Iron	4.5	{001} i - f	Hackly	t

%: A-abundant, M-major, m-minor, t-trace Cleavage: p = perfect; g = good; f = fair; I = indistinct; po = poor 6

Material Testing Methods

Hardness Testing

- Indentation:
 - Hardness based on different shaped indenters
 - Brinell, Knoop, Rockwell, Vickers,
- Scratch
 - Mohs, Diamond Stylus,

Tougness Determiantion

• Measure area under stress-strain curve

(Abrasion – A key issue in Lunar exploration!)

Table 2. Approximate Correlation Between Hardness Scales.

Hardness Values (load)						
Vickers	Brinell	Brinell	Rockwell B	Rockwell C	Knoop	Knoop
(10 kg)	(500g)	(3 kg)			(10 g)	(1 kg)
1865	-	-	-	80	-	-
832	-	739	-	65	-	-
595	-	560	120	55	840	605
254	201	240	100	23	376	250
156	133	153	81	0	223	145
70	53	-	0	-	-	60

Note: ASTM Tables available for more exact conversion

Relating Hardness Scales: Metal (indentation) vs. Mineral (scratch)

9

Effect of Hardness on Abrasiveness

=> On the moon things will be worse!!!

Caveats !!!

Hardness vs. Geometry

Major Omissions !!!

- Polymers (elastic)
- Surface coatings, treatments
 - and substrate effects

SEM of JSC-1a

In-Situ Resource Utilization Chemical Issues

Mineral	Chemical Composition	
Anorthite	CaAl ₂ Si ₂ O ₈	
Bytownite	$(Ca, Na)(Si, Al)_4O_8$	
Labradorite	$(Ca,Na)(Si,Al)_4O_8$	
Olivine	$(Mg,Fe)_2SiO_4$	
Fayalite	Fe ₂ SiO ₄	While attempting
Forsterite	Mg ₂ SiO ₄	to the factor of
Clinoenstatite	$Mg_2^{-}[Si_2O_6]$	to manufacture
Pigeonite	$(Mg,Fe^{+2},Ca)_{2}[Si_{2}O_{6}]$	oxvgen
Hedenbergite	$CaFe^{+2}[Si_2O_6]$	
Augite	(Ca,Na)(Mg,Fe,Al,Ti)[(Si,Al) ₂ O ₆]	
Enstatite	$Mg_2[Si_2O_6]$	we strike Halogens,
Spinel	MgAl ₂ O ₄	Sulfur and Phosphorus
Hercynite	Fe ⁺² Al ₂ O ₄	
Ulvospinel	TiFe ⁺² ₂ O ₄	
Chromite	$Fe^{+2}Cr_2O_4$	
Troilite	FeS	
Whitlockite	$Ca_{9}(Mg,Fe^{+2})(PO_{4})_{6}(PO_{3}OH)$	
Apatite	Ca ₅ (PO ₄) ₃ (OH,F,CI)	
Ilmenite	Fe ⁺² TiO ₂	
Native Iron	Fe	

Issues with CI, S and P

Halogens (CI) produce:

 $CI \rightarrow CI_2$ and/or HCI (Corrosive and Toxic)

Sulfur (as sulfide):

 $S \rightarrow H_2S$, H_2SO_3 and or H_2SO_4 (Ditto) S poisons Expensive Catalysts

Phosphorus (as phosphate): Same as Sulfur Causes steel to become brittle

Simulant vs. Regolith Composition

Lunar Highlands: An >90%

NU-LHT-1M range:	An 75-85%	
OB-1:	An ~ 75%? (Shawmere)	
Lunar Mare: An 75	-95%	
JSC-1:	An 64-71% (Carpenter 2005)	
JSC-1A:	An 70% (average Hill et al., 2007)	
JSC-1AF:	An 70% (Carpenter, 2006)	
MLS-1:	An 44-50% (Carpenter, 2005; Hill et al., 2007)	
Na to Ca	ratio plagioclase series is solid solution	

Na to Ca ratio plagioclase series is solid solution Ca is anorthite Na is albite

Why Mineral Chemistry Matters

Systems with Complete Solid Solution

Plagioclase (Ab-An, NaAlSi₃O₈ - CaAl₂Si₂O₈)

Conclusions:

- Engineering is constrained by Regolith properties
- Geologic data is useful in engineering design
- A comparison of geologic properties to engineering design considerations is presented
- Some processes may concentrate trace components

Acknowledgement: J.R. Skok & Ashley Boudreaux for compiling and developing literature data on mineral properties and lunar mineral abundances.

Blank

Hardness vs. Toughness

Brittle: Ceramics, Minerals

Tough (Ductile): Metals (Carbon Steel)

Hardness ≠ Toughness Toughness = Area under Stress-Strain curve

Experimentally Determined Melting Intervals of Gabbro

After Lambert and Wyllie (1972). J. Geol., 80, 693-708.