United States
Department of Agriculture

Natural
Resources
Conservation
Service

In cooperation with the Maine Agricultural and Forest Experiment Station and the Maine Department of Agriculture

Soil Survey of Washington County Area, Maine

How To Use This Soil Survey

The detailed soil maps can be useful in planning the use and management of small areas.

To find information about your area of interest, locate that area on the Index to Map Sheets. Note the number of the map sheet and turn to that sheet.

Locate your area of interest on the map sheet. Note the map unit symbols that are in that area. Turn to the Contents, which lists the map units by symbol and name and shows the page where each map unit is described.

The Contents shows which table has data on a specific land use for each detailed soil map unit. Also see the Contents for sections of this publication that may address your specific needs.

MAP SHEET

This soil survey is a publication of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (formerly the Soil Conservation Service) has leadership for the Federal part of the National Cooperative Soil Survey.

Major fieldwork for this soil survey was completed in 2001. Soil names and descriptions were approved in 2003. Unless otherwise indicated, statements in this publication refer to conditions in the survey area in 2001. This survey was made cooperatively by the Natural Resources Conservation Service, the Maine Agricultural and Forest Experiment Station, and the Maine Department of Agriculture. The survey is part of the technical assistance furnished to the Washington County Soil and Water Conservation District.

Soil maps in this survey may be copied without permission. Enlargement of these maps, however, could cause misunderstanding of the detail of mapping. If enlarged, maps do not show the small areas of contrasting soils that could have been shown at a larger scale.

The United States Department of Agriculture (USDA) prohibits discrimination in all of its programs on the basis of race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, and marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact the USDA's TARGET Center at 202-720-2600 (voice or TDD).

To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326W, Whitten Building, 14th and Independence Avenue SW, Washington, DC 20250-9410, or call 202-720-5964 (voice or TDD). USDA is an equal opportunity provider and employer.

Cover: A volunteer grass sprouts from the crimson fall color of a field of native low bush blueberry plants. Washington County is a world leader in the production of native low bush blueberries. This is an area of Colton gravelly sandy loam, $\mathbf{8}$ to 15 percent slopes.

Additional information about the Nation's natural resources is available online from the Natural Resources Conservation Service at http://www.nrcs.usda.gov.

Contents

How To Use This Soil Survey i
Foreword ix
General Nature of the Survey Area 2
How This Survey Was Made 5
Map Unit Composition 6
Survey Procedures 7
Detailed Soil Map Units 9
AaE-Abram-Hogback complex, 15 to 45 percent slopes, very stony 10
AbE—Abram-Lyman complex, 15 to 45 percent slopes, very stony 12
ACE-Abram-Rock outcrop-Ricker complex, 15 to 80 percent slopes 15
AdA—Adams loamy sand, 0 to 3 percent slopes 18
AdB-Adams loamy sand, 3 to 8 percent slopes 20
AdC—Adams loamy sand, 8 to 15 percent slopes 22
AGB—Adams-Croghan association, 0 to 8 percent slopes 24
BeC—Becket fine sandy loam, 8 to 15 percent slopes, very stony 28
BKD—Becket-Skerry association, 8 to 30 percent slopes, very stony 30
BnB-Brayton fine sandy loam, 0 to 5 percent slopes, very stony 33
BRB—Brayton-Colonel association, 0 to 8 percent slopes, very stony 35
BTB—Brayton-Colonel association, 0 to 8 percent slopes, extremely stony 38
BW—Bucksport and Wonsqueak soils 41
BxC—Buxton silt loam, 8 to 15 percent slopes 43
BZC—Buxton-Lamoine complex, 3 to 15 percent slopes 45
ChB—Chesuncook silt loam, 3 to 8 percent slopes 48
ChC—Chesuncook silt loam, 8 to 15 percent slopes 50
CKC—Chesuncook-Elliottsville-Telos complex, 3 to 15 percent slopes, very stony 53
CLC-Chesuncook-Telos association, 3 to 15 percent slopes, very stony 57
CoA-Colton gravelly sandy loam, 0 to 3 percent slopes 60
CoB-Colton gravelly sandy loam, 3 to 8 percent slopes 62
CoC-Colton gravelly sandy loam, 8 to 15 percent slopes 65
CoE—Colton gravelly sandy loam, 15 to 70 percent slopes 67
CpB—Colton gravelly sandy loam, 0 to 8 percent slopes, very bouldery 69
CpC-Colton gravelly sandy loam, 8 to 15 percent slopes, very bouldery 72
CRC-Colton-Adams complex, 3 to 15 percent slopes 74
CRE-Colton-Adams complex, 15 to 70 percent slopes 78
CSC-Colton-Hermon complex, 3 to 15 percent slopes, very bouldery 81
CSD-Colton-Hermon complex, 15 to 30 percent slopes, very bouldery 84
CtB-Creasey gravelly silt loam, 3 to 8 percent slopes 87
CtC-Creasey gravelly silt loam, 8 to 15 percent slopes 89
CVC-Creasey-Abram complex, 3 to 15 percent slopes 91
CXC-Creasey-Lamoine complex, 3 to 15 percent slopes 94
CzB-Croghan loamy sand, 3 to 8 percent slopes 97
DAC—Danforth-Elliottsville complex, 3 to 15 percent slopes, very stony 99
DdC—Dixfield fine sandy loam, 8 to 15 percent slopes 103
DfC—Dixfield fine sandy loam, 8 to 15 percent slopes, very stony 105
DgB—Dixfield-Colonel complex, 3 to 8 percent slopes 107
DHB—Dixfield-Colonel complex, 0 to 8 percent slopes, very stony 110
DkB—Dixfield-Colonel complex, 3 to 8 percent slopes, very stony 113
DMC—Dixfield-Marlow association, 3 to 15 percent slopes, very stony 116
DRC—Dixfield-Marlow-Rawsonville complex, 3 to 15 percent slopes, very stony 119
DTC—Dixfield-Marlow-Tunbridge complex, 3 to 15 percent slopes, very stony 124
DUC—Dixfield-Rawsonville-Colonel complex, 3 to 15 percent slopes, very stony 128
DWC—Dixfield-Tunbridge-Colonel complex, 3 to 15 percent slopes, very stony 132
EcB—Elliottsville-Chesuncook complex, 3 to 8 percent slopes 136
EMC-Elliottsville-Monson complex, 3 to 15 percent slopes, very stony 139
Go-Gouldsboro silt loam 142
HCC-Hermon-Colton-Abram complex, 3 to 15 percent slopes, very bouldery 143
HeB—Hermon-Monadnock complex, 3 to 8 percent slopes 147
HeC—Hermon-Monadnock complex, 8 to 15 percent slopes 150
HkB—Hermon-Monadnock complex, 3 to 8 percent slopes, very bouldery 153
HkC—Hermon-Monadnock complex, 8 to 15 percent slopes, very bouldery 156
HMD—Hermon-Monadnock complex, 15 to 30 percent slopes, very bouldery 159
HOE—Hermon-Monadnock complex, 15 to 45 percent slopes, extremely bouldery 162
HSC—Hermon-Monadnock-Skerry complex, 3 to 15 percent slopes, very bouldery 165
HVC—Hermon-Monadnock-Skerry complex, 3 to 15 percent slopes extremely bouldery 169
HWE-Hogback-Abram-Rawsonville complex, 15 to 60 percent slopes, very stony 172
HXC—Hogback-Rawsonville-Abram complex, 3 to 15 percent slopes, very stony 176
Kn-Kinsman loamy sand 179
KW—Kinsman-Wonsqueak association, 0 to 3 percent slopes 181
LaB—Lamoine silt loam, 0 to 6 percent slopes 183
LbB-Lamoine-Buxton complex, 0 to 8 percent slopes 186
LCB—Lamoine-Buxton-Scantic complex, 0 to 15 percent slopes 188
LEB-Lamoine-Creasey-Scantic complex, 0 to 8 percent slopes 192
LHB—Lamoine-Nicholville complex, 0 to 8 percent slopes 196
LKB—Lamoine-Rawsonville-Scantic complex, 0 to 8 percent slopes, very stony 199
LmB-Lamoine-Scantic complex, 0 to 5 percent slopes 203
LnB-Lamoine-Scantic complex, 0 to 5 percent slopes, very stony 205
LSB—Lamoine-Scantic-Colonel complex, 0 to 8 percent slopes, very stony 208
LTB—Lamoine-Tunbridge-Scantic complex, 0 to 8 percent slopes, very stony 212
LUE-Lyman-Abram-Tunbridge complex, 15 to 60 percent slopes, very stony 216
LYC-Lyman-Tunbridge-Abram complex, 3 to 15 percent slopes, very stony 219
MaC-Marlow fine sandy loam, 8 to 15 percent slopes 223
MbC-Marlow fine sandy loam, 8 to 15 percent slopes, very stony 225
MDD—Marlow-Dixfield association, 8 to 30 percent slopes, very stony 227
MFD—Marlow-Rawsonville-Dixfield complex, 8 to 30 percent slopes, very stony 230
MGD-Marlow-Tunbridge-Dixfield complex, 8 to 30 percent slopes, very stony 234
MmA-Masardis fine sandy loam, 0 to 3 percent slopes 239
MmB-Masardis fine sandy loam, 3 to 8 percent slopes 241
MmC-Masardis fine sandy loam, 8 to 15 percent slopes 243
MmE-Masardis fine sandy loam, 15 to 45 percent slopes 245
MRE-Masardis-Adams complex, 15 to 70 percent slopes 247
MSC-Masardis-Sheepscot complex, 0 to 15 percent slopes 250
MT-Medomak and Wonsqueak soils, frequently flooded 254
Mvb-Monarda silt loam, 0 to 7 percent slopes, very stony 256
MWB-Monarda-Telos association, 0 to 8 percent slopes, very stony 258
MXB-Monarda-Wonsqueak complex, 0 to 5 percent slopes, very stony 261
NAC-Naskeag-Abram-Ricker complex, 0 to 15 percent slopes, very stony 264
NBB-Naskeag-Rawsonville-Hogback complex, 0 to 8 percent slopes, very stony 268
NCB-Naskeag-Tunbridge-Lyman complex, 0 to 8 percent slopes, very stony 272
NdB—Nicholville very fine sandy loam, 3 to 8 percent slopes 276
NdC-Nicholville very fine sandy loam, 8 to 15 percent slopes 278
NGB-Nicholville-Croghan complex, 0 to 5 percent slopes 280
NGC-Nicholville-Croghan complex, 5 to 15 percent slopes 283
Pg -Pits, gravel and sand 287
RhB—Rawsonville-Hogback complex, 3 to 8 percent slopes 287
RhC-Rawsonville-Hogback complex, 8 to 15 percent slopes 290
RmC-Rawsonville-Hogback-Abram complex, 3 to 15 percent slopes, very stony 293
RNC—Rawsonville-Lamoine-Hogback complex, 0 to 15 percent slopes, very stony 296
Sa-Scantic silt loam 300
SF-Scantic-Biddeford association, 0 to 3 percent slopes 303
SG-Sebago and Moosabec soils 305
ShB—Sheepscot fine sandy loam, 0 to 8 percent slopes 308
SJB-Sheepscot-Croghan-Kinsman complex, 0 to 8 percent slopes 311
SkB-Skerry fine sandy loam, 3 to 12 percent slopes 315
SmB—Skerry fine sandy loam, 3 to 12 percent slopes, very stony 317
SNC-Skerry-Becket association, 3 to 15 percent slopes, very stony 319
SOB-Skerry-Colonel complex, 0 to 8 percent slopes, very stony 322
SRC-Skerry-Colonel-Rawsonville complex, 0 to 15 percent slopes, very stony 326
STC-Skerry-Colonel-Tunbridge complex, 0 to 15 percent slopes, very stony 330
TaB-Telos silt loam, 3 to 8 percent slopes 334
TCB-Telos-Chesuncook complex, 0 to 8 percent slopes, very stony 336
TEB-Telos-Elliottsville-Monarda complex, 0 to 8 percent slopes, very stony 339
TLC-Tunbridge-Lamoine-Lyman complex, 0 to 15 percent slopes, very stony 343
TuB-Tunbridge-Lyman complex, 3 to 8 percent slopes 347
TuC-Tunbridge-Lyman complex, 8 to 15 percent slopes 350
TyC—Tunbridge-Lyman-Abram complex, 3 to 15 percent slopes, very stony 353
Ud-Udorthents-Urban land complex 356
WF-Wonsqueak and Bucksport soils, frequently flooded 357
Prime Farmland 361
Use and Management of the Soils 363
Interpretive Ratings 363
Rating Class Terms 363
Numerical Ratings 363
Blueberry Culture in Washington County 364
Crops and Pasture 366
Yields per Acre 367
Land Capability Classification 367
Woodland Management and Productivity 368
Forest Productivity 369
Forest Management 369
Recreation 371
Wildlife Habitat 373
Engineering 375
Construction Materials 376
Building Site Development 377
Sanitary Facilities 379
Water Management 381
Soil Properties 383
Engineering Index Properties 383
Physical Properties 384
Chemical Properties 386
Water Features 387
Soil Features 388
Hydric Soils 389
Classification of the Soils 391
Abram series 392
Adams series 393
Becket series 394
Biddeford series 395
Brayton series 396
Bucksport series 397
Buxton series 397
Chesuncook series 398
Colonel series 400
Colton series 401
Creasey series 402
Croghan series 403
Danforth series 404
Dixfield series 405
Elliottsville series 406
Gouldsboro series 407
Hermon series 408
Hogback series 410
Kinsman series 411
Lamoine series 412
Lyman series 413
Marlow series 414
Masardis series 415
Medomak series 417
Monadnock series 418
Monarda series 419
Monson series 420
Moosabec series 421
Naskeag series 422
Nicholville series 423
Rawsonville series 424
Ricker series 425
Scantic series 427
Sebago series 428
Sheepscot series 430
Skerry series 431
Telos series 432
Tunbridge series 434
Udorthents 435
Wonsqueak series 435
Formation of the Soils 437
Factors of Soil Formation 437
Climate 437
Parent Material 437
Plant and Animal Life 438
Topography 438
Time 438
Processes of Soil Formation 438
Physiography and Geology 440
Physiography 440
Bedrock Geology 440
Seismicity 441
Surficial Geology 441
Economic Geology 443
References 445
Glossary 447
Tables 465
Table 1.-Temperature and Precipitation 466
Table 2.—Freeze Dates in Spring and Fall 468
Table 3.-Growing Season 470
Table 4.-Acreage and Proportionate Extent of the Soils 471
Table 5.—Prime and other Important Farmland 473
Table 6.—Land Capability Classes and Yields per Acre Crops and Pasture 474
Table 7.—Forestland Productivity 484
Table 8.—Forest Management 516
Table 9.-Hazard of Erosion, Suitability for Roads, and Seedling Mortality on Forestland 534
Table 10.—Forestland Planting and Harvesting 559
Table 11.-Camp Areas, Picnic Areas, and Playgrounds 578
Table 12.-Paths, Trails, and Golf Fairways 606
Table 13.-Wildlife Habitat 633
Table 14.-Source of Gravel and Sand 647
Table 15.-Source of Reclamation Material, Roadfill, and Topsoil 666
Table 16.—Dwellings and Small Commercial Buildings 693
Table 17.—Roads and Streets, Shallow Excavations, and Lawns and Landscaping 715
Table 18.—Sewage Disposal 744
Table 19.—Landfills 773
Table 20.—Ponds and Embankments 799
Table 21.—Engineering Properties 820
Table 22.—Physical Soil Properties 873
Table 23.-Chemical Soil Properties 903
Table 24.-Water Features 924
Table 25.-Soil Features 943
Table 26.-Hydric Soils 956
Table 27.-Taxonomic Classification of the Soils 958
Table 28.-Relationship of the Soil Series in the Survey Area to LandscapePosition, Parent Material, and Drainage959

Foreword

This soil survey contains information that affects land use planning in this survey area. It contains predictions of soil behavior for selected land uses. The survey also highlights soil limitations, improvements needed to overcome the limitations, and the impact of selected land uses on the environment.

This soil survey is designed for many different users. Farmers, ranchers, foresters, and agronomists can use it to evaluate the potential of the soil and the management needed for maximum food and fiber production. Planners, community officials, engineers, developers, builders, and home buyers can use the survey to plan land use, select sites for construction, and identify special practices needed to ensure proper performance. Conservationists, teachers, students, and specialists in recreation, wildlife management, waste disposal, and pollution control can use the survey to help them understand, protect, and enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. The information in this report is intended to identify soil properties that are used in making various land use or land treatment decisions. Statements made in this report are intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are shallow to bedrock. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

These and many other soil properties that affect land use are described in this soil survey. The location of each soil is shown on the detailed soil maps. Each soil in the survey area is described. Information on specific uses is given for each soil. Help in using this publication and additional information are available at the local office of the Natural Resources Conservation Service or the Cooperative Extension Service.

Joyce A. Swartzendruber
State Conservationist
Natural Resources Conservation Service

Soil Survey of Washington County Area, Maine

By David E. Wilkinson, Natural Resources Conservation Service

Fieldwork by David E. Wilkinson, Donald O. Clark, Gary T. Hedstrom, Wayne D. Hoar, Glendon B. Jordan, Susan E. Watson, David J. Popp, David E. Turcotte and Theodore H. Butler, Jr.

United States Department of Agriculture, Natural Resources Conservation Service, in cooperation with Maine Agricultural and Forest Experiment Station and the Maine Department of Agriculture

Washington County is located in a region of Maine known as "Downeast". It is the eastern most county in the United States, and is known as the "Sunrise County". The soil survey area has a total land area of 962,671 acres and 166,367 acres of water including lakes, ponds, rivers, and coastal waters (fig. 1). The survey area includes all of the coastal towns, extends north to Woodland in the northeast part of the county, and generally includes the towns adjacent to and south of Route 9. The total population of Washington County is about 34,000, and the county seat is Machias.

The survey area is the southern part of Washington County and is bordered on the north by northern Washington County, on the west by Hancock County, on the east by the St. Croix River, Passamaquoddy Bay and New Brunswick, Canada, and on the south by the Atlantic Ocean. Many peninsulas and bays dissect the coastline and over a hundred islands complement the coast. Some of the largest fluctuations between high and low tide in the world are in this area of Downeast Maine.

The southern part of the Washington County survey area is in Major Land Resource Area 144B-New England and Eastern New York Upland, Northern Part, and the northern part of the survey area is in Major Land Resource Area 143Northeast Mountains (USDA, 1981). The area consists of till-mantled, rolling to hilly uplands in the northern part, gently sloping valleys terminating in coastal lowlands in the southern part, and glaciofluvial outwash plains and deltas in the west central part. Glaciomarine or glaciolacustrine sediments cover the coastal valleys. The elevation ranges from sea level to 1,076 feet on the crest of Spruce Mountain in Beddington.

The main industries in the area are native low bush blueberry production and processing, forest products, lobstering, fishing, recreation, and services. Washington County is responsible for about 14 percent of the North American wild blueberry crop. The average yield is about 46 million pounds annually (1986-1991), all of which are processed within the county. Although blueberry land is prevalent throughout the county, the largest stretches of barrens can be found off Route 1 in Cherryfield, Deblois, Columbia Falls, Epping, Centerville, and Jonesboro and on Route 9 in Wesley and Crawford.

More than 90 percent of the survey area is forested, and the forest products industry is a major source of employment and income for the area. A large pulp and paper mill in the town of Woodland is an important commercial employer in the county. Many households receive part or all of their income from forest products including lumber mills, firewood and pulpwood suppliers, and balsam fir harvesting for wreaths and Christmas trees.

Figure 1.-Location of Washington County Area in Maine.

General Nature of the Survey Area

This section provides general information about the history and development, the climate, and the drainage of the southern part of Washington County.

History and Development

John Ahlin, Extension Educator, University of Maine Cooperative Extension, helped to prepare this section.

The State of Maine's most eastern part, Washington County, greets the morning sun before any other location in the United States. It is one of the United States' bestkept secrets in terms of spectacular unspoiled geography. Here, land and sea collide, shaping with tidal basins and craggy headlands, the last expanse of wild undeveloped coastline in Maine. Its woodlands, lakes, rivers and ocean provided the livelihood for
the Passamaquoddy Tribe in earlier times. Now the tribe is living on two reservations, Pleasant Point and Indian Township; each has its own governor and tribal council.

With the ending of the French and Indian War, a steady influx of settlers largely from western Maine and Massachusetts migrated downeast to set up mills for harvesting the huge abundant pines and also to obtain salt-marsh hay available at the numerous river mouths.

Hardy, self-reliant, anti-authoritarian types, these settlers would not abide by the new colonial regulations of Britain. Five days before the Battle of Bunker Hill, they dared to attack and capture his Majesty's tender "Margaretta". For the next six years this vulnerable population would not bend to the might of the Crown and they in fact constituted a threat to British hegemony in Nova Scotia. Their obstinacy helped set the United States-Canada border at the St. Croix River rather than the Penobscot. The characteristics and spirit of the individuals of those revolutionary times merged into folkways that carry through to the present and can be seen in the political, social, and economic life of the county.

Economically capital-short through the centuries to the present, Washington County still has difficulty in adding value to its raw materials through capital investment and labor. Logging, fishing, shipping, local industry and commerce provided the base for the population to rise to over 44,000 in the 1880 s. There-after with United States urbanization trends and the growth of large corporate industry, the local economy suffered with a resulting population decrease.

The populace is scattered among two cities, forty-four towns, and a number of unorganized territories. About thirty industries employ twenty or more people, the Georgia Pacific pulp and paper mill in Woodland being the largest. The county is the largest producer of wild blueberries in the nation. Forest industries, lobstering, clamming, and fishing furnish the livelihood for many residents. Unexploited wealth in the form of pure spring water rests in the aquifers which underlie many square miles of countryside. Washington County educational institutions are an important part of the local infrastructure. It has ten high schools, the University of Maine at Machias, the Washington County Technical College, and marine research programs offered by the University of Maine at Machias and Suffolk University. The most powerful radio station in the world is located at Cutler. This Navy very-low frequency station has towers of 980 feet. Another defense installation, an over the horizon radar system, is operated by the Air Force on the blueberry barrens of Columbia.

All in all, with its miles of untamed shoreline, fast rivers and unpolluted lakes, Washington County is attracting more and more discriminating visitors. Its area is still 85 percent woodland, 8 percent lake, 4 percent bogs, and 3 percent cropland and pasture. Many artists, photographers, botanists, geologists, hunters and fishermen are among the many who are attracted to the ambience of this remote county.

Rich in its historical past, sufficiently steady in its political, social, and economic institutions, the future augurs well for this unique county as long as its people guard and develop with care and creativity its natural and human resources.

Climate

Prepared by the Natural Resources Conservation Service National Water and Climate Center, Portland, Oregon.

Climate Tables are created from climate stations in Eastport and Jonesboro, Maine.
Thunderstorm days, relative humidity, percent sunshine, and wind information are estimated from First Order station Portland, Maine.

Table 1 gives data on temperature and precipitation for the survey area as recorded at Eastport and Jonesboro in the period 1971 to 2000. Table 2 shows probable dates of the first freeze in fall and the last freeze in spring. Table 3 provides data on the length of the growing season.

In winter, average temperatures are 24.4 and 21.3 degrees F, respectively, at Eastport and Jonesboro. The average daily minimum temperatures are 16.6 and 11.0 degrees, respectively. The lowest temperatures on record were -23 degrees at Eastport, occurring on December 29, 1933; and -26 degrees at Jonesboro, on December 31, 1989.

In summer, average temperatures are 61.9 and 62.9 degrees, respectively, at Eastport and Jonesboro. The average daily maximum temperatures in summer are 71.9 and 73.5 degrees, respectively. The highest temperatures ever recorded were 98 degrees at Eastport on July 18, 1999; and 104 degrees at Jonesboro on August 3, 1975.

Growing degree days are shown in table 1. They are equivalent to "heat units". During the month, growing degree days accumulate by the amount that the average temperature each day exceeds a base temperature (40 degrees F). The normal monthly accumulation is used to schedule single or successive plantings of a crop between the last freeze in spring and the first freeze in fall.

The average annual total precipitation is 44.94 inches at Eastport and 51.22 inches at Jonesboro. In general, the southwest coastal area of Washington County is the wettest, with slightly more than 50 inches per year, while eastern and northern sections average between 43 and 47 inches. Of these amounts, about 15 to 22 inches, or roughly 40 to 50 percent of the annual total usually falls during the growing season. This is mostly May through October along the coast, and June through September inland. On average there are about 171 days between spring and fall frosts (32 degrees F) at Eastport, and 140 days at Jonesboro. The heaviest 1-day precipitation amounts during the period of record for each station (back to 1926 at Eastport and 1948 at Jonesboro) were 4.14 inches at Eastport on July 25, 1990; and 5.40 inches at Jonesboro on April 29, 1979. Thunderstorms occur on about 17 days each year, and most occur between June and August.

Average seasonal snowfall is variable across the county, but in general it is greatest in the southwest coastal and northeastern parts of the county. Average annual snowfall is 58.7 inches at Eastport and 65.4 inches at Jonesboro. The greatest snow depths at any one time during the periods of record were 39 inches at Eastport on March 19, 1963; and 38 inches at Jonesboro, recorded on February 10, 1987. On average, 58 days per year have at least 1 inch of snow on the ground at Eastport, while 85 days per year usually are snow covered in Jonesboro. The heaviest 1-day snowfalls on record were 21.0 inches at Eastport, recorded on January 29, 1952; and 21.0 inches recorded at Jonesboro on February 26, 1969.

In general, for the survey area the average relative humidity in mid-afternoon is about 60 percent. Humidity is higher at night, and the average at dawn is about 90 percent in the summer, and 75 percent in the winter. The sun shines about 62 percent of the time in summer and about 55 percent in winter. The prevailing wind is from the northwest from October to March, and from the south the rest of the year. Average wind speed is highest, around 10 miles per hour, in March and April. Within about 2 miles of the coastline there is a pronounced maritime effect on summer climate, where temperatures are cooler, fog is not uncommon, and evapotranspiration rates are diminished. Winter climate in this coastal zone is also moderated to some extent, in that temperatures are not as low as the temperatures further inland.

Drainage

Most of the large rivers in Washington County, as well as numerous short coastal streams, drain a series of headwater glacial lakes and flow south into great bays of the Gulf of Maine. Joy Bay, Dyer Bay, and Pleasant Bay are in the western part of the county just east of Mount Desert Island and Acadia National Park. Machias Bay is in the central coastal plain and Cobscook Bay and Passamaquoddy Bay are in the
eastern coastal area near the Canadian border. Six major Atlantic salmon rivers drain the Washington County area. The St. Croix River has several dams for generating power and supporting a paper mill in the northeastern part of the county. The rivers and streams provide adequate drainage for all areas of Washington County, as evidenced by very few flooding problems.

Many swamps, meadows, and heath bogs provide significant water storage. Several large heath bogs, including the Great Heath along the Pleasant River and Meddybemps Heath at the head of the Dennys River, store large quantities of water. The largest glaciofluvial outwash deposit in the state is located in the eastern part of the county. This significant sand and gravel aquifer is known locally as "the barrens" and supports the largest area of native low bush blueberries in the nation.

How This Survey Was Made

This survey was made to provide information about the soils and miscellaneous areas in the survey area. The information includes a description of the soils and miscellaneous areas and their location and a discussion of their suitability, limitations, and management for specified uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They dug many holes to study the soil profile, which is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

The soils and miscellaneous areas in the survey area are in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept or model of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the fieldobserved characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

This survey area was mapped at two levels of detail. At the more detailed level, map units are narrowly defined. Map unit boundaries were plotted and verified at closely spaced intervals. At the less detailed level, map units are broadly defined. Boundaries were plotted and verified at wider intervals. In the legend for the detailed soil maps, narrowly defined units are indicated by symbols in which the first letter is a capital and the second is lowercase. For broadly defined units, the first and second letters are capitals.

The descriptions, names, and delineations of the soils in this survey area do not fully agree with those of the soils in adjacent survey areas. Differences are the result of a better knowledge of soils, modifications in series concepts, or variations in the intensity of mapping or in the extent of the soils in the survey areas.

Map Unit Composition

A map unit delineation on a soil map represents an area dominated by one major kind of soil or an area dominated by several kinds of soil. A map unit is identified and named according to the taxonomic classification of the dominant soil or soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural objects. In common with other natural objects, they have a characteristic variability in their properties. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of soils of other taxonomic classes.

Consequently, every map unit is made up of the soil or soils for which it is named and some soils that belong to other taxonomic classes. These latter soils are called inclusions or included soils.

Most inclusions have properties and behavioral patterns similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting (similar) inclusions. They may or may not be mentioned in the map unit descriptions. Other inclusions, however, have properties and behavior divergent enough to affect use or require different management. These are contrasting (dissimilar) inclusions. They generally occupy
small areas and cannot be shown separately on the soil maps because of the scale used in mapping. The inclusions of contrasting soils are mentioned in the map unit descriptions. A few inclusions may not have been observed and consequently are not mentioned in the descriptions, especially where the soil pattern was so complex that it was impractical to make enough observations to identify all the kinds of soils on the landscape.

The presence of inclusions in a map unit in no way diminishes the usefulness or accuracy of the soil data. The objective of soil mapping is not to delineate pure taxonomic classes of soils but rather to separate the landscape into segments that have similar use and management requirements. The delineation of such landscape segments on the map provides sufficient information for the development of resource plans, but onsite investigation is needed to plan for intensive uses in small areas.

Survey Procedures

The general procedures followed in making this survey are described in the "National Soil Survey Handbook" (USDA, 2003) and the "Soil Survey Manual" (USDA, 1993).

Where available, surficial geology maps and bedrock geology maps were used to form a correlation between landforms and individual soil sites.

Prior to actual field mapping, sample areas were selected to represent the major landscapes in the survey area and general field investigations were made to determine the patterns of landforms and soils in these areas. Extensive notes were taken on the composition of map units in these preliminary study areas.

Field mapping was done primarily by making traverses on foot. Traverses were made mainly at intervals of $1 / 4$ mile or less, depending on the complexity of topography and soil patterns. As the traverses were made, the soil scientists divided the landscape into landforms or landform segments based on use and management of the soils. For example, a hill or ridge would be separated from a depression and a gently sloping summit from a very steep back slope of a ridge. In most areas, soil examinations along the traverses were made 100 to 800 yards apart, depending on the landscape and soil pattern. Areas of great variability and complexity occur in coastal areas and along streams and river valleys. Areas of broadly defined map units in the extensively forested areas were examined at intervals of $1 / 4$ mile or more.

Soil boundaries were determined on the basis of soil examinations, observations, and photo interpretation. The soil material was examined with the aid of a shovel, hand auger, or bucket auger to a depth of about 5 feet or to bedrock or the dense compact substratum if it was at a depth of less than 5 feet. The pedons described as typical were observed and studied in pits. A number of different soils were sampled for chemical and physical analyses.

All soils boundaries and information was recorded on aerial photographs. These photographs were at a scale of $1: 24,000$. Surface drainage was also recorded on aerial photographs and cultural features are from the U.S. Geological Survey $71 / 2$ minute topographic maps.

Detailed Soil Map Units

The map units delineated on the detailed soil maps in this survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions in this section, along with the maps, can be used to determine the suitability and potential of a unit for specific uses. They also can be used to plan the management needed for those uses.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. The contrasting components are mentioned in the map unit descriptions. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives the principal hazards and limitations to be considered in planning for specific uses.

Soils that have profiles that are almost alike make up a soil series. All the soils of a series have major horizons that are similar in composition, thickness, and arrangement. The soils of a given series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into soil phases. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a
soil phase commonly indicates a feature that affects use or management. For example, Colton gravelly sandy loam, 3 to 8 percent slopes is a phase of the Colton series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A complex consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Lamoine-Buxton complex, 0 to 8 percent slopes is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. SkerryBecket association, 3 to 15 percent slopes, very stony is an example.

An undifferentiated group is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Bucksport and Wonsqueak Soils is an undifferentiated group in this survey area.

This survey includes miscellaneous areas. Such areas have little or no soil material and support little or no vegetation. Udorthents-Urban land complex is an example.

Table 4 gives the acreage and proportionate extent of each map unit. Other tables give properties of the soils and the limitations, capabilities, and potentials for many uses. The Glossary defines many of the terms used in describing the soils or miscellaneous areas.

AaE—Abram-Hogback complex, 15 to 45 percent slopes, very stony

Setting
Landform: Hills and ridges on coastal peninsulas and islands, or in close proximity to a coastal setting.
Description of areas: Elongated in shape and from 6 to over 20 acres in size

Composition

Abram and similar soils: 40 percent
Hogback and similar soils: 35 percent
Inclusions: 25 percent

Abram soil
Position on landscape: Crests and shoulder slopes
Parent material: Glacial till
Slope range: 15 to 45 percent
Slope features: Convex
Stones on surface: 0.1 to 3 percent
\section*{Typical profile}
Surface layer:
0 to 2 inches, black sapric material

Subsurface layer:
2 to 5 inches, brown sandy loam
Subsoil:
5 to 6 inches, reddish brown sandy loam
Bedrock:
6 inches, granite

Soil Properties and Qualities

Depth class: Very shallow
Drainage class: Excessively drained
Permeability: Moderately rapid
Available water capacity: Very low
Depth to restrictive layer: 1 to 10 inches to bedrock
Hazard of flooding: None

Hogback soil

Position on landscape: Shoulder slopes, side slopes, and footslopes
Parent material: Glacial till
Slope range: 15 to 45 percent
Slope features: Convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 1 inch, black sapric material
Subsurface layer:
1 to 2 inches, reddish gray fine sandy loam
Subsoil:
2 to 14 inches, dusky red fine sandy loam
Bedrock:
14 inches, granite

Soil Properties and Qualities

Depth class: Shallow
Drainage class: Somewhat excessively drained
Permeability: Moderately rapid
Available water capacity: Low
Depth to restrictive layer: 10 to 20 inches to bedrock
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Abram and Hogback soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Abram and Hogback soils.

Inclusions

- Ricker soils are well drained, very shallow organic soils. They are intermingled with Abram soils and rock outcrop on the crests of knolls.
- Rawsonville soils are well drained, moderately deep, glacial till. They are on footslopes and intermingled with the Hogback soils.
- Lyman soils are somewhat excessively drained, shallow, glacial till. They are on shoulder slopes, side slopes, and footslopes, and have less organic carbon in their subsoil than Hogback soils.
- Areas of rock outcrop are intermingled with Abram and Ricker soils on the crests of knolls.
- Areas with slopes greater than 45 percent or less than 15 percent are included.

Use and Management

Current uses: Mainly idle overgrown land

Major Management Concerns

- Depth to bedrock
- Slope
- Hazard of seepage
- Restricted rooting depth
- Stones on the surface

General Management Considerations

Urban Development:

- Septic systems should be located on inclusions of deeper soils in this map unit if possible or fill material can be used to raise the level of the absorption field.
- Slope is a serious concern in installing septic tank absorption fields. Absorption lines should be installed on the contour. Septic systems should not be located in these areas. Follow state or local regulations on septic system installation.
- This map unit should be avoided as sites for dwellings.
- As the slope increases, building site development becomes more difficult.
- Cuts needed to provide level building sites can expose bedrock.
- Dwellings with basements should be located on inclusions of deeper soils in this map unit if possible, or the bedrock should be removed, or the foundation set on bedrock and backfilled to the established grade.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help to prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

Blueberry Management:

This unit is poorly suited to blueberry production due to slope and occasional rock outcrops.

Hay and Pasture:
This unit is very poorly suited to hay and pasture due to slope, droughtiness, stones on the surface, and occasional rock outcrops.

AbE—Abram-Lyman complex, 15 to 45 percent slopes, very stony

Setting

Landform: Hills and ridges.
Description of areas: Elongated in shape and from 6 to over 20 acres in size.

Composition

Abram and similar soils: 40 percent Lyman and similar soils: 35 percent Inclusions: 25 percent

Abram soil
Position on landscape: Crests and shoulder slopes
Parent material: Glacial till
Slope range: 15 to 45 percent
Slope features: Convex
Stones on the surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, black sapric material
Subsurface layer:
2 to 5 inches, brown sandy loam
Subsoil:
5 to 6 inches, reddish brown sandy loam
Bedrock:
6 inches, granite

Soil Properties and Qualities

Depth class: Very shallow
Drainage class: Excessively drained
Permeability: Moderately rapid
Available water capacity: Very low
Depth to restrictive layer: 1 to 10 inches to bedrock
Hazard of flooding: None

Lyman soil

Position on landscape: Shoulder slopes, side slopes, and footslopes
Parent material: Glacial till
Slope range: 15 to 45 percent
Slope features: Convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, dark reddish brown sapric material
Subsurface layer:
2 to 3 inches, brown fine sandy loam
Subsoil:
3 to 4 inches, dark reddish brown fine sandy loam
4 to 8 inches, dark yellowish brown gravelly fine sandy loam
8 to 12 inches, yellowish brown gravelly fine sandy loam
12 to 17 inches, light olive brown gravelly fine sandy loam
Bedrock:
17 inches, schist

Soil Properties and Qualities

Depth class: Shallow
Drainage class: Somewhat excessively drained
Permeability: Moderately rapid
Available water capacity: Low
Depth to restrictive layer: 10 to 20 inches to bedrock
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Abram and Lyman soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Abram and Lyman soils.

Inclusions

- Ricker soils are well drained very shallow organic soils. They are intermingled with Abram soils and rock outcrop on the crests of knolls.
- Tunbridge soils are well drained, moderately deep glacial till. They are on footslopes and intermingled with the Lyman soils.
- Areas of rock outcrop are intermingled with Abram and Ricker soils on the crests of knolls.
- Areas with slopes greater than 45 percent or less than 15 percent are included.

Use and Management

Current uses: Mainly idle overgrown land

Major Management Concerns

- Depth to bedrock
- Slope
- Hazard of seepage
- Restricted rooting depth
- Stones on the surface

General Management Considerations

Urban Development:

- This map unit has severe limitations for septic tank absorption fields because of the shallow depth to bedrock and slope. Septic systems should be located on inclusions of deeper soils in this map unit if possible or fill material can be used to raise the level of the absorption field.
- Slope is a serious concern in installing septic tank absorption fields. Absorption lines should be installed on the contour. Septic systems should not be located in these areas. Follow state or local regulations on septic system installation.
- This map unit should be avoided as sites for dwellings.
- As the slope increases, building site development becomes more difficult.
- Cuts needed to provide level building sites can expose bedrock.
- Dwellings with basements should be located on inclusions of deeper soils in this map unit if possible, or the bedrock should be removed, or the foundation set on bedrock and backfilled to the established grade.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

Blueberry Management:

This unit is poorly suited to blueberry production due to slope and occasional rock outcrops.

Hay and Pasture:
This unit is very poorly suited to hay and pasture due to slope, droughtiness, stones on the surface, and occasional rock outcrops.

ACE—Abram-Rock outcrop-Ricker complex, 15 to 80 percent slopes

Setting
Landform: Mountains, hills, ridges, coastal islands and coastal peninsulas Description of areas: Irregular in shape and from 20 to over 300 acres in size.
\section*{Composition}
Abram and similar soils: 30 percent
Rock outcrop: 30 percent (lower in coastal areas)
Ricker and similar soils: 25 percent (higher in coastal areas)
Inclusions: 15 percent
\section*{Abram soil}
Position on landscape: Crests, side slopes, and in saddles between bedrock exposures
Parent material: Glacial till
Slope range: 15 to 80 percent
Slope features: Convex and concave
Stones on surface: None
\section*{Typical Profile}
Surface layer:
0 to 2 inches, black sapric material
Subsurface layer:
2 to 5 inches, brown sandy loam
Subsoil:
5 to 6 inches, reddish brown sandy loam
Bedrock:
6 inches, granite

Soil Properties and Qualities

Depth Class: Very shallow
Drainage class: Excessively drained
Permeability: Moderately rapid
Avaliable water capacity: Very low
Depth to restrictive layer: 1 to 10 inches to bedrock
Hazard of flooding: None
Rock outcrop
Position on landscape: Crests and side slopes
Slope range: 15 to 80 percent
Slope features: Convex and concave
Bedrock: Granite, gneiss, phyllite, or schist
Depth to water table: Greater than 6 feet

Ricker soil

Position on landscape: Crests and side slopes of bedrock exposures
Parent material: Organic deposits underlain by thin mineral material
Slope range: 15 to 80 percent
Slope features: Convex and concave
Stones on surface: None

Typical Profile

Surface layer:
0 to 1 inch, dark reddish brown fibric material
1 to 4 inches, dark reddish brown hemic material
4 to 5 inches, black sapric material
Subsurface layer:
5 to 7 inches, brown gravelly sandy loam
Bedrock:
7 inches, granite
Soil Properties and Qualities
Depth class: Very shallow
Drainage class: Well drained
Permeability: Moderately rapid in the surface and moderate or moderately rapid in the subsurface
Available water capacity: Very low
Depth to restrictive layer: 1 to 10 inches to bedrock
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Abram and Ricker soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Abram and Ricker soils.

Inclusions

- Lyman soils are somewhat excessively drained, shallow glacial till. They are in saddles between knolls and on lower side slopes and footslopes.
- Hogback soils are somewhat excessively drained, shallow glacial till with high concentrations of organic carbon near their mineral soil surface. They are on coastal peninsulas and islands, or in close proximity to a coastal setting.
- Tunbridge soils are well drained, moderately deep glacial till. They are on lower side slopes and footslopes.
- Areas of soils similar to Ricker that have more than 20 inches of organic material on exposed coastal peninsulas and island shorelines, or in island swales (fig. 2). This accumulation of organic material is due to lower summer temperatures and more summer moisture in the form of fog, as well as coniferous litter.
- Areas of soils on footslopes and at the base of steep slopes that are greater than 10 inches to bedrock have an extremely bouldery surface, and are very gravelly or extremely gravelly.
- Areas with slopes greater than 80 percent and less than 15 percent are included.

Use and Management

Current uses: Woodland

Major Management Concerns

- Slope
- Depth to bedrock
- Restricted rooting depth
- Rock outcroppings
- Hazard of seepage

Figure 2.-Shipstern Island off the coast of Washington County. This area is mapped as an area of Abram-Rock Outcrop-Ricker complex, 15 to 80 percent slopes.

General Management Considerations

Woodland Management:

- Minimizing the risk of erosion is essential in harvesting timber.
- Proper design of road drainage systems and care in the placement of culverts help to control erosion. Spoil from excavations is subject to rill and gully erosion and to sloughing.
- Laying out skid trails and roads on the contour will reduce erosion.
- Revegetating disturbed areas around landings, skid trails, roads, and construction sites as soon as possible helps to control soil erosion.
- The steepness of slope limits the kinds of equipment that can be used in forest management.
- Trees are subject to windthrow because of restricted rooting depth.
- Periodic salvaging of windthrown trees is advisable.
- Care should be taken in harvesting and thinning to reduce trees exposed to the prevailing winds.
- Harvesting by stripcutting will expose fewer trees to the prevailing wind and help to prevent windthrow.
- Competing vegetation can be controlled by properly preparing the site and by eliminating unwanted weeds, brush, or trees.

Recreation Management:

- If this unit is used for camping areas, picnic areas, and paths and trails, the main limitations are slope and depth to bedrock.
- Erosion and sedimentation can be controlled and the beauty of the area enhanced by maintaining adequate plant cover. Plant cover can be maintained by limiting traffic.
- Slope limits the use of most areas of this unit mainly to a few paths and trails which should extend across the slope.

Urban Development:

- Follow state or local regulations on septic system installation.
- Septic systems should not be located in these areas.
- These areas should be avoided as sites for dwellings.
- As the slope increases, building site development becomes more difficult.

AdA—Adams loamy sand, 0 to 3 percent slopes

Setting

Landform: Outwash plains, deltas, and kame terraces
Description of areas: Irregular in shape and from 6 to over 100 acres in size.

Composition

Adams and similar soils: 85 percent
Inclusions: 15 percent

Adams soil

Position on landscape: On the perimeter of outwash plains, deltas, and kame terraces Parent material: Glaciofluvial sands
Slope features: Nearly level and smooth
Stones on surface: None

Typical Profile

Surface layer:
0 to 1 inch, dark reddish brown sapric material
Subsurface layer:
1 to 4 inches, brown loamy sand
Subsoil:
4 to 7 inches, dark reddish brown loamy sand
7 to 12 inches, brown sand
12 to 16 inches, dark yellowish brown sand
16 to 22 inches, yellowish brown sand
Substratum:
22 to 56 inches, light olive brown sand
56 to 65 inches, olive sand
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Somewhat excessively drained
Permeability: Rapid in the surface, subsurface, and subsoil, and very rapid in the substratum
Available water capacity: Very low
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Adams soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Adams soils.

Inclusions

- Colton soils are excessively drained and Masardis soils are somewhat excessively drained. They are glaciofluvial sand and gravel on the crests of small knolls or ridges.
- Areas of well drained glaciofluvial sands that have thick fine sandy loam surface caps are inlcuded. They are mainly in the towns of Deblois and Beddington.
- Croghan soils are moderately well drained glaciofluvial sand. They are in depressions, on the perimeter of the unit, or in drainageways.
- Kinsman soils are poorly drained glaciofluvial sand. They are in closed depressions.
- Areas of Adams soils with greater than 20 percent gravel in the substratum.
- Nicholville soils are moderately well drained glaciofluvial and glaciolacustrine very fine sands and silts. They are on the perimeter of units on footslopes and toeslopes.
- Wonsqueak, Bucksport, Sebago, and Moosabec soils are very poorly drained organic materials. They are in small closed depressions.
- Short slopes that are greater than 3 percent.

Use and Management

Current uses: Mainly wild blueberry production. It is also used for hayland, homesites, and as a source of sand.

Major Management Concerns

- Cutbanks are not stable
- Droughtiness
- Poor filter
- Hazard of seepage

General Management Considerations

Urban Development:

- Follow state or local regulations on septic system installation.
- If this map unit is used for septic tank absorption fields, there is a possibility of groundwater contamination due to the poor filtering action of the substratum. Finertextured fill material below the bottom of the absorption field can help prevent this from occurring.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.
- This map unit is often associated with an aquifer recharge area and because of the permeability of this soil, pollutants can move quickly through the soil and into the ground water. Contamination of the ground water is therefore possible if precautions are not taken. Restrictions on the types of activities that may occur, limitations on the density of housing, and special engineering designs for septic systems are possible precautionary measures.
- This map unit is a probable source of sand.

Blueberry Management:

- This unit is well suited to blueberry production.
- This unit has very few or no surface stones, and is well suited to flail mowing and mechanical harvesting.
- In expansive open areas, such as the blueberry barrens in western Washington County, windbreaks help to trap blowing snow which provides protection from winterkill and increases the water available for plant growth. Windbreaks also reduce wind speed thus creating a more favorable environment for honeybee pollination.
- Irrigation and cultural practices such as weed control, insect and disease control, and fertility management will result in increased yields of blueberries.
- Irrigation water should be applied in amounts sufficient to wet the root zone but in amounts small enough to prevent the leaching of plant nutrients, insecticides, and herbicides.
- Water needs to be applied at a slow rate over a long period to insure that the root zone is properly wetted.
- Fertilization needs can be determined by leaf tissue analysis. Proper fertilization can result in greater top and rhizome growth and higher yields.
- The use of honeybees for pollination will increase the fruit set and result in higher yields.

Hay and Pasture:

- If this unit is used for hay and pasture, the main limitation is droughtiness.
- Use of proper stocking rates and pasture rotation helps to keep the pasture in good condition and to protect the soil from erosion.
- Proper grazing practices, weed control, lime, and fertilizer are needed for maximum quality of forage.

AdB—Adams loamy sand, 3 to 8 percent slopes

Setting

Landform: Outwash plains, deltas, kame terraces, and old beach fronts
Description of areas: Irregular in shape and from 6 to over 50 acres in size

Composition

Adams and similar soils: 80 percent
Inclusions: 20 percent

Adams soil

Position on landscape: On head slopes and shoulder slopes on the perimeter of outwash plains, deltas, and kame terraces
Parent material: Glaciofluvial sands
Slope features: Convex and smooth
Stones on surface: None

Typical Profile

Surface layer:
0 to 1 inch, dark reddish brown sapric material
Subsurface layer:
1 to 4 inches, brown loamy sand
Subsoil:
4 to 7 inches, dark reddish brown loamy sand
7 to 12 inches, brown sand
12 to 16 inches, dark yellowish brown sand
16 to 22 inches, yellowish brown sand

Substratum:

22 to 56 inches, light olive brown sand
56 to 65 inches, olive sand
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Somewhat excessively drained

Permeability: Rapid in the surface, subsurface, and subsoil, and very rapid in the substratum
Available water capacity: Very low
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Adams soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Adams soils.

Inclusions

- Colton soils are excessively drained and Masardis soils are somewhat excessively drained glaciofluvial sand and gravel. They are on small knolls or ridges.
- Areas of well drained glaciofluvial sands that have thick fine sandy loam surface caps. They are mainly in the towns of Deblois and Beddington.
- Areas of Adams soils with greater than 20 percent gravel in the substratum.
- Croghan soils are moderately well drained glaciofluvial sand. They are in depressions and on toeslopes at the perimeter of the unit.
- Kinsman soils are poorly drained glaciofluvial sands. They are in closed depressions.
- Nicholville soils are moderately well drained glaciofluvial and glaciolacustrine very fine sand and silt. They are on the perimeter of the unit in depressions and on footslopes and toeslopes.
- Wonsqueak, Bucksport, Moosabec, and Sebago soils are very poorly drained organic materials. They are in small closed depressions.
- Short slopes that are greater than 8 percent, or less than 3 percent.

Use and Management

Current uses: Mainly wild blueberry production. It is also used for hayland, homesites, and as a source of sand.

Major Management Concerns

- Cutbanks are not stable
- Droughtiness
- Poor filter
- Hazard of seepage

General Management Considerations

Urban Development:

- Follow state or local regulations on septic system installation.
- If this map unit is used for septic tank absorption fields, there is a possibility of groundwater contamination due to the poor filtering action of the substratum. Finertextured fill material below the bottom of the absorption field can help prevent this from occurring.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.
- This map unit is often associated with aquifer recharge areas and because of the permeability of this soil, pollutants can move quickly through the soil and into the ground water. Contamination of the ground water is therefore possible if
precautions are not taken. Restrictions on the types of activities that may occur, limitations on the density of housing, and special engineering designs for septic systems are possible precautionary measures.
- These areas are a probable source of sand.

Blueberry Management

- This unit is well suited to blueberry production.
- This unit has very few or no surface stones, and is well suited to flail mowing and mechanical harvesting.
- In expansive open areas, such as the blueberry barrens in western Washington County, windbreaks help to trap blowing snow which provides protection from winterkill and increases the water available for plant growth. Windbreaks also reduce wind speed thus creating a more favorable environment for honeybee pollination.
- Irrigation and cultural practices such as weed control, insect and disease control, and fertility management will result in increased yields of blueberries.
- Irrigation water should be applied in amounts sufficient to wet the root zone but in amounts small enough to prevent the leaching of plant nutrients, insecticides, and herbicides.
- Water needs to be applied at a slow rate over a long period to insure that the root zone is properly wetted.
- Fertilization needs can be determined by leaf tissue analysis. Proper fertilization can result in greater top and rhizome growth and higher yields.
- The use of honeybees for pollination will increase the fruit set and result in higher yields.

Hay and Pasture:

- Use of proper stocking rates and pasture rotation helps to keep the pasture in good condition and to protect the soil from erosion.
- Proper grazing practices, weed control, lime, and fertilizer are needed for maximum quality of forage.

AdC—Adams loamy sand, 8 to 15 percent slopes

Setting

Landform: Outwash plains, deltas, and kame terraces
Description of areas: Irregular in shape and from 6 to over 50 acres in size.

Composition

Adams and similar soils: 85 percent
Inclusions: 15 percent
Adams soil
Position on landscape: Shoulder slopes and side slopes at the perimeter of outwash plains, deltas, and kame terraces
Parent material: Glaciofluvial sands
Slope features: Convex and smooth
Stones on surface: None

Typical Profile

Surface layer:
0 to 1 inch, dark reddish brown sapric material

Subsurface layer:

1 to 4 inches, brown loamy sand
Subsoil:
4 to 7 inches, dark reddish brown loamy sand
7 to 12 inches, brown sand
12 to 16 inches, dark yellowish brown sand
16 to 22 inches, yellowish brown sand
Substratum:
22 to 56 inches, light olive brown sand
56 to 65 inches, olive sand

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Somewhat excessively drained
Permeability: Rapid in the surface, subsurface, and subsoil, and very rapid in the substratum
Available water capacity: Very low
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Adams soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Adams soils.

Inclusions

- Colton soils are excessively drained and Masardis soils are somewhat excessively drained glaciofluvial sand and gravel. They are on small knolls or ridges.
- Croghan soils are moderately well drained glaciofluvial sand. They are in depressions and at the perimeter of the unit.
- Nicholville soils are moderately well drained glaciofluvial and glaciolacustrine very fine sand and silt. They are in depressions or on the perimeter of the unit.
- Short slopes that are greater than 15 percent or less than 8 percent.

Use and Management

Current uses: Mainly wild blueberry production. It is also used for hayland, homesites, and as a source of sand.

Major Management Concerns

- Cutbanks are not stable
- Droughtiness
- Poor filter
- Hazard of seepage
- Slope

General Management Considerations

Urban Development:

- Follow state or local regulations on septic system installation.
- If this map unit is used for septic tank absorption fields, there is a possibility of groundwater contamination due to the poor filtering action of the substratum. Finertextured fill material below the bottom of the absorption field can help prevent this from occurring.
- As the slope increases, building site development becomes more difficult.
- Access roads must be designed to provide proper grade and drains are needed to control surface runoff and keep soil losses to a minimum.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.
- This map unit is often associated with aquifer recharge areas and because of the permeability of this soil, pollutants can move quickly through the soil and into the ground water. Contamination of the ground water is therefore possible if precautions are not taken. Restrictions on the types of activities that may occur, limitations on the density of housing, and special engineering designs for septic systems are possible precautionary measures.
- These areas are a probable source of sand.

Blueberry Management:

- This unit is well suited to blueberry production.
- This unit has very few or no surface stones, and is well suited to flail mowing. Mechanical harvesting is moderately difficult due to slope.
- In expansive open areas, such as the blueberry barrens in western Washington County, windbreaks help to trap blowing snow which provides protection from winterkill and increases the water available for plant growth. Windbreaks also reduce wind speed thus creating a more favorable environment for honeybee pollination.
- Irrigation and cultural practices such as weed control, insect and disease control, and fertility management will result in increased yields of blueberries.
- Irrigation water should be applied in amounts sufficient to wet the root zone, but in amounts small enough to prevent the leaching of plant nutrients, insecticides, and herbicides.
- Water needs to be applied at a slow rate over a long period to insure that the root zone is properly wetted.
- Fertilization needs can be determined by leaf tissue analysis. Proper fertilization can result in greater top and rhizome growth and higher yields.
- The use of honeybees for pollination will increase the fruit set and result in higher yields.

Hay and Pasture:

- If this unit is used for hay and pasture, the main limitation is droughtiness.
- Use of proper stocking rates and pasture rotation helps to keep the pasture in good condition and protect the soil from erosion.
- Proper grazing practices, weed control, lime, and fertilizer are needed for maximum quality of forage.

AGB—Adams-Croghan association, 0 to 8 percent slopes

Setting
Landform: Outwash plains, deltas, and kame terraces
Description of areas: Irregular in shape and from 20 to 200 acres in size.

Composition

Adams and similar soils: 55 percent
Croghan and similar soils: 30 percent
Inclusions: 15 percent

Adams soil
Position on landscape: Head slopes and higher positions
Parent material: Glaciofluvial sands
Slope range: 0 to 8 percent
Slope features: Convex, nearly level, and smooth
Stones on surface: None

Typical Profile

Surface layer:
0 to 1 inch, dark reddish brown sapric material
Subsurface layer:
1 to 4 inches, brown loamy sand
Subsoil:
4 to 7 inches, dark reddish brown loamy sand
7 to 12 inches, brown sand
12 to 16 inches, dark yellowish brown sand
16 to 22 inches, yellowish brown sand
Substratum:
22 to 56 inches, light olive brown sand
56 to 65 inches, olive sand

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Somewhat excessively drained
Permeability: Rapid in the surface, subsurface, and subsoil, and very rapid in the substratum
Available water capacity: Very low
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None

Croghan soil

Position on landscape: Toeslopes, footslopes, and slight depressions Parent material: Glaciofluvial sands
Slope range: 0 to 6 percent
Slope features: Slightly concave or level
Stones on surface: None

Typical Profile

Surface layer:
0 to 1 inch, dark reddish brown sapric material
Subsurface layer:
1 to 3 inches, light gray loamy sand
Subsoil:
3 to 5 inches, dark reddish brown loamy sand
5 to 11 inches, brown loamy sand
11 to 18 inches, dark yellowish brown loamy sand
18 to 23 inches, light olive brown, mottled, sand
Substratum:
23 to 65 inches, grayish brown, mottled, sand
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Moderately well drained

Permeability: Rapid in the surface and subsurface and very rapid in the subsoil and substratum
Available water capacity: Very low
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Adams and Croghan soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Adams and Croghan soils.

Inclusions

- Colton soils are excessively drained glaciofluvial sand and gravel. They are in slightly higher positions and on small knolls.
- Masardis soils are somewhat excessively drained glaciofluvial sand and gravel with loamy surface caps greater than 10 inches thick. They are in slightly higher positions, on small knolls, and intermingled with the Colton soils.
- Nicholville soils are moderately well drained glaciofluvial and glaciolacustrine very fine sand and silt. They are on toeslopes and footslopes near the perimeter of the unit.
- Kinsman soils are poorly drained glaciofluvial sand. They are in depressions and adjacent to drainageways.
- Very poorly drained glaciofluvial sand are in depressions.
- Bucksport and Wonsqueak soils are very poorly drained organic materials. They are in bogs.
- Areas similar to the Adams and Croghan soils that have thicker fine sandy loam and very fine sandy loam surface caps. They are mainly in the Deblois and Beddington area.
- Areas with short slopes greater than 8 percent on the Adams soils and greater than 6 percent on the Croghan soils are included.

Use and Management

Current uses: Woodland

Major Management Concerns

- Droughtiness
- Poor filter
- Hazard of seepage
- Cutbanks are not stable
- Seasonal high water table in the Croghan soils
- Frost action in the Croghan soils

General Management Considerations

Woodland Management:

- The potential productivity of this unit for trees is high on the Adams soils and very high on the Croghan soils.
- These areas are a probable source of sand.
- Laying out skid trails and roads on the contour will reduce erosion.
- Revegetating disturbed areas around landings, skid trails, roads, and construction sites as soon as possible will help to control soil erosion.
- Conventional methods of harvesting timber can be used.
- Seedling mortality can be reduced by planting seedlings in spring when soil moisture levels are highest and by using planting stock that is larger than usual or containerized. Reinforcement planting may be needed.
- Care should be taken in harvesting and thinning to reduce trees exposed to the prevailing winds.
- Plant competition is slight on the Adams soils and moderate on the Croghan soils.
- Plant competition delays natural regeneration but does not prevent the eventual development of a fully stocked, normal stand of trees.
- Competing vegetation can be controlled by properly preparing the site and by eliminating unwanted weeds, brush, or trees.

Recreation Management:

- If this unit is used for camping areas, picnic areas, and paths and trails, the main limitation is the seasonal high water table in the Croghan soils.
- Erosion and sedimentation can be controlled and the beauty of the area enhanced by maintaining adequate plant cover. Plant cover can be maintained by limiting traffic.

Urban Development:

- Follow state or local regulations on septic system installation.
- If this map unit is used for septic tank absorption fields, there is a possibility of groundwater contamination due to the poor filtering action of the substratum. Finertextured fill material below the bottom of the absorption field can help prevent this from occurring.
- If Croghan soils are used for septic tank absorption fields, the limitation of seasonal high water table can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- If the Croghan soils are used as a base for roads, a coarse-grained subgrade to frost depth is needed to prevent frost action.
- If the soils are used as a base for roads, a coarse-grained subgrade to frost depth is needed to prevent frost action.
- Roadfill is needed to raise the roadbase above the seasonal high water table in the Croghan soils.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.
- This map unit is often associated with aquifer recharge areas and because of the permeability of these soils, pollutants can move quickly through the soil and into the ground water. Contamination of the ground water is therefore possible if precautions are not taken. Restrictions on the types of activities that may occur, limitations on the density of housing, and special engineering designs for septic systems are possible precautionary measures.
- These areas are a probable source of sand.

Blueberry Management:

- This unit is well suited to blueberry production although it is mainly wooded or overgrown blueberry land.
- These areas can be cleared, and with proper management, brought into blueberry production.
- The seasonal high water table in the Croghan soils will limit the use of equipment in the spring and late fall.
- This unit has very few or no surface stones, and is well suited to flail mowing and mechanical harvesting.
- Irrigation and cultural practices such as weed control, insect and disease control, and fertility management will result in increased yields of blueberries.
- Irrigation water should be applied in amounts sufficient to wet the root zone but in amounts small enough to prevent the leaching of plant nutrients, insecticides, and herbicides.
- Water needs to be applied at a slow rate over a long period to insure that the root zone is properly wetted.
- Fertilization needs can be determined by leaf tissue analysis. Proper fertilization can result in greater top and rhizome growth and higher yields.
- The use of honeybees for pollination will increase the fruit set and result in higher yields.

BeC-Becket fine sandy loam, 8 to 15 percent slopes, very stony

Setting

Landform: Hills, ridges, and drumlins
Description of areas: Irregular in shape and from 6 to over 50 acres in size.

Composition

Becket similar soils: 80 percent
Inclusions: 20 percent

Becket soil

Position on landscape: Crests, shoulder slopes, and side slopes
Parent material: Firm glacial till
Slope features: Convex and smooth
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, very dark grayish brown sapric material
Subsurface layer:
2 to 5 inches, light brownish gray, very friable, fine sandy loam

Subsoil:

5 to 8 inches, dark reddish brown, friable, fine sandy loam
8 to 14 inches, yellowish brown, friable, gravelly fine sandy loam
14 to 24 inches, light yellowish brown, friable, gravelly sandy loam

Substratum:

24 to 65 inches, 60 percent olive, firm, gravelly sandy loam and 40 percent grayish brown, loose, gravelly loamy sand

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Well drained
Permeability: Moderate in the surface, subsurface, and subsoil, and slow or moderately slow in the substratum
Available water capacity: Low
Depth to restrictive layer: 18 to 30 inches to firm substratum
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Becket soils in most properties, but differ in some respect, such as color, surface texture, or consistence.

Interpretations for most common uses are reasonably similar to those for the Becket soils.

Inclusions

- Skerry soils are moderately well drained firm glacial till. They are on lower side slopes and footslopes.
- Colonel soils are somewhat poorly drained firm glacial till. They are on toeslopes, in slight depressions, and adjacent to drainageways.
- Brayton soils are poorly drained firm glacial till. They are in depressions and adjacent to drainageways.
- Dixfield soils are moderately well drained firm glacial till. They have less than 20 percent sand lenses in the substratum. They are on lower side slopes and footslopes.
- Marlow soils are well drained firm glacial till. They have less than 20 percent sand lenses in the substratum. They are intermingled with the Becket soils.
- Tunbridge soils are well drained, moderately deep glacial till. They are on the crests of ridges.
- Hermon soils are somewhat excessively drained and Monadnock soils are well drained. They lack the firm substratum and are coarser textured than the Becket soils. They are on upper side slopes and shoulder slopes.
- Areas with slopes greater than 15 percent and less than 8 percent are included.

Use and Management

Current uses: Blueberry management, pasture, and homesites

Major Management Concerns

- Stones on the surface
- Slow or moderately slow permeability
- Slope
- Frost action

General Management Considerations

Urban Development:

- Follow state or local regulations on septic system installation.
- If this map unit is used for septic tank absorption fields, permeability limitations can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the firm substratum.
- Slope is a concern in installing septic tank absorption fields. Absorption lines should be installed on the contour.
- As the slope increases, building site development becomes more difficult.
- A seasonal high water table is perched above the firm substratum for a short period of time in the early spring. Drainage should be provided for buildings with basements.
- Excavation for building sites is difficult due to the firm substratum.
- Access roads must be designed to provide proper grade and drains are needed to control surface runoff and keep soil losses to a minimum.
- If the soil is used as a base for roads, a coarse grained subgrade to frost depth is needed to prevent frost action.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

Blueberry Management:

- This unit is well suited to blueberry production.
- This unit is not suited to flail mowing or mechanical harvesting because of surface stones.
- Irrigation and cultural practices such as weed control, insect and disease control, and fertility management will result in increased yields of blueberries.
- Irrigation water should be applied in amounts sufficient to wet the root zone but in amounts small enough to prevent the leaching of plant nutrients, insecticides, and herbicides.
- Water needs to be applied at a slow rate over a long period to insure that the root zone is properly wetted.
- Fertilization needs can be determined by leaf tissue analysis. Proper fertilization can result in greater top and rhizome growth and higher yields.
- The use of honeybees for pollination will increase the fruit set and result in higher yields.

Hay and Pasture:

- If this unit is used for hay and pasture, the main limitation is stones on the surface.
- Surface stones limit the use of equipment for harvesting hay.
- The use of proper stocking rates, pasture rotation, and restricted grazing during wet periods helps to keep the pasture in good condition and to protect the soil from erosion.
- Proper grazing practices, weed control, lime, and fertilizer are needed for maximum quality of forage.

BKD—Becket-Skerry association, 8 to 30 percent slopes, very stony

Setting

Landform: Hills and ridges
Description of areas: Irregular in shape and from 20 to over 150 acres in size

Composition

Becket and similar inclusions: 60 percent
Skerry and similar inclusions: 25 percent
Contrasting inclusions: 15 percent
Becket soil
Position on landscape: Crests, shoulder slopes and side slopes
Parent material: Dense glacial till
Slope range: 15 to 30 percent
Slope features: Convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, very dark grayish brown sapric material

Subsurface layer:

2 to 5 inches, light brownish gray, very friable, fine sandy loam
Subsoil:
5 to 8 inches, dark reddish brown, friable, fine sandy loam
8 to 14 inches, yellowish brown, friable, gravelly fine sandy loam
14 to 24 inches light yellowish brown, friable, gravelly sandy loam

Substratum:

24 to 65 inches, 60 percent olive, firm, gravelly sandy loam and 40 percent grayish brown, loose, gravelly loamy sand

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Well drained
Permeability: Moderate in the surface, subsurface, and subsoil, and slow or moderately slow in the substratum
Available water capacity: Low
Depth to restrictive layer: 18 to 30 inches to firm substratum
Hazard of flooding: None

Skerry soil

Position on landscape: Lower side slopes and footslopes
Parent material: Dense glacial till
Slope range: 8 to 15 percent
Slope features: Convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, black sapric material
Subsurface layer:
2 to 3 inches, grayish brown, very friable, fine sandy loam
Subsoil:
3 to 4 inches, dark reddish brown, very friable, fine sandy loam
4 to 8 inches, brown, very friable, fine sandy loam
8 to 18 inches, dark yellowish brown, friable, gravelly fine sandy loam
18 to 24 inches, light olive brown, mottled, firm, gravelly fine sandy loam
Substratum:
24 to 65 inches, 60 percent olive, mottled, loose, gravelly loamy sand and 40 percent, olive, mottled, firm, gravelly sandy loam

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Moderate in the surface, subsurface, and subsoil, and slow or moderately slow in the substratum
Available water capacity: Low
Depth to restrictive layer: 15 to 30 Inches to firm substratum
Hazard of flooding: None

Included Areas

Similar Inclusions

Soils are included in this map unit which are like the Becket and Skerry soils in most properties, but differ in some respect such as color surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Becket and Skerry soils.

Contrasting Inclusions

- Dixfield soils are moderately well drained dense glacial till that have less than 20 percent sand lenses in the substratum. They are intermingled with the Skerry soils on lower side slopes and footslopes.
- Marlow soils are well-drained dense glacial till that have less than 20 percent sand lenses in the substratum. They are intermingled with the Becket soils on crests shoulder slopes, and side slopes.
- Colonel soils are somewhat poorly drained dense glacial till. They are on toeslopes and adjacent to drainageways.
- Tunbridge soils are moderately deep well-drained glacial till. They are on the crests of ridges.
- Lyman soils are shallow, somewhat excessively drained glacial till. They are on the crests of ridges.
- Hermon soils are somewhat excessively drained and Monadnock soils are welldrained glacial till. They are coarser textured and have more rock fragments than the Becket and Skerry soils and lack the firm substratum. They are on upper side slopes and shoulder slopes.
- Areas of soils similar to the Becket and Skerry soils which lack the firm substratum.
- Areas with slopes greater than 30 percent are included.

Use and Management

Current uses: Woodland

Major Management Concerns

- Slope
- Seasonal high water table in the Skerry soils
- Frost action
- Stones on the surface
- Restricted rooting depth
- Slow or moderately slow permeability

General Management Considerations

Woodland Management:

- The potential productivity of this unit for trees is very high.
- This unit has potential for the production and management of Balsam fir for wreath brush and Christmas trees.
- These areas have good natural reproduction of spruce and fir. Proper thinning practices will reduce overcrowding and promote the growth of these species.
- Minimizing the risk of erosion is essential in harvesting timber.
- Proper design of road drainage systems and care in the placement of culverts help to control erosion. Spoil from excavations is subject to rill and gully erosion and to sloughing.
- Roads and landings can be protected from erosion by constructing waterbars and by seeding cuts and fills.
- Laying out skid trails and roads on the contour will reduce erosion.
- Planting trees on the contour and interplanting with a cover crop helps to control erosion.
- Revegetating disturbed areas around landings, skid trails, roads, and construction sites as soon as possible helps to control soil erosion.
- Conventional methods of harvesting timber are moderately difficult to use on the Becket soils because of slope.
- Stones on the surface can interfere with felling, yarding, and other operations involving the use of equipment.
- During some periods of heavy rainfall, the water table is perched at a shallow depth for a short time. Trees commonly are subject to windthrow because the soil is saturated during these periods and because root growth is limited by the firm substratum.
- Care should be taken in harvesting and thinning to reduce trees exposed to the prevailing winds.
- Harvesting by stripcutting will expose fewer trees to the prevailing wind and help to prevent windthrow.
- Plant competition delays natural regeneration but does not prevent the eventual development of a fully stocked, normal stand of trees.
- Competing vegetation can be controlled by properly preparing the site and by eliminating unwanted weeds, brush, or trees.

Recreational Development:

- If this unit is used for camping areas, picnic areas, and paths and trails, the main limitations are slope, seasonal high water table in the Skerry soils, and stones on the surface.
- Drainage will help reduce wetness problems in the Skerry soils.
- Erosion and sedimentation can be controlled and the beauty of the area enchanted by maintaining adequate plant cover. Plant cover can be maintained by limiting traffic.

Urban Development:

- If this map unit is used for septic tank absorption fields, permeability limitations can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of absorption field and the top of the firm substratum.
- If the Skerry soils are used for septic tank absorption fields, the limitation of seasonal high water table can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- Slope of the Becket soils is a concern in installing septic tank absorption fields. Absorption lines should be installed on the Contour.
- As the slope increases, building site development becomes more difficult.
- Installing drainage tile around footings and backfilling with material that has good permeability can reduce wetness in the Skerry soils.
- A seasonal high water table is perched above the firm substratum in the Becket soils for a short period of time in the early spring. Drainage should be provided for dwellings with basements.
- Excavation for building sites is difficult due to the firm substratum.
- Access roads must be designed to provide proper grade and drains are needed to control surface runoff and keep soil losses to a minimum.
- If the Skerry soils are used as a base for roads, a coarse-grained subgrade to frost depth is needed to prevent frost action.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

BnB—Brayton fine sandy loam, 0 to 5 percent slopes, very stony

Setting

Landform: Till plains
Description of areas: Irregular in shape and from 6 to over 30 acres in size.

Composition

Brayton and similar soils: 75 percent
Inclusions: 25 percent

Brayton soil

Position on landscape: Depressions, toeslopes, and adjacent to drainageways
Parent material: Dense glacial till
Slope features: Concave
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, black muck (sapric material)
Subsurface layer:
2 to 7 inches, very dark grayish brown, mottled, friable, fine sandy loam
Subsoil:
7 to 13 inches, grayish brown, mottled, friable, fine sandy loam
13 to 22 inches, olive brown, mottled, firm, fine sandy loam
Substratum:
22 to 65 inches, olive, mottled, firm, fine sandy loam

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Poorly drained
Permeability: Moderate in the surface and subsoil and slow or moderately slow in the substratum
Available water capacity: Low
Depth to restrictive layer: 10 to 25 inches to firm substratum
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Brayton soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Brayton soils.

Inclusions

- Colonel soils are somewhat poorly drained firm glacial till. They are on small convex knolls and in more sloping areas.
- Very poorly drained firm glacial till are in depressions and adjacent to drainageways.
- Bucksport and Wonsqueak soils are very poorly drained highly decomposed organic materials. They are in the lowest depressions.
- Dixfield soils are moderately well drained firm glacial till. They are in more sloping areas and on the crests of small knolls.
- Skerry soils are moderately well drained firm glacial till that have greater than 20 percent sand lenses in the substratum. They are in more sloping areas and on the crests of small knolls.
- Areas with greater than 3 percent stones or boulders on the surface are included.
- Areas with slopes greater than 5 percent are included.

Use and Management

Major Management Concerns

- Seasonal high water table
- Slow or moderately slow permeability
- Stones on the surface
- Restricted rooting depth
- Frost action

General Management Considerations

Urban Development:

- Follow state or local regulations on septic system installation.
- Septic systems should not be located in these areas.
- If this map unit is used for septic tank absorption fields, the limitation of seasonal high water table can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- If this map unit is used for septic tank absorption fields, permeability limitations can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the firm substratum.
- These areas should be avoided as sites for dwellings.
- Wetness can be reduced by installing drainage tile around footings and backfilling with material that has good permeability. Suitable outlets must be available.
- Excavation for building sites is difficult due to the firm substratum.

Blueberry Management:

This unit is poorly suited to blueberry production due to the seasonal high water table.

Hay and Pasture:
This unit is very poorly suited to hay and pasture due to seasonal high water table and stones on the surface.

BRB—Brayton-Colonel association, 0 to 8 percent slopes, very stony

Setting

Landform: Till plains and low drumlins
Description of areas: Irregular in shape and from 20 to over 100 acres in size.

Composition

Brayton and similar inclusions: 50 percent
Colenel and similar inclusions: 35 percent
Contrasting inclusions: 15 percent

Brayton soil

Position on landscape: Depressions and toeslopes
Parent material: Dense glacial till
Slope range: 0 to 5 percent
Slope features: Concave
Stones on surfaces: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, black muck (sapric material)

Subsurface layers:
2 to 7 inches, very dark grayish brown, mottled, friable, fine sandy loam
Subsoil:
7 to 13 inches, grayish brown, mottled, friable, fine sandy loam
13 to 22 inches, olive brown mottled firm fine sandy loam
Substratum:
22 to 65 inches, olive, mottled, firm, fine sandy loam

Soil Properties and Qualities

Depth class: Very deep
Drainage class: poorly drained
Permeability: Moderate in the surface and subsoil and slow or moderately slow in the substratum
Available water capacity: Low
Depth to restrictive layer: 10 to 25 inches to firm substratum
Hazard of flooding: None

Colonel soil

Position on landscape: Side slopes and footslopes of higher positions and mainly on the perimeter of the unit.
Parent material: Dense glacial till
Slope range: 0 to 8 percent
Slope features: Convex, slightly concave, or nearly level
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 3 inches, black sapric material
Subsurface layer:
3 to 6 inches, grays very friable, gravelly fine sandy loam
Subsoil:
6 to 9 inches, dark reddish brown, very friable, gravelly fine sandy loam
9 to 13 inches, yellowish brown, friable, gravelly fine sandy loam
13 to 22 inches, yellowish brown, mottled, friable, gravelly fine sandy loam
22 to 26 inches, light olive brown, mottled, friable, gravelly fine sandy loam
Substratum:
26 to 65 inches, olive, mottled, firm, gravelly fine sandy loam
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Somewhat poorly drained
Permeability: Moderate in the surface subsurface and subsoil, and slow or moderately slow in the substratum
Available water capacity: Moderate
Depth to restrictive layer: 15 to 30 inches
Hazard of flooding: None

Included Areas

Similar inclusions

Soils are included in this map unit which are like the Brayton and Colonel soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Brayton and Colonel soils.

Contrasting Inclusions

- Dixfield soils are moderately well drained firm glacial till. They are in more sloping areas and on small knolls.
- Skerry soils are moderately well drained firm glacial till that have greater than 20 percent sand lenses in the substratum. They are in more sloping areas and on small knolls.
- Bucksport and Wonsqueak soils are very poorly drained highly decomposed organic materials. They are in the lowest depressions.
- Very poorly drained firm glacial tills are in depressions and adjacent to drainageways.
- Areas with greater than 3 percent stones or boulders on the surface are included.
- Areas with slopes greater than 8 percent are included.

Use and Management

Current uses: Woodland

Major Management Concerns

- Seasonal high water table
- Restricted rooting depth
- Frost action
- Stones on the surface
- Slow or moderately slow permeability

General Management Considerations

Woodland Management:

- The potential productivity of this unit for trees is high.
- This unit has potential for the production and management of Balsam fir for wreath brush and Christmas trees.
- These areas have good natural reproduction of spruce and fir. Proper thinning practices will reduce overcrowding and promote the growth of these species.
- Minimizing the risk of erosion is essential in harvesting timber.
- Revegetating disturbed areas around landings, skid trails, roads, and construction sites as soon as possible will help to control soil erosion.
- Conventional methods of harvesting timber generally can be used but their use may be limited when the soil is wet.
- Because of the seasonal high water table, harvesting operations should be restricted to the driest part of the year or to when the soil is frozen and equipment is easiest to use and causes the least damage to the site.
- These soils may be compacted if heavy equipment is used when these soils are wet.
- Stones on the surface can interfere with felling, yarding, and other operations involving the use of equipment.
- Roadfill is needed to raise the roadbase above the seasonal high water table.
- Only trees that can tolerate seasonal wetness should be planted on the Brayton soils.
- The potential windthrow hazard is severe.
- Care should be taken in harvesting and thinning to reduce trees exposed to the prevailing winds.
- Harvesting by stripcutting will expose fewer trees to the prevailing wind and help to prevent windthrow.
- Periodic salvaging of windthrown trees is advisable. Plant competition is severe.
- After harvesting, reforestation must be carefully managed to reduce competition from undesirable understory plants.
- If the site is not adequately prepared, competition from undesirable plants can prevent or prolong natural or artificial reestablishment of trees.
- Competing vegetation can be controlled by properly preparing the site and by eliminating unwanted weeds, brush, or trees.

Recreation Management:

If this unit is used for camping areas, picnic areas, and paths and trails, the main limitation is the seasonal high water table. Drainage will help reduce the wetness problems.
Urban Development:

- Septic systems should not be located in areas of Brayton soils.
- If this map unit is used for septic tank absorption fields, the limitation of seasonal high water table can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- If this map unit is used for septic tank absorption fields, permeability limitations can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the firm substratum.
- Brayton soils should be avoided as sites for dwellings.
- Wetness can be reduced by installing drainage tile around footings arid backfilling with material that has good permeability. Suitable drainage outlets are necessary.
- Excavation for building sites is difficult due to the firm substratum. The limitation for roads is severe.
- Roadfill is needed to raise the roadbase above the seasonal high water table.
- If the soils are used as a base for roads, a coarse-grained subgrade to frost depth is needed to prevent frost action.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help to prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

BTB—Brayton-Colonel association, 0 to 8 percent slopes, extremely stony

Setting

Landform: Till plains and low drumlins
Description of areas: Irregular in shape and from 20 to over 80 acres in size.

Composition

Brayton and similar soils: 50 percent
Colonel and similar soils: 35 percent Inclusions: 15 percent

Brayton soil

Position on landscape: Depressions and toeslopes
Parent material: Dense glacial till
Slope range: 0 to 5 percent
Slope features: Concave
Stones on surface: 3 to 15 percent

Typical Profile

Surface layer:
0 to 2 inches, black muck (sapric material)

Subsurface layer:

2 to 7 inches, very dark grayish brown, mottled, friable, fine sandy loam
Subsoil:
7 to 13 inches, grayish brown, mottled, friable, fine sandy loam
13 to 22 inches, olive brown, mottled, firm, fine sandy loam
Substratum:
22 to 65 inches, olive, mottled, firm, fine sandy loam

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Poorly drained
Permeability: Moderate in the surface and subsoil and slow or moderately slow in the substratum
Available water capacity: Low
Depth to restrictive layer: 10 to 25 inches to firm substratum
Hazard of flooding: None

Colonel soil

Position on landscape: Side slopes and footslopes of higher positions and mainly on the perimeter of the unit
Parent material: Dense glacial till
Slope range: 0 to 8 percent
Slope features: Convex, slightly concave, or nearly level
Stones on surface: 3 to 15 percent

Typical Profile

Surface layer:
0 to 3 inches, black sapric material
Subsurface layer:
3 to 6 inches, gray, very friable, gravelly fine sandy loam
Subsoil:
6 to 9 inches, dark reddish brown, very friable, gravelly fine sandy loam
9 to 13 inches, yellowish brown, friable, gravelly fine sandy loam
13 to 22 inches, yellowish brown, mottled, friable, gravelly fine sandy loam
22 to 26 inches, light olive brown, mottled, friable, gravelly fine sandy loam
Substratum:
26 to 65 inches, olive, mottled, firm, gravelly fine sandy loam
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Somewhat poorly drained
Permeability: Moderate in the surface, subsurface, and subsoil, and slow or moderately slow in the substratum
Available water capacity: Moderate
Depth to restrictive layer: 15 to 30 inches to firm substratum
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Brayton and Colonel soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Brayton and Colonel soils.

Inclusions

- Dixfield soils are moderately well drained firm glacial till. They are in more sloping areas and on small knolls.
- Skerry soils are moderately well drained, firm glacial till that have greater than 20 percent sand lenses in the substratum. They are in more sloping areas and on small knolls.
- Bucksport and Wonsqueak soils are very poorly drained highly decomposed organic materials. They are in the lowest depressions.
- Very poorly drained, firm glacial till are in depressions and adjacent to drainageways.
- Areas with greater than 15 percent or less than 3 percent stones or boulders on the surface are included.
- Areas with slopes greater than 8 percent are included.

Use and Management

Current uses: Woodland

Major Management Concerns

- Seasonal high water table
- Stones on the surface
- Restricted rooting depth
- Frost action
- Slow or moderately slow permeability

General Management Considerations

Woodland Management:

- The potential productivity of this unit for trees is high.
- This unit has potential for the production and management of Balsam fir for wreath brush and Christmas trees.
- These areas have good natural reproduction of spruce and fir. Proper thinning practices will reduce overcrowding and promote the growth of these species.
- Minimizing the risk of erosion is essential in harvesting timber.
- Revegetating disturbed areas around landings, skid trails, roads, and construction sites as soon as possible will help to control soil erosion.
- Conventional methods of harvesting timber generally can be used but their use may be limited when the soil is wet.
- Because of the seasonal high water table, harvesting operations should be restricted to the driest part of the year, or to when the soil is frozen and equipment is easiest to use and causes the least damage to the site.
- These soils may be compacted if heavy equipment is used when these soils are wet.
- Stones on the surface can interfere with felling, yarding, and other operations involving the use of equipment.
- Roadfill is needed to raise the roadbase above the seasonal high water table.
- Only trees that can tolerate seasonal wetness should be planted on the Brayton soils.
- The potential windthrow hazard is severe.
- Care should be taken in harvesting and thinning to reduce trees exposed to the prevailing winds.
- Harvesting by stripcutting will expose fewer trees to the prevailing wind and help to prevent windthrow.
- Periodic salvaging of windthrown trees is advisable.
- After harvesting, reforestation must be carefully managed to reduce competition from undesirable understory plants.
- If the site is not adequately prepared, competition from undesirable plants can prevent or prolong natural or artificial reestablishment of trees.
- Competing vegetation can be controlled by properly preparing the site and by eliminating unwanted weeds, brush, or trees.

Recretaion Management:

- If this unit is used for camping areas, picnic areas, and paths and trails, the main limitations are the seasonal high water table and stones on the surface.
- Drainage will help reduce wetness problems.

Urban Development:

- Follow state or local regulations on septic system installation.
- Septic systems should not be located in areas of Brayton soils.
- If this map unit is used for septic tank absorption fields, the limitation of seasonal high water table can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- If this map unit is used for septic tank absorption fields, permeability limitations can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the firm substratum.
- Brayton soils should be avoided as sites for dwellings.
- Wetness can be reduced by installing drainage tile around footings and backfilling with material that has good permeability.
- Excavation for building sites is difficult due to the firm substratum.
- Roadfill is needed to raise the roadbase above the seasonal high water table.
- If the soils are used as a base for roads, a coarse-grained subgrade to frost depth is needed to prevent frost action.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

BW—Bucksport and Wonsqueak soils

Setting
Landform: Bogs and swamps
Description of areas: Irregular in shape and from 20 to over 300 acres in size

Composition

Bucksport and similar soils: 55 percent Wonsqueak and similar soils: 30 percent Inclusions: 15 percent

Bucksport soil

Position on landscape: Towards the center of bogs and swamps
Parent material: Highly decomposed organic material
Slope range: 0 to 1 percent
Slope features: Nearly level
Stones on the surface: None

Typical Profile

Surface tier:
0 to 18 inches, black muck (sapric material)
Subsurface tier:
18 to 40 inches, dark reddish brown muck (sapric material)
Bottom tier:
40 to 65 inches, very dusky red muck (sapric material)
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Very poorly drained
Permeability: Moderately slow to moderately rapid in organic material, and
moderately slow or moderate in underlying mineral soil
Available water capacity: High
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None
Wonsqueak soil
Position on landscape: On the perimeter of bogs and swamps
Parent material: Highly decomposed organic material underlain by mineral material Slope range: 0 to 2 percent
Slope features: Nearly level
Stones on surface: None

Typical Profile

Surface tier:
0 to 8 inches, black muck (sapric material)
Subsurface tier:
8 to 30 inches, black muck (sapric material)
Substratum:
30 to 65 inches, greenish gray silty clay loam

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Very poorly drained
Permeability: Moderately slow to moderately rapid in the organic material and
moderately slow in the mineral material
Available water capacity: High
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Bucksport and Wonsqueak soils in most properties, but differ in some respect, such as color, degree of decomposition, or amount of woody fragments. Interpretations for most common uses are reasonably similar to those for the Bucksport and Wonsqueak soils.

Inclusions

- Sebago soils are very poorly drained moderately decomposed organic material. They are towards the center of bogs.
- Moosabec soils are very poorly drained slightly decomposed organic material. They are in large bogs towards the center and slightly elevated areas.
- Biddeford soils are very poorly drained glaciomarine deposits. They are on the perimeters of the bogs.
- Areas adjacent to rivers or streams that are occasionally or frequently flooded.

Use and Management

Current uses: Woodland and wildlife habitat

Major Management Concerns

- Seasonal high water table
- Low strength
- Excess humus
- Poor filter
- Frost action
- Inadequate drainage outlets in some areas

General Management Considerations

Woodland Management:

- The potential productivity of this unit for trees is very low.
- Because of the seasonal high water table, harvesting operations should be restricted to winter months when the soil is frozen and when equipment is easiest to use and causes the least damage to the site.
- When managing these areas for commercial peat, special equipment must be used due to the low load supporting capacity. The water table must be lowered with deep drainage ditches and adequate outlets designed in order to use equipment on the bogs.

Recreation Management:

- These wetland areas have the potential for providing important functions such as: controlling flood waters and erosion, improving water quality and availability, providing valuable habitat for wetland wildlife, and providing important recreational opportunities.
- If this unit is used for camping areas, picnic areas, and paths and trails, the main limitations are seasonal high water table and excess humus.
Urban Developmen:
- Follow state or local regulations on septic system installation.
- Septic systems should not be located in these areas.
- These areas should be avoided as sites for dwellings.
- Roads should not be located in these areas.

BxC—Buxton silt loam, 8 to 15 percent slopes

Setting

Landform: Plains and terraces
Description of areas: Irregular in shape and from 6 to over 50 acres in size.

Composition

Buxton and similar soils: 85 percent
Inclusions: 15 percent

Buxton soil

Position on the landscape: Side slopes
Parent material: Glaciomarine deposits
Slope features: Convex
Stones on surface: None

Typical Profile

Surface layer:
0 to 9 inches, brown, very friable, silt loam
Subsoil:
9 to 17 inches, dark yellowish brown and olive brown, friable, silt loam and silty clay loam
17 to 22 inches, olive, mottled, firm, silty clay loam
Substratum:
22 to 65 inches, olive, mottled, firm, silty clay
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Moderately slow or moderate in the surface, slow or moderately slow in the upper subsoil, and very slow or slow in the lower subsoil and substratum
Available water capacity: Moderate
Depth to restrictive layer: 18 to 35 inches to firm substratum
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Buxton soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Buxton soils.

Inclusions

- Lamoine soils are somewhat poorly drained glaciomarine deposits. They are in slight depressions, on toeslopes, or adjacent to drainageways.
- Scantic soils are poorly drained glaciomarine deposits. They are in depressions or adjacent to drainageways.
- Nicholville soils are moderately well drained glaciolacustrine or glaciofluvial very fine sand and silt. They are mainly adjacent to sand and gravel areas.
- Areas with slopes greater than 15 percent, or less than 8 percent are included.

Use and Management

Current uses: Hayland, pasture, and homesites
Major Management Concerns

- Seasonal high water table
- Very slow or slow permeability
- Slope
- Frost action
- Low strength

General Management Considerations

Urban Development:

- Follow state or local regulations on septic system installation.
- If this map unit is used for septic tank absorption fields, the limitation of seasonal high water table can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- If this map unit is used for septic tank absorption fields, permeability limitations can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the firm substratum.
- Slope is a concern in installing septic tank absorption fields. Absorption lines should be installed on the contour.
- Wetness can be reduced by installing drainage tile around footings and backfilling with material that has good permeability.
- Roads should be designed to offset the limited ability of this unit to support a load.
- If the soil is used as a base for roads, a coarse-grained subgrade to frost depth is needed to prevent frost action.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

Blueberry Management:

- This unit has very few or no surface stones, and is well suited to flail mowing. Mechanical harvesting is moderately difficult due to slope.
- The seasonal high water table will limit the use of equipment in the spring and late fall.
- Irrigation and cultural practices such as weed control, insect and disease control, and fertility management will result in increased yields of blueberries.
- Irrigation water should be applied in amounts sufficient to wet the root zone but in amounts small enough to prevent the leaching of plant nutrients, insecticides, and herbicides.
- Water needs to be applied at a slow rate over a long period to insure that the root zone is properly wetted.
- Fertilization needs can be determined by leaf tissue analysis. Proper fertilization can result in greater top and rhizome growth and higher yields.
- The use of honeybees for pollination will increase the fruit set and result in higher yields.

Hay and Pasture:

- Grazing when the soil is wet results in compaction of the surface layer, poor tilth, and excessive runoff.
- The seasonal high water table limits the use of equipment in the spring and late fall.
- The use of proper stocking rates, pasture rotation, and restricted grazing during wet periods helps to keep the pasture in good condition and to protect the soil from erosion.
- Proper grazing practices, weed control, lime, and fertilizer are needed for maximum quality of forage.

BZC—Buxton-Lamoine complex, 3 to 15 percent slopes

Setting

Landform: Terraces and plains
Description of areas: Irregular in shape and from 20 to over 100 acres in size.

Composition

Buxton and similar soils: 50 percent Lamoine and similar soils: 35 percent Inclusions: 15 percent

Buxton soil

Position on landscape: Crests and side slopes and in higher more sloping positions Parent material: Glaciomarine deposits

Slope range: 8 to 15 percent
Slope features: Convex
Stones on surface: None
Typical Profile
Surface layer:
0 to 9 inches, brown, very friable, silt loam
Subsoil:
9 to 17 inches, dark yellowish brown and olive brown, friable, silt loam and silty clay loam
17 to 22 inches, olive, mottled, firm, silty clay loam
Substratum:
22 to 65 inches, olive, mottled, firm, silty clay
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Moderately slow or moderate in the surface, slow or moderately slow in the upper subsoil, and very slow or slow in the lower subsoil and substratum
Available water capacity: Moderate
Depth to restrictive layer: 18 to 35 inches to firm substratum
Hazard of flooding: None

Lamoine soil

Position on landscape: Footslopes, toeslopes, and slight depressions
Parent material: Glaciomarine deposits
Slope range: 3 to 8 percent
Slope features: Slightly convex, concave, or nearly level
Stones on surface: None

Typical Profile

Surface layer:
0 to 7 inches, dark brown, friable, silt loam
Subsoil:
7 to 10 inches, dark yellowish brown, mottled, friable, silt loam
10 to 16 inches, light olive brown, mottled, friable, silt loam
16 to 21 inches, olive, mottled, firm, silty clay loam
Substratum:
21 to 65 inches, olive, mottled, firm, silty clay
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Somewhat poorly drained
Permeability: Moderately slow or moderate in the surface, slow or moderately slow in the upper subsoil, and very slow or slow in the lower subsoil and substratum
Available water capacity: Moderate
Depth to restrictive layer: 16 to 30 inches to firm substratum
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Buxton and Lamoine soils in most properties, but differ in some respect, such as color, surface texture, or
consistence. Interpretations for most common uses are reasonably similar to those for the Buxton and Lamoine soils.

Inclusions

- Scantic soils are poorly drained glaciomarine deposits. They are in depressions and adjacent to drainageways.
- Nichoville soils are moderately well drained glaciolacustrine or glaciofluvial very fine sand and silt. They are adjacent to sand and gravel outwash areas and major drainages.
- Buxton soils with slopes greater than 15 percent are on the side slopes of gullies.
- Gouldsboro soils are very poorly drained tidal marsh soils. They are in small inlet drainages adjacent to the shore.
- Areas with stones on the surface are included.

Use and Management

Current uses: Woodland

Major Management Concerns

- Seasonal high water table
- Shrink-swell potential on the Buxton soils
- Slope in some areas
- Low strength
- Frost action
- Restricted rooting depth
- Very slow and slow permeability

General Management Considerations

Woodland Management:

- The potential productivity of this unit for trees is high.
- This unit has potential for the production and management of Balsam fir for wreath brush and Christmas trees.
- These areas have good natural reproduction of spruce and fir. Proper thinning practices will reduce overcrowding and promote the growth of these species.
- Minimizing the risk of erosion is essential in harvesting timber.
- Proper design of road drainage systems and care in the placement of culverts help to control erosion. Spoil from excavations is subject to rill and gully erosion and to sloughing.
- Roads and landings can be protected from erosion by constructing waterbars and by seeding cuts and fills.
- Laying out skid trails and roads on the contour will reduce erosion.
- Revegetating disturbed areas around landings, skid trails, roads, and construction sites as soon as possible will help to control soil erosion.
- Conventional methods of harvesting timber generally can be used but their use may be limited when the soil is wet.
- These soils may be compacted if heavy equipment is used when these soils are wet.
- Because of the seasonal high water table, harvesting operations should be restricted to the driest part of the year or to when the soil is frozen and equipment is easiest to use and causes the least damage to the site.
- Roadfill is needed to raise the roadbase above the seasonal high water table.
- Trees commonly are subject to windthrow during periods when the soil is excessively wet and winds are strong.
- Care should be taken in harvesting and thinning to reduce trees exposed to the prevailing winds.
- Harvesting by stripcutting will expose fewer trees to the prevailing wind and help to prevent windthrow.
- Periodic salvaging of windthrown trees is advisable.
- Plant competition delays natural regeneration but does not prevent the eventual development of a fully stocked, normal stand of trees.
- After harvesting, reforestation must be carefully managed to reduce competition from undesirable understory plants.
- Competing vegetation can be controlled by properly preparing the site and by eliminating unwanted weeds, brush, or trees.

Recreation Management:

- If this unit is used for camping areas, picnic areas, and paths and trails, the main limitations are the seasonal high water table and very slow and slow permeability.
- Drainage will help reduce wetness problems in the Lamoine soils.
- Erosion and sedimentation can be controlled and the beauty of the area enhanced by maintaining adequate plant cover. Plant cover can be maintained by limiting traffic.

Urban Development:

- Follow state or local regulations on septic system installation.
- If this map unit is used for septic tank absorption fields, the limitation of seasonal high water table can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- If this map unit is used for septic tank absorption fields, permeability limitations can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the firm substratum.
- Slope is a concern in installing septic tank absorption fields. Absorption lines should be installed on the contour.
- Wetness can be reduced by installing drainage tile around footings and backfilling with material that has good permeability.
- Roads should be designed to offset the limited ability of this unit to support a load.
- If the soils are used as a base for roads, a coarse-grained subgrade to frost depth is needed to prevent frost action.
- Roadfill is needed to raise the roadbase above the seasonal high water table in the Lamoine soils.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

ChB—Chesuncook silt loam, 3 to 8 percent slopes

Setting

Landform: Ridges and drumlins
Description of areas: Elongated in shape and from 6 to 30 acres in size

Composition

Chesuncook and similar soils: 80 percent
Inclusions: 20 percent

Chesuncook soil

Parent material: Dense glacial till
Slope features: Convex
Stones on surface: None

Typical Profile

Surface layer:
0 to 7 inches, dark brown, very friable, silt loam
Subsoil:
7 to 12 inches, dark yellowish brown, friable, gravelly silt loam
12 to 19 inches, yellowish brown, friable, gravelly silt loam
19 to 25 inches, olive brown, mottled, firm, gravelly silt loam
Substratum:
25 to 65 inches, olive, mottled, firm, gravelly silt loam

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Moderate in the surface, subsurface, and subsoil, and very slow or slow in the substratum
Available water capacity: Moderate
Depth to restrictive layer: 15 to 28 inches to firm substratum
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Chesuncook soil in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Chesuncook soil.

Inclusions

- Telos soils are somewhat poorly drained dense glacial till. They are on toeslopes and adjacent to drainageways.
- Monarda soils are poorly drained dense glacial till. They are in depressions and adjacent to drainageways.
- Elliottsville soils are well drained moderately deep glacial till. They are on the crests of ridges and knolls.
- Areas with slopes greater than 8 percent and less than 3 percent are included.
- Areas with stones on the surface are included.

Use and Management

Current uses: Hayland, pasture, and homesites

Major Management Concerns

- Seasonal high water table
- Very slow or slow permeability
- Frost action
- Restricted rooting depth

General Management Considerations

Urban Development:

- Follow state or local regulations on septic system installation.
- If this map unit is used for septic tank absorption fields, the limitation of seasonal high water table can be overcome by increasing the size of the absorption field or
increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- If this map unit is used for septic tank absorption fields, permeability limitations can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the firm substratum.
- Wetness can be reduced by installing drainage tile around footings and backfilling with material that has good permeability.
- Excavation for building sites is difficult due to the firm substratum.
- Roadfill is needed to raise the roadbase above the seasonal high water table.
- If the soil is used as a base for roads, a coarse-grained subgrade to frost depth is needed to prevent frost action.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

Blueberry Management:

- This unit has very few or no surface stones, and is well suited to flail mowing and mechanical harvesting.
- The seasonal high water table will limit the use of equipment in the spring and late fall.
- Irrigation and cultural practices such as weed control, insect and disease control, and fertility management will result in increased yields of blueberries.
- Irrigation water should be applied in amounts sufficient to wet the root zone but in amounts small enough to prevent the leaching of plant nutrients, insecticides, and herbicides.
- Water needs to be applied at a slow rate over a long period to insure that the root zone is properly wetted.
- Fertilization needs can be determined by leaf tissue analysis. Proper fertilization can result in greater top and rhizome growth and higher yields.
- The use of honeybees for pollination will increase the fruit set and result in higher yields.

Hay and Pasture:

- Grazing when the soil is wet results in compaction of the surface layer, poor tilth, and excessive runoff.
- The seasonal high water table limits the use of equipment in the spring and late fall.
- The use of proper stocking rates, pasture rotation, and restricted grazing during wet periods helps to keep the pasture in good condition and protect the soil from erosion.
- Proper grazing practices, weed control, lime, and fertilizer are needed for maximum quality of forage.

ChC—Chesuncook silt loam, 8 to 15 percent slopes

Setting

Landform: Ridges and drumlins
Description of areas: Elongated or rectangular in shape and from 6 to 20 acres in size

Composition

Chesuncook and similar soils: 80 percent
Inclusions: 20 percent

Chesuncook soil

Position on landscape: Crests and upper side slopes
Parent material: Dense glacial till
Slope features: Convex and smooth
Stones on surface: None

Typical Profile

Surface layer:
0 to 7 inches, dark brown, very friable, silt loam
Subsoil:
7 to 12 inches, dark yellowish brown, friable, gravelly silt loam
12 to 19 inches, yellowish brown, friable, gravelly silt loam
19 to 25 inches, olive brown, mottled, firm, gravelly silt loam
Substratum:
25 to 65 inches, olive, mottled, firm, gravelly silt loam

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Moderate in the surface, subsurface, and subsoil, and very slow or slow in the substratum
Available water capacity: Moderate
Depth to restrictive layer: 15 to 28 inches to firm substratum
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Chesuncook soil in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Chesuncook soil.

Inclusions

- Telos soils are somewhat poorly drained dense glacial till. They are on toeslopes, footslopes, and adjacent to drainageways.
- Monarda soils are poorly drained dense glacial till. They are in depressions and adjacent to drainageways.
- Elliottsville soils are well drained moderately deep glacial till. They are on the crests of ridges and knolls.
- Areas with slopes greater than 15 percent and less than 8 percent are included.
- Areas with stones on the surface are included.

Use and Management

Current uses: Hayland, pasture, homesites, or it is idle land

Major Management Concerns

- Seasonal high water table
- Very slow or slow permeability
- Slope
- Frost action
- Restricted rooting depth

General Management Considerations

Urban Development:

- Follow state or local regulations on septic system installation. If this map unit is used for septic tank absorption fields, the limitation of seasonal high water table can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- If this map unit is used for septic tank absorption fields, permeability limitations can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the firm substratum.
- Slope is a concern in installing septic tank absorption fields. Absorption lines should be installed on the contour.
- Wetness can be reduced by installing drainage tile around footings and backfilling with material that has good permeability.
- Excavation for building sites is difficult due to the firm substratum.
- Roadfill is needed to raise the roadbase above the seasonal high water table.
- Access roads must be designed to provide proper grade and drains are needed to control surface runoff and keep soil losses to a minimum.
- If the soil is used as a base for roads, a coarse-grained subgrade to frost depth is needed to prevent frost action.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

Blueberry Management:

- This unit has very few or no surface stones, and is well suited to flail mowing. Mechanical harvesting is moderately difficult due to slope.
- The seasonal high water table will limit the use of equipment in the spring and late fall.
- Irrigation and cultural practices such as weed control, insect and disease control, and fertility management will result in increased yields of blueberries.
- Irrigation water should be applied in amounts sufficient to wet the root zone but in amounts small enough to prevent the leaching of plant nutrients, insecticides, and herbicides.
- Water needs to be applied at a slow rate over a long period to insure that the root zone is properly wetted.
- Fertilization needs can be determined by leaf tissue analysis. Proper fertilization can result in greater top and rhizome growth and higher yields.
- The use of honeybees for pollination will increase the fruit set and result in higher yields.
Hay and Pasture:
- If this unit is used for hay and pasture, the main limitation is the seasonal high water table.
- Grazing when the soil is wet results in compaction of the surface layer, poor tilth, and excessive runoff.
- The seasonal high water table limits the use of equipment in the spring and late fall.
- The use of proper stocking rates, pasture rotation, and restricted grazing during wet periods helps to keep the pasture in good condition and protect the soil from erosion.
- Proper grazing practices, weed control, lime, and fertilizer are needed for maximum quality of forage.

CKC—Chesuncook-Elliottsville-Telos complex, 3 to 15 percent slopes, very stony

Setting

Landform: Ridges, knolls, and small drumlins on upland till plains Description of areas: Irregular in shape and from 20 to 150 acres in size

Composition

Chesuncook and similar soils: 25 percent
Elliottsville and similar soils: 25 percent
Telos and similar soils: 20 percent
Inclusions: 30 percent

Chesuncook soil

Position on landscape: Side slopes
Parent material: Dense glacial till
Slope range: 3 to 15 percent
Slope features: Slightly convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 3 inches, dark reddish brown sapric material
Subsurface layer:
3 to 5 inches, gray, very friable, silt loam
Subsoil:
5 to 7 inches, very dusky red, very friable, silt loam
7 to 10 inches, dark brown, very friable, silt loam
10 to 15 inches, dark yellowish brown, friable, gravelly silt loam
15 to 22 inches, yellowish brown, friable, gravelly silt loam
22 to 28 inches, olive brown, mottled, firm, gravelly silt loam
Substratum:
28 to 65 inches, olive, mottled, firm, gravelly silt loam
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Moderate in the surface, subsurface, and subsoil, and very slow or slow in the substratum
Available water capacity: Moderate
Depth to restrictive layer: 15 to 28 inches to firm substratum
Hazard of flooding: None

Elliottsville soil

Position on landscape: Crests, shoulder slopes, and side slopes
Parent material: Glacial till
Slope range: 3 to 15 percent
Slope features: Convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, dark brown sapric material
Subsurface layer:
2 to 4 inches, brown silt loam
Subsoil:
4 to 6 inches, dark reddish brown silt loam
6 to 10 inches, dark brown channery silt loam
10 to 14 inches, dark yellowish brown channery silt loam
14 to 19 inches, light olive brown channery silt loam
Substratum:
19 to 31 inches, olive brown channery silt loam
Bedrock:
31 inches, phyllite
Soil Properties and Qualities
Depth class: Moderately deep
Drainage class: Well drained
Permeability: Moderate
Available water capacity: Moderate
Depth to restrictive layer: 20 to 40 inches to bedrock
Hazard of flooding: None

Telos soil

Position on landscape: Footslopes and toeslopes
Parent material: Dense glacial till
Slope range: 3 to 8 percent
Slope features: Slightly convex or concave
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, dark reddish brown sapric material
Subsurface layer:
2 to 3 inches, gray, very friable, silt loam
Subsoil:
3 to 6 inches, dark reddish brown, very friable, silt loam
6 to 10 inches, reddish brown, very friable, gravelly silt loam
10 to 13 inches, yellowish brown, mottled, very friable, gravelly silt loam
13 to 20 inches, light olive brown, mottled, firm, gravelly silt loam
Substratum:
20 to 65 inches, olive, mottled, firm, gravelly silt loam

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Somewhat poorly drained
Permeability: Moderate in the surface, subsurface, and subsoil, and very slow or slow in the substratum
Available water capacity: Moderate
Depth to restrictive layer: 13 to 21 inches to firm substratum
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Chesuncook, Elliottsville, and Telos soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Chesuncook, Elliottsville, and Telos soils.

Inclusions

- Areas of soils similar to the Elliottsville soils that are moderately well drained or somewhat poorly drained. They are on footslopes or toeslopes.
- Areas of soils similar to the Elliottsville soils that have bedrock between 40 to 60 inches. They are on side slopes.
- Monarda soils are poorly drained firm glacial till. They are in depressions, on toeslopes, and along drainageways.
- Monson soils are shallow somewhat excessively drained glacial till. They are on the crests of ridges and knolls intermingled with the Elliottsville soils.
- Abram soils are very shallow glacial till on the crests of ridges and knolls adjacent to the Monson soils.
- Areas of soils similar to the Telos and Chesuncook soils that have bedrock between 40 to 60 inches.
- Soils that are well drained and somewhat excessively drained, shallow and moderately deep, and have greater than 35 percent rock fragments. These soils are intermingled with the Elliottsville soils in areas close to the St. Croix River.
- Areas of rock outcrop on the crests of ridges and knolls intermingled with the Elliottsville soils.
- Areas with slopes greater than 15 percent and less than 3 percent.
- Areas with greater than 3 percent stones and boulders on the surface.

Use and Management

Current uses: Woodland

Major Management Concerns

- Seasonal high water table in the Chesuncook and Telos soils
- Depth to bedrock in the Elliottsville soils
- Slope in some areas
- Frost action
- Stones on the surface
- Very slow and slow permeability in the Chesuncook and Telos soils
- Restricted rooting depth

General Management Considerations

Woodland Management:

- The potential productivity of this unit for trees is very high on the Chesuncook and Elliottsville soils and high on the Telos soils.
- This unit has potential for the production and management of Balsam fir for wreath brush and Christmas trees.
- These areas have good natural reproduction of spruce and fir. Proper thinning practices will reduce overcrowding and promote the growth of these species.
- Minimizing the risk of erosion is essential in harvesting timber.
- Proper design of road drainage systems and care in the placement of culverts help to control erosion. Spoil from excavations is subject to rill and gully erosion and to sloughing.
- Roads and landings can be protected from erosion by constructing waterbars and by seeding cuts and fills.
- Revegetating disturbed areas around landings, skid trails, roads, and construction sites as soon as possible, helps to control soil erosion.
- Conventional methods of harvesting timber generally can be used but their use may be limited when the Telos soil is wet.
- Because of the seasonal high water table, harvesting operations on the Telos soils should be restricted to the driest part of the year or to when the soil is frozen and equipment is easiest to use and causes the least damage to the site.
- Roadfill is needed to raise the roadbase above the seasonal high water table in the Telos soils.
- Trees are subject to windthrow because of restricted rooting depth due to the firm substratum in the Chesuncook and Telos soils and depth to bedrock in the Elliottsville soils.
- During some periods of heavy rainfall, the water table on the Chesuncook and Telos soils is perched at a shallow depth for a short time. Trees commonly are subject to windthrow because the soil is saturated during these periods and because root growth is limited by the firm substratum.
- Care should be taken in harvesting and thinning to reduce trees exposed to the prevailing winds.
- Harvesting by stripcutting will expose fewer trees to the prevailing wind and help to prevent windthrow.
- Periodic salvaging of windthrown trees is advisable.
- After harvesting, reforestation must be carefully managed to reduce competition from undesirable understory plants.
- If the site is not adequately prepared, competition from undesirable plants can prevent or prolong natural or artificial reestablishment of trees.
- Competing vegetation can be controlled by properly preparing the site and by eliminating unwanted weeds, brush, or trees.

Recreation Management:

- If this unit is used for camping areas, picnic areas, and paths and trails, the main limitations are the seasonal high water table and very slow and slow permeability in the Chesuncook and Telos soils and surface stones.
- Drainage should be provided in order to alleviate wetness problems in the Chesuncook and Telos soils.
- Erosion and sedimentation can be controlled and the beauty of the area enhanced by maintaining adequate plant cover. Plant cover can be maintained by limiting traffic.

Urban Development:

- Follow state or local regulations on septic system installation.
- If this map unit is used for septic tank absorption fields, the limitation of seasonal high water table in the Chesuncook and Telos soils can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- If this map unit is used for septic tank absorption fields, permeability limitations in the Chesuncook and Telos soils can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the firm substratum.
- The Elliottsville soils have severe limitations for septic tank absorption fields due to the depth to bedrock. Septic systems should be located on deeper soils in this map unit if possible or fill material can be used to raise the level of the absorption field.
- Wetness in the Chesuncook and Telos soils can be reduced by installing drainage tile around footings and backfilling with material that has good permeability.
- Cuts needed to provide level building sites on the Elliottsville soils can expose bedrock.
- The Elliottsville soils have severe limitations for dwellings with basements due to the depth to bedrock. Dwellings with basements should be located on deeper soils in
this map unit, or the bedrock should be removed, or the foundation set on bedrock and backfilled to the established grade.
- Excavation for building sites is difficult due to the firm substratum in the Chesuncook and Telos soils.
- Roadfill is needed to raise the roadbase above the seasonal high water table in the Chesuncook and Telos soils.
- Access roads must be designed to provide proper grade and drains are needed to control surface runoff and keep soil losses to a minimum.
- If the soil is used as a base for roads, a coarse-grained subgrade to frost depth is needed to prevent frost action.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

CLC—Chesuncook-Telos association, 3 to 15 percent slopes, very stony

Setting

Landform: Drumlins, ridges, and upland till plains
Description of areas: Irregular in shape and from 20 acres to over 100 acres in size

Composition

Chesuncook and similar soils: 50 percent
Telos and similar soils: 30 percent
Inclusions: 20 percent

Chesuncook soil

Position on landscape: Crests, shoulder slopes, and upper side slopes
Parent material: Dense glacial till
Slope range: 5 to 15 percent
Slope features: Convex and smooth
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 3 inches, dark reddish brown sapric material

Subsurface layer:

3 to 5 inches, gray, very friable, silt loam
Subsoil:
5 to 7 inches, very dusky red, very friable, silt loam
7 to 10 inches, dark brown, very friable, silt loam
10 to 15 inches, dark yellowish brown, friable, gravelly silt loam
15 to 22 inches, yellowish brown, friable, gravelly silt loam
22 to 28 inches, olive brown, mottled, firm, gravelly silt loam
Substratum:
28 to 65 inches, olive, mottled, firm, gravelly silt loam

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Moderate in the surface, subsurface, and subsoil, and very slow or slow in the substratum
Available water capacity: Moderate
Depth to restrictive layer: 15 to 28 inches to dense substratum
Hazard of flooding: None

Telos soil

Position on landscape: Footslopes, toeslopes, and lower side slopes
Parent material: Dense glacial till
Slope range: 3 to 8 percent
Slope features: Slightly convex or concave and smooth
Stones on surface: 0.1 to 3 percent
Typical Profile
Surface layer:
0 to 2 inches, dark reddish brown sapric material
Subsurface layer:
2 to 3 inches, gray, very friable, silt loam
Subsoil:
3 to 6 inches, dark reddish brown, very friable, silt loam
6 to 10 inches, reddish brown, very friable, gravelly silt loam
10 to 13 inches, yellowish brown, mottled, very friable, gravelly silt loam
13 to 20 inches, light olive brown, mottled, firm, gravelly silt loam
Substratum:
20 to 65 inches, olive, mottled, firm, gravelly silt loam
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Somewhat poorly drained
Permeability: Moderate in the surface, subsurface, and subsoil, and very slow or slow in the substratum
Available water capacity: Moderate
Depth to restrictive layer: 13 to 21 inches to dense substratum
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Chesuncook and Telos soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Chesuncook and Telos soils.

Inclusions

- Dixfield soils are moderately well drained dense glacial till. They have less clay content than the Chesuncook soil and are in similar landscape positions.
- Colonel soils are somewhat poorly drained dense glacial till. They have less clay content than the Telos soil and are in similar landscape positions.
- Monarda soils are poorly drained dense glacial till. They are in depressions and adjacent to drainageways.
- Elliottsville soils are moderately deep, well drained glacial till. They are on crests and shoulder slopes.
- Monson soils are shallow somewhat excessively drained glacial till. They are on crests and intermingled with Elliottsville soils.
- Areas with slopes greater than 15 percent are also included.

Use and Management

Current uses: Woodland

Major Management Concerns

- Seasonal high water table
- Slope in some areas
- Frost action
- Stones on the surface
- Very slow or slow permeability
- Restricted rooting depth

General Management Considerations

Woodland Management:

- The potential productivity of this unit for trees is very high on the Chesuncook soils and high on the Telos soils.
- This unit has potential for the production and management of Balsam fir for wreath brush and Christmas trees.
- These areas have good natural reproduction of spruce and fir. Proper thinning practices will reduce overcrowding and promote the growth of these species.
- Minimizing the risk of erosion is essential in harvesting timber.
- Roads and landings can be protected from erosion by constructing waterbars and by seeding cuts and fills.
- Proper design of road drainage systems and care in the placement of culverts help to control erosion. Spoil from excavations is subject to rill and gully erosion and to sloughing.
- Revegetating disturbed areas around landings, skid trails, roads, and construction sites as soon as possible, helps to control soil erosion.
- Conventional methods of harvesting timber generally can be used, but their use may be limited when the Telos soil is wet.
- Stones on the surface can interfere with felling, yarding, and other operations involving the use of equipment.
- These soils may be compacted if heavy equipment is used when these soils are wet.
- Trees commonly are subject to windthrow during periods when the soil is excessively wet and winds are strong.
- Windthrow is a hazard on these soils because the seasonal high water table and dense substratum cause trees to be shallow rooted.
- Care should be taken in harvesting and thinning to reduce trees exposed to the prevailing winds.
- Harvesting by stripcutting will expose fewer trees to the prevailing wind and help to prevent windthrow.
- Plant competition delays natural regeneration but does not prevent the eventual development of a fully stocked, normal stand of trees.
- Competing vegetation can be controlled by properly preparing the site and by eliminating unwanted weeds, brush, or trees.

Recreation Management:

- If this unit is used for camping areas, picnic areas, and paths and trails, the main limitations are the seasonal high water table and very slow or slow permeability.
- Drainage should be provided in order to alleviate wetness problems.
- Erosion and sedimentation can be controlled and the beauty of the area enhanced by maintaining adequate plant cover. Plant cover can be maintained by limiting traffic.

Urban Development:

- The limitation for septic tank absorption fields is severe. Follow state or local regulations on septic system installation.
- If this map unit is used for septic tank absorption fields, the limitation of seasonal high water table can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- If this map unit is used for septic tank absorption fields, permeability limitations can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the dense substratum.
- Slope is a concern in installing septic tank absorption fields. Absorption lines should be installed on the contour.
- Wetness can be reduced by installing drainage tile around footings and backfilling with material that has good permeability.
- Excavation for building sites is difficult due to the dense substratum.
- Roadfill is needed to raise the roadbase above the seasonal high water table.
- If the soil is used as a base for roads, a coarse-grained subgrade to frost depth is needed to prevent frost action.
- Access roads must be designed to provide proper grade and drains are needed to control surface runoff and keep soil losses to a minimum.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

CoA-Colton gravelly sandy loam, 0 to 3 percent slopes

Setting
Landform: Outwash plains and deltas
Description of areas: Irregular in shape and from 6 to over 500 acres in size

Composition

Colton and similar soils: 90 percent.
Inclusions: 10 percent.

Colton soil

Position on landscape: On rises and dips throughout the nearly level slopes. Parent material: Glaciofluvial sands and gravels Slope features: Nearly level and smooth
Stones on surface: None

Typical Profile

Surface layer:
0 to 2 inches, very dark grayish brown sapric material
Subsurface layer:
2 to 3 inches, brown gravelly sandy loam

Subsoil:

3 to 6 inches, dark brown gravelly sandy loam
6 to 13 inches, brown gravelly loamy sand
13 to 17 inches, dark yellowish brown gravelly loamy sand
17 to 26 inches, dark yellowish brown very gravelly sand

Substratum:

26 to 65 inches, olive brown extremely gravelly sand

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Excessively drained
Permeability: Rapid in the surface and subsurface, rapid and very rapid in the subsoil, and very rapid in the substratum
Available water capacity: Very low
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Colton soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Colton soils.

Inclusions

- Masardis soils are somewhat excessively drained glaciofluvial sands and gravels with loamy surface caps greater than 10 inches thick. They are intermingled with the Colton soils in slightly depressed areas.
- Adams soils are excessively drained glaciofluvial sands. They are at the perimeter of the unit.
- Hermon soils are somewhat excessively drained glacial till. They are on small stony or bouldery ridges.
- Sheepscot soils are moderately well drained glaciofluvial gravels. They are in slight depressions or on toeslopes.
- Croghan soils are moderately well drained glaciofluvial sand. They are in slight concave areas and at the perimeter of the unit.
- Wonsqueak, Bucksport, Sebago, and Moosabec soils are very poorly drained organic materials. They are in bogs in small closed depressions.
- Small areas of Colton soils that have a very stony or bouldery surface are included.
- Areas with slopes that are greater than 3 percent are included. They are mainly on the side slopes of old braided stream channels on the surface of the delta.

Use and Management

Current uses: Mainly wild blueberry production. It is also used for hayland, homesites, and as a source of gravel.

Major Management Concerns

- Poor filter
- Hazard of seepage
- Cutbanks are not stable
- Droughtiness

General Management Considerations

Urban Development:

- Follow state or local regulations on septic system installation.
- If this map unit is used for septic tank absorption fields, there is a possibility of
groundwater contamination due to the poor filtering action of the substratum. Finertextured fill material below the bottom of the absorption field can help prevent this from occurring.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.
- This map unit is often associated with aquifer recharge areas and because of the permeability of this soil, pollutants can move quickly through the soil and into the groundwater. Contamination of the groundwater is therefore possible if precautions are not taken. Restrictions on the types of activities that may occur, limitations on the density of housing, and special engineering designs for septic systems are possible precautionary measures.
- These areas are a probable source of gravel and sand.

Blueberry Management:

- This unit is well suited to blueberry production.
- This unit has very few or no surface stones, and is well suited to flail mowing and mechanical harvesting.
- Irrigation and cultural practices such as weed control, insect and disease control, and fertility management will result in increased yields of blueberries.
- Irrigation water should be applied in amounts sufficient to wet the root zone but in amounts small enough to prevent the leaching of plant nutrients, insecticides, and herbicides.
- Water needs to be applied at a slow rate over a long period to insure that the root zone is properly wetted.
- Fertilization needs can be determined by leaf tissue analysis. Proper fertilization can result in greater top and rhizome growth and higher yields.
- The use of honeybees for pollination will increase the fruit set and result in higher yields.
- In expansive open areas, such as the blueberry barrens in western Washington County, windbreaks help to trap blowing snow which provides protection from winterkill and increases the water available for plant growth. Windbreaks also reduce wind speed thus creating a more favorable environment for honeybee pollination.

Hay and Pasture:

- If this unit is used for hay and pasture, the main limitation is droughtiness.
- Use of proper stocking rates and pasture rotation helps to keep the pasture in good condition and to protect the soil from erosion.
- Proper grazing practices, weed control, lime, and fertilizer are needed for maximum quality of forage.

CoB—Colton gravelly sandy loam, 3 to 8 percent slopes

Setting
Landform: Outwash plains and deltas
Description of areas: Irregular in shape and from 6 to over 50 acres in size

Composition

Colton and similar soils: 80 percent
Inclusions: 20 percent

Colton soil

Position on landscape: Shoulder slopes, side slopes, and crests
Parent material: Glaciofluvial sands and gravels
Slope features: Convex and smooth
Stones on surface: None

Typical Profile

Surface layer:
0 to 2 inches, very dark grayish brown sapric material

Subsurface layer:

2 to 3 inches, brown gravelly sandy loam
Subsoil:
3 to 6 inches, dark brown gravelly sandy loam
6 to 13 inches, brown gravelly loamy sand
13 to 17 inches, dark yellowish brown gravelly loamy sand
17 to 26 inches, dark yellowish brown very gravelly sand

Substratum:

26 to 65 inches, olive brown extremely gravelly sand

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Excessively drained
Permeability: Rapid in the surface and subsurface, rapid and very rapid in the subsoil, and very rapid in the substratum
Available water capacity: Very low
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Colton soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Colton soils.

Inclusions

- Masardis soils are somewhat excessively drained glaciofluvial sand and gravel with loamy surface caps greater than 10 inches thick. They are intermingled with the Colton soils.
- Adams soils are excessively drained glaciofluvial sand. They are on foot and toeslopes and at the perimeter of the unit.
- Hermon soils are somewhat excessively drained glacial till. They are on small stony or bouldery ridges.
- Sheepscot soils are moderately well drained glaciofluvial sand and gravel. They are in slight depressions and on toeslopes.
- Wonsqueak, Bucksport, Sebago, and Moosabec soils are very poorly drained organic materials. They are in bogs in small closed depressions.
- Small areas of Colton soils that have a very stony or bouldery surface are included.
- Areas with slopes that are greater than 8 percent or less than 3 percent are included.

Use and Management

Current uses: Mainly wild blueberry production. It is also used for hayland, homesites, and as a source of gravel.

Major Management Concerns

- Poor filter
- Hazard of seepage
- Cutbanks are not stable
- Droughtiness

General Management Considerations

Urban Development:

- Follow state or local regulations on septic system installation.
- If this map unit is used for septic tank absorption fields, there is a possibility of groundwater contamination due to the poor filtering action of the substratum. Finertextured fill material below the bottom of the absorption field can help prevent this from occurring.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.
- This map unit is an aquifer recharge area and because of the permeability of this soil, pollutants can move quickly through the soil and into the ground water. Contamination of the ground water is therefore possible if precautions are not taken. Restrictions on the types of activities that may occur, limitations on the density of housing, and special engineering designs for septic systems are possible precautionary measures.
- These areas are a probable source of gravel and sand.

Blueberry Management:

- This unit is well suited to blueberry production.
- This unit has very few or no surface stones, and is well suited to flail mowing and mechanical harvesting.
- In expansive open areas, such as the blueberry barrens in western Washington County, windbreaks help to trap blowing snow which provides protection from winterkill and increases the water available for plant growth. Windbreaks also reduce wind speed thus creating a more favorable environment for honeybee pollination.
- Irrigation and cultural practices such as weed control, insect and disease control, and fertility management will result in increased yields of blueberries.
- Irrigation water should be applied in amounts sufficient to wet the root zone but in amounts small enough to prevent the leaching of plant nutrients, insecticides, and herbicides.
- Water needs to be applied at a slow rate over a long period to insure that the root zone is properly wetted.
- Fertilization needs can be determined by leaf tissue analysis. Proper fertilization can result in greater top and rhizome growth and higher yields.
- The use of honeybees for pollination will increase the fruit set and result in higher yields.
Hay and Pasture:
- If this unit is used for hay and pasture, the main limitation is droughtiness.
- Use of proper stocking rates and pasture rotation helps to keep the pasture in good condition and to protect the soil from erosion.
- Proper grazing practices, weed control, lime, and fertilizer are needed for maximum quality of forage.

CoC-Colton gravelly sandy loam, 8 to 15 percent slopes

Setting

Landform: Outwash plains, deltas, kame terraces, and eskers
Description of areas: Irregular in shape and from 6 to over 50 acres in size

Composition

Colton and similar soils: 85 percent. Inclusions: 15 percent.

Colton soil

Position on landscape: Side slopes and crests
Parent material: Glaciofluvial sands and gravels
Slope features: Convex and smooth
Stones on surface: None

Typical Profile

Surface layer:
0 to 2 inches, very dark grayish brown sapric material
Subsurface layer:
2 to 3 inches, brown gravelly sandy loam
Subsoil:
3 to 6 inches, dark brown gravelly sandy loam
6 to 13 inches, brown gravelly loamy sand
13 to 17 inches, dark yellowish brown gravelly loamy sand
17 to 26 inches, dark yellowish brown very gravelly sand

Substratum:

26 to 65 inches, olive brown extremely gravelly sand

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Excessively drained
Permeability: Rapid in the surface and subsurface, rapid and very rapid in the subsoil, and very rapid in the substratum
Available water capacity: Very low
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Colton soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Colton soils.
Inclusions

- Areas with slopes that are greater than 15 percent and less than 8 percent are included.
- Masardis soils are somewhat excessively drained glaciofluvial sands and gravels with loamy surface caps greater than 10 inches thick. They are intermingled with the Colton soils.
- Adams soils are excessively drained glaciofluvial sands. They are on footslopes and toeslopes and at the perimeter of the unit.
- Hermon soils are somewhat excessively drained glacial tills. They are on small stony or bouldery ridges.
- Sheepscot soils are moderately well drained glaciofluvial sands and gravels. They are in slight depressions and on toeslopes.
- Wonsqueak, Bucksport, and Sebago soils are very poorly drained organic materials. They are in bogs in small closed depressions.
- Small areas of Colton soils that have a very stony or bouldery surface are also included.

Use and Management

Current uses: Mainly wild blueberry production. It is also used for hayland, homesites, and as a source of gravel.

Major Management Concerns

- Poor filter
- Hazard of seepage
- Cutbanks are not stable
- Droughtiness
- Slope

General Management Considerations

Urban Development:

- Follow state or local regulations on septic system installation.
- If this map unit is used for septic tank absorption fields, there is a possibility of groundwater contamination due to the poor filtering action of the substratum. Finertextured fill material below the bottom of the absorption field can help prevent this from occuring.
- As the slope increases, building site development becomes more difficult.
- Access roads must be designed to provide proper grade and drains are needed to control surface runoff and keep soil losses to a minimum.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.
- This map unit is often associated with an aquifer recharge area and because of the permeability of this soil, pollutants can move quickly through the soil and into the ground water. Contamination of the ground water is therefore possible if precautions are not taken. Restrictions on the types of activities that may occur, limitations on the density of housing, and special engineering designs for septic systems are possible precautionary measures.
- These areas are a probable source of gravel and sand.

Blueberry Management:

- This unit is well suited to blueberry production.
- This unit has very few or no surface stones, and is well suited to flail mowing. Mechanical harvesting is moderately difficult due to slope.
- In expansive open areas, such as the blueberry barrens in western Washington County, windbreaks help to trap blowing snow which provides protection from winterkill and increases the water available for plant growth. Windbreaks also reduce wind speed thus creating a more favorable environment for honeybee pollination.
- Irrigation and cultural practices such as weed control, insect and disease control, and fertility management will result in increased yields of blueberries.
- Irrigation water should be applied in amounts sufficient to wet the root zone but in amounts small enough to prevent the leaching of plant nutrients, insecticides, and herbicides.
- Water needs to be applied at a slow rate over a long period to insure that the root zone is properly wetted.
- Fertilization needs can be determined by leaf tissue analysis. Proper fertilization can result in greater top and rhizome growth and higher yields.
- The use of honeybees for pollination will increase the fruit set and result in higher yields.

Hay and Pasture:

- If this unit is used for hay and pasture, the main limitation is droughtiness.
- Use of proper stocking rates and pasture rotation helps to keep the pasture in good condition and to protect the soil from erosion.
- Proper grazing practices, weed control, lime, and fertilizer are needed for maximum quality of forage.

CoE—Colton gravelly sandy loam, 15 to 70 percent slopes

Setting
Landform: Outwash deltas, plains, kames, kettles, kame terraces, and eskers Description of areas: Elongated or irregular in shape and from 6 to over 100 acres in size

Composition
Colton and similar soils: 85 percent
Inclusions: 15 percent

Colton soil

Position on landscape: Side slopes and crests
Parent material: Glaciofluvial sands and gravels
Slope features: Convex
Stones on surface: None

Typical Profile

Surface layer:
0 to 2 inches, very dark grayish brown sapric material
Subsurface layer:
2 to 3 inches, brown gravelly sandy loam
Subsoil:
3 to 6 inches, dark brown gravelly sandy loam
6 to 13 inches, brown gravelly loamy sand
13 to 17 inches, dark yellowish brown gravelly loamy sand
17 to 26 inches, dark yellowish brown very gravelly sand
Substratum:
26 to 65 inches, olive brown extremely gravelly sand

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Excessively drained
Permeability: Rapid in the surface and subsurface, rapid and very rapid in the subsoil, and very rapid in the substratum
Available water capacity: Very low

Depth to restrictive layer: Greater than 60 inches

Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Colton soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Colton soils.

Inclusions

- Areas with slopes less than 15 percent.
- Adams soils are excessively drained glaciofluvial sands. They are on footslopes and toeslopes.
- Masardis soils are somewhat excessively drained glaciofluvial sands and gravels with loamy surface caps greater than 10 inches thick. They are intermingled with the Colton soils.
- Wonsqueak, Bucksport, Sebago, and Moosabec soils are very poorly drained organic materials. They are in bogs at the bottom of closed depressions in complex kettle and kame topography and pitted outwash deltas and plains.
- Sheepscot soils are moderately well drained glaciofluvial sand and gravel. They are on toeslopes and at the perimeter of closed depressions.
- Small areas of Colton soils that have a very stony or bouldery surface are included.

Use and Management

Current uses: Most areas are overgrown blueberry land. Some areas are used for wild blueberry production and as a source of gravel.

Major Management Concerns

- Slope
- Poor filter
- Hazard of seepage
- Droughtiness
- Cutbanks are not stable

General Management Considerations

Urban Development:

- Follow state or local regulations on septic system installation.
- Slope is a serious concern in installing septic tank absorption fields. Absorption lines should be installed on the contour.
- If this map unit is used for septic tank absorption fields, there is a possibility of groundwater contamination due to the poor filtering action of the substratum. Finertextured fill material below the bottom of the absorption field can help prevent this from occurring.
- As the slope increases, building site development becomes more difficult.
- Access roads must be designed to provide proper grade and drains are needed to control surface runoff and keep soil losses to a minimum.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.
- This map unit is often associated with an aquifer recharge area and because of the permeability of this soil, pollutants can move quickly through the soil and into the ground water. Contamination of the ground water is therefore possible if
precautions are not taken. Restrictions on the types of activities that may occur, limitations on the density of housing, and special engineering designs for septic systems are possible precautionary measures.
- These areas are a probable source of gravel and sand.

Blueberry Management:

- This unit is moderately well suited to blueberry production but blueberries generally are not grown on the soil.
- The use of herbicides on this unit may result in areas of bare soil. Mulching of these areas may be necessary in order to prevent erosion.
- Flail mowing and mechanical harvesting are difficult on this unit because of slope.
- Irrigation and cultural practices such as weed control, insect and disease control, and fertility management will result in increased yields of blueberries.
- Irrigation water should be applied in amounts sufficient to wet the root zone but in amounts small enough to prevent the leaching of plant nutrients, insecticides, and herbicides.
- Water needs to be applied at a slow rate over a long period to insure that the root zone is properly wetted.
- Fertilization needs can be determined by leaf tissue analysis. Proper fertilization can result in greater top and rhizome growth and higher yields.
- The use of honeybees for pollination will increase the fruit set and result in higher yields.
Hay and Pasture:
- If this unit is used for hay and pasture, the main limitations are slope and droughtiness.
- Slope limits the use of equipment for harvesting hay.
- The use of proper stocking rates and pasture rotation helps to keep the pasture in good condition and to protect the soil from erosion.
- Proper grazing practices, weed control, lime, and fertilizer are needed for maximum quality of forage.

CpB—Colton gravelly sandy loam, 0 to 8 percent slopes, very bouldery

Setting
Landform: Outwash plains and deltas, kame terraces, moraines, and ridges
Description of areas: Irregular in shape and from 6 to over 50 acres in size

Composition

Colton and similar soils: 75 percent
Inclusions: 25 percent

Colton soil

Position on landscape: Throughout very bouldery areas on outwash plains and deltas, and on the crests and side slopes of moraines and ridges
Parent material: Glaciofluvial sands and gravels
Slope features: Convex
Boulders on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, very dark grayish brown sapric material

Subsurface layer:
2 to 3 inches, brown gravelly sandy loam
Subsoil:
3 to 6 inches, dark brown gravelly sandy loam
6 to 13 inches, brown gravelly loamy sand
13 to 17 inches, dark yellowish brown gravelly loamy sand
17 to 26 inches, dark yellowish brown very gravelly sand
Substratum:
26 to 65 inches, olive brown extremely gravelly sand
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Excessively drained
Permeability: Rapid in the surface and subsurface, rapid and very rapid in the subsoil, and very rapid in the substratum
Available water capacity: Very low
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Colton soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Colton soils.

Inclusions

- Areas with slopes that are greater than 8 percent are included.
- Small areas without stones and boulders on the surface are included.
- Masardis soils are somewhat excessively drained glaciofluvial sand and gravel with loamy surface caps greater than 10 inches thick. They are intermingled with the Colton soils.
- Adams soils are excessively drained glaciofluvial sand. They are on footslopes and toeslopes and at the perimeter of the unit.
- Monadnock soils are well drained glacial till and are intermingled with the Colton soils on small ridges.
- Hermon soils are somewhat excessively drained glacial till and are intermingled with the Colton soils on small ridges.
- Sheepscot soils are moderately well drained glaciofluvial sand and gravel. They are in slight depressions and on toeslopes.
- Wonsqueak, Bucksport, and Sebago soils are very poorly drained organic materials. They are in bogs in small closed depressions.

Use and Management

Current uses: Mainly wild blueberry production. It is also used for pasture, homesites, and as a source of gravel.

Major Management Concerns

- Poor filter
- Hazard of seepage
- Cutbanks are not stable
- Droughtiness
- Boulders on the surface

General Management Considerations

Urban Development:

- Follow state or local regulations on septic system installation.
- If this map unit is used for septic tank absorption fields, there is a possibility of groundwater contamination due to the poor filtering action of the substratum. Finertextured fill material below the bottom of the absorption field can help prevent this from occurring.
- The rock fragment content causes moderate difficulties in excavation.
- The rock fragment content causes moderate difficulties in the excavation, grading, and ditching activities involved in the construction and maintenance of roads.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.
- This map unit is often associated with an aquifer recharge area and because of the permeability of this soil, pollutants can move quickly through the soil and into the ground water. Contamination of the ground water is therefore possible if precautions are not taken. Restrictions on the types of activities that may occur, limitations on the density of housing, and special engineering designs for septic systems are possible precautionary measures.

Blueberry Management:

- This unit is well suited to blueberry production (fig. 3).
- This unit is not suited to flail mowing or mechanical harvesting because of surface boulders and stones.
- In expansive open areas, such as the blueberry barrens in western Washington County, windbreaks help to trap blowing snow which provides protection from

Figure 3.-This is an area of Colton gravelly sandy loam, 0 to 8 percent slopes, very bouldery. This area is being managed for the production of native low bush blueberries. Every other year certain areas of the blueberry plants are pruned by mowing or burning. The above area has been recently burned exposing the very bouldery surface.
winterkill and increases the water available for plant growth. Windbreaks also reduce wind speed thus creating a more favorable environment for honeybee pollination.

- Irrigation and cultural practices such as weed control, insect and disease control, and fertility management will result in increased yields of blueberries.
- Irrigation water should be applied in amounts sufficient to wet the root zone but in amounts small enough to prevent the leaching of plant nutrients, insecticides, and herbicides.
- Water needs to be applied at a slow rate over a long period to insure that the root zone is properly wetted.
- Fertilization needs can be determined by leaf tissue analysis. Proper fertilization can result in greater top and rhizome growth and higher yields.
- The use of honeybees for pollination will increase the fruit set and result in higher yields.

Hay and Pasture:

- If this unit is used for hay and pasture, the main limitations are droughtiness and boulders and stones on the surface.
- The use of proper stocking rates and pasture rotation helps to keep the pasture in good condition and to protect the soil from erosion.
- Proper grazing practices, weed control, lime, and fertilizer are needed for maximum quality of forage.

CpC-Colton gravelly sandy loam, 8 to 15 percent slopes, very bouldery

Setting
Landform: Outwash plains and deltas, kame terraces, and moraines
Description of areas: Irregular in shape and from 6 to over 100 acres in size

Composition

Colton and similar soils: 75 percent
Inclusions: 25 percent

Colton soil

Position on landscape: Side slopes and shoulder slopes
Parent material: Glaciofluvial sands and gravels
Slope features: Convex
Boulders on surface: 0.1 to 3 percent
Typical Profile
Surface layer:
0 to 2 inches, very dark grayish brown sapric material
Subsurface layer:
2 to 3 inches, brown gravelly sandy loam
Subsoil:
3 to 6 inches, dark brown gravelly sandy loam
6 to 13 inches, brown gravelly loamy sand
13 to 17 inches, dark yellowish brown gravelly loamy sand
17 to 26 inches, dark yellowish brown very gravelly sand
Substratum:
26 to 65 inches, olive brown extremely gravelly sand

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Excessively drained
Permeability: Rapid in the surface and subsurface, rapid and very rapid in the subsoil, and very rapid in the substratum
Available water capacity: Very low
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Colton soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Colton soils.

Inclusions

- Areas with slopes that are greater than 15 percent and less than 8 percent are included.
- Small areas without boulders and stones on the surface are included.
- Masardis soils are somewhat excessively drained glaciofluvial sand and gravel with loamy surface caps greater than 10 inches thick. They are intermingled with the Colton soils.
- Adams soils are excessively drained glaciofluvial sand. They are on footslopes and toeslopes and at the perimeter of the unit.
- Monadnock soils are well drained glacial till and are intermingled with the Colton soils on small ridges.
- Hermon soils are somewhat excessively drained glacial till and are intermingled with the Colton soils on small ridges.
- Sheepscot soils are moderately well drained glaciofluvial sand and gravel. They are in slight depressions or on toeslopes and footslopes.
- Wonsqueak, Bucksport, and Sebago soils are very poorly drained organic materials. They are in bogs in small closed depressions.

Use and Management

Current uses: Mainly wild blueberry production. It is also used for pasture, homesites, and as a source of gravel.

Major Management Concerns

- Boulders on the surface
- Poor filter
- Hazard of seepage
- Cutbanks are not stable
- Droughtiness
- Slope

General Management Considerations

Urban Development:

- Follow state or local regulations on septic system installation.
- If this map unit is used for septic tank absorption fields, there is a possibility of groundwater contamination due to the poor filtering action of the substratum. Finertextured fill material below the bottom of the absorption field can help prevent this from occurring.
- As the slope increases, building site development becomes more difficult.
- The rock fragment content causes moderate difficulties in excavation.
- Access roads must be designed to provide proper grade and drains are needed to control surface runoff and keep soil losses to a minimum.
- The rock fragment content causes moderate difficulties in the excavation, grading, and ditching activities involved in the construction and maintenance of roads.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.
- This map unit is often associated with an aquifer recharge area and because of the permeability of this soil, pollutants can move quickly through the soil and into the ground water. Contamination of the ground water is therefore possible if precautions are not taken. Restrictions on the types of activities that may occur, limitations on the density of housing, and special engineering designs for septic systems are possible precautionary measures.
- These areas are a probable source of gravel and sand.

Blueberry Management:

- This unit is well suited to blueberry production.
- This unit is not suited to flail mowing or mechanical harvesting because of surface boulders and stones.
- Irrigation and cultural practices such as weed control, insect and disease control, and fertility management will result in increased yields of blueberries.
- Irrigation water should be applied in amounts sufficient to wet the root zone but in amounts small enough to prevent the leaching of plant nutrients, insecticides, and herbicides.
- Water needs to be applied at a slow rate over a long period to insure that the root zone is properly wetted.
- Fertilization needs can be determined by leaf tissue analysis. Proper fertilization can result in greater top and rhizome growth and higher yields.
- The use of honeybees for pollination will increase the fruit set and result in higher yields.

Hay and Pasture:

- If this unit is used for hay and pasture, the main limitations are droughtiness and boulders and stones on the surface.
- The use of proper stocking rates and pasture rotation helps to keep the pasture in good condition and to protect the soil from erosion.
- Proper grazing practices, weed control, lime, and fertilizer are needed for maximum quality of forage.

CRC—Colton-Adams complex, 3 to 15 percent slopes

Setting
Landform: Outwash plains, deltas, and kame terraces
Description of areas: Irregular in shape and from 20 to over 300 acres in size

Composition

Colton and similar soils: 65 percent
Adams and similar soils: 20 percent Inclusions: 15 percent

Colton soil

Position on landscape: Crests, side slopes, and head slopes
Parent material: Glaciofluvial sands and gravels
Slope range: 3 to 15 percent
Slope features: Convex and smooth
Stones on surface: None

Typical Profile

Surface layer:
0 to 2 inches, very dark grayish brown sapric material
Subsurface layer:
2 to 3 inches, brown gravelly sandy loam
Subsoil:
3 to 6 inches, dark brown gravelly sandy loam
6 to 13 inches, brown gravelly loamy sand
13 to 17 inches, dark yellowish brown gravelly loamy sand
17 to 26 inches, dark yellowish brown very gravelly sand
Substratum:
26 to 65 inches, olive brown extremely gravelly sand

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Somewhat excessively drained
Permeability: Rapid in the surface and subsurface, rapid and very rapid in the subsoil, and very rapid in the substratum
Available water capacity: Very low
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None
Depth to water table: Greater than 6 feet

Adams soil

Position on landscape: Footslopes and at the perimeter of the unit Parent material: Glaciofluvial sands
Slope range: 3 to 15 percent
Slope features: Convex and smooth
Stones on surface: None

Typical Profile

Surface layer:
0 to 1 inch, dark reddish brown sapric material
Subsurface layer:
1 to 4 inches, brown loamy sand
Subsoil:
4 to 7 inches, dark reddish brown loamy sand
7 to 12 inches, brown sand
12 to 16 inches, dark yellowish brown sand
16 to 22 inches, yellowish brown sand
Substratum:
22 to 56 inches, light olive brown sand
56 to 65 inches, olive sand

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Excessively drained
Permeability: Rapid in the surface, subsurface, and subsoil, and very rapid in the substratum
Available water capacity: Very low
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Colton and Adams soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Colton and Adams soils.

Inclusions

- Masardis soils are somewhat excessively drained glaciofluvial sand and gravel with loamy surface caps greater than 10 inches thick. They are intermingled with the Colton soils.
- Sheepscot soils are moderately well drained glaciofluvial sand and gravel. They are on toeslopes or in depressions.
- Croghan soils are moderately well drained glaciofluvial sand. They are on toeslopes or in depressions within the Adams soils.
- Kinsman soils are poorly drained glaciofluvial sand. They are in depressions within the Adams soils.
- Wonsqueak, Bucksport, Sebago, and Moosabec soils are very poorly drained organic materials. They are in bogs.
- Nicholville soils are moderately well drained glaciofluvial and glaciolacustrine very fine sand and silt. They are at the perimeter of the map unit.
- Small areas with stones and boulders on the surface are included.
- Areas with slopes greater than 15 percent are included.

Use and Management

Current uses: Woodland, a source of sand and gravel, and some areas are overgrown blueberry land

Major Management Concerns

- Cutbanks are not stable
- Droughtiness
- Slope
- Poor filter
- Hazard of seepage

General Management Considerations

Woodland Management.

- The potential productivity of this unit for trees is high.
- These areas are a probable source of gravel and sand.
- Minimizing the risk of erosion is essential in harvesting timber.
- Laying out skid trails and roads on the contour will reduce erosion.
- Revegetating disturbed areas around landings, skid trails, roads, and construction sites as soon as possible, helps to control soil erosion.
- Conventional methods of harvesting timber can be used.
- Seedling mortality can be reduced by planting seedlings in spring when soil moisture levels are highest and by using planting stock that is larger than usual or containerized. Reinforcement planting may be needed.
- Care should be taken in harvesting and thinning to reduce trees exposed to the prevailing winds.
- Competing vegetation can be controlled by properly preparing the site and by eliminating unwanted weeds, brush, or trees.

Recreation Management:

- If this unit is used for camping areas, picnic areas, and paths and trails, the main limitation is slope.
- Erosion and sedimentation can be controlled and the beauty of the area enhanced by maintaining adequate plant cover. Plant cover can be maintained by limiting traffic.

Urban Development:

- The limitation for septic tank absorption fields is severe. Follow state or local regulations on septic system installation.
- If this map unit is used for septic tank absorption fields, there is a possibility of groundwater contamination due to the poor filtering action of the substratum. Finertextured fill material below the bottom of the absorption field can help prevent this from occurring.
- Slope is a concern in installing septic tank absorption fields. Absorption lines should be installed on the contour.
- As the slope increases, building site development becomes more difficult.
- Access roads must be designed to provide proper grade and drains are needed to control surface runoff and keep soil losses to a minimum.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.
- This map unit is an aquifer recharge area and because of the permeability of these soils, pollutants can move quickly through the soil and into the ground water. Contamination of the ground water is therefore possible if precautions are not taken. Restrictions on the types of activities that may occur, limitations on the density of housing, and special engineering designs for septic systems are possible precautionary measures.

Blueberry Management:

- This unit is well suited to blueberry production although it is mainly wooded or overgrown blueberry land.
- These areas can be cleared, and with proper management, brought into blueberry production.
- This unit has very few or no surface stones, and is well suited to flail mowing and mechanical harvesting.
- Irrigation and cultural practices such as weed control, insect and disease control, and fertility management will result in increased yields of blueberries.
- Irrigation water should be applied in amounts sufficient to wet the root zone but in amounts small enough to prevent the leaching of plant nutrients, insecticides, and herbicides.
- Water needs to be applied at a slow rate over a long period to insure that the root zone is properly wetted.
- Fertilization needs can be determined by leaf tissue analysis. Proper fertilization can result in greater top and rhizome growth and higher yields.
- The use of honeybees for pollination will increase the fruit set and result in higher yields.

CRE—Colton-Adams complex, 15 to 70 percent slopes

Setting

Landform: Outwash deltas, kames, kettles, and eskers
Description of areas: Elongated in shape and from 20 to over 100 acres in size

Composition

Colton and similar soils: 75 percent
Adams and similar soils: 15 percent
Inclusions: 10 percent

Colton soil

Position on landscape: Crests and side slopes
Parent material: Glaciofluvial sands and gravels
Slope range: 15 to 70 percent
Slope features: Convex
Stones on surface: None

Typical Profile

Surface layer:
0 to 2 inches, very dark grayish brown sapric material
Subsurface layer:
2 to 3 inches, brown gravelly sandy loam
Subsoil:
3 to 6 inches, dark brown gravelly sandy loam
6 to 13 inches, brown gravelly loamy sand
13 to 17 inches, dark yellowish brown gravelly loamy sand
17 to 26 inches, dark yellowish brown very gravelly sand
Substratum:
26 to 65 inches, olive brown extremely gravelly sand

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Somewhat excessively drained
Permeability: Rapid in the surface and subsurface, rapid and very rapid in the subsoil, and very rapid in the substratum
Available water capacity: Very low
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None
Adams soil
Position on landscape: Footslopes and toeslopes
Parent material: Glaciofluvial sands
Slope range: 15 to 70 percent
Slope features: Convex
Stones on surface: None

Typical Profile

Surface layer:
0 to 1 inch, dark reddish brown sapric material
Subsurface layer:
1 to 4 inches, brown loamy sand

Subsoil:
4 to 7 inches, dark reddish brown loamy sand
7 to 12 inches, brown sand
12 to 16 inches, dark yellowish brown sand
16 to 22 inches, yellowish brown sand
Substratum:
22 to 56 inches, light olive brown sand
56 to 65 inches, olive sand

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Excessively drained
Permeability: Rapid in the surface, subsurface, and subsoil, and very rapid in the substratum
Available water capacity: Very low
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None
Depth to water table: Greater than 6 feet

Included Areas

Similar soils

Soils are included in this map unit which are like the Colton and Adams soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Colton and Adams soils.

Inclusions

- Masardis soils are somewhat excessively drained glaciofluvial sand and gravel with loamy surface caps greater than 10 inches thick. They are intermingled with the Colton soils.
- Hermon soils are excessively drained glacial till. They are on stony and bouldery ridges.
- Wonsqueak, Bucksport, Sebago, and Moosabec soils are very poorly drained organic materials. They are in bogs in closed depressions at the base of steep slopes.
- Kinsman soils are poorly drained glaciofluvial sand. They are in depressions at the base of steep slopes.
- Slopes greater than 70 percent and less than 15 percent are also included.
- Areas with very stony or bouldery surfaces are included.

Use and Management

Current uses: Woodland and as a source of sand and gravel

Major Management Concerns

- Slope
- Cutbanks are not stable
- Droughtiness
- Poor filter
- Hazard of seepage

General Management Considerations

Woodland Management:

- The potential productivity of this unit for trees is high.
- These areas are a probable source of gravel and sand.
- Minimizing the risk of erosion is essential in harvesting timber.
- Proper design of road drainage systems and care in the placement of culverts help to control erosion. Spoil from excavations is subject to rill and gully erosion and to sloughing.
- Laying out skid trails and roads on the contour will reduce erosion.
- Roads and landings can be protected from erosion by constructing waterbars and by seeding cuts and fills.
- Planting trees on the contour and interplanting with a cover crop helps to control erosion.
- Revegetating disturbed areas around landings, skid trails, roads, and construction sites as soon as possible, helps to control soil erosion.
- The steepness of slope limits the kind of equipment that can be used in forest management.
- Seedling mortality can be reduced by planting seedlings in spring when soil moisture levels are highest and by using planting stock that is larger than usual or containerized. Reinforcement planting may be needed.
- Care should be taken in harvesting and thinning to reduce trees exposed to the prevailing winds.
- Plant competition is slight.
- Competing vegetation can be controlled by properly preparing the site and by eliminating unwanted weeds, brush, or trees.

Recreation Management:

- If this unit is used for camping areas, picnic areas, and paths and trails, the main limitation is slope.
- Erosion and sedimentation can be controlled and the beauty of the area enhanced by maintaining adequate plant cover. Plant cover can be maintained by limiting traffic.
- Slope limits the use of most areas of this unit mainly to a few paths and trails which should extend across the slope.

Urban Development:

- Follow state or local regulations on septic system installation.
- Slope is a serious concern in installing septic tank absorption fields. Absorption lines should be installed on the contour.
- If this map unit is used for septic tank absorption fields, there is a possibility of groundwater contamination due to the poor filtering action of the substratum. Finertextured fill material below the bottom of the absorption field can help prevent this from occurring.
- As the slope increases, building site development becomes more difficult.
- Access roads must be designed to provide proper grade and drains are needed to control surface runoff and keep soil losses to a minimum.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.
- This map unit is often associated with an aquifer recharge area and because of the permeability of these soils, pollutants can move quickly through the soil and into the ground water. Contamination of the ground water is therefore possible if precautions are not taken. Restrictions on the types of activities that may occur, limitations on the density of housing, and special engineering designs for septic systems are possible precautionary measures.
- These areas are a probable source of sand and gravel.

CSC-Colton-Hermon complex, 3 to 15 percent slopes, very bouldery

Setting
Landform: Hills, knolls, ridges, and moraines
Description of areas: Irregular in shape and from 20 to over 200 acres in size
\section*{Composition}
Colton and similar soils: 40 percent
Hermon and similar soils: 35 percent
Inclusions: 25 percent
\section*{Colton soil}
Position on landscape: Crests and side slopes
Parent material: Glaciofluvial sands and gravels
Slope range: 3 to 15 percent
Slope features: Convex
Boulders on surface: 0.1 to 3 percent
\section*{Typical Profile}
Surface layer:
0 to 2 inches, very dark grayish brown sapric material
Subsurface layer:
2 to 3 inches, brown gravelly sandy loam
Subsoil:
3 to 6 inches, dark brown gravelly sandy loam
6 to 13 inches, brown gravelly loamy sand
13 to 17 inches, dark yellowish brown gravelly loamy sand
17 to 26 inches, dark yellowish brown very gravelly sand
Substratum:
26 to 65 inches, olive brown extremely gravelly sand
\section*{Soil Properties and Qualities}
Depth class Very deep
Drainage class: Excessively drained
Permeability: Rapid in the surface and subsurface, rapid and very rapid in the subsoil, and very rapid in the substratum
Available water capacity: Very low
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None

Hermon soil
Position on landscape: Crests and side slopes
Parent material: Glacial till
Slope range: 3 to 15 percent
Slope features: Convex
Boulders on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, black sapric material
Subsurface layer:
2 to 6 inches, reddish gray sandy loam

Subsoil:
6 to 8 inches, dark reddish brown sandy loam
8 to 10 inches, dark brown gravelly sandy loam
10 to 18 inches, dark yellowish brown very gravelly loamy sand

Substratum:

18 to 32 inches, light olive brown extremely gravelly coarse sand
32 to 65 inches, olive very gravelly sand

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Somewhat excessively drained
Permeability: Moderately rapid or rapid in the surface, subsurface, and subsoil, and rapid or very rapid in the substratum
Available water capacity: Low
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Colton and Hermon soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Colton and Hermon soils.

Inclusions

- Skerry soils are moderately well drained firm glacial till. They are on footslopes and toeslopes and in depressions.
- Masardis soils are somewhat excessively drained glaciofluvial sand and gravel with loamy surface caps greater than 10 inches thick. They are intermingled with the Colton soils.
- Monadnock soils are well drained glacial till. They are intermingled with the Hermon soils.
- Sheepscot soils are moderately well drained glaciofluvial sand and gravel. They are in depressions and on toeslopes.
- Colonel soils are somewhat poorly drained firm glacial till. They are on footslopes and toeslopes.
- Bucksport and Wonsqueak soils are very poorly drained organic materials. They are in small bogs.
- Areas with extremely stony or bouldery surfaces are included.
- Areas with short slopes greater than 15 percent or less than 3 percent are included.

Use and Management

Current uses: Woodland and as a source of gravel (fig. 4)

Major Management Concerns

- Slope
- Boulders on the surface
- Droughtiness
- Poor filter
- Hazard of seepage
- Cutbanks are not stable

General Management Considerations

Woodland management:

- The potential productivity of this unit for trees is medium to high.
- These areas are a probable source of gravel and sand.

Figure 4.-A gravel pit in an area of Colton-Hermon complex, 3 to 15 percent slopes, very bouldery. Many of these areas are found on landforms known as moraines. Moraines are long ridges that were formed as the glacier grew and receded, pushing and reworking soil material. Moraines are generally oriented perpendicular to the flow of the glacier.

- Minimizing the risk of erosion is essential in harvesting timber.
- Laying out skid trails and roads on the contour will reduce erosion.
- Revegetating disturbed areas around landings, skid trails, roads, and construction sites as soon as possible, helps to control soil erosion.
- Conventional methods of harvesting timber can be used.
- Boulders and stones on the surface can interfere with felling, yarding, and other operations involving the use of equipment.
- Seedling mortality can be reduced by planting seedlings in spring when soil moisture levels are highest and by using planting stock that is larger than usual or containerized. Reinforcement planting may be needed.
- Care should be taken in harvesting and thinning to reduce trees exposed to the prevailing winds.
- Plant competition is slight.
- Competing vegetation can be controlled by properly preparing the site and by eliminating unwanted weeds, brush, or trees.

Recreation Development:

- If this unit is used for camping areas, picnic areas, and paths and trails, the main limitations are slope and surface boulders and stones.
- Erosion and sedimentation can be controlled and the beauty of the area enhanced by maintaining adequate plant cover. Plant cover can be maintained by limiting traffic.

Urban Development:

- Follow state or local regulations on septic system installation.
- If this map unit is used for septic tank absorption fields, there is a possibility of groundwater contamination due to the poor filtering action of the substratum. Finertextured fill material below the bottom of the absorption field can help prevent this from occurring.
- Slope is a concern in installing septic tank absorption fields. Absorption lines should be installed on the contour.
- As the slope increases, building site development becomes more difficult.
- The rock fragment content causes moderate difficulties in excavation.
- Access roads must be designed to provide proper grade and drains are needed to control surface runoff and keep soil losses to a minimum.
- The rock fragment content causes moderate difficulties in the excavation, grading, and ditching activities involved in the construction and maintenance of roads.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.
- This map unit is often associated with an aquifer recharge area and because of the permeability of these soils, pollutants can move quickly through the soil and into the ground water. Contamination of the ground water is therefore possible if precautions are not taken. Restrictions on the types of activities that may occur, limitations on the density of housing, and special engineering designs for septic systems are possible precautionary measures.
- These areas are a probable source of gravel and sand.

CSD—Colton-Hermon complex, 15 to 30 percent slopes, very bouldery

Setting
Landform: Hills, ridges, and moraines
Description of areas: Elongated in shape and from 20 to over 75 acres in size
\section*{Composition}

Colton and similar soils: 60 percent Hermon and similar soils: 25 percent Inclusions: 15 percent

colton soil

Position on landscape: Side slopes
Parent material: Glaciofluvial sands and gravels
Slope range: 15 to 30 percent
Slope features: Convex
Boulders on surface: 0.1 to 3 percent
Typical Profile
Surface layer:
0 to 2 inches, very dark grayish brown sapric material
Subsurface layer:
2 to 3 inches, brown gravelly sandy loam
Subsoil:
3 to 6 inches, dark brown gravelly sandy loam
6 to 13 inches, brown gravelly loamy sand
13 to 17 inches, dark yellowish brown gravelly loamy sand
17 to 26 inches, dark yellowish brown very gravelly sand

Substratum:

26 to 65 inches, olive brown extremely gravelly sand

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Excessively drained
Permeability: Rapid in the surface and subsurface, rapid and very rapid in the subsoil, and very rapid in the substratum
Available water capacity: Very low
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None

Hermon soil

Position on landscape: Side slopes
Parent material: Glacial till
Slope range: 15 to 30 percent
Slope features: Convex
Boulders on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, black sapric material
Subsurface layer:
2 to 6 inches, reddish gray sandy loam
Subsoil:
6 to 8 inches, dark reddish brown sandy loam
8 to 10 inches, dark brown gravelly sandy loam
10 to 18 inches, dark yellowish brown very gravelly loamy sand

Substratum:

18 to 32 inches, light olive brown extremely gravelly coarse sand
32 to 65 inches, olive very gravelly sand

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Somewhat excessively drained
Permeability: Moderately rapid or rapid in the surface, subsurface, and subsoil, and rapid or very rapid in the substratum
Available water capacity: Low
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Colton and Hermon soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Colton and Hermon soils.

Inclusions

- Masardis soils are somewhat excessively drained glaciofluvial sand and gravel with loamy surface caps greater than 10 inches thick. They are intermingled with the Colton soils.
- Monadnock soils are well drained glacial till. They are intermingled with the Hermon soils.
- Areas with extremely bouldery or stony surfaces are included.
- Areas with slopes less than 15 percent and greater than 30 percent are included.

Use and Management

Current uses: Woodland and as a source of gravel

Major Management Concerns

- Slope
- Poor filter
- Cutbanks are not stable
- Droughtiness
- Hazard of seepage
- Boulders on the surface

General Management Considerations

Woodland Management:

- The potential productivity of this unit for trees is medium to high.
- These areas are a probable source of gravel and sand.
- Minimizing the risk of erosion is essential in harvesting timber.
- Laying out skid trails and roads on the contour will reduce erosion.
- Roads and landings can be protected from erosion by constructing waterbars and by seeding cuts and fills.
- Planting trees on the contour and interplanting with a cover crop helps to control erosion.
- Revegetating disturbed areas around landings, skid trails, roads, and construction sites as soon as possible, helps to control soil erosion.
- Conventional methods of harvesting timber can be used.
- Boulders and stones on the surface can interfere with felling, yarding, and other operations involving the use of equipment.
- Seedling mortality can be reduced by planting seedlings in spring when soil moisture levels are highest and by using planting stock that is larger than usual or containerized. Reinforcement planting may be needed.
- Care should be taken in harvesting and thinning to reduce trees exposed to the prevailing winds.
- Competing vegetation can be controlled by properly preparing the site and by eliminating unwanted weeds, brush, or trees.

Recreation Management:

- If this unit is used for camping areas, picnic areas, and paths and trails, the main limitation is slope.
- Erosion and sedimentation can be controlled and the beauty of the area enhanced by maintaining adequate plant cover. Plant cover can be maintained by limiting traffic.

Urban Development:

- Follow state or local regulations on septic system installation.
- If this map unit is used for septic tank absorption fields, there is a possibility of groundwater contamination due to the poor filtering action of the substratum. Finertextured fill material below the bottom of the absorption field can help prevent this from occurring.
- Slope is a concern in installing septic tank absorption fields. Absorption lines should be installed on the contour.
- As the slope increases, building site development becomes more difficult.
- Access roads must be designed to provide proper grade and drains are needed to control surface runoff and keep soil losses to a minimum.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.
- This map unit is often associated with an aquifer recharge area and because of the permeability of these soils, pollutants can move quickly through the soil and into the ground water. Contamination of the ground water is therefore possible if precautions are not taken. Restrictions on the types of activities that may occur, limitations on the density of housing, and special engineering designs for septic systems are possible precautionary measures.
- These areas are a probable source of gravel and sand.

CtB—Creasey gravelly silt loam, 3 to $\mathbf{8}$ percent slopes

Setting
Landform: Ridges and knolls
Description of areas: Irregular in shape and from 6 to over 40 acres in size
\section*{Composition}

Creasey and similar soils: 80 percent
Inclusions: 20 percent

Creasey soil

Position on landscape: Crests, side slopes, and footslopes. These areas are mainly in the towns of Perry and Robbinston.
Parent material: Glacial till
Slope features: Smooth and convex or slightly concave.
Stones on surface: None

Typical Profile

Surface layer:
0 to 8 inches, dark reddish brown gravelly silt loam
Subsoil:
8 to 13 inches, yellowish red very gravelly silt loam
13 to 17 inches, reddish brown gravelly silt loam
Bedrock:
17 inches, sandstone

Soil Properties and Qualities

Depth class: Shallow
Drainage class: Somewhat excessively drained
Permeability: Moderate or moderately rapid
Available water capacity: Very low
Depth to restrictive layer: 10 to 20 inches to bedrock
Hazard of flooding: None
Included Areas

Similar soils

Soils are included in this map unit which are like the Creasey soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Creasey soils.

Inclusions

- Soils similar to Creasey soils but moderately deep to bedrock are on side slopes and footslopes.
- Soils similar to Creasey soils, but are moderately well drained, are on footslopes, toeslopes, or in slight depressions.
- Lamoine soils are somewhat poorly drained glaciomarine deposits. They are in depressions, on toeslopes, and adjacent to drainageways. They are mainly at the perimeters of the unit adjacent to glaciomarine deposits.
- Abram soils are very shallow, excessively drained glacial till. They are on the crests and shoulder slopes of ridges and knolls.
- Areas of rock outcrop are on the crests of knolls and ridges.
- Areas with slopes greater than 8 percent or less than 3 percent are included.

Use and Management

Current uses: Hayland, pasture, homesites, and blueberry management

Major Management Concerns

- Depth to bedrock
- Restricted rooting depth

General Management Considerations

Urban Development:

- Follow state or local regulations on septic system installation.
- This map unit has severe limitations for septic tank absorption fields due to the depth to bedrock. Septic systems should be located on inclusions of deeper soils in this map unit if possible or fill material can be used to raise the level of the absorption field.
- The limitation for dwellings with basements is severe.
- Cuts needed to provide level building sites can expose bedrock.
- Dwellings with basements should be located on inclusions of deeper soils in this map unit if possible, or the bedrock should be removed, or the foundation set on bedrock and backfilled to the established grade.
- The sandstone bedrock under the Creasey soils can be excavated and ripped easier than most other types of bedrock in the area. Additional depth for foundations can be acheived by ripping and digging into the bedrock.
- Excavation, grading, and ditching activities involved in the construction and maintenance of roads can expose bedrock.
- In the Perry and Robbinston area, broken sandstone bedrock material is used as a source of road material.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

Blueberry Management:

- This unit is well suited to blueberry production.
- This unit has very few or no surface stones, and is well suited to flail mowing and mechanical harvesting.
- Irrigation and cultural practices such as weed control, insect and disease control, and fertility management will result in increased yields of blueberries.
- Irrigation water should be applied in amounts sufficient to wet the root zone but in amounts small enough to prevent the leaching of plant nutrients, insecticides, and herbicides.
- Water needs to be applied at a slow rate over a long period to insure that the root zone is properly wetted.
- Fertilization needs can be determined by leaf tissue analysis. Proper fertilization can result in greater top and rhizome growth and higher yields.
- The use of honeybees for pollination will increase the fruit set and result in higher yields.
Hay and Pasture:
- If this unit is used for hay and pasture, there are few limitations.
- The use of proper stocking rates, pasture rotation, and restricted grazing during wet periods helps to keep the pasture in good condition and to protect the soil from erosion.
- Proper grazing practices, weed control, lime, and fertilizer are needed for maximum quality of forage.

CtC—Creasey gravelly silt loam, 8 to 15 percent slopes

Setting

Landform: Ridges and knolls
Description of areas: Irregular in shape and from 6 to over 40 acres in size

Composition

Creasey and similar soils: 80 percent
Inclusions: 20 percent

Creasey soil

Position on landscape: Crests and side slopes. These areas are mainly in the towns of Perry and Robbinston.
Parent material: Glacial till
Slope features: Smooth and convex
Stones on surface: None

Typical Profile

Surface layer:
0 to 8 inches, dark reddish brown gravelly silt loam
Subsoil:
8 to 13 inches, yellowish red very gravelly silt loam
13 to 17 inches, reddish brown gravelly silt loam
Bedrock:
17 inches, sandstone

Soil Properties and Qualities

Depth class: Shallow
Drainage class: Somewhat excessively drained
Permeability: Moderate or moderately rapid
Available water capacity: Very low
Depth to restrictive layer: 10 to 20 inches to bedrock
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Creasey soils in most properties, but differ in some respect, such as color, surface texture, or consistence.

Interpretations for most common uses are reasonably similar to those for the Creasey soils.

Inclusions

- Soils similar to Creasey soils but moderately deep to bedrock are on side slopes and footslopes.
- Soils similar to Creasey soils, but are moderately well drained, are on footslopes or toeslopes or in slight depressions.
- Lamoine soils are somewhat poorly drained glaciomarine deposits. They are in depressions, on toeslopes, and adjacent to drainageways. They are mainly at the perimeter of the unit adjacent to glaciomarine deposits.
- Abram soils are very shallow, excessively drained glacial till. They are on the crests and shoulder slopes of ridges and knolls.
- Areas of rock outcrop on the crests of knolls and ridges.
- Areas with slopes greater than 15 percent or less than 8 percent are included.

Use and Management

Current uses: Hayland, pasture, homesites, and blueberry management

Major Management Concerns

- Depth to bedrock
- Slope

General Management Considerations

Urban Development:

- Follow state or local regulations on septic system installation.
- This map unit has severe limitations for septic tank absorption fields due to the depth to bedrock. Septic systems should be located on inclusions of deeper soils in this map unit if possible or fill material can be used to raise the level of the absorption field.
- Slope is a concern in installing septic tank absorption fields. Absorption lines should be installed on the contour.
- Cuts needed to provide level building sites can expose bedrock.
- Dwellings with basements should be located on inclusions of deeper soils in this map unit if possible, or the bedrock should be removed, or the foundation set on bedrock and backfilled to the established grade.
- The sandstone bedrock under the Creasey soils can be excavated and ripped easier than most other types of bedrock in the area. Additional depth for foundations can be achieved by ripping and digging into the bedrock.
- Excavation, grading, and ditching activities involved in the construction and maintenance of roads can expose bedrock.
- In the Perry and Robbinston area, broken sandstone bedrock material is used as a source of road material.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

Blueberry Management:

- This unit is well suited to blueberry production.
- This unit has very few or no surface stones, and is well suited to flail mowing. Mechanical harvesting is moderately difficult due to slope.
- Irrigation and cultural practices such as weed control, insect and disease control, and fertility management will result in increased yields of blueberries.
- Irrigation water should be applied in amounts sufficient to wet the root zone but in amounts small enough to prevent the leaching of plant nutrients, insecticides, and herbicides.
- Water needs to be applied at a slow rate over a long period to insure that the root zone is properly wetted.
- Fertilization needs can be determined by leaf tissue analysis. Proper fertilization can result in greater top and rhizome growth and higher yields.
- The use of honeybees for pollination will increase the fruit set and result in higher yields.
Hay and Pasture:
- If this unit is used for hay and pasture, there are few limitations.
- The use of proper stocking rates, pasture rotation, and restricted grazing during wet periods helps to keep the pasture in good condition and to protect the soil from erosion.
- Proper grazing practices, weed control, lime, and fertilizer are needed for maximum quality of forage.

CVC—Creasey-Abram complex, 3 to 15 percent slopes

Setting

Landform: Ridges and knolls
Description of areas: Irregular in shape and from 20 to over 100 acres in size. These areas are mainly in the towns of Perry and Robertson.

Composition

Creasey and similar inclusions: 55 percent
Abram and similar inclusions: 20 percent
Contrasting inclusions: 25 percent

Creasey soil

Position on landscape: Crests, side slopes and footslopes
Parent material: Glacial till
Slope features: Convex and smooth
Stones on surface: None

Typical profile

Surface layer:
0 to 8 Inches, dark reddish brown gravelly silt loam
Subsoil:
8 to 13 inches, yellowish red very gravelly silt loam
13 to 17 inches, reddish brown gravelly silt loam
Bedrock:
17 inches, sandstone

Soil Properties and Qualities

Depth class: Shallow
Drainage class: Somewhat excessively drained
Permeability: Moderate or moderately rapid
Available water capacity: Very low
Depth to restrictive layer: 10 to 20 inches
Hazard of flooding: None

Abram soil

Position on landscape: Crests and shoulder slopes
Parent material: Glacial till
Slope range: 3 to 15 percent
Slope features: Convex and smooth
Stones on surface: None

Typical Profile

Surface layer:
0 to 2 inches, black, sapric material
Subsurface layer:
2 to 5 Inches, brown sandy loam
Subsoil:
5 to 6 inches, reddish brown sandy loam
Bedrock:
6 inches, granite
Soil Properties and Qualities
Depth class: Very shallow
Drainage class: Excessively drained
Permeability: Moderately rapid
Available water capacity: Very low
Depth to restrictive layer: 1 to 10 inches
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit, which are like the Creasey and Abram soils in most properties but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses -are reasonably similar to those for the Creasey and Abram soils.

Inclusions

- Soils that are similar to Creasey soils but are moderately deep to bedrock. They are intermingled with the Creasey soils and mainly on lower side slopes and footslopes.
- Areas of rock outcrop are on crests and shoulder slopes.
- Lamoine soils are somewhat poorly drained glaciomarine deposits. They are adjacent to drainageways and in slight depressions near the perimeter of the map unit.
- Moderately well drained or somewhat poorly drained, shallow or moderately deep glacial till are on footslopes, toeslopes, or in slight depressions.
- Lyman soils are shallow, somewhat excessively drained glacial till. They are on crests and shoulder slopes and developed over granite, gneiss, phyllite, or schist.
- Tunbridge soils are moderately deep, well-drained glacial till. They are on side slopes and developed over granite, gneiss, phyllite, or schist.
- Slopes greater than 15 percent
- Areas that have very stony surfaces are included.

Use and Management

Current uses: Woodland and some homesite development

Major Management Concerns

- Depth to bedrock
- Restricted rooting depth
- Slope in some areas
- Hazard of seepage

General Management Considerations

Woodland Management:

- The potential productivity of this unit for trees is medium on the Creasey soils and very low on the Abram soils. This unit has potential for the production and management of Balsam Fir for wreath brush and Christmas trees.
- These areas have good natural reproduction of Spruce and Fir. Proper thinning practices will reduce overcrowding and promote the growth of these species.
- Minimizing the risk of erosion is essential in harvesting timber. Revegetating disturbed areas around landings, skid trails, roads, and construction sites as soon as possible, helps to control soil erosion. Equipment limitations are slight.
- Conventional methods of harvesting timber can be used.
- Seedling mortality can be reduced by planting seedlings in spring when soil moisture levels are highest and by using planting stock that is larger thin usual or containerized. Reinforcement planting may be needed.
- The potential windthrow hazard is severe. Trees are subject to windthrow because of restricted rooting depth due to depth to bedrock. Care should be taken in harvesting and thinning to reduce trees exposed to the prevailing winds. Harvesting by stripcutting will expose fewer trees to the prevailing wind and help to prevent windthrow.
- Competing vegetation can be controlled by properly preparing the site and by eliminating unwanted weeds, brush, or trees.

Recreation Management:

- If this unit is used for camping areas, picnic areas, paths, and trails the main limitation is the depth to bedrock.
- Erosion and sedimentation can be controlled and the beauty of the area enhanced by maintaining adequate plant cover. Plant cover can be maintained by limiting traffic.

Urban Development:

- Septic systems should be located on inclusions of deeper soils in this map unit if possible or fill material can be used to raise the level of the absorption field.
- Slope is a concern in installing septic tank absorption fields. Absorption lines should be installed on the contour.
- Cuts needed to provide level-building sites could expose bedrock.
- Dwellings with basements should be located on inclusions of deeper soils in this map unit if possible, or the bedrock should be removed, or the foundation set on bedrock and backfilled to the established grade.
- The sandstone bedrock under the Creasey soils can be excavated and ripped easier than most other types of bedrock in the area. Ripping and digging into the bedrock can achieve additional depth for foundations.
- Excavation, grading, and ditching activities involved in the construction and maintenance of roads can expose bedrock.
- The sandstone bedrock is often ripped, excavated and used as a source of roadfill material in the areas surrounding the towns of Perry and Robbinston.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

CXC-Creasey-Lamoine complex, 3 to 15 percent slopes

Setting

Landform: Ridges and knolls
Description of areas: Irregular in shape and from 20 to over 100 acres in size.

Composition

Creasey and similar soils: 55 percent Lamoine and similar soils: 30 percent Inclusions: 15 percent

Creasey soil
Position on landscape: Crests and side slopes
Parent material: Glacial till
Slope range: 3 to 15 percent
Slope features: Convex
Stones on surface: None

Typical Profile

Surface layer:
0 to 8 inches, dark reddish brown gravelly silt loam
Subsoil:
8 to 13 inches, yellowish red very gravelly silt loam
13 to 17 inches, reddish brown gravelly silt loam
Bedrock:
17 inches, sandstone
Soil Properties and Qualities
Depth class: Shallow
Drainage class: Somewhat excessively drained
Permeability: Moderate or moderately rapid
Available water capacity: Very low
Depth to restrictive layer: 10 to 20 inches to bedrock
Hazard of flooding: None

Lamoine soil

Position on landscape: Depressions and saddles between knolls Parent material: Glaciomarine deposits
Slope range: 3 to 6 percent
Slope features: Concave and slightly convex
Stones on surface: None

Typical Profile

Surface layer:
0 to 7 inches, brown, friable, silt loam
Subsoil:
7 to 10 inches, dark yellowish brown, mottled, friable, silt loam
10 to 16 inches, light olive brown, mottled, friable, silt loam
16 to 21 inches, olive, mottled, firm, silty clay loam
Substratum:
21 to 65 inches, olive, mottled, firm, silty clay

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Somewhat poorly drained
Permeability: Moderately slow or moderate in the surface, slow or moderately slow in the upper subsoil, and very slow or slow in the lower subsoil and substratum
Available water capacity: Moderate
Depth to restrictive layer: 16 to 30 inches to firm substratum
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Creasey and Lamoine soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Creasey and Lamoine soils.

Inclusions

- Moderately well drained or somewhat poorly drained, shallow or moderately deep glacial till. They are on footslopes, toeslopes, or in depressions.
- Abram soils are very shallow, excessively drained glacial till. They are intermingled with the Creasey soils on the crests of knolls.
- Buxton soils are moderately well drained glaciomarine deposits. They are intermingled with the Lamoine soils in slightly higher positions.
- Scantic soils are poorly drained glaciomarine deposits. They are in depressions, on toeslopes, and adjacent to drainageways.
- Biddeford soils are very poorly drained glaciomarine deposits. They are in depressions or adjacent to drainageways.
- Areas of soils that are similar to Creasey soils that have bedrock at depths greater than 20 inches. They are on side slopes.
- Lyman soils are shallow, somewhat excessively drained glacial till and Tunbridge soils are moderately deep well drained glacial till. They are in areas underlain by granite, phyllite, schist, and gneiss.
- Areas with slopes less than 3 percent or greater than 15 percent are included.

Use and Management

Current uses: Woodland

Major Management Concerns

- Depth to bedrock in the Creasey soil
- Hazard of seepage in the Creasey soil
- Seasonal high water table in the Lamoine soil
- Very slow and slow permeability in the Lamoine soils
- Frost action in the Lamoine soils
- Slope in some areas
- Restricted rooting depth

General Management Considerations

Woodland Management:

- The potential productivity of this unit for trees is moderate in Creasey soils and high in Lamoine soils.
- This unit has potential for the production and management of Balsam fir for wreath brush and Christmas trees.
- These areas have good natural reproduction of spruce and fir. Proper thinning practices will reduce overcrowding and promote the growth of these species.
- Minimizing the risk of erosion is essential in harvesting timber.
- Revegetating disturbed areas around landings, skid trails, roads, and construction sites as soon as possible helps to control soil erosion.
- Conventional methods of harvesting timber generally can be used but their use may be limited when the Lamoine soil is wet.
- Because of the seasonal high water table, harvesting operations on the Lamoine soils should be restricted to the driest part of the year or when the soil is frozen. During these times, equipment causes the least damage to the site.
- Roadfill is needed to raise the roadbase above the seasonal high water table in the Lamoine soil.
- Seedling mortality can be reduced in the Creasey soil by planting seedlings in spring when soil moisture levels are highest and by using planting stock that is larger than usual or containerized. Reinforcement planting may be needed.
- Trees are subject to windthrow because of restricted rooting depth caused by seasonal high water table in the Lamoine soil and depth to bedrock in the Creasey soil.
- Care should be taken in harvesting and thinning to reduce trees exposed to the prevailing winds.
- Harvesting by stripcutting will expose fewer trees to the prevailing wind and help to prevent windthrow.
- Periodic salvaging of windthrown trees is advisable.
- If the site is not adequately prepared, competition from undesirable plants can prevent or prolong natural or artificial reestablishment of trees.
- Competing vegetation can be controlled by properly preparing the site and by eliminating unwanted weeds, brush, or trees.

Recreation Management:

- If this unit is used for camping areas, picnic areas, and paths and trails, the main limitations are depth to bedrock in the Creasey soils and the seasonal high water table and very slow and slow permeability in the Lamoine soils.
- Drainage will help reduce wetness problems in the Lamoine soils.
- Erosion and sedimentation can be controlled and the beauty of the area enhanced by maintaining adequate plant cover. Plant cover can be maintained by limiting traffic.

Urban Development:

- Follow state or local regulations on septic system installation.
- The Creasey soils have severe limitations for septic tank absorption fields due to the depth to bedrock. Septic systems should be located on inclusions of deeper soils in this map unit if possible or fill material can be used to raise the level of the absorption field.
- If the Lamoine soils are used for septic tank absorption fields, the limitation of seasonal high water table can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- If the Lamoine soils are used for septic tank absorption fields, permeability limitations can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the firm substratum.
- Slope is a concern in installing septic tank absorption fields. Absorption lines should be installed on the contour.
- Cuts needed to provide level building sites can expose bedrock in the Creasey soils.
- Dwellings with basements should be located on deeper soils in this map unit, or the bedrock should be removed, or the foundation set on bedrock and backfilled to the established grade.
- The sandstone bedrock under the Creasey soils can be excavated and ripped easier than most other types of bedrock in the area. Additional depth for foundations can be achieved by ripping and digging into the bedrock.
- Wetness in the Lamoine soils can be reduced by installing drainage tile around footings and backfilling with material that has good permeability.
- Excavation, grading, and ditching activities involved in the construction and maintenance of roads can expose bedrock in the Creasey soils.
- Roads should be designed to offset the limited ability of the Lamoine soils to support a load.
- Roadfill is needed to raise the roadbase above the seasonal high water table in the Lamoine soils.
- If the soils are used as a base for roads, a coarse-grained subgrade to frost depth is needed to prevent frost action in the Lamoine soils.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

CzB—Croghan loamy sand, 3 to 8 percent slopes

Setting
Landform: Outwash plains, deltas, kame terraces, and old beaches Description of areas: Irregular in shape and from 6 to over 25 acres in size

Composition

Croghan and similar soils: 75 percent
Inclusions: 25 percent

Croghan soil

Position on landscape: Footslopes, lower side slopes, and toeslopes
Parent material: Glacial-fluvial sands
Slope features: Slightly convex or concave
Stones on surface: None

Typical Profile

Surface layer:
0 to 1 inch, dark reddish brown sapric material
Subsurface layer:
1 to 3 inches, light gray loamy sand
Subsoil:
3 to 5 inches, dark reddish brown loamy sand
5 to 11 inches, brown loamy sand
11 to 18 inches, dark yellowish brown loamy sand
18 to 23 inches, light olive brown, mottled, sand
Substratum:
23 to 65 inches, grayish brown, mottled, sand
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Moderately well drained

Permeability: Rapid in the surface and subsurface and very rapid in the subsoil and substratum
Available water capacity: Very low
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Croghan soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Croghan soils.

Inclusions

- Adams soils are excessively drained glaciofluvial sand. They are on the crests of knolls and steeper slopes.
- Sheepscot soils are moderately well drained glaciofluvial deposits. They are on slight rises on the perimeter on units.
- Poorly drained and somewhat poorly drained glaciofluvial sand with firm ortstein consistence. They are in slight depressions and on toeslopes.
- Nicholville soils are moderately well drained glaciofluvial or glaciolacustrine very fine sand and silt. They are on toeslopes, footslopes, and lower side slopes near the perimeter of the unit.
- Kinsman soils are poorly drained glaciofluvial sand. They are in depressions.
- Very poorly drained sandy soils are in depressions. Wonsqueak soils are very poorly drained organic materials. They are in depressions.
- Areas with short slopes greater than 8 percent and less than 3 percent are included.

Use and Management

Current uses: Mainly wild blueberry production. Some areas are used for hay and pasture, and homesites or it is idle.

Major Management Concerns

- Seasonal high water table
- Cutbanks are not stable
- Frost action
- Poor filter
- Hazard of seepage

General Management Considerations

Urban Development:

- Follow state or local regulations on septic system installation.
- If this map unit is used for septic tank absorption fields, there is a possibility of groundwater contamination due to the poor filtering action of the substratum. Finertextured fill material below the bottom of the absorption field can help prevent this from occurring.
- If this map unit is used for septic tank absorption fields, the limitation of seasonal high water table can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- Wetness can be reduced by installing drainage tile around footings and backfilling with material that has good permeability.
- If the soil is used as a base for roads, a coarse grained subgrade to frost depth is needed to prevent frost action.
- Roadfill is needed to raise the roadbase above the seasonal high water table.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.
- This map unit is often associated with an aquifer recharge area and because of the permeability of this soil, pollutants can move quickly through the soil and into the ground water.Contamination of the ground water is therefore possible if precautions are not taken. Restrictions on the types of activities that may occur, limitations on the density of housing, and special engineering designs for septic systems are possible precautionary measures.
- These areas are a probable source of sand.

Blueberry Management:

- This unit is well suited to blueberry production.
- This unit has very few or no surface stones, and is well suited to flail mowing and mechanical harvesting.
- The seasonal high water table will limit the use of equipment in the spring and late fall.
- Irrigation and cultural practices such as weed control, insect and disease control, and fertility management will result in increased yields of blueberries.
- Irrigation water should be applied in amounts sufficient to wet the root zone but in amounts small enough to prevent the leaching of plant nutrients, insecticides, and herbicides.
- Water needs to be applied at a slow rate over a long period to insure that the root zone is properly wetted.
- Fertilization needs can be determined by leaf tissue analysis. Proper fertilization can result in greater top and rhizome growth and higher yields.
- The use of honeybees for pollination will increase the fruit set and result in higher yields.

Hay and Pasture:

- Grazing when the soil is wet results in compaction of the surface layer, poor tilth, and excessive runoff.
- The seasonal high water table limits the use of equipment in the spring and late fall.
- The use of proper stocking rates, pasture rotation, and restricted grazing during wet periods helps to keep the pasture in good condition and to protect the soil from erosion.
- Proper grazing practices, weed control, lime, and fertilizer are needed for maximum quality of forage.

DAC—Danforth-Elliottsville complex, 3 to 15 percent slopes, very stony

Setting
Landform: Hills, ridges, and till plains
Description of areas: Irregular in shape and from 20 acres to 200 acres in size

Composition

Danforth and similar soils: 45 percent
Elliottsville and similar soils: 30 percent
Inclusions: 25 percent

Danforth soil

Position on landscape: Crests, shoulder slopes, and side slopes
Parent material: Glacial till
Slope range: 3 to 15 percent
Slope features: Convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, very dusky red sapric material
Subsurface layer:
2 to 3 inches, gray very fine sandy loam
Subsoil:
3 to 8 inches, dark brown very fine sandy loam
8 to 14 inches, dark yellowish brown very gravelly fine sandy loam
14 to 22 inches, yellowish brown very gravelly sandy loam
22 to 27 inches, olive brown very gravelly sandy loam
Substratum:
27 to 65 inches, olive very gravelly sandy loam

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Well drained
Permeability: Moderate in the surface, subsurface, and subsoil, and moderately rapid or rapid in the substratum
Available water capacity: Moderate
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None

Elliottsville soil

Position on landscape: Crests, shoulder slopes, and side slopes
Parent material: Glacial till
Slope range: 3 to 15 percent
Slope features: Convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, dark brown sapric material
Subsurface layer:
2 to 4 inches, brown silt loam
Subsoil:
4 to 6 inches, dark reddish brown silt loam
6 to 10 inches, dark brown channery silt loam
10 to 14 inches, dark yellowish brown channery silt loam
14 to 19 inches, light olive brown channery silt loam
Substratum:
19 to 31 inches, olive brown channery silt loam
Bedrock:
31 inches, phyllite

Soil Properties and Qualities
Depth class: Moderately deep
Drainage class: Well drained
Permeability: Moderate
Available water capacity: Moderate
Depth to restrictive layer: 20 to 40 inches to bedrock
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Danforth and Elliotsville soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Danforth and Elliotsville soils.

Inclusions

- Areas of soils similar to Danforth soils that are moderately well drained or somewhat poorly drained. They are on footslopes and toeslopes.
- Monson soils are shallow, somewhat excessively drained glacial till. They are on crests and shoulder slopes and intermingled with the Elliottsville soils.
- Areas of rock outcrop and Abram soils that are very shallow are included. They are on crests and shoulderslopes.
- Areas of soils that are shallow or moderately deep glacial till with greater than 35 percent rock fragments are included. They are intermingled with the Elliottsville soils.
- Monadnock soils are well drained glacial till. They are intermingled with the Danforth soils.
- Areas of soils similar to Elliottsville soils that are moderately well drained are included. They are on side slopes and footslopes.
- Areas of soils similar to Elliottsville soils that have bedrock between 40 to 60 inches are included. They are intermingled with the Elliottsville soils.
- Areas with slopes greater than 15 percent or less than 3 percent are included.

Use and Management

Current uses: Woodland

Major Management Concerns

- Depth to bedrock in the Elliottsville soils
- Cutbanks are not stable in the Danforth soils
- Slope in some areas
- Frost action
- Stones on the surface
- Poor filter in the Danforth soils
- Hazard of seepage in the Danforth soils

General Management Considerations

Woodland Management:

- The potential productivity of this unit for trees is high on the Danforth soils and very high on the Elliottsville soils.
- This unit has potential for the production and management of Balsam fir for wreath brush and Christmas trees.
- These areas have good natural reproduction of spruce and fir. Proper thinning practices will reduce overcrowding and promote the growth of these species.
- Minimizing the risk of erosion is essential in harvesting timber.
- Revegetating disturbed areas around landings, skid trails, roads, and construction sites as soon as possible helps to control soil erosion.
- Conventional methods of harvesting timber can be used.
- Stones on the surface can interfere with felling, yarding, and other operations involving the use of equipment.
- Seedling mortality can be reduced on the Danforth soils by planting seedlings in spring when soil moisture levels are highest and by using planting stock that is larger than usual or containerized. Reinforcement planting may be needed.
- Trees are subject to windthrow on the Elliottsville soils because of restricted rooting depth due to the depth to bedrock.
- Care should be taken in harvesting and thinning to reduce trees exposed to the prevailing winds.
- Harvesting by stripcutting will expose fewer trees to the prevailing wind and help to prevent windthrow.
- Plant competition delays natural regeneration but does not prevent the eventual development of a fully stocked, normal stand of trees.
- After harvesting, reforestation must be carefully managed to reduce competition from undesirable understory plants.
- Competing vegetation can be controlled by properly preparing the site and by eliminating unwanted weeds, brush, or trees.

Recreation Management:

- If this unit is used for camping areas, picnic areas, and paths and trails, the main limitations are slope and surface stones.
- Erosion and sedimentation can be controlled and the beauty of the area enhanced by maintaining adequate plant cover. Plant cover can be maintained by limiting traffic.

Urban development:

- Follow state or local regulations on septic system installation.
- If the Danforth soils are used for septic tank absorption fields, there is a possibility of groundwater contamination due to the poor filtering action of the substratum. Finer-textured fill material below the bottom of the absorption field can help prevent this from occurring.
- Septic systems should be located on deeper soils in this map unit or fill material can be used to raise the level of the absorption field.
- Slope is a concern in installing septic tank absorption fields. Absorption lines should be installed on the contour.
- As the slope increases, building site development becomes more difficult.
- Cuts needed to provide level building sites on the Elliottsville soils can expose bedrock.
- Elliottsville soils should be avoided as sites for dwellings with basements due to the depth to bedrock. Dwellings with basements should be located on the deeper soils in this map unit, or the bedrock should be removed, or the foundation set on bedrock and backfilled to the established grade.
- Access roads must be designed to provide proper grade and drains are needed to control surface runoff and keep soil losses to a minimum.
- If the soil is used as a base for roads, a coarse grained subgrade to frost depth is needed to prevent frost action.
- Excavation, grading, and ditching activities involved in the construction and maintenance of roads can expose bedrock in the Elliottsville soils.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

DdC—Dixfield fine sandy loam, 8 to 15 percent slopes

Setting

Landform: Drumlins and ridges
Description of areas: Elongated in shape and from 6 to over 50 acres in size

Composition

Dixfield and similar soils: 80 percent
Inclusions: 20 percent

Dixfield soil

Position on landscape: Crest and side slopes
Parent material: Firm glacial till
Slope features: Convex
Stones on surface: None

Typical Profile

Surface layer:
0 to 7 inches, dark brown, friable, fine sandy loam
Subsoil:
7 to 12 inches, brown, friable, gravelly fine sandy loam
12 to 17 inches, dark yellowish brown, friable, gravelly fine sandy loam
17 to 28 inches, olive brown, mottled, friable, gravelly fine sandy loam
Substratum:
28 to 65 inches, light olive brown, mottled, firm, gravelly fine sandy loam
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Moderate in the surface, subsurface, and subsoil, and slow or moderately slow in the substratum
Available water capacity: Moderate
Depth to restrictive layer: 18 to 33 inches
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Dixfield soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Dixfield soils.

Inclusions

- Colonel soils are somewhat poorly drained dense glacial till. They are on toeslopes or in slight depressions.
- Marlow soils are well drained dense glacial till. They are on crests, shoulder slopes, and small knolls.
- Brayton soils are poorly drained dense glacial till. They are in depressions or adjacent to drainageways.
- Skerry soils are moderately well drained dense glacial till that have greater than 20 percent sand lenses in the substratum. They are intermingled with the Dixfield soils.
- Tunbridge soils are moderately deep, well drained glacial till. They are on crests and shoulder slopes of small knolls.
- Slopes greater than 15 percent and less than 8 percent are included.
- Small areas with stones on the surface are included.

Use and Management

Current uses: Hayland, pasture, homesites, and wild blueberry production

Major Management Concerns

- Seasonal high water table
- Slow or moderately slow permeability
- Slope
- Restricted rooting depth
- Frost action

General Management Considerations

Urban Development:

- If this map unit is used for septic tank absorption fields, the limitation of seasonal high water table can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- If this map unit is used for septic tank absorption fields, permeability limitations can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the dense substratum.
- Slope is a concern in installing septic tank absorption fields. Absorption lines should be installed on the contour.
- Wetness can be reduced by installing drainage tile around footings and backfilling with material that has good permeability.
- Excavation for building sites is difficult due to the dense substratum.
- If the soil is used as a base for roads, a coarse-grained subgrade to frost depth is needed to prevent frost action.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

Blueberry Management:

- This unit is well suited to blueberry production.
- This unit has very few or no surface stones, and is well suited to flail moving. Mechanical harvesting is moderately difficult due to slope
- The seasonal high water table will limit the use of equipment in the spring and late fall.
- Irrigation and cultural practices such as weed control, insect and disease control, and fertility management will result in increased yields of blueberries.
- Irrigation water should be applied in amounts sufficient to wet the root zone but in amounts small enough to prevent the leaching of plant nutrients, insecticides, and herbicides.
- Water needs to be applied at a slow rate over a long period to insure that the root zone is properly wetted.
- Fertilization needs can be determined by leaf tissue analysis. Proper fertilization can result in greater top and rhizome growth and higher yields.
- The use of honeybees for pollination will increase the fruit set and result in higher yields.

Hay and Pasture:

- Grazing when the soil is wet results in compaction of the surface layer, poor tilth, and excessive runoff.
- The seasonal high water table limits the use of equipment in the spring and late fall.
- The use of proper stocking rates, pasture rotation, and restricted grazing during wet periods helps to keep the pasture in good condition and to protect the soil from erosion.
- Proper grazing practices, weed control, lime, and fertilizer are needed for maximum quality of forage.

DfC—Dixfield fine sandy loam, 8 to 15 percent slopes, very stony

Setting

Landform: Drumlins and ridges
Description of areas: Elongated in shape and from 6 to over 50 acres in size

Composition

Dixfield and similar soils: 80 percent
Inclusions: 20 percent

Dixfield soil

Position on landscape: Side slopes and shoulder slopes
Parent material: Dense glacial till
Slope features: Convex and smooth
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 3 inches, dark brown sapric material
Subsurface layer:
3 to 6 inches, grayish brown, friable, fine sandy loam
Subsoil:
6 to 8 inches, dark reddish brown, friable, fine sandy loam
8 to 15 inches, brown, friable, gravelly fine sandy loam
15 to 20 inches, dark yellowish brown, friable, gravelly fine sandy loam
20 to 31 inches, olive brown, mottled, friable, gravelly fine sandy loam

Substratum:

31 to 65 inches, light olive brown, mottled, firm, gravelly fine sandy loam
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Moderate in the surface, subsurface, and subsoil, and slow or moderately slow in the substratum
Available water capacity: Moderate
Depth to restrictive layer: 18 to 33 inches to dense substratum
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Dixfield soils in most properties, but differ in some respect, such as color, surface texture, or consistence.

Interpretations for most common uses are reasonably similar to those for the Dixfield soils.

Inclusions

- Colonel soils are somewhat poorly drained dense glacial till. They are on toeslopes or in slight depressions.
- Marlow soils are well drained dense glacial till. They are on crests, shoulder slopes, and small knolls.
- Brayton soils are poorly drained dense glacial till. They are in depressions or adjacent to drainageways.
- Skerry soils are moderately well drained dense glacial till that have greater than 20 percent sand lenses in the substratum. They are intermingled with the Dixfield soils.
- Tunbridge soils are moderately deep, well drained glacial till. They are on crests and shoulder slopes of small knolls.
- Areas with slopes greater than 15 percent and less than 8 percent are included.

Use and Management

Current uses: Pasture, wild blueberry production (fig. 5), and homesites

Major Management Concerns

- Seasonal high water table
- Stones on the surface
- Slow or moderately slow permeability
- Slope
- Frost action

General Management Considerations

Urban Development:

- Follow state or local regulations on septic system installation.
- If this map unit is used for septic tank absorption fields, the limitation of seasonal

Figure 5.-A native low bush blueberry field on a drumlin in an area of Dixfield fine sandy loam, 8 to 15 percent slopes, very stony.
high water table can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.

- If this map unit is used for septic tank absorption fields, permeability limitations can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the dense substratum.
- Slope is a concern in installing septic tank absorption fields. Absorption lines should be installed on the contour.
- Wetness can be reduced by installing drainage tile around footings and backfilling with material that has good permeability.
- Excavation for building sites is difficult due to the dense substratum.
- If the soil is used as a base for roads, a coarse grained subgrade to frost depth is needed to prevent frost action.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

Blueberry Management:

- This unit is well suited to blueberry production.
- This unit is not suited to flail mowing or mechanical harvesting because of surface stones.
- The seasonal high water table will limit the use of equipment in the spring and late fall.
- Irrigation and cultural practices such as weed control, insect and disease control, and fertility management will result in increased yields of blueberries.
- Irrigation water should be applied in amounts sufficient to wet the root zone but in amounts small enough to prevent the leaching of plant nutrients, insecticides, and herbicides.
- Water needs to be applied at a slow rate over a long period to insure that the root zone is properly wetted.
- Fertilization needs can be determined by leaf tissue analysis. Proper fertilization can result in greater top and rhizome growth and higher yields.
- The use of honeybees for pollination will increase the fruit set and result in higher yields.

Hay and Pasture:

- Grazing when the soil is wet results in compaction of the surface layer, poor tilth, and excessive runoff.
- The seasonal high water table limits the use of equipment in the spring and late fall.
- Surface stones limit the use of equipment for harvesting hay.
- The use of proper stocking rates, pasture rotation, and restricted grazing during wet periods helps to keep the pasture in good condition and to protect the soil from erosion.
- Proper grazing practices, weed control, lime, and fertilizer are needed for maximum quality of forage.

DgB—Dixfield-Colonel complex, 3 to 8 percent slopes

Setting
Landform: Drumlins, ridges, and till plains
Description of areas: Elongated in shape and from 6 to over 50 acres in size

Composition

Dixfield and similar soils: 45 percent
Colonel and similar soils: 40 percent
Inclusions: 15 percent

Dixfield soil

Position on landscape: Side slopes and crests
Parent material: Dense glacial till
Slope range: 3 to 8 percent
Slope features: Convex and smooth
Stones on surface: None

Typical Profile

Surface layer:
0 to 7 inches, dark brown, friable, fine sandy loam
Subsoil:
7 to 12 inches, brown, friable, gravelly fine sandy loam
12 to 17 inches, dark yellowish brown, friable, gravelly fine sandy loam
17 to 28 inches, olive brown, mottled, friable, gravelly fine sandy loam
Substratum:
28 to 65 inches, light olive brown, mottled, firm, gravelly fine sandy loam
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Moderate in the surface, subsurface, and subsoil, and slow or moderately slow in the substratum
Available water capacity: Moderate
Depth to restrictive layer: 18 to 36 inches to firm substratum
Hazard of flooding: None

Colonel soil

Position on landscape: Toeslopes, footslopes, and slight depressions
Parent material: Dense glacial till
Slope range: 3 to 6 percent
Slope features: Concave and smooth
Stones on surface: None

Typical Profile

Surface layer:
0 to 7 inches, brown, very friable, gravelly fine sandy loam
Subsoil:
7 to 10 inches, yellowish brown, friable, gravelly fine sandy loam
10 to 19 inches, yellowish brown, mottled, friable, gravelly fine sandy loam
19 to 23 inches, light olive brown, mottled, friable, gravelly fine sandy loam
Substratum:
23 to 65 inches, olive, mottled, firm, gravelly fine sandy loam
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Somewhat poorly drained
Permeability: Moderate in the surface, subsurface, and subsoil, and slow or moderately slow in the substratum

Available water capacity: Moderate
Depth to restrictive layer: 15 to 30 inches to firm substratum
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Dixfield and Colonel soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Dixfield and Colonel soils.

Inclusions

- Brayton soils are poorly drained firm glacial till. They are in depressions and adjacent to drainageways.
- Marlow soils are well drained firm glacial till. They are on the crests of small knolls and on the shoulder slopes and side slopes of more sloping areas.
- Skerry soils are moderately well drained firm glacial till. They have greater than 20 percent sand lenses in the substratum and are intermingled with the Dixfield soils.
- Tunbridge soils are well drained moderately deep glacial till. They are on the crests of small knolls.
- Lyman soils are somewhat excessively drained shallow glacial till. They are on the crests of small knolls.
- Areas with slopes greater than 8 percent and less than 3 percent are included.
- Small areas with stones on the surface are included.

Use and Management

Current uses: Hayland, pasture, homesites, and wild blueberry production

Major Management Concerns

- Seasonal high water table
- Slow or moderately slow permeability
- Restricted rooting depth
- Frost action

General Management Considerations

Urban Development:

- Follow state or local regulations on septic system installation.
- If this map unit is used for septic tank absorption fields, the limitation of seasonal high water table can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- If this map unit is used for septic tank absorption fields, permeability limitations can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the firm substratum.
- Wetness can be reduced by installing drainage tile around footings and backfilling with material that has good permeability.
- Excavation for building sites is difficult due to the firm substratum.
- Roadfill is needed to raise the roadbase above the seasonal high water table in the Colonel soils.
- If the soil is used as a base for roads, a coarse-grained subgrade to frost depth is needed to prevent frost action.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

Blueberry Management:

- This unit is well suited to blueberry production.
- This unit has very few or no surface stones, and is well suited to flail mowing and mechanical harvesting.
- The seasonal high water table will limit the use of equipment in the spring and late fall.
- Irrigation and cultural practices such as weed control, insect and disease control, and fertility management will result in increased yields of blueberries.
- Irrigation water should be applied in amounts sufficient to wet the root zone but in amounts small enough to prevent the leaching of plant nutrients, insecticides, and herbicides.
- Water needs to be applied at a slow rate over a long period to insure that the root zone is properly wetted.
- Fertilization needs can be determined by leaf tissue analysis. Proper fertilization can result in greater top and rhizome growth and higher yields.
- The use of honeybees for pollination will increase the fruit set and result in higher yields.

Hay and Pasture:

- Grazing when the soil is wet results in compaction of the surface layer, poor tilth, and excessive runoff.
- The seasonal high water table limits the use of equipment in the spring and late fall.
- The use of proper stocking rates, pasture rotation, and restricted grazing during wet periods helps to keep the pasture in good condition and to protect the soil from erosion.
- Proper grazing practices, weed control, lime, and fertilizer are needed for maximum quality of forage.

DHB—Dixfield-Colonel complex, 0 to 8 percent slopes, very stony

Setting
Landform: Drumlins, ridges, and till plains
Description of areas: Irregular in shape and from 20 acres to over 200 acres in size.

Composition

Dixfield and similar soils: 50 percent Colonel soil and similar soils: 35 percent
Inclusions: 15 percent

Dixfield soil

Position on landscape: Crests and side slopes
Parent material: Dense glacial till
Slope range: 3 to 8 percent
Slope features: Smooth and convex
Stones on surface 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 3 inches, dark brown sapric material

Subsurface layer:
3 to 6 inches, grayish brown, friable, fine sandy loam
Subsoil:
6 to 8 inches, dark reddish brown, friable, fine sandy loam
8 to 15 inches, brown, friable, gravelly fine sandy loam
15 to 20 inches, dark yellowish brown, friable, gravelly fine sandy loam
20 to 31 inches, olive brown, mottled, friable, gravelly fine sandy loam
Substratum:
31 to 65 inches, light olive brown, mottled, firm, gravelly fine sandy loam

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Moderate in the surface, subsurface, and subsoil, and slow or moderately slow in the substratum
Available water capacity: Moderate
Depth to restrictive layer: 18 to 36 inches to firm substratum
Hazard of flooding: None
Colonel soil
Position on landscape: Toeslopes, slight depressions, and adjacent to drainageways
Parent material: Dense glacial till
Slope range: 0 to 5 percent
Slope features: Slightly concave or nearly level
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 3 inches, black sapric material
Subsurface layer:
3 to 6 inches, gray, very friable, gravelly fine sandy loam
Subsoil:
6 to 9 inches, dark reddish brown, very friable, gravelly fine sandy loam
9 to 13 inches, yellowish brown, friable, gravelly fine sandy loam
13 to 22 inches, yellowish brown, mottled, friable, gravelly fine sandy loam
22 to 26 inches, light olive brown, mottled, friable, gravelly fine sandy loam
Substratum:
26 to 65 inches, olive, mottled, firm, gravelly fine sandy loam
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Somewhat poorly drained
Permeability: Moderate in the surface, subsurface, and subsoil, and slow or moderately slow in the substratum
Available water capacity: Moderate
Depth to restrictive layer: 15 to 30 inches to firm substratum
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Dixfield and Colonel soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Dixfield and Colonel soils.

Inclusions

- Brayton soils are poorly drained firm glacial till. They are in depressions or along drainageways.
- Marlow soils are well drained firm glacial till. They are on the crests of small knolls and on steeper slopes.
- Skerry soils are moderately well drained firm glacial till that have greater than 20 percent sand lenses in the substratum. They are intermingled with the Dixfield soils on the crests and side slopes of knolls and ridges.
- Tunbridge soils are moderately deep well drained glacial till. They are on the crests of knolls.
- Lyman soils are shallow somewhat excessively drained glacial till. They are intermingled with Tunbridge soils on the crests of knolls.
- Areas with slopes greater than 8 percent are included.
- Small areas with extremely stony or bouldery surfaces are included.

Use and Management

Current uses: Woodland

Major Management Concerns

- Seasonal high water table
- Frost action
- Stones on the surface
- Restricted rooting depth
- Slow or moderately slow permeability

General Management Considerations

Woodland Management:

- The potential productivity of this unit for trees is very high on the Dixfield soils and high on the Colonel soils.
- This unit has potential for the production and management of Balsam fir for wreath brush and Christmas trees.
- These areas have good natural reproduction of spruce and fir. Proper thinning practices will reduce overcrowding and promote the growth of these species.
- Minimizing the risk of erosion is essential in harvesting timber.
- Revegetating disturbed areas around landings, skid trails, roads, and construction sites as soon as possible will help to control soil erosion.
- Conventional methods of harvesting timber generally can be used but their use may be limited when the Colonel soil is wet.
- These soils may be compacted if heavy equipment is used when these soils are wet.
- Roadfill is needed to raise the roadbase above the seasonal high water table in the Colonel soils.
- The potential windthrow hazard is moderate on the Dixfield soils and severe on the Colonel soils.
- Trees commonly are subject to windthrow during periods when the soil is excessively wet and winds are strong.
- Windthrow is a hazard on these soils because the seasonal high water table and firm substratum cause trees to be shallow rooted.
- Care should be taken in harvesting and thinning to reduce trees exposed to the prevailing winds.
- Harvesting by stripcutting will expose fewer trees to the prevailing wind and help to prevent windthrow.
- After harvesting, reforestation must be carefully managed to reduce competition from undesirable understory plants.
- If the site is not adequately prepared, competition from undesirable plants can prevent or prolong natural or artificial reestablishment of trees.
- Competing vegetation can be controlled by properly preparing the site and by eliminating unwanted weeds, brush, or trees.

Recreation Management:

- If this unit is used for camping areas, picnic areas, and paths and trails, the main limitations are the seasonal high water table and stones on the surface.
- Drainage will help reduce wetness problems.
- Erosion and sedimentation can be controlled and the beauty of the area enhanced by maintaining adequate plant cover. Plant cover can be maintained by limiting traffic.

Urban Development:

- Follow state or local regulations on septic system installation.
- If this map unit is used for septic tank absorption fields, the limitation of seasonal high water table can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- If this map unit is used for septic tank absorption fields, permeability limitations can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the firm substratum.
- Wetness can be reduced by installing drainage tile around footings and backfilling with material that has good permeability.
- Excavation for building sites is difficult due to the firm substratum.
- If the soils are used as a base for roads, a coarse grained subgrade to frost depth is needed to prevent frost action.
- Roadfill is needed to raise the roadbase above the seasonal high water table.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

DkB—Dixfield-Colonel complex, 3 to 8 percent slopes, very stony

Setting
Landform: Drumlins, ridges, and till plains
Description of areas: Elongated in shape and from 6 to over 50 acres in size
\section*{Composition}

Dixfield and similar soils: 45 percent
Colonel soil and similar soils: 40 percent
Inclusions: 15 percent

Dixfield soil

Position on landscape: Side slopes, shoulder slopes, and crests
Parent material Dense glacial till
Slope range: 3 to 8 percent
Slope features: Convex and smooth
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 3 inches, dark brown sapric material
Subsurface layer:
3 to 6 inches, grayish brown, friable, fine sandy loam
Subsoil:
6 to 8 inches, dark reddish brown, friable, fine sandy loam
8 to 15 inches, brown, friable, gravelly fine sandy loam
15 to 20 inches, dark yellowish brown, friable, gravelly fine sandy loam
20 to 31 inches, olive brown, mottled, friable, gravelly fine sandy loam
Substratum:
31 to 65 inches, light olive brown, mottled, firm, gravelly fine sandy loam
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Moderate in the surface, subsurface, and subsoil, and slow or moderately slow in the substratum
Available water capacity: Moderate
Depth to restrictive layer: 18 to 36 inches to firm substratum
Hazard of flooding: None

Colonel soil

Position on landscape: Toeslopes, footslopes, and slight depressions
Parent material: Dense glacial till
Slope range 3 to 6 percent
Slope features: Concave or slightly convex and smooth
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 3 inches, black sapric material
Subsurface layer:
3 to 6 inches, gray, very friable, gravelly fine sandy loam
Subsoil:
6 to 9 inches, dark reddish brown, very friable, gravelly fine sandy loam
9 to 13 inches, yellowish brown, friable, gravelly fine sandy loam
13 to 22 inches, yellowish brown, mottled, friable, gravelly fine sandy loam
22 to 26 inches, light olive brown, mottled, friable, gravelly fine sandy loam

Substratum:

26 to 65 inches, olive, mottled, firm, gravelly fine sandy loam

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Somewhat poorly drained
Permeability: Moderate in the surface, subsurface, and subsoil, and slow or moderately slow in the substratum
Available water capacity: Moderate
Depth to restrictive layer: 15 to 30 inches to firm substratum
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Dixfield and Colonel soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Dixfield and Colonel soils.

Inclusions

- Brayton soils are poorly drained firm glacial till. They are in depressions and adjacent to drainageways.
- Marlow soils are well drained firm glacial till. They are on the crests of small knolls and on the shoulder slopes and side slopes of more sloping areas.
- Skerry soils are moderately well drained firm glacial till. They have greater than 20 percent sand lenses in the substratum and are intermingled with the Dixfield soils.
- Tunbridge soils are well drained, moderately deep glacial till. They are on the crests of small knolls.
- Lyman soils are somewhat excessively drained, shallow glacial till. They are on the crests of small knolls.
- Areas with slopes greater than 8 percent and less than 3 percent are included.

Use and Management

Current uses: Pasture, wild blueberry production, and homesites

Major Management Concerns

- Seasonal high water table
- Stones on the surface
- Slow or moderately slow permeability
- Restricted rooting depth
- Frost action

General Management Considerations

Urban Development:

- Follow state or local regulations on septic system installation.
- If this map unit is used for septic tank absorption fields, the limitation of seasonal high water table can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- If this map unit is used for septic tank absorption fields, permeability limitations can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the firm substratum.
- Wetness can be reduced by installing drainage tile around footings and backfilling with material that has good permeability.
- Excavation for building sites is difficult due to the firm substratum.
- Roadfill is needed to raise the roadbase above the seasonal high water table in the Colonel soils.
- If the soil is used as a base for roads, a coarse grained subgrade to frost depth is needed to prevent frost action.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

Blueberry Management:

- This unit is well suited to blueberry production.
- This unit is not suited to flail mowing or mechanical harvesting because of surface stones
- The seasonal high water table will limit the use of equipment in the spring and late fall.
- Irrigation and cultural practices such as weed control, insect and disease control, and fertility management will result in increased yields of blueberries.
- Irrigation water should be applied in amounts sufficient to wet the root zone but in amounts small enough to prevent the leaching of plant nutrients, insecticides, and herbicides.
- Water needs to be applied at a slow rate over a long period to insure that the root zone is properly wetted.
- Fertilization needs can be determined by leaf tissue analysis. Proper fertilization can result in greater top and rhizome growth and higher yields.
- The use of honeybees for pollination will increase the fruit set and result in higher yields.

Hay and Pasture:

- Grazing when the soil is wet results in compaction of the surface layer, poor tilth, and excessive runoff.
- The seasonal high water table limits the use of equipment in the spring and late fall.
- Surface stones limit the use of equipment for harvesting hay.
- The use of proper stocking rates, pasture rotation, and restricted grazing during wet periods helps to keep the pasture in good condition and to protect the soil from erosion.
- Proper grazing practices, weed control, lime, and fertilizer are needed for maximum quality of forage.

DMC—Dixfield-Marlow association, 3 to 15 percent slopes, very stony

Setting

Landform: Drumlins, ridges, and hills
Description of areas: Oblong or irregular in shape and from 20 to over 200 acres in size.

Composition

Dixfield and similar soils: 55 percent
Marlow soil and similar soils: 30 percent
Inclusions: 15 percent

Dixfield soil

Position on landscape: Lower side slopes and footslopes
Parent material: Dense glacial till
Slope range: 3 to 15 percent
Slope features: Smooth and nearly level to convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 3 inches, dark brown sapric material

Subsurface layer:
3 to 6 inches, grayish brown, friable, fine sandy loam
Subsoil:
6 to 8 inches, dark reddish brown, friable, fine sandy loam
8 to 15 inches, brown, friable, gravelly fine sandy loam
15 to 20 inches, dark yellowish brown, friable, gravelly fine sandy loam
20 to 31 inches, olive brown, mottled, friable, gravelly fine sandy loam
Substratum:
31 to 65 inches, light olive brown, mottled, firm, gravelly fine sandy loam
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Moderate in the surface, subsurface, and subsoil, and slow or moderately slow in the substratum
Available water capacity: Moderate
Depth to restrictive layer: 18 to 36 inches to firm substratum
Hazard of flooding: None
Marlow soil
Position on landscape: Crests, shoulder slopes, and side slopes
Parent material: Dense glacial till
Slope range: 8 to 15 percent
Slope features: Convex
Stones on surface: 0.1 to 3 percent
Typical Profile
Surface layer:
0 to 1 inch, dark reddish brown sapric material
Subsurface layer:
1 to 3 inches, brown, very friable, fine sandy loam
Subsoil:
3 to 5 inches, dark brown, friable, fine sandy loam
5 to 10 inches, brown, friable, fine sandy loam
10 to 17 inches, dark yellowish brown, friable, fine sandy loam
17 to 23 inches, light olive brown, friable, fine sandy loam
Substratum:
23 to 65 inches, olive brown, firm, fine sandy loam
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Well drained
Permeability: Moderate in the surface, subsurface, and subsoil, and slow or moderately slow in the substratum
Available water capacity: Moderate
Depth to restrictive layer: 20 to 38 inches to firm substratum
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Dixfield and Marlow soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Dixfield and Marlow soils.

Inclusions

- Colonel soils are somewhat poorly drained firm glacial till. They are on toeslopes, in depressions, and adjacent to drainageways.
- Brayton soils are poorly drained firm glacial till. They are in depressions and adjacent to drainageways.
- Skerry soils are moderately well drained and Becket soils are well drained firm glacial till that have greater than 20 percent sand lenses in the substratum. Skerry soils are intermingled with the
- Dixfield soils and Becket soils are intermingled with the Marlow soils.
- Tunbridge soils are well drained moderately deep glacial till. They are on crests and shoulder slopes of knolls and ridges.
- Lyman soils are somewhat excessively drained shallow soils. They are intermingled with the Tunbridge soils on crests and shoulder slopes of knolls and ridges.
- Areas of rock outcrop on small isolated knolls.
- Slopes greater than 15 percent.

Use and Management

Current uses: Woodland

Major Management Concerns

- Seasonal high water table in the Dixfield soils
- Restricted rooting depth
- Slope in some areas
- Stones on the surface
- Frost action
- Slow and moderately slow permeability
- Hazard of seepage

General Management Considerations

Woodland Management:

- The potential productivity of this unit for trees is very high in the Dixfield soils and high in the Marlow soils.
- This unit has potential for the production and management of Balsam fir for wreath brush and Christmas trees.
- These areas have good natural reproduction of spruce and fir. Proper thinning practices will reduce overcrowding and promote the growth of these species.
- Minimizing the risk of erosion is essential in harvesting timber.
- Proper design of road drainage systems and care in the placement of culverts help to control erosion. Spoil from excavations is subject to rill and gully erosion and to sloughing.
- Roads and landings can be protected from erosion by constructing waterbars and by seeding cuts and fills.
- Laying out skid trails and roads on the contour will reduce erosion.
- Revegetating disturbed areas around landings, skid trails, roads, and construction sites as soon as possible helps to control soil erosion.
- Conventional methods of harvesting timber can be used.
- During some periods of heavy rainfall, the water table is perched at a shallow depth for a short time. Trees commonly are subject to windthrow because the soil is saturated during these periods and because root growth is limited by the firm substratum.
- Care should be taken in harvesting and thinning to reduce trees exposed to the prevailing winds.
- Harvesting by stripcutting will expose fewer trees to the prevailing wind and help to prevent windthrow.
- Periodic salvaging of windthrown trees is advisable.
- Plant competition delays natural regeneration but does not prevent the eventual development of a fully stocked, normal stand of trees.
- Competing vegetation can be controlled by properly preparing the site and by eliminating unwanted weeds, brush, or trees.

Recreation Management:

- If this unit is used for camping areas, picnic areas, and paths and trails, the main limitations are the seasonal high water table in the Dixfield soils, stones on the surface, slope in some areas, and slow and moderately slow permeability.
- Drainage will help reduce wetness problems in the Dixfield soils.
- Erosion and sedimentation can be controlled and the beauty of the area enhanced by maintaining adequate plant cover. Plant cover can be maintained by limiting traffic.

Urban Development:

- Follow state or local regulations on septic system installation.
- If this map unit is used for septic tank absorption fields, permeability limitations can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the firm substratum.
- If the Dixfield soils are used for septic tank absorption fields, the limitation of seasonal high water table can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- Slope is a concern in installing septic tank absorption fields. Absorption lines should be installed on the contour.
- Wetness in the Dixfield soils can be reduced by installing drainage tile around footings and backfilling with material that has good permeability.
- A seasonal high water table is perched above the firm substratum in the Marlow soils for a short period of time in the early spring. Drainage should be provided for dwellings with basements.
- As the slope increases, building site development becomes more difficult.
- Excavation for building sites is difficult due to the firm substratum.
- Roadfill is needed to raise the roadbase above the seasonal high water table in the Dixfield soils.
- If the soils are used as a base for roads, a coarse grained subgrade to frost depth is needed to prevent frost action.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

DRC—Dixfield-Marlow-Rawsonville complex, 3 to 15 percent slopes, very stony

Setting
Landform: Hills, on ridges, and drumlins in close proximity to a coastal setting.
Description of areas: Irregular in shape and from 20 to over 200 acres in size

Composition

Dixfield and similar soils: 35 percent
Marlow and similar soils: 30 percent

Rawsoville and similar soils: 20 percent
Inclusions: 15 percent

Dixfield soil

Position on landscape: Side slopes and footslopes
Parent material: Dense glacial till
Slope range: 3 to 15 percent
Slope features: Convex or slightly concave
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 3 inches, dark brown sapric material
Subsurface layer:
3 to 6 inches, grayish brown, friable, fine sandy loam
Subsoil:
6 to 8 inches, dark reddish brown, friable, fine sandy loam
8 to 15 inches, brown, friable, gravelly fine sandy loam
15 to 20 inches, dark yellowish brown, friable, gravelly fine sandy loam
20 to 31 inches, olive brown, mottled, friable, gravelly fine sandy loam
Substratum:
31 to 65 inches, light olive brown, mottled, firm, gravelly fine sandy loam
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Moderately well drained
Permeability Moderate in the surface, subsurface, and subsoil, and slow or moderately slow in the substratum
Available water capacity: Moderate
Depth to restrictive layer: 18 to 36 inches to firm substratum
Hazard of flooding: None
Marlow soil
Position on landscape: Crests, shoulder slopes, and side slopes
Parent material: Dense glacial till
Slope range: 8 to 15 percent
Slope features: Convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 1 inch, dark reddish brown sapric material
Subsurface layer:
1 to 3 inches, brown, very friable, fine sandy loam
Subsoil:
3 to 5 inches, dark brown, friable, fine sandy loam
5 to 10 inches, brown, friable, fine sandy loam
10 to 17 inches, dark yellowish brown, friable, fine sandy loam
17 to 23 inches, light olive brown, friable, fine sandy loam
Substratum:
23 to 65 inches, olive brown, firm, fine sandy loam

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Well drained
Permeability: Moderate in the surface, subsurface, and subsoil, and slow or moderately slow in the substratum
Available water capacity: Moderate
Depth to restrictive layer: 20 to 38 inches to firm substratum
Hazard of flooding: None

Rawsonville soil

Position on landscape: Crests, shoulder slopes, and side slopes
Parent material: Glacial till
Slope range: 3 to 15 percent
Slope features: Convex
Stones on surface: 0.1 to 3 percent
Typical Profile
Surface layer:
0 to 2 inches, dark reddish brown sapric material
Subsurface layer:
2 to 4 inches, pinkish gray fine sandy loam
Subsoil:
4 to 8 inches, dark reddish brown fine sandy loam
8 to 15 inches, reddish brown fine sandy loam
15 to 24 inches, strong brown fine sandy loam
24 to 30 inches, yellowish brown gravelly sandy loam
Substratum:
30 to 36 inches, brown gravelly sandy loam
Bedrock:
36 inches, schist

Soil Properties and Qualities

Depth class: Moderately deep
Drainage class: Well drained
Permeability: Moderate or moderately rapid
Available water capacity: Low
Depth to restrictive layer: 20 to 40 inches to bedrock
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Dixfield, Marlow, and Rawsonville soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Dixfield, Marlow, and Rawsonville soils.

Inclusions

- Areas of soils similar to the Dixfield, Marlow, and Rawsonville soils with bedrock between 40 to 60 inches.
- Colonel soils are somewhat poorly drained, firm glacial till. They are on toeslopes and in slight depressions.
- Brayton soils are poorly drained, firm glacial till. They are in depressions and adjacent to drainageways.
- Hogback soils are somewhat excessively drained, shallow glacial till. They are intermingled with the Rawsonville soils on the crests of ridges and knolls.
- Abram soils are excessively drained very shallow glacial till. They are intermingled with the Rawsonville and Hogback soils on the crests of ridges and knolls.
- Tunbridge soils are well drained, moderately deep glacial till. They are on crests, shoulder slopes and sides slopes, and have less organic carbon in their subsoil than Rawsonville soils.
- Ricker soils are well drained, very shallow organic soils. They are intermingled with rock outcrop on the crests of ridges and knolls.
- Areas of rock outcrop on the crests of ridges and knolls.
- Naskeag soils are poorly drained moderately deep glacial till. They are in depressions between bedrock-controlled knolls.
- Areas with slopes greater than 15 percent are included.
- Areas with extremely stony or bouldery surfaces are included.

Use and Management

Current uses: Woodland

Major Management Concerns

- Seasonal high water table in the Dixfield soils
- Depth to bedrock in the Rawsonville soils
- Slope in some areas
- Frost action
- Stones on the surface
- Slow and moderately slow permeability in the Dixfield and Marlow soils
- Hazard of seepage
- Restricted rooting depth

General Management Considerations

Woodland Management:

- The potential productivity of this unit for trees is very high in the Dixfield soils and high in the Marlow and Rawsonville soils.
- This unit has potential for the production and management of Balsam fir for wreath brush and Christmas trees.
- These areas have good natural reproduction of spruce and fir. Proper thinning practices will reduce overcrowding and promote the growth of these species.
- Minimizing the risk of erosion is essential in harvesting timber.
- Roads and landings can be protected from erosion by constructing water bars and by seeding cuts and fills.
- Revegetating disturbed areas around landings, skid trails, roads, and construction sites helps to control soil erosion.
- Conventional methods of harvesting timber can be used.
- Stones on the surface can interfere with felling, yarding, and other operations involving the use of equipment.
- Trees are subject to windthrow because of restricted rooting depth caused by the firm substratum in the Dixfield and Marlow soils and the depth to bedrock in the Rawsonville soils.
- Care should be taken in harvesting and thinning to reduce trees exposed to the prevailing winds.
- Harvesting by stripcutting will expose fewer trees to the prevailing wind and help to prevent windthrow.
- Periodic salvaging of windthrown trees is advisable.
- Plant competition delays natural regeneration but does not prevent the eventual development of a fully stocked, normal stand of trees.
- Competing vegetation can be controlled by properly preparing the site and by eliminating unwanted weeds, brush, or trees.

Recreation Management:

- If this unit is used for camping areas, picnic areas, and paths and trails, the main limitations are the seasonal high water table in the Dixfield soils, slope, and stones on the surface.
- Drainage will help reduce wetness problems in the Dixfield soils.
- Erosion and sedimentation can be controlled and the beauty of the area enhanced by maintaining adequate plant cover. Plant cover can be maintained by limiting traffic.

Urban Development:

- Follow state or local regulations on septic system installation.
- If the Dixfield soils are used for septic tank absorption fields, the limitation of seasonal high water table can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- If the Dixfield and Marlow soils are used for septic tank absorption fields, permeability limitations can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the firm substratum.
- Septic systems should be located on deeper soils in this map unit or fill material can be used to raise the level of the absorption field.
- Slope is a concern in installing septic tank absorption fields. Absorption lines should be installed on the contour.
- Wetness in the Dixfield soils can be reduced by installing drainage tile around footings and backfilling with material that has good permeability.
- A seasonal high water table is perched above the firm substratum in the Marlow soils for a short period of time in the early spring. Drainage should be provided for dwellings with basements.
- Cuts needed to provide level building sites can expose bedrock in the Rawsonville soils.
- Dwellings with basements should be located on deeper soils in this map unit, or the bedrock should be removed, or the foundation set on bedrock and backfilled to the established grade.
- As the slope increases, building site development becomes more difficult.
- Excavation for building sites in the Dixfield and Marlow soils is difficult due to the firm substratum.
- If the soils are used as a base for roads, a coarse-grained subgrade to frost depth is needed to prevent frost action.
- Excavation, grading, and ditching activities involved in the construction and maintenance of roads can expose bedrock in the Rawsonville soils.
- Access roads must be designed to provide proper grade and drains are needed to control surface runoff and keep soil losses to a minimum.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

DTC—Dixfield-Marlow-Tunbridge complex, 3 to 15 percent slopes, very stony

Setting
Landform: Hills, ridges, and drumlins
Description of areas: Irregular in shape and from 20 to over 200 acres in size
\section*{Composition}

Dixfield and similar soils: 35 percent
Marlow and similar soils: 30 percent
Tunbridge and similar soils: 20 percent
Inclusions: 15 percent
Dixfield soil
Position on landscape: Side slopes and footslopes
Parent material: Dense glacial till
Slope range: 3 to 15 percent
Slope features: Convex or slightly concave
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 3 inches, dark brown sapric material
Subsurface layer:
3 to 6 inches, grayish brown, friable, fine sandy loam
Subsoil:
6 to 8 inches, dark reddish brown, friable, fine sandy loam
8 to 15 inches, brown, friable, gravelly fine sandy loam
15 to 20 inches, dark yellowish brown, friable, gravelly fine sandy loam
20 to 31 inches, olive brown, mottled, friable, gravelly fine sandy loam
Substratum:
31 to 65 inches, light olive brown, mottled, firm, gravelly fine sandy loam

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Moderate in the surface, subsurface, and subsoil, and slow or moderately slow in the substratum
Available water capacity: Moderate
Depth to restrictive layer: 18 to 36 inches to firm substratum
Hazard of flooding: None

Marlow soil

Position on landscape: Crests, shoulder slopes, and side slopes
Parent material: Dense glacial till
Slope range: 8 to 15 percent
Slope features Convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 1 inch, dark reddish brown sapric material

Subsurface layer:
1 to 3 inches, brown, very friable, fine sandy loam
Subsoil:
3 to 5 inches, dark brown, friable, fine sandy loam
5 to 10 inches, brown, friable, fine sandy loam
10 to 17 inches, dark yellowish brown, friable, fine sandy loam
17 to 23 inches, light olive brown, friable, fine sandy loam
Substratum:
23 to 65 inches, olive brown, firm, fine sandy loam
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Well drained
Permeability: Moderate in the surface, subsurface, and subsoil, and slow or moderately slow in the substratum
Available water capacity: Moderate
Depth to restrictive layer: 20 to 38 inches to firm substratum
Hazard of flooding: None

Tunbridge soil

Position on landscape: Crests, shoulder slopes, and side slopes
Parent material: Glacial till
Slope range: 3 to 15 percent
Slope features: Convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, dark brown sapric material
Subsurface layer:
2 to 4 inches, grayish brown fine sandy loam
Subsoil:
4 to 5 inches, dark brown fine sandy loam
5 to 10 inches, brown fine sandy loam
10 to 17 inches, dark yellowish brown fine sandy loam
17 to 28 inches, light olive brown gravelly fine sandy loam
Bedrock:
28 inches, schist
Soil Properties and Qualities
Depth class: Moderately deep
Drainage class: Well drained
Permeability: Moderate or moderately rapid
Available water capacity: Low
Depth to restrictive layer: 20 to 40 inches to bedrock
Hazard of flooding: None
Included Areas

Similar soils

Soils are included in this map unit which are like the Dixfield, Marlow, and Tunbridge soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Dixfield, Marlow, and Tunbridge soils.

Inclusions

- Areas of soils similar to the Dixfield, Marlow, and Tunbridge soils with bedrock between 40 to 60 inches.
- Colonel soils are somewhat poorly drained, firm glacial till. They are on toeslopes and in slight depressions.
- Brayton soils are poorly drained, firm glacial till. They are in depressions and adjacent to drainageways.
- Skerry soils are moderately well drained and Becket soils are well drained, firm glacial till. They have greater than 20 percent sand lenses in the substratum. Skerry soils are intermingled with the Dixfield soils and Becket soils are intermingled with the Marlow soils.
- Lyman soils are somewhat excessively drained, shallow glacial till. They are intermingled with the Tunbridge soils on the crests of ridges and knolls.
- Abram soils are excessively drained, very shallow glacial till. They are intermingled with the Tunbridge and Lyman soils on the crests of ridges and knolls.
- Ricker soils are well drained very shallow organic soils. They are intermingled with rock outcrop on the crests of ridges and knolls.
- Areas of rock outcrop on the crests of ridges and knolls.
- Naskeag soils are poorly drained, moderately deep glacial till. They are in depressions between bedrock-controlled knolls.
- Areas with slopes greater than 15 percent are included.
- Areas with extremely stony or bouldery surfaces are included.

Use and Management

Current uses: Woodland

Major Management Concerns

- Seasonal high water table in the Dixfield soils
- Depth to bedrock in the Tunbridge soils
- Slope in some areas
- Frost action
- Stones on the surface
- Slow and moderately slow permeability in the Dixfield and Marlow soils
- Hazard of seepage
- Restricted rooting depth

General Management Considerations

Woodland Management:

- The potential productivity of this unit for trees is very high in the Dixfield soils and high in the Marlow and Tunbridge soils.
- This unit has potential for the production and management of Balsam fir for wreath brush and Christmas trees.
- These areas have good natural reproduction of spruce and fir. Proper thinning practices will reduce overcrowding and promote the growth of these species.
- Minimizing the risk of erosion is essential in harvesting timber.
- Roads and landings can be protected from erosion by constructing waterbars and by seeding cuts and fills.
- Revegetating disturbed areas around landings, skid trails, roads, and construction sites as soon as possible helps to control soil erosion.
- Conventional methods of harvesting timber can be used.
- Stones on the surface can interfere with felling, yarding, and other operations involving the use of equipment.
- Seedling mortality is slight.
- Trees are subject to windthrow because of restricted rooting depth caused by the firm substratum in the Dixfield and Marlow soils and the depth to bedrock in the Tunbridge soils.
- Care should be taken in harvesting and thinning to reduce trees exposed to the prevailing winds.
- Harvesting by stripcutting will expose fewer trees to the prevailing wind and help to prevent windthrow.
- Periodic salvaging of windthrown trees is advisable.
- Plant competition delays natural regeneration but does not prevent the eventual development of a fully stocked, normal stand of trees.
- Competing vegetation can be controlled by properly preparing the site and by eliminating unwanted weeds, brush, or trees.

Recreation Management:

- If this unit is used for camping areas, picnic areas, and paths and trails, the main limitations are the seasonal high water table in the Dixfield soils, slope, and stones on the surface.
- Drainage will help reduce wetness problems in the Dixfield soils.
- Erosion and sedimentation can be controlled and the beauty of the area enhanced by maintaining adequate plant cover. Plant cover can be maintained by limiting traffic.
Urban Development:
- The limitation for septic tank absorption fields is severe. Follow state or local regulations on septic system installation.
- If the Dixfield soils are used for septic tank absorption fields, the limitation of seasonal high water table can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- If the Dixfield and Marlow soils are used for septic tank absorption fields, permeability limitations can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the firm substratum.
- Septic systems should be located on deeper soils in this map unit or fill material can be used to raise the level of the absorption field.
- Slope is a concern in installing septic tank absorption fields. Absorption lines should be installed on the contour.
- Wetness in the Dixfield soils can be reduced by installing drainage tile around footings and backfilling with material that has good permeability.
- A seasonal high water table is perched above the firm substratum in the Marlow soils for a short period of time in the early spring. Drainage should be provided for dwellings with basements.
- Cuts needed to provide level building sites can expose bedrock in the Tunbridge soils.
- Dwellings with basements should be located on deeper soils in this map unit, or the bedrock should be removed, or the foundation set on bedrock and backfilled to the established grade.
- As the slope increases, building site development becomes more difficult.
- Excavation for building sites in the Dixfield and Marlow soils is difficult due to the firm substratum.
- If the soils are used as a base for roads, a coarse grained subgrade to frost depth is needed to prevent frost action.
- Excavation, grading, and ditching activities involved in the construction and maintenance of roads can expose bedrock in the Tunbridge soils.
- Access roads must be designed to provide proper grade and drains are needed to control surface runoff and keep soil losses to a minimum.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

DUC—Dixfield-Rawsonville-Colonel complex, 3 to 15 percent slopes, very stony

Setting

Landform: Hills, ridges, drumlins, and till plains in close proximity to a coastal setting. Description of areas: Irregular in shape and from 20 to over 300 acres in size

Composition

Dixfield and similar soils: 30 percent
Rawsonville and similar soils: 25 percent
Colonel and similar soils: 20 percent
Inclusions: 25 percent
Dixfield soil
Position on landscape: Side slopes and footslopes
Parent material: Dense glacial till
Slope range: 3 to 15 percent
Slope features: Convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 3 inches, dark brown sapric material
Subsurface layer:
3 to 6 inches, grayish brown, friable, fine sandy loam
Subsoil:
6 to 8 inches, dark reddish brown, friable, fine sandy loam
8 to 15 inches, brown, friable, gravelly fine sandy loam
15 to 20 inches, dark yellowish brown, friable, gravelly fine sandy loam
20 to 31 inches, olive brown, mottled, friable, gravelly fine sandy loam
Substratum:
31 to 65 inches, light olive brown, mottled, firm, gravelly fine sandy loam
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Moderate in the surface, subsurface, and subsoil, and slow or moderately slow in the substratum
Available water capacity: Moderate
Depth to restrictive layer: 18 to 36 inches to firm substratum
Hazard of flooding: None

Rawsonville soil

Position on landscape: Crests, shoulder slopes, and side slopes
Parent material: Glacial till
Slope range: 3 to 15 percent

Slope features: Convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, dark reddish brown sapric material
Subsurface layer:
2 to 4 inches, pinkish gray fine sandy loam
Subsoil:
4 to 8 inches, dark reddish brown fine sandy loam
8 to 15 inches, reddish brown fine sandy loam
15 to 24 inches, strong brown fine sandy loam
24 to 30 inches, yellowish brown gravelly sandy loam
Substratum:
30 to 36 inches, brown gravelly sandy loam
Bedrock:
36 inches, schist

Soil Properties and Qualities

Depth class: Moderately deep
Drainage class: Well drained
Permeability: Moderate or moderately rapid
Available water capacity: Low
Depth to restrictive layer: 20 to 40 inches to bedrock
Hazard of flooding: None
Colonel soil
Position on landscape: Toeslopes and slight depression
Parent material: Dense glacial till
Slope range: 3 to 8 percent
Slope features: Concave or slightly convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 3 inches, black sapric material
Subsurface layer:
3 to 6 inches, gray, very friable, gravelly fine sandy loam
Subsoil:
6 to 9 inches, dark reddish brown, very friable, gravelly fine sandy loam
9 to 13 inches, yellowish brown, friable, gravelly fine sandy loam
13 to 22 inches, yellowish brown, mottled, friable, gravelly fine sandy loam
22 to 26 inches, light olive brown, mottled, friable, gravelly fine sandy loam
Substratum:
26 to 65 inches, olive, mottled, firm, gravelly fine sandy loam

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Somewhat poorly drained
Permeability: Moderate in the surface, subsurface, and subsoil, and slow or moderately slow in the substratum
Available water capacity: Moderate

Depth to restrictive layer: 15 to 30 inches to firm substratum Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Dixfield, Rawsonville, and Colonel soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Dixfield, Rawsonville, and Colonel soils.

Inclusions

- Brayton soils are poorly drained, firm glacial till. They are in depressions and adjacent to drainageways.
- Hogback soils are somewhat excessively drained, shallow glacial till. They are intermingled with Rawsonville soils on the crests of knolls.
- Abram soils are excessively drained, very shallow glacial till. They are intermingled with Rawsonville and Hogback soils on the crests of knolls.
- Marlow soils are well drained, firm glacial till. They are on crests and on steeper slopes.
- Tunbridge soils are well drained, moderately deep glacial till. They are on crests, shoulder slopes and sides slopes, and have less organic carbon in their subsoil than Rawsonville soils
- Ricker soils are well drained, very shallow organic soils. They are intermingled with rock outcrop on the crests of knolls.
- Naskeag soils are poorly drained moderately deep glacial till. They are in depressions between bedrock-controlled knolls.
- Areas with slopes greater than 15 percent are included.
- Areas with extremely stony or bouldery surfaces are included.

Use and Management

Current uses: Woodland

Major Management Concerns

- Seasonal high water table in the Dixfield and Colonel soils
- Depth to bedrock in the Rawsonville soils
- Slope in some areas
- Frost action
- Stones on the surface
- Slow and moderately slow permeability in the Dixfield and Colonel soils
- Hazard of seepage in the Rawsonville soils
- Restricted rooting depth

General Management Considerations

Woodland Management:

- The potential productivity of this unit for trees is very high on the Dixfield soils and high on the Rawsonville and Colonel soils.
- This unit has potential for the production and management of Balsam fir for wreath brush and Christmas trees.
- These areas have good natural reproduction of spruce and fir. Proper thinning practices will reduce overcrowding and promote the growth of these species.
- Minimizing the risk of erosion is essential in harvesting timber.
- Proper design of road drainage systems and care in the placement of culverts help to control erosion. Spoil from excavations is subject to rill and gully erosion and to sloughing.
- Roads and landings can be protected from erosion by constructing waterbars and by seeding cuts and fills.
- Laying out skid trails and roads on the contour will reduce erosion.
- Revegetating disturbed areas around landings, skid trails, roads, and construction sites as soon as possible helps to control soil erosion.
- Conventional methods of harvesting timber generally can be used but their use may be limited when the Colonel soil is wet.
- Trees commonly are subject to windthrow during periods when the soil is excessively wet and winds are strong.
- During some periods of heavy rainfall, the water table is perched at a shallow depth for a short time. Trees commonly are subject to windthrow on the Dixfield and Colonel soils because the soil is saturated during these periods and because root growth is limited by the firm substratum.
- Care should be taken in harvesting and thinning to reduce trees exposed to the prevailing winds.
- Harvesting by stripcutting will expose fewer trees to the prevailing wind and help to prevent windthrow.
- Periodic salvaging of windthrown trees is advisable.
- Plant competition is moderate on the Dixfield soils, slight on the Rawsonville soils, and severe on the Colonel soils.
- Plant competition delays natural regeneration but does not prevent the eventual development of a fully stocked, normal stand of trees.
- After harvesting, reforestation must be carefully managed to reduce competition from undesirable understory plants.
- Competing vegetation can be controlled by properly preparing the site and by eliminating unwanted weeds, brush, or trees.

Recreation Management:

- If this unit is used for camping areas, picnic areas, and paths and trails, the main limitations are the seasonal high water table in the Colonel and Dixfield soils and slope on the Dixfield and Rawsonville soils.
- Drainage will help reduce wetness problems in the Colonel and Dixfield soils.
- Erosion and sedimentation can be controlled and the beauty of the area enhanced by maintaining adequate plant cover. Plant cover can be maintained by limiting traffic.

Urban Development:

- Follow state or local regulations on septic system installation.
- If the Dixfield and Colonel soils are used for septic tank absorption fields, the limitation of seasonal high water table can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- If the Dixfield and Colonel soils are used for septic tank absorption fields, permeability limitations can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the firm substratum.
- Septic systems should be located on deeper soils in this map unit or fill material can be used to raise the level of the absorption field.
- Slope is a concern in installing septic tank absorption fields. Absorption lines should be installed on the contour.
- Wetness in the Dixfield and Colonel soils can be reduced by installing drainage tile around footings and backfilling with material that has good permeability.
- Cuts needed to provide level building sites can expose bedrock in the Rawsonville soils.
- Rawsonville soils have severe limitations for dwellings with basements due to the depth to bedrock. Dwellings with basements should be located on deeper soils in this map unit, or the bedrock should be removed, or the foundation set on bedrock and backfilled to the established grade.
- Excavation for building sites is difficult in the Dixfield and Colonel soils due to the firm substratum.
- If the soils are used as a base for roads, a coarse-grained subgrade to frost depth is needed to prevent frost action.
- Roadfill is needed to raise the roadbase above the seasonal high water table in the Colonel soils.
- Excavation, grading, and ditching activities involved in the construction and maintenance of roads can expose bedrock in the Rawsonville soils.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

DWC—Dixfield-Tunbridge-Colonel complex, 3 to 15 percent slopes, very stony

Setting

Landform: Hills, ridges, drumlins, and till plains
Description of areas: Irregular in shape and from 20 to over 300 acres in size

Composition

Dixfield and similar soils: 30 percent
Tunbridge and similar soils: 25 percent
Colonel and similar soils: 20 percent
Inclusions: 25 percent

Dixfield soil

Position on landscape: Side slopes and footslopes
Parent material: Dense glacial till
Slope range: 3 to 15 percent
Slope features: Convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 3 inches, dark brown sapric material
Subsurface layer:
3 to 6 inches, grayish brown, friable, fine sandy loam
Subsoil:
6 to 8 inches, dark reddish brown, friable, fine sandy loam
8 to 15 inches, brown, friable, gravelly fine sandy loam
15 to 20 inches, dark yellowish brown, friable, gravelly fine sandy loam
20 to 31 inches, olive brown, mottled, friable, gravelly fine sandy loam
Substratum:
31 to 65 inches, light olive brown, mottled, firm, gravelly fine sandy loam
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Moderately well drained

Permeability: Moderate in the surface, subsurface, and subsoil, and slow or moderately slow in the substratum
Available water capacity: Moderate
Depth to restrictive layer: 18 to 36 inches to firm substratum
Hazard of flooding: None

Tunbridge soil

Position on landscape: Crests, shoulder slopes, and side slopes
Parent material: Glacial till
Slope range: 3 to 15 percent
Slope features: Convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, dark brown sapric material
Subsurface layer:
2 to 4 inches, grayish brown fine sandy loam
Subsoil:
4 to 5 inches, dark brown fine sandy loam
5 to 10 inches, brown fine sandy loam
10 to 17 inches, dark yellowish brown fine sandy loam
17 to 28 inches, light olive brown gravelly fine sandy loam
Bedrock:
28 inches, schist

Soil Properties and Qualities

Depth class: Moderately deep
Drainage class: Well drained
Permeability: Moderate or moderately rapid
Available water capacity: Low
Depth to restrictive layer: 20 to 40 inches to bedrock
Hazard of flooding: None

Colonel soil

Position on landscape: Toeslopes and slight depression
Parent material: Dense glacial till
Slope range: 3 to 8 percent
Slope features: Concave or slightly convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 3 inches, black sapric material
Subsurface layer:
3 to 6 inches, gray, very friable, gravelly fine sandy loam
Subsoil:
6 to 9 inches, dark reddish brown, very friable, gravelly fine sandy loam
9 to 13 inches, yellowish brown, friable, gravelly fine sandy loam
13 to 22 inches, yellowish brown, mottled, friable, gravelly fine sandy loam
22 to 26 inches, light olive brown, mottled, friable, gravelly fine sandy loam

Substratum:

26 to 65 inches, olive, mottled, firm, gravelly fine sandy loam

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Somewhat poorly drained
Permeability: Moderate in the surface, subsurface, and subsoil, and slow or moderately slow in the substratum
Available water capacity: Moderate
Depth to restrictive layer: 15 to 30 inches to firm substratum
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Dixfield, Tunbridge, and Colonel soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Dixfield, Tunbridge, and Colonel soils.

Inclusions

- Brayton soils are poorly drained, firm glacial till. They are in depressions and adjacent to drainageways.
- Lyman soils are somewhat excessively drained, shallow glacial till. They are intermingled with Tunbridge soils on the crests of knolls.
- Abram soils are excessively drained, very shallow glacial till. They are intermingled with Tunbridge and Lyman soils on the crests of knolls.
- Marlow soils are well drained, firm glacial till. They are on crests and on steeper slopes.
- Skerry soil are moderately well drained, firm glacial till that have greater than 20 percent sand lenses in the substratum. They are intermingled with the Dixfield soils.
- Areas of rock outcrop on the crests of knolls.
- Ricker soils are well drained, very shallow organic soils. They are intermingled with rock outcrop on the crests of knolls.
- Naskeag soils are poorly drained, moderately deep glacial till. They are in depressions between bedrock-controlled knolls.
- Slopes greater than 15 percent.
- Areas with extremely stony or bouldery surfaces.

Use and Management

Current uses: Woodland

Major Management Concerns

- Seasonal high water table in the Dixfield and Colonel soils
- Depth to bedrock in the Tunbridge soils
- Slope in some areas
- Frost action
- Stones on the surface
- Slow and moderately slow permeability in the Dixfield and Colonel soils
- Hazard of seepage in the Tunbridge soils
- Restricted rooting depth

General Management Considerations

Woodland Management:

- The potential productivity of this unit for trees is very high on the Dixfield soils and high on the Tunbridge and Colonel soils.
- This unit has potential for the production and management of Balsam fir for wreath brush and Christmas trees.
- These areas have good natural reproduction of spruce and fir. Proper thinning practices will reduce overcrowding and promote the growth of these species.
- Minimizing the risk of erosion is essential in harvesting timber.
- Proper design of road drainage systems and care in the placement of culverts help to control erosion. Spoil from excavations is subject to rill and gully erosion and to sloughing.
- Roads and landings can be protected from erosion by constructing waterbars and by seeding cuts and fills.
- Laying out skid trails and roads on the contour will reduce erosion.
- Revegetating disturbed areas around landings, skid trails, roads, and construction sites as soon as possible helps to control soil erosion.
- Conventional methods of harvesting timber generally can be used but their use may be limited when the Colonel soil is wet.
- Trees commonly are subject to windthrow during periods when the soil is excessively wet and winds are strong.
- During some periods of heavy rainfall, the water table is perched at a shallow depth for a short time. Trees commonly are subject to windthrow on the Dixfield and Colonel soils because the soil is saturated during these periods and because root growth is limited by the firm substratum.
- Care should be taken in harvesting and thinning to reduce trees exposed to the prevailing winds.
- Harvesting by stripcutting will expose fewer trees to the prevailing wind and help to prevent windthrow.
- Periodic salvaging of windthrown trees is advisable.
- Plant competition delays natural regeneration but does not prevent the eventual development of a fully stocked, normal stand of trees.
- After harvesting, reforestation must be carefully managed to reduce competition from undesirable understory plants.
- Competing vegetation can be controlled by properly preparing the site and by eliminating unwanted weeds, brush, or trees.

Recreation Management:

- If this unit is used for camping areas, picnic areas, and paths and trails, the main limitations are the seasonal high water table in the Colonel and Dixfield soils and slope on the Dixfield and Tunbridge soils.
- Drainage will help reduce wetness problems in the Colonel and Dixfield soils.
- Erosion and sedimentation can be controlled and the beauty of the area enhanced by maintaining adequate plant cover. Plant cover can be maintained by limiting traffic.

Urban Development:

- Follow state or local regulations on septic system installation.
- If the Dixfield and Colonel soils are used for septic tank absorption fields, the limitation of seasonal high water table can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- If the Dixfield and Colonel soils are used for septic tank absorption fields, permeability limitations can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the firm substratum.
- Septic systems should be located on deeper soils in this map unit or fill material can be used to raise the level of the absorption field.
- Slope is a concern in installing septic tank absorption fields. Absorption lines should be installed on the contour.
- Wetness in the Dixfield and Colonel soils can be reduced by installing drainage tile around footings and backfilling with material that has good permeability.
- Cuts needed to provide level building sites can expose bedrock in the Tunbridge soils.
- Tunbridge soils have severe limitations for dwellings with basements due to the depth to bedrock. Dwellings with basements should be located on deeper soils in this map unit, or the bedrock should be removed, or the foundation set on bedrock and backfilled to the established grade.
- Excavation for building sites is difficult in the Dixfield and Colonel soils due to the firm substratum.
- If the soils are used as a base for roads, a coarse-grained subgrade to frost depth is needed to prevent frost action.
- Roadfill is needed to raise the roadbase above the seasonal high water table in the Colonel soils.
- Excavation, grading, and ditching activities involved in the construction and maintenance of roads can expose bedrock in the Tunbridge soils.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

EcB—Elliottsville-Chesuncook complex, 3 to 8 percent slopes

Setting

Landform: Ridges, knolls, and drumlins
Description of areas: Irregular in shape and from 6 to 20 acres in size
Composition
Elliottsville and similar soils: 45 percent Chesuncook and similar soils: 35 percent Inclusions: 20 percent

Elliottsville soil

Position on landscape: Crests and upper side slopes
Parent material: Glacial till
Slope range: 3 to 8 percent
Slope features: Convex
Stones on surface: None

Typical Profile

Surface layer:
0 to 7 inches, dark brown silt loam
Subsoil:
7 to 8 inches, dark brown channery silt loam
8 to 12 inches, dark yellowish brown channery silt loam
12 to 17 inches, light olive brown channery silt loam
Substratum:
17 to 29 inches, olive brown channery silt loam
Bedrock:
29 inches, phyllite

Soil Properties and Qualities
Depth class: Moderately deep
Drainage class: Well drained
Permeability: Moderate
Available water capacity: Moderate
Depth to restrictive layer: 20 to 40 inches to bedrock
Hazard of flooding: None

Chesuncook soil

Position on landscape: Side slopes
Parent material: Dense glacial till
Slope range: 3 to 8 percent
Slope features: Convex or slightly concave
Stones on surface: None

Typical Profile

Surface layer:
0 to 7 inches, dark brown, very friable, silt loam
Subsoil:
7 to 12 inches, dark yellowish brown, friable, gravelly silt loam
12 to 19 inches, yellowish brown, friable, gravelly silt loam
19 to 25 inches, olive brown, mottled, firm, gravelly silt loam
Substratum:
25 to 65 inches, olive, mottled, firm, gravelly silt loam

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Moderate in the surface, subsurface, and subsoil, and very slow or slow in the substratum
Available water capacity: Moderate
Depth to restrictive layer: 15 to 28 inches to firm substratum
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Elliottsville and Chesuncook soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Elliottsville and Chesuncook soils.

Inclusions

- Telos soils are somewhat poorly drained dense glacial till. They are on toeslopes and adjacent to drainageways.
- Monson soils are somewhat excessively drained shallow glacial till. They are intermingled with the Elliottsville soils on the crests of ridges.
- Rock outcrop in intermingled with the Elliottsville and Monson soils on the crests of ridges.
- Soils similar to the Chesuncook soils with bedrock between 40 to 60 inches.
- Soils similar to the Elliottsville soils that are moderately well drained or somewhat poorly drained.
- Slopes greater than 8 percent and less than 3 percent are included.
- Small areas with stones on the surface are included.

Use and Management

Current uses: Hayland, pasture, and homesites

Major Management Concerns

- Depth to bedrock in the Elliottsville soils
- Seasonal high water table in the Chesuncook soils
- Very slow or slow permeability in the Chesuncook soils
- Frost action
- Restricted rooting depth

General Management Considerations

Urban Development:

- Follow state or local regulations on septic system installation.
- Septic systems should be located on deeper soils in this map unit or fill material can be used to raise the level of the absorption field.
- If this map unit is used for septic tank absorption fields, permeability limitations in the Chesuncook soils can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the firm substratum.
- If this map unit is used for septic tank absorption fields, the limitation of seasonal high water table in the Chesuncook soils can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- Cuts needed to provide level building sites on the Elliottsville soils can expose bedrock.
- Elliottsville soils should be avoided as sites for dwellings with basements due to the depth to bedrock. Dwellings with basements should be located on the deeper soils in this map unit, or the bedrock should be removed, or the foundation set on bedrock and backfilled to the established grade.
- Wetness in the Chesuncook soils can be reduced by installing drainage tile around footings and backfilling with material that has good permeability.
- Excavation for building sites is difficult due to the firm substratum in the Chesuncook soils.
- Excavation, grading, and ditching activities involved in the construction and maintenance of roads can expose bedrock in the Elliottsville soils.
- Roadfill is needed to raise the roadbase above the seasonal high water table in the Chesuncook soils.
- If the soil is used as a base for roads, a coarse grained subgrade to frost depth is needed to prevent frost action.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

Blueberry Management:

- This unit has very few or no surface stones, and is well suited to flail mowing and mechanical harvesting.
- The seasonal high water table in the Chesuncook soils will limit the use of equipment in the spring and late fall.
- Irrigation and cultural practices such as weed control, insect and disease control, and fertility management will result in increased yields of blueberries.
- Irrigation water should be applied in amounts sufficient to wet the root zone but in amounts small enough to prevent the leaching of plant nutrients, insecticides, and herbicides.
- Water needs to be applied at a slow rate over a long period to insure that the root zone is properly wetted.
- Fertilization needs can be determined by leaf tissue analysis. Proper fertilization can result in greater top and rhizome growth and higher yields.
- The use of honeybees for pollination will increase the fruit set and result in higher yields.

Hay and Pasture:

- Grazing when the soil is wet results in compaction of the surface layer, poor tilth, and excessive runoff.
- The seasonal high water table in the Chesuncook soils limits the use of equipment in the spring and late fall.
- The use of proper stocking rates, pasture rotation, and restricted grazing during wet periods helps to keep the pasture in good condition and to protect the soil from erosion.
- Proper grazing practices, weed control, lime, and fertilizer are needed for maximum quality of forage.

EMC—Elliottsville-Monson complex, 3 to 15 percent slopes, very stony

Setting

Landform: Hills, ridges, and till plains
Description of areas: Irregular in shape and from 20 to over 200 acres in size

Composition

Elliottsville and similar soils: 50 percent
Monson and similar soils: 20 percent Inclusions: 30 percent

Elliottsville soil

Position on landscape: Crests, shoulder slopes, and upper side slopes
Parent material: Glacial till
Slope range: 3 to 15 percent
Slope features: Convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, dark brown sapric material

Subsurface layer:

2 to 4 inches, brown silt loam
Subsoil:
4 to 6 inches, dark reddish brown silt loam
6 to 10 inches, dark brown channery silt loam
10 to 14 inches, dark yellowish brown channery silt loam
14 to 19 inches, light olive brown channery silt loam

Substratum:

19 to 31 inches, olive brown channery silt loam
Bedrock:
31 inches, phyllite

Soil Properties and Qualities
Depth class: Moderately deep
Drainage class: Well drained
Permeability: Moderate
Available water capacity: Moderate
Depth to restrictive layer: 20 to 40 inches to bedrock
Hazard of flooding: None

Monson soil

Position on landscape: Crests, shoulder slopes, and upper side slopes
Parent material: Glacial till
Slope range: 3 to 15 percent
Slope features: Convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, black sapric material
Subsurface layer:
2 to 3 inches, pinkish gray channery silt loam
Subsoil:
3 to 4 inches, dark reddish brown channery silt loam
4 to 7 inches, brown channery loam
7 to 11 inches, strong brown channery loam
11 to 15 inches, light olive brown channery loam
Bedrock:
15 inches, phyllite bedrock
Soil Properties and Qualities
Depth class: Shallow
Drainage class: Somewhat excessively drained
Permeability: Moderate
Available water capacity: Low
Depth to restrictive layer: 10 to 20 inches to firm substratum
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Elliottsville and Monson soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Elliottsville and Monson soils.

Inclusions

- Areas of soils similar in texture to the Elliottsville soils that are well drained, moderately well drained, or somewhat poorly drained and have bedrock between 40 to 60 inches. They are on side slopes or footslopes.
- Areas of soils that are similar to the Elliottsville and Monson soils that are moderately well drained or somewhat poorly drained.
- Rock outcrop and Abram soils that are very shallow to bedrock are on the crests of ridges and knolls.
- Chesuncook soils are moderately well drained firm glacial till. They are on lower side slopes and in saddles between bedrock-controlled knolls.
- Telos soils are somewhat poorly drained firm glacial till. They are on footslopes and toeslopes and in saddles between bedrock-controlled knolls.
- Monarda soils are poorly drained firm glacial till. They are in depressions.
- Bucksport or Wonsqueak soils are very poorly drained organic soils. They are in small depressions.
- Areas with slopes greater than 15 percent and less than 3 percent are included.

Use and Management

Current uses: Woodland

Major Management Concerns

- Depth to bedrock
- Restricted rooting depth
- Slope in some areas
- Frost action in the Elliottsville soils
- Stones on the surface

General Management Considerations

Woodland Management:

- The potential productivity of this unit for trees is very high on the Elliottsville soils and medium on the Monson soils.
- This unit has potential for the production and management of Balsam fir for wreath brush and Christmas trees.
- These areas have good natural reproduction of spruce and fir. Proper thinning practices will reduce overcrowding and promote the growth of these species.
- Minimizing the risk of erosion is essential in harvesting timber.
- Revegetating disturbed areas around landings, skid trails, roads, and construction sites as soon as possible helps to control soil erosion.
- Conventional methods of harvesting timber can be used.
- Stones on the surface can interfere with felling, yarding, and other operations involving the use of equipment.
- Seedling mortality can be reduced on the Monson soils by planting seedlings in spring when soil moisture levels are highest and by using planting stock that is larger than usual or containerized. Reinforcement planting may be needed.
- Trees are subject to windthrow because of restricted rooting depth due to the depth to bedrock.
- Care should be taken in harvesting and thinning to reduce trees exposed to the prevailing winds.
- Harvesting by stripcutting will expose fewer trees to the prevailing wind and help to prevent windthrow.
- Periodic salvaging of windthrown trees is advisable.
- Plant competition delays natural regeneration but does not prevent the eventual development of a fully stocked, normal stand of trees.
- Competing vegetation can be controlled by properly preparing the site and by eliminating unwanted weeds, brush, or trees.

Recreation Management:

- If this unit is used for camping areas, picnic areas, and paths and trails, the main limitations are surface stones and depth to bedrock.
- Erosion and sedimentation can be controlled and the beauty of the area enhanced by maintaining adequate plant cover. Plant cover can be maintained by limiting traffic.

Urban Development:

- Follow state or local regulations on septic system installation.
- This map unit has severe limitations for septic tank absorption fields due to the depth to bedrock. Septic systems should be located on inclusions of deeper soils in
this map unit if possible or fill material can be used to raise the level of the absorption field.
- Slope is a concern in installing septic tank absorption fields. Absorption lines should be installed on the contour.
- Cuts needed to provide level building sites can expose bedrock.
- Dwellings with basements should be located on inclusions of deeper soils in this map unit if possible, or the bedrock should be removed, or the foundation set on bedrock and backfilled to the established grade.
- Excavation, grading, and ditching activities involved in the construction and maintenance of roads can expose bedrock.
- Access roads must be designed to provide proper grade and drains are needed to control surface runoff and keep soil losses to a minimum.
- If the soil is used as a base for roads, a coarse-grained subgrade to frost depth is needed to prevent frost action.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

Go-Gouldsboro silt loam

Setting

Landform: Tidal marsh
Description of areas: Irregular in shape and from 6 to 100 acres in size

Composition

Gouldsboro and similar soils: 90 percent
Inclusions: 10 percent
Gouldsboro soil
Position on landscape: Throughout tidal marshes
Parent material: Marine sediments
Slope range: 0 to 1 percent
Slope features: Nearly level and smooth
Stones on surface: None

Typical Profile

Surface layer:
0 to 6 inches, grayish brown silt loam

Substratum:

6 to 16 inches, very dark grayish brown silt loam
16 to 19 inches, dark gray silt loam
19 to 27 inches, very dark grayish brown silt loam
27 to 55 inches, dark gray silt loam
55 to 65 inches, gray silt loam
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Very poorly drained
Permeability: Moderately slow or moderate in the surface and very slow or slow in the substratum

Available water capacity: High
Depth to restrictive layer: 10 to 20 inches
Hazard of flooding: Frequent, very brief duration, January to December

Included Areas

Similar soils

Soils are included in this map unit which are like the Gouldsboro soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Gouldsboro soils.

Inclusions

- Biddeford soils are very poorly drained glaciomarine deposits. They are on the perimeter of map units.
- Lamoine soils are somewhat poorly drained glaciomarine deposits. They are on the perimeter of the unit or on long thin peninsulas.
- Scantic soils are poorly drained glaciomarine deposits. They are on the perimeter of map units.
- Lyman soils are somewhat excessively drained shallow glacial till and Tunbridge soils are well drained moderately deep glacial till. They are on isolated knolls within tidal marshes.
- Rock outcrops are on isolated knolls within tidal marshes.

Use and Management

Current uses: These areas are used as a migratory bird nesting and resting areas.
Some areas are used for hay.

Major Management Concerns

- Flooding
- Seasonal high water table
- Low strength

General Management Considerations

Urban Development:

- Follow state or local regulations on septic system installation.
- Septic systems should not be located in these areas.
- These areas should be avoided as sites for dwellings.
- Roads should not be located in these areas.

Blueberry Management:

- This unit is not suited to blueberry production due to seasonal high water table and flooding.

Hay and Pasture:

- This unit is not suited to hay and pasture due to flooding and seasonal high water table.

HCC—Hermon-Colton-Abram complex, 3 to 15 percent slopes, very bouldery

Setting

Landform: Ridges, moraines, hills, and knolls
Description of area: Irregular in shape and from 20 to over 50 acres in size

Composition

Hermon and similar soils: 40 percent
Colton and similar soils: 20 percent Abram and similar soils: 15 percent Inclusions: 25 percent

Hermon soil

Position on landscape: Crests, side slopes, and in saddles between bedrockcontrolled knolls
Parent material: Glacial till
Slope range: 3 to 15 percent
Slope features: Convex
Boulders on surface: 0.1 to 3 percent
Typical Profile
Surface layer:
0 to 2 inches, black sapric material
Subsurface layer:
2 to 6 inches, reddish gray sandy loam
Subsoil:
6 to 8 inches, dark reddish brown sandy loam
8 to 10 inches, dark brown gravelly sandy loam
10 to 18 inches, dark yellowish brown very gravelly loamy sand
Substratum:
18 to 32 inches, light olive brown extremely gravelly coarse sand
32 to 65 inches, olive very gravelly sand

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Somewhat excessively drained
Permeability: Moderately rapid or rapid in the surface, subsurface, and subsoil, and rapid in the substratum
Available water capacity Low
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None

Colton soil

Position on landscape: Crests, side slopes, and in saddles between bedrockcontrolled knolls
Parent material: Glaciofluvial sands and gravels
Slope range: 3 to 15 percent
Slope features: Convex
Boulders on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, very dark grayish brown sapric material
Subsurface layer:
2 to 3 inches, brown gravelly sandy loam
Subsoil:
3 to 6 inches, dark brown gravelly sandy loam
6 to 13 inches, brown gravelly sandy loam

13 to 17 inches, dark yellowish brown gravelly loamy sand
17 to 26 inches, dark yellowish brown very gravelly sand

Substratum:

26 to 65 inches, olive brown extremely gravelly sand

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Excessively drained
Permeability: Rapid in the surface, subsurface, and subsoil, and very rapid in the substratum
Available water capacity: Very low
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None

Abram soil

Position on landscape: Crests and side slopes of bedrock-controlled knolls
Parent material: Glacial till
Slope range: 3 to 15 percent
Slope features: Convex
Boulders on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, black sapric material
Subsurface layer:
2 to 5 inches, brown sandy loam
Subsoil:
5 to 6 inches, reddish brown sandy loam
Bedrock:
6 inches, granite

Soil Properties and Qualities

Depth class: Very shallow
Drainage class: Excessively drained
Permeability: Moderately rapid
Available water capacity: Very low
Depth to restrictive layer: 1 to 10 inches to bedrock
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Hermon, Colton, and Abram soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Hermon, Colton, and Abram soils.

Inclusions

- Soils similar to the Hermon and Colton soils that have bedrock between 40 to 60 inches.
- Masardis soils are somewhat excessively drained glaciofluvial sand and gravel with loamy surface caps greater than 10 inches thick. They are intermingled with the Colton soils.
- Monadnock soils are well drained glacial till. They are intermingled with the Hermon soils.
- Lyman soils are shallow somewhat excessively drained glacial till. They are intermingled with the Abram soils.
- Tunbridge soils are moderately deep well drained glacial till. They are intermingled with the Abram and Lyman soils.
- Ricker soils are very shallow well drained organic materials. They are intermingled with the Abram soils on the crests of landforms.
- Areas of rock outcrop on the crests of knolls are included.
- Moderately well drained and somewhat poorly drained soils with a cemented subsoil are included. They are in depressions and on toeslopes of saddles between bedrock-controlled ridges.
- Areas with extremely bouldery or stony surfaces are included.
- Slopes greater than 15 percent are included.

Use and Management

Current uses: Woodland, a source of sand and gravel, and overgrown blueberry land

Major Management Concerns

- Cutbanks are not stable in the Hermon and Colton soils
- Poor filter in the Hermon and Colton soils
- Depth to bedrock in the Abram soils
- Restricted rooting depth in the Abram soils
- Slope
- Droughtiness
- Boulders on the surface
- Hazard of seepage

General Management Considerations

Woodland Management:

- The potential productivity of this unit for trees is very low on the Abram soils and moderate to high on the Hermon and Colton soils.
- The Hermon and Colton soils are a probable source of gravel and sand.
- Minimizing the risk of erosion is essential in harvesting timber.
- Laying out skid trails and roads on the contour will reduce erosion.
- Conventional methods of harvesting timber can be used.
- Boulders and stones on the surface can interfere with felling, yarding, and other operations involving the use of equipment.
- Seedling mortality can be reduced by planting seedlings in spring when soil moisture levels are highest and by using planting stock that is larger than usual or containerized. Reinforcement planting may be needed.
- Trees are subject to windthrow on the Abram soils because of limited rooting depth.
- Care should be taken in harvesting and thinning to reduce trees exposed to the prevailing winds.
- Competing vegetation can be controlled by properly preparing the site and by eliminating unwanted weeds, brush, or trees.

Recreation Management:

- If this unit is used for camping areas, picnic areas, and paths and trails, the main limitations are slope, surface boulders and stones, and depth to bedrock in the Abram soils.
- Erosion and sedimentation can be controlled and the beauty of the area enhanced by maintaining adequate plant cover. Plant cover can be maintained by limiting traffic.

Urban Development:

- Follow state or local regulations on septic system installation.
- If the Hermon and Colton soils are used for septic tank absorption fields, there is a possibility of groundwater contamination due to the poor filtering action of the
substratum. Finer-textured fill material below the bottom of the absorption field can help prevent this from occurring.
- Septic systems should be located on deeper soils in this map unit or fill material can be used to raise the level of the absorption field.
- Slope is a concern in installing septic tank absorption fields. Absorption lines should be installed on the contour.
- As the slope increases, building site development becomes more difficult.
- The rock fragment content in the Hermon and Colton soils causes moderate difficulties in excavation.
- Cuts needed to provide level building sites can expose bedrock in the Abram soils.
- The Abram soils should be avoided as sites for dwellings with basements due to the depth to bedrock. Dwellings with basements should be located on deeper soils in this map unit, or the bedrock should be removed, or the foundation set on bedrock and backfilled to the established grade.
- Access roads must be designed to provide proper grade and drains are needed to control surface runoff and keep soil losses to a minimum.
- The rock fragment content in the Hermon and Colton soils causes moderate difficulties in the excavation, grading, and ditching activities involved in the construction and maintenance of roads.
- Excavation, grading, and ditching activities involved in the construction and maintenance of roads can expose bedrock in the Abram soils.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.
- The Hermon and Colton soils in this map unit are an aquifer recharge area and because of the permeability of these soils, pollutants can move quickly through the soil and into the ground water. Contamination of the ground water is therefore possible if precautions are not taken. Restrictions on the types of activities that may occur, limitations on the density of housing, and special engineering designs for septic systems are possible precautionary measures.
- The Hermon and Colton soils are probable sources of gravel and sand.

HeB—Hermon-Monadnock complex, 3 to 8 percent slopes

Setting
Landform: Low ridges and till plains
Description of areas: Irregular in shape and from 6 to over 50 acres in size

Composition
Hermon and similar soils: 45 percent
Monadnock and similar soils: 40 percent
Inclusions: 15 percent

Hermon soil
Position on landscape: Crests, shoulder slopes, and side slopes Parent material: Glacial till Slope range: 3 to 8 percent slopes
Slope features: Convex
Boulders on surface: None

Typical Profile

Surface layer:
0 to 7 inches, dark brown sandy loam
Subsoil:
7 to 8 inches, dark brown gravelly sandy loam
8 to 16 inches, dark yellowish brown very gravelly loamy sand
Substratum:
16 to 30 inches, light olive brown extremely gravelly coarse sand
30 to 65 inches, olive very gravelly sand
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Somewhat excessively drained
Permeability: Moderately rapid or rapid in the surface, subsurface, and subsoil, and rapid or very rapid in the substratum
Available water capacity: Low
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None

Monadnock soil

Position on landscape: Crests, shoulder slopes, and side slopes
Parent material: Glacial till
Slope range: 3 to 8 percent
Slope features: Convex
Boulders on surface: None

Typical Profile

Surface layer:
0 to 7 inches, dark brown fine sandy loam
Subsoil:
7 to 10 inches, yellowish red fine sandy loam
10 to 14 inches, yellowish brown fine sandy loam
14 to 20 inches, yellowish brown gravelly loamy sand
Substratum:
20 to 25 inches, light olive brown very gravelly loamy coarse sand
25 to 65 inches, olive very gravelly loamy coarse sand
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Well drained
Permeability: Moderate in the surface, subsurface, and subsoil, and moderately rapid in the substratum
Available water capacity: Low
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Hermon and Monadnock soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Hermon and Monadnock soils.

Inclusions

- Becket soils are well drained firm glacial till. They are on crests and side slopes.
- Skerry soils are moderately well drained firm glacial till. They are in slight depressions or along drainageways.
- Colton soils are excessively drained glaciofluvial sand and gravel. They are intermingled with the Hermon and Monadnock soils on waterworked moraines.
- Sheepscot soils are moderately well drained glaciofluvial sand and gravel. They are on footslopes or in slight depressions.
- Slopes less than 3 percent and greater than 8 percent are included.
- Small areas with stones or boulders on the surface are included.

Use and Management

Current uses: Wild blueberry production, homesites, hayland, pasture, and as a source of sand and gravel

Major Management Concerns

- Poor filter in the Hermon soils
- Droughtiness in the Hermon soils
- Cutbanks are not stable
- Hazard of seepage

General Management Considerations

Urban Development:

- Follow state or local regulations on septic system installation.
- If the Hermon soils are used for septic tank absorption fields, there is a possibility of groundwater contamination due to the poor filtering action of the substratum. Finertextured fill material below the bottom of the absorption field can help prevent this from occurring.
- The rock fragment content in the Hermon soils causes moderate difficulties in excavation.
- The rock fragment content in the Hermon soils causes moderate difficulties in the excavation, grading, and ditching activities involved in the construction and maintenance of roads.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.
- This map unit is an aquifer recharge area and because of the permeability of these soils, pollutants can move quickly through the soil and into the ground water. Contamination of the ground water is therefore possible if precautions are not taken. Restrictions on the types of activities that may occur, limitations on the density of housing, and special engineering designs for septic systems are possible precautionary measures.
- These areas are a probable source of gravel and sand.

Blueberry Management:

- This unit is well suited to blueberry production.
- This unit has very few or no surface stones, and is well suited to flail mowing and mechanical harvesting.
- Irrigation and cultural practices such as weed control, insect and disease control, and fertility management will result in increased yields of blueberries.
- Irrigation water should be applied in amounts sufficient to wet the root zone but in amounts small enough to prevent the leaching of plant nutrients, insecticides, and herbicides.
- Water needs to be applied at a slow rate over a long period to insure that the root zone is properly wetted.
- Fertilization needs can be determined by leaf tissue analysis. Proper fertilization can result in greater top and rhizome growth and higher yields.
- The use of honeybees for pollination will increase the fruit set and result in higher yields.
Hay and Pasture:
- If this unit is used for hay and pasture, the main limitation is droughtiness in the Hermon soils.
- The use of proper stocking rates and pasture rotation helps to keep the pasture in good condition.
- Proper grazing practices, weed control, lime, and fertilizer are needed for maximum quality of forage.

HeC-Hermon-Monadnock complex, 8 to 15 percent slopes

Setting

Landform: Ridges, hills, moraines, and till plains
Description of areas: Irregular in shape and from 6 to over 50 acres in size

Composition

Hermon and similar soils: 50 percent
Monadnock and similar soils: 35 percent
Inclusions: 15 percent

Hermon soil

Position on landscape: Crests, shoulder slopes, and side slopes
Parent material: Glacial till
Slope range: 8 to 15 percent
Slope features: Convex
Boulders on surface: None

Typical Profile

Surface layer:
0 to 7 inches, dark brown sandy loam
Subsoil:
7 to 8 inches, dark brown gravelly sandy loam
8 to 16 inches, dark yellowish brown very gravelly loamy sand

Substratum:

16 to 30 inches, light olive brown extremely gravelly coarse sand
30 to 65 inches, olive very gravelly sand

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Somewhat excessively drained
Permeability: Moderately rapid or rapid in the surface, subsurface, and subsoil, and rapid or very rapid in the substratum
Available water capacity: Low
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None

Monadnock soil

Position on landscape: Crests, shoulder slopes, and side slopes
Parent material: Glacial till
Slope range: 8 to 15 percent
Slope features: Convex
Boulders on surface: None

Typical Profile

Surface layer:
0 to 7 inches, dark brown fine sandy loam
Subsoil:
7 to 10 inches, yellowish red fine sandy loam
10 to 14 inches, yellowish brown fine sandy loam
14 to 20 inches, yellowish brown gravelly loamy sand

Substratum:

20 to 25 inches, light olive brown very gravelly loamy coarse sand
25 to 65 inches, olive very gravelly loamy coarse sand
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Well drained
Permeability: Moderate in the surface, subsurface, and subsoil, and moderately rapid in the substratum
Available water capacity: Low
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Hermon and Monadnock soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Hermon and Monadnock soils.

Inclusions

- Becket soils are well drained firm glacial till. They are on crests and side slopes.
- Skerry soils are moderately well drained firm glacial till. They are in slight depressions, along drainageways, or on toeslopes.
- Colton soils are excessively drained glaciofluvial sand and gravel. They are intermingled with the Hermon and Monadnock soils on waterworked moraines
- Sheepscot soils are moderately well drained glaciofluvial sand and gravel. They are on footslopes or in slight depressions.
- Areas with slopes less than 8 percent and greater than 15 percent are included.
- Small areas with stones or boulders on the surface are included.

Use and Management

Current uses: Wild blueberry production, homesites, hayland, pasture, and as a source of gravel and sand

Major Management Concerns

- Poor filter in the Hermon soils
- Droughtiness in the Hermon soils
- Slope
- Hazard of seepage
- Cutbanks are not stable

General Management Considerations

Urban Development:

- Follow state or local regulations on septic system installation.
- If the Hermon soils are used for septic tank absorption fields, there is a possibility of groundwater contamination due to the poor filtering action of the substratum. Finertextured fill material below the bottom of the absorption field can help prevent this from occurring.
- Slope is a concern in installing septic tank absorption fields. Absorption lines should be installed on the contour.
- As the slope increases, building site development becomes more difficult.
- The rock fragment content in the Hermon soils causes moderate difficulties in excavation.
- Access roads must be designed to provide proper grade and drains are needed to control surface runoff and keep soil losses to a minimum.
- The rock fragment content in the Hermon soils causes moderate difficulties in the excavation, grading, and ditching activities involved in the construction and maintenance of roads.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.
- This map unit is an aquifer recharge area and because of the permeability of these soils, pollutants can move quickly through the soil and into the ground water. Contamination of the ground water is therefore possible if precautions are not taken. Restrictions on the types of activities that may occur, limitations on the density of housing, and special engineering designs for septic systems are possible precautionary measures.
- These areas are a probable source of gravel and sand.

Blueberry Management:

- This unit is very well suited to blueberry production.
- This unit has very few or no surface stones, and is well suited to flail mowing. Mechanical harvesting is moderately difficult due to slope.
- Irrigation and cultural practices such as weed control, insect and disease control, and fertility management will result in increased yields of blueberries.
- Irrigation water should be applied in amounts sufficient to wet the root zone but in amounts small enough to prevent the leaching of plant nutrients, insecticides, and herbicides.
- Water needs to be applied at a slow rate over a long period to insure that the root zone is properly wetted.
- Fertilization needs can be determined by leaf tissue analysis. Proper fertilization can result in greater top and rhizome growth and higher yields.
- The use of honeybees for pollination will increase the fruit set and result in higher yields.

Hay and Pasture:

- If this unit is used for hay and pasture, the main limitation is droughtiness in the Hermon soils.
- The use of proper stocking rates, pasture rotation, and restricted grazing during wet periods helps to keep the pasture in good condition and to protect the soil from erosion.
- Proper grazing practices, weed control, lime, and fertilizer are needed for maximum quality of forage.

HkB—Hermon-Monadnock complex, 3 to 8 percent slopes, very bouldery

Setting
Landform: Low ridges, moraines, and till plains
Description of areas: Irregular in shape and from 6 to over 50 acres in size
\section*{Composition}

Hermon and similar soils: 40 percent Monadnock and similar soils: 40 percent Inclusions: 20 percent

Hermon soil

Position on landscape: Crests, shoulder slopes, and side slopes
Parent material: Glacial till
Slope range: 3 to 8 percent
Slope features: Convex
Boulders on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, black sapric material
Subsurface layer:
2 to 6 inches, reddish gray sandy loam
Subsoil:
6 to 8 inches, dark reddish brown sandy loam
8 to 10 inches, dark brown gravelly sandy loam
10 to 18 inches, dark yellowish brown very gravelly loamy sand

Substratum:

18 to 32 inches, light olive brown extremely gravelly coarse sand
32 to 65 inches, olive very gravelly sand

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Somewhat excessively drained
Permeability: Moderately rapid or rapid in the surface, subsurface, and subsoil, and very rapid in the substratum
Available water capacity: Low
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None

Monadnock soil

Position on landscape: Crests, shoulder slopes, and side slopes
Parent material: Glacial till
Slope range: 3 to 8 percent
Slope features: Convex
Boulders on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, black sapric material

Subsurface layer:

2 to 5 inches, gray fine sandy loam
Subsoil:
5 to 8 inches, dark reddish brown fine sandy loam
8 to 12 inches, yellowish red fine sandy loam
12 to 16 inches, yellowish brown fine sandy loam
16 to 22 inches, yellowish brown gravelly loamy sand
Substratum:
22 to 27 inches, light olive brown very gravelly loamy coarse sand
27 to 65 inches, olive very gravelly loamy coarse sand
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Well drained
Permeability: Moderate in the surface, subsurface, and subsoil, and moderately rapid in the substratum
Available water capacity: Low
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Hermon and Monadnock soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Hermon and Monadnock soils.

Inclusions

- Becket soils are well drained firm glacial till. They are on crests and side slopes.
- Skerry soils are moderately well drained firm glacial till. They are in slight depressions or along drainageways.
- Soils that are similar to the Skerry and Becket soils but lack the firm substratum are intermingled with the Hermon and Monadnock soils.
- Colton soils are excessively drained and Masardis soils are somewhat excessively drained. They are glaciofluvial sand and gravel and are intermingled with the Hermon and Monadnock soils on waterworked moraines and in areas adjacent to glaciofluvial deposits.
- Sheepscot soils are moderately well drained glaciofluvial sand and gravel. They are on footslopes or in slight depressions.
- Croghan soils are moderately well drained glaciofluvial sand. They are on toeslopes at the perimeter of the unit in areas adjacent to glaciofluvial deposits.
- Kinsman soils are poorly drained glaciofluvial sand. They are on toeslopes and in depressions in areas adjacent to glaciofluvial deposits.
- Areas with slopes less than 3 percent and greater than 8 percent are included.
- Areas with greater than 3 percent boulders and stones on the surface are included.

Use and Management

Current uses: Wild blueberry production, homesites, pasture, or it is idle land.

Major Management Concerns

- Poor filter in the Hermon soils
- Droughtiness in the Hermon soils
- Boulders on the surface
- Hazard of seepage
- Cutbanks are not stable

General Management Considerations

Urban Development:

- Follow state or local regulations on septic system installation.
- If the Hermon soils are used for septic tank absorption fields, there is a possibility of groundwater contamination due to the poor filtering action of the substratum. Finertextured fill material below the bottom of the absorption field can help prevent this from occurring.
- Slope is a concern in installing septic tank absorption fields. Absorption lines should be installed on the contour.
- The rock fragment content in the Hermon soils causes moderate difficulties in excavation.
- The rock fragment content in the Hermon soils causes moderate difficulties in the excavation, grading, and ditching activities involved in the construction and maintenance of roads.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.
- This map unit is an aquifer recharge area and because of the permeability of these soils, pollutants can move quickly through the soil and into the ground water. Contamination of the ground water is therefore possible if precautions are not taken. Restrictions on the types of activities that may occur, limitations on the density of housing, and special engineering designs for septic systems are possible precautionary measures.
- These areas are a probable source of gravel and sand.

Blueberry Management:

- This unit is well suited to blueberry production.
- This unit is not suited to flail mowing or mechanical harvesting because of surface boulders and stones.
- Irrigation and cultural practices such as weed control, insect and disease control, and fertility management will result in increased yields of blueberries.
- Irrigation water should be applied in amounts sufficient to wet the root zone but in amounts small enough to prevent the leaching of plant nutrients, insecticides, and herbicides.
- Water needs to be applied at a slow rate over a long period to insure that the root zone is properly wetted.
- Fertilization needs can be determined by leaf tissue analysis. Proper fertilization can result in greater top and rhizome growth and higher yields.
- The use of honeybees for pollination will increase the fruit set and result in higher yields.

Hay and Pasture:

- If this unit is used for hay and pasture, the main limitations are droughtiness in the Hermon soils and boulders on the surface.
- Surface boulders and stones limit the use of equipment for harvesting hay.
- The use of proper stocking rates, pasture rotation, and restricted grazing during wet periods helps to keep the pasture in good condition and to protect the soil from erosion.
- Proper grazing practices, weed control, lime, and fertilizer are needed for maximum quality of forage.

HkC—Hermon-Monadnock complex, 8 to 15 percent slopes, very bouldery

Setting
Landform: Hills, ridges, and till plains
Description of areas: Irregular in shape and from 6 to over 50 acres in size
\section*{Composition}

Hermon and similar soils: 50 percent Monadnock and similar soils: 30 percent Inclusions: 20 percent

Hermon soil

Position on landscape: Crests, shoulder slopes, and side slopes
Parent material: Glacial till
Slope range: 8 to 15 percent
Slope features: Convex
Boulders on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, black sapric material
Subsurface layer:
2 to 6 inches, reddish gray sandy loam
Subsoil:
6 to 8 inches, dark reddish brown sandy loam
8 to 10 inches, dark brown gravelly sandy loam
10 to 18 inches, dark yellowish brown very gravelly loamy sand

Substratum:

18 to 32 inches, light olive brown extremely gravelly coarse sand
32 to 65 inches, olive very gravelly sand

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Somewhat excessively drained
Permeability: Moderately rapid or rapid in the surface, subsurface, and subsoil, and rapid or very rapid in the substratum
Available water capacity: Low
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None

Monadnock soil

Position on landscape: Crests, shoulder slopes, and side slopes
Parent material: Glacial till
Slope range: 8 to 15 percent
Slope features: Convex
Boulders on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, black sapric material
Subsurface layer:
2 to 5 inches, gray fine sandy loam

Subsoil:

5 to 8 inches, dark reddish brown fine sandy loam
8 to 12 inches, yellowish red fine sandy loam
12 to 16 inches, yellowish brown fine sandy loam
16 to 22 inches, yellowish brown gravelly loamy sand
Substratum:
22 to 27 inches, light olive brown very gravelly loamy coarse sand
27 to 65 inches, olive very gravelly loamy coarse sand

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Well drained
Permeability: Moderate in the surface, subsurface, and subsoil, and moderately rapid in the substratum
Available water capacity: Low
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Hermon and Monadnock soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Hermon and Monadnock soils.

Inclusions

- Becket soils are well drained firm glacial till. They are on crests and side slopes.
- Skerry soils are moderately well drained firm glacial till. They are in slight depressions or along drainageways.
- Colton soils are excessively drained and Masardis soils are somewhat excessively drained. They are glaciofluvial sand and gravel. They are intermingled with the Hermon and Monadnock soils on waterworked moraines.
- Sheepscot soils are moderately well drained glaciofluvial sand and gravel. They are on footslopes or in slight depressions.
- Areas of soils that are moderately well drained or well drained and a highly complex mix of glacial till with glaciomarine and glaciolacustrine very fine sand and silt are included. These soils are at elevations of about 200 to 350 feet and are at the frontal edge of the outwash delta in the western part of the county.
- Areas with slopes less than 8 percent and greater than 15 percent are included.
- Areas with greater than 3 percent boulders and stones on the surface are included.

Use and Management

Current uses: Wild blueberry production, homesites, pasture, or as a source of gravel and sand

Major Management Concerns

- Poor filter in the Hermon soils
- Droughtiness in the Hermon soils
- Slope
- Cutbanks are not stable
- Boulders on the surface
- Hazard of seepage

General Management Considerations

Urban Development:

- Follow state or local regulations on septic system installation.
- If the Hermon soils are used for septic tank absorption fields, there is a possibility of groundwater contamination due to the poor filtering action of the substratum. Finertextured fill material below the bottom of the absorption field can help prevent this from occurring.
- Slope is a concern in installing septic tank absorption fields. Absorption lines should be installed on the contour.
- As the slope increases, building site development becomes more difficult.
- The rock fragment content in the Hermon soils causes moderate difficulties in excavation.
- Access roads must be designed to provide proper grade and drains are needed to control surface runoff and keep soil losses to a minimum.
- The rock fragment content in the Hermon soils causes moderate difficulties in the excavation, grading, and ditching activities involved in the construction and maintenance of roads.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion. This map unit is an aquifer recharge area and because of the permeability of these soils, pollutants can move quickly through the soil and into the ground water. Contamination of the ground water is therefore possible if precautions are not taken. Restrictions on the types of activities that may occur, limitations on the density of housing, and special engineering designs for septic systems are possible precautionary measures.
- These areas are a probable source of gravel and sand.

Blueberry Management:

- This unit is well suited to blueberry production.
- This unit is not suited to flail mowing or mechanical harvesting because of surface stones.
- Irrigation and cultural practices such as weed control, insect and disease control, and fertility management will result in increased yields of blueberries.
- Irrigation water should be applied in amounts sufficient to wet the root zone but in amounts small enough to prevent the leaching of plant nutrients, insecticides, and herbicides.
- Water needs to be applied at a slow rate over a long period to insure that the root zone is properly wetted.
- Fertilization needs can be determined by leaf tissue analysis. Proper fertilization can result in greater top and rhizome growth and higher yields.
- The use of honeybees for pollination will increase the fruit set and result in higher yields.

Hay and Pasture:

- If this unit is used for hay and pasture, the main limitations are droughtiness in the Hermon soils and boulders and stones on the surface.
- Surface boulders and stones limit the use of equipment for harvesting hay.
- The use of proper stocking rates, pasture rotation, and restricted grazing during wet periods helps to keep the pasture in good condition and to protect the soil from erosion.
- Proper grazing practices, weed control, lime, and fertilizer are needed for maximum quality of forage.

HMD—Hermon-Monadnock complex, 15 to 30 percent slopes, very bouldery

Setting
Landform: Moraines, hills, and ridges
Description of areas: Irregular in shape and from 20 to over 100 acres in size
\section*{Composition}

Hermon and similar soils: 45 percent Monadnock and similar soils: 35 percent Inclusions: 20 percent

Hermon soil

Position on landscape: Crests, shoulder slopes, and side slopes
Parent material: Glacial till
Slope range: 15 to 30 percent
Slope features: Convex
Boulders on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, black sapric material
Subsurface layer:
2 to 6 inches, reddish gray sandy loam
Subsoil:
6 to 8 inches, dark reddish brown sandy loam
8 to 10 inches, dark brown gravelly sandy loam
10 to 18 inches, dark yellowish brown very gravelly loamy sand
Substratum:
18 to 32 inches, light olive brown extremely gravelly coarse sand
32 to 65 inches, olive very gravelly sand

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Somewhat excessively drained
Permeability: Moderately rapid or rapid in the surface, subsurface, and subsoil, and rapid or very rapid in the substratum
Available water capacity: Low
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None

Monadnock soil

Position on landscape: Crests, shoulder slopes, and side slopes
Parent material: Glacial till
Slope range: 15 to 30 percent
Slope features: Convex
Boulders on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, black sapric material

Subsurface layer:
2 to 5 inches, gray fine sandy loam
Subsoil:
5 to 8 inches, dark reddish brown fine sandy loam
8 to 12 inches, yellowish red fine sandy loam
12 to 16 inches, yellowish brown fine sandy loam
16 to 22 inches, yellowish brown gravelly loamy sand
Substratum:
22 to 27 inches, light olive brown very gravelly loamy coarse sand
27 to 65 inches, olive very gravelly loamy coarse sand
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Well drained
Permeability: Moderate in the surface, subsurface, and subsoil, and moderately rapid in the substratum
Available water capacity: Low
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Hermon and Monadnock soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Hermon and Monadnock soils.

Inclusions

- Becket soils are well drained dense glacial till. They are on shoulder slopes and side slopes.
- Danforth soils are well drained glacial till with greater than 35 percent rock fragments. They are intermingled with the Hermon and Monadnock soils in the northern part of the survey area.
- Skerry soils are moderately well drained dense glacial till. They are on footslopes and toeslopes.
- Sheepscot soils are moderately well drained glaciofluvial deposits. They are on footslopes and toeslopes below the Hermon and Monadnock soils.
- Tunbridge soils are moderately deep, well drained glacial till. They are on shoulder slopes and crests.
- Lyman soils are somewhat excessively drained, shallow glacial till. They are intermingled with the Tunbridge soils on crests.
- Areas with greater than 3 percent surface boulders and stones are included.
- Areas with slopes greater than 30 percent or less than 15 percent are included.

Use and Management

Current uses: Woodland and as a source of gravel.

Major management concerns

- Slope
- Cutbanks are not stable
- Boulders on the surface
- Droughtiness in the Hermon soils
- Hazard of seepage
- Poor filter in the Hermon soils

General Management Considerations

Woodland Management:

- The potential productivity of this unit for trees is medium on the Hermon soils and high on the Monadnock soils.
- These areas are a probable source of gravel and sand.
- Minimizing the risk of erosion is essential in harvesting timber.
- Proper design of road drainage systems and care in the placement of culverts help to control erosion.
- Spoil from excavations is subject to rill and gully erosion and to sloughing.
- Roads and landings can be protected from erosion by constructing waterbars and by seeding cuts and fills.
- Laying out skid trails and roads on the contour will reduce erosion.
- Planting trees on the contour and interplanting with a cover crop helps to control erosion.
- Revegetating disturbed areas around landings, skid trails, roads, and construction sites as soon as possible
- Equipment limitations are moderate.
- Conventional methods of harvesting timber can be used.
- Boulders and stones on the surface can interfere with felling, yarding, and other operations involving the use of equipment.
- Seedling mortality can be reduced on the Hermon soils by planting seedlings in spring when soil moisture levels are highest and by using planting stock that is larger than usual or containerized. Reinforcement planting may be needed.
- Plant competition delays natural regeneration but does not prevent the eventual development of a fully stocked, normal stand of trees.
- Competing vegetation can be controlled by properly preparing the site and by eliminating unwanted weeds, brush, or trees.

Recreation Development:

- If this unit is used for camping areas, picnic areas, and paths and trails, the main limitations are slope and boulders and stones on the surface.
- Erosion and sedimentation can be controlled and the beauty of the area enhanced by maintaining adequate plant cover.
- Plant cover can be maintained by limiting traffic.

Urban Development:

- Follow state or local regulations on septic system installation.
- If the Hermon soils are used for septic tank absorption fields, there is a possibility of groundwater contamination due to the poor filtering action of the substratum.
- Finer-textured fill material below the bottom of the absorption field can help prevent this from occurring.
- Slope is a concern in installing septic tank absorption fields. Absorption lines should be installed on the contour.
- As the slope increases, building site development becomes more difficult.
- Access roads must be designed to provide proper grade and drains are needed to control surface runoff and keep soil losses to a minimum.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.
- These areas are a probable source of gravel and sand.

HOE—Hermon-Monadnock complex, 15 to 45 percent slopes, extremely bouldery

Setting
Landform: Moraines, hills, and ridges
Description of areas: Elongated or irregular in shape and from 20 to over 100 acres in size.

Composition

Hermon and similar inclusions: 50 percent
Monadnock and similar inclusions: 35 percent
Contrasting inclusions: 15 percent
Hermon soil
Position on landscape: Crests, shoulder slopes and side slopes
Parent material: Glacial till
Slope range: 15 to 45 percent
Slope features: Convex
Boulders on surface: 3 to 15 percent

Typical profile

Surface layer:
0 to 2 inches, black highly decomposed organic material
Subsurface layers:
2 to 6 inches, reddish gray sandy loam
Subsoil:
6 to 8 inches, dark reddish brown sandy loam
8 to 10 inches, dark brown gravelly sandy loam
0 to 18 inches, dark yellowish brown very gravelly loamy sand

Substratum:

18 to 32 inches, light olive brown extremely gravelly coarse sand
32 to 65 inches, olive very gravelly sand

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Somewhat excessively drained
Permeability: Moderately rapid or rapid in the surface, subsurface and subsoil, and rapid in the substratum
Available water capacity: Low
Depth to restrictive layer: Greater than 60 Inches
Hazard of flooding: None

Monadnock soil

Position on landscape: Crests, shoulder slopes and side slopes
Parent material: Glacial till
Slope range: 15 to 45 percent
Slope features: Convex
Boulders on surface: 3 to 15 percent

Typical Profile

Surface layer:
0 to 2 inches, black highly decomposed organic material

Subsurface layers:

2 to 5 inches, gray fine sandy loam
Subsoil:
5 to 8 inches, dark reddish brown fine sandy loam
8 to 12 inches, yellowish red fine sandy loam
12 to 16 inches, yellowish brown fine sandy loam
14 to 22 Inches, yellowish brown gravelly loamy sand

Substratum:

22 to 27 inches, light olive brown very gravelly loamy coarse sand
27 to 65 inches, olive very gravelly loamy coarse sand
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Well drained
Permeability: Moderate in the surface, subsurface, and subsoil, and moderately rapid in the substratum
Available water capacity: Low
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None

Included Areas

Similar inclusions

Soils are included in this map unit which are like the Hermon and Monadnock soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Hermon and Monadnock soils.

Contrasting Inclusions

- Becket soils are well-drained dense glacial till. They are on shoulder slopes and side slopes.
- Skerry soils are moderately well drained dense glacial till. They are on footslopes and toeslopes and adjacent to drainageways.
- Sheepscot soils are moderately well drained glaciofluvial deposits. They are on footslopes and toeslopes below the Hermon and Monadnock soils.
- Tunbridge soils are moderately deep well drained glacial till. They are on shoulder slopes and crests.
- Lyman soils are shallow somewhat excessively drained glacial till. They are intermingled with the Tunbridge soils on crests and shoulder slopes.
- Areas with greater than 15 percent and less than 3 percent boulders and stones on the surface are included.
- Slopes greater than 45 percent and less than 15 percent are included.

Use and Management

Current uses: Woodland and as a source of gravel

Major Management Concerns

- Slope
- Cutbacks are not stable
- Boulders on the surface
- Doughtiness in the Hermon soil is
- Hazard of seepage
- Poor filter in the Hermon soils

General Management Considerations

Woodland Management:

- The potential productivity of this unit for trees is medium on the Hermon soils and high on the Monadnock soils.
- These areas are a probable source of gravel and sand.
- Minimizing the risk of erosion is essential in harvesting timber.
- Proper design of road drainage systems and care in the placement of culverts help to control erosion. Spoil from excavations is subject to rill and gully erosion and to sloughing.
- Roads and landings can be protected from erosion by constructing waterbars and by seeding cuts and fills.
- Laying out skid trails and roads on the contour will reduce erosion. Planting trees on the contour and interplanting with a cover crop helps to control, erosion.
- Revegetating disturbed areas around landings, skid trails, roads and construction sites as soon as possible helps to control soil erosion. Equipment limitations are severe.
- Conventional methods of harvesting timber are difficult to use because of slope.
- Stones on the surface can interfere with felling, yarding, and other operations involving the use of equipment.
- Seedling mortality can be reduced on the Hermon soils by planting seedlings in spring when soil moisture levels are highest and by using planting stock that is larger than usual or containerized.
- Reinforcement planting may be needed.
- Plant competition delays natural regeneration but does not prevent the eventual development of a fully stocked normal stand of trees.
- Competing vegetation can be controlled by properly preparing the site and by eliminating unwanted weeds, brush, or trees.

Recreation Development:

- If this unit is used for camping areas, picnic areas, and paths and trails, the main limitations are slope and boulders and stones on the surface.
- Erosion and sedimentation can be controlled and the beauty of the area enhanced by maintaining adequate plant cover. Plant cover can be maintained by limiting traffic.
- Slope limits the use of most areas of this unit mainly to a few paths and trails, which should extend across the slope.

Urban Development:

- Follow state or local regulations on septic system installation.
- Slope is a serious concern in installing septic tank absorption fields.
- Absorption lines should be installed on the contour.
- If the Hermon soils are used for septic tank absorption fields, there is a possibility of groundwater contamination due to the poor filtering action of the substratum.
Finer-textured fill material below the bottom of the absorption field can help prevent this from occurring.
- As the slope increases, building site development becomes more difficult.
- Access roads must be designed to provide proper grade and drains are needed to control surface runoff and keep soil losses to a minimum.
- Excavation for roads and buildings increases the hazard of erosion Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.
- These areas are a probable source of gravel and sand.

HSC-Hermon-Monadnock-Skerry complex, 3 to 15 percent slopes, very bouldery

Setting
Landform: Moraines, hills, and ridges
Description of areas: Irregular in shape and from 20 to over 300 acres in size
\section*{Composition}

Hermon and similar inclusions: 40 percent
Monadnock and similar inclusions: 30 percent
Skerry and similar inclusions: 15 percent
Contrasting inclusions: 15 percent

Hermon soil

Position on landscape: Crests, shoulder slopes, and side slopes
Parent material: Glacial till
Slope range: 5 to 15 percent
Slope features: Convex
Boulders on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, black highly decomposed organic material
Subsurface layer:
2 to 6 inches, reddish gray, sandy loam
Subsoil:
6 to 8 inches, dark reddish brown sandy loam
8 to 10 inches, dark brown gravelly sandy loam
10 to 18 inches, dark yellowish brown very gravelly loamy sand
Substratum:
18 to 32 inches, light olive brown extremely gravelly coarse sand
32 to 65 inches, olive very gravelly sand

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Somewhat excessively drained
Permeability: Moderately rapid or rapid in the surface, subsurface, subsoil, and rapid in the substratum
Available water capacity: Low
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None

Monadnock soil

Position on landscape: Crests, shoulder and side slopes
Parent material: Glacial till
Slope range: 3 to 15 percent
Slope features: Convex
Boulders on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, black highly decomposed organic material

Subsurface layer:
2 to 5 inches, gray fine sandy loam
Subsoil:
5 to 8 inches, dark reddish brown fine sandy loam
8 to 12 inches, yellowish red Fine sandy loam
12 to 16 inches, yellowish brown fine sandy loam
16 to 22 inches, yellowish brown gravelly loamy sand
Substratum:
22 to 27 inches, light olive brown, very gravelly loamy coarse sand
27 to 6 inches, olive very gravelly loamy coarse sand
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Well drained
Permeability: Moderate in the surface, subsurface, arid subsoil, arid moderately rapid in the substratum
Available water capacity: Low
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None

Skerry soil

Position on landscape: Footslopes and toeslopes
Parent material: Dense glacial till
Slope range: 3 to 8 percent
Slope features: Convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, black highly decomposed organic material
Subsurface layer:
2 to 3 inches, grayish brown, very friable, fine sandy loam
Subsoil:
3 to 4 inches, dark reddish brown very friable, fine sandy loam
4 to 8 inches, brown, very friable, fine sandy loam
8 to 18 inches, dark yellowish brown, friable, gravelly fine sandy loam
18 to 24 inches, light olive brown, mottled, firm, gravelly fine sandy loam
Substratum:
24 to 65 inches 60 percent olive, mottled, loose, gravelly loamy sand and 40 percents olive, mottled, firm, gravelly sandy loam

Soil Properties and Qualities

Depth class: Very deep
Drainage clasS: Moderately well drained
Permeability: Moderate in the surface, subsurface, and subsoil, and slow or moderately slow in the substratum
Available water capacity: Low
Depth to restrictive layer: 15 to 30 inches
Hazard of flooding: None

Included Areas

Similar Inclusions

Soils are included in this map unit which are like the Herman, Monadnock, and Skerry in most properties, but differ in some respect, such as color, surface texture, or
consistence. Interpretations for most common uses are reasonably similar to those for the Hermon, Monadnock and Skerry soils.

Contrasting Inclusions

- Becket soils are well drained dense glacial till. They are on shoulder slopes and side slopes.
- Colonel soils are somewhat poorly drained dense glacial till. They are intermingled with the Skerry soils on toeslopes, in slight depressions, and adjacent to drainageways.
- Areas of soils similar to Skerry soils without the dense substratum are included.
- Colton soils are excessively drained and Masardis soils are somewhat excessively drained glaciofluvial deposits. They are intermingled with the Hermon and Monadnock soils on waterworked moraines.
- Sheepscot soils are moderately well drained glaciofluvial deposits. They are on footslopes and toeslopes below the Hermon and Monadnock soils.
- Danforth soils are well drained glacial till with greater than 35 percent rock fragments. They are intermingled with the Herman and Monadnock soils in the northern part of the survey area.
- Tunbridge soils are well-drained moderately deep glacial till. They are on the crests and shoulder slopes of bedrock-controlled knolls.
- Lyman soils are somewhat excessively drained shallow glacial till. They are intermingled with the Tunbridge soils on the crests of bedrock-controlled knolls
- Areas with slopes greater than 15 percent are included.
- Areas with greater than 3 percent surface stones and boulders are included.

Use and Management

Current uses: Woodland and a source of gravel

Major Management Concerns

- Boulders and stones on, the surface cutbanks are not stable in the Hermon and Monadnock soils
- Hazard of seepage in the Hermon and Monadnock soils
- Droughtiness in the Hermon soils
- Poor filter in the Hermon soils
- Seasonal high water table in the Skerry soils
- Frost action in the Skerry soils
- Slope in some areas

General Management Considerations

Woodland Management:

- The potential productivity of this unit for trees is medium in the Hermon soils, high in the Monadnock soils, and very high in the Skerry soils.
- The Hermon and Monadnock soils are probable sources of gravel and sand.
- Minimizing the risk of erosion is essential in harvesting timber.
- Revegetating disturbed areas around landings, skid trails, roads, and construction sites as soon as possible helps to control erosion.
- Conventional methods of harvesting timber can be used.
- Boulders on the surface can interfere with felling, yarding, and other operations involving the use of equipment.
- Seedling mortality can be reduced on the Hermon soils by planting seedlings in spring when soil moisture levels are highest and by using planting stock that is larger than usual or containerized. Reinforcement planting may be needed.
- Seasonal high water table and dense substratum cause trees to be shallow rooted.
- Care should be taken in harvesting and thinning to reduce trees exposed to the prevailing winds.
- Harvesting by stripcutting will expose fewer trees to the prevailing wind and to prevent windthrow.
- Plant competition delays natural regeneration but does not prevent the eventual development of a fully stocked, normal stand of trees.
- Competing vegetation can be control led by properly preparing the site and by eliminating unwanted weeds, brush, or trees.

Recreation Development:

- If this unit is used for camping areas, picnic areas, paths and trails, the main limitations are slope, boulders and stones on the surface, and seasonal high water table in the Skerry soils.
- Drainage will help reduce wetness problems in the Skerry soils.
- Erosion and sedimentation can be controlled, and the beauty of the area enhanced by maintaining adequate plant cover. Plant cover can be maintained by limiting traffic.

Urban Development:

- The limitation for septic tank absorption fields is severe on the Hermon and Skerry soils and moderate on the Monadnock soils.
- If the Hermon or Monadnock soils are used for septic tank absorption fields, there is a possibility of groundwater contamination due to the poor filtering action of the substratum. Finer-textured fill material below the bottom of the absorption field can help prevent this from occurring.
- If the Skerry soils are used for septic tank absorption fields, the limitation of seasonal high water table can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- If the Skerry soils are used for septic tank absorption fields, permeability limitations can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the dense substratum.
- Slope is a concern in installing septic tank absorption fields.
- Absorption lines should be installed on the contour.
- As the slope increases, building site development becomes more difficult.
- Wetness in the Skerry soils can be reduced by installing drainage tile around footings and backfilling with material that has good permeability.
- The rock fragment content of the Hermon soils causes moderate difficulties in excavation.
- Access roads must be designed to provide proper grade and drains are needed to control surface runoff and keep soil losses to a minimum.
- The rock fragment content of the Hermon soils causes moderate difficulties in the excavation, grading and ditching activities involved in the construction and maintenance of roads.
- If the Skerry soils are used as a base for roads, a coarse grained subgrade to frost depth is needed to prevent frost action.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.
- These areas are a probable source of gravel and sand.

HVC-Hermon-Monadnock-Skerry complex, 3 to 15 percent slopes extremely bouldery

Setting
Landform: Moraines, hills, and ridges
Description of areas: Irregular in shape and from 20 to over 200 acres in size
\section*{Composition}

Hermon and similar inclusions: 40 percent
Monadnock and similar inclusions: 30 percent
Skerry and similar inclusions: 15 percent
Contrasting inclusions: 15 percent

Hermon soil

Position on landscape: Crests, shoulder slopes, and side slopes
Parent material: Glacial till
Slope range: 3 to 15 percent
Slope features: Convex
Boulders on surface: 3 to 15 percent

Typical Profile

Surface layer:
0 to 2 inches, black highly decomposed organic material
Subsurface layers:
2 to 6 inches, reddish gray sandy loam
Subsoil:
6 to 8 inches, dark reddish brown sandy loam
8 to 10 inches, dark brown gravelly sandy loam
10 to 18 inches, dark yellowish brown very gravelly loamy sand

Substratum:

18 to 32 inches, light olive brown extremely gravelly coarse sand
32 to 65 inches, olive very gravelly sand

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Somewhat excessively drained
Permeability: Moderately rapid or rapid in the surface, subsurface, and subsoil, and rapid in the substratum
Available water capacity: Low
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None

Monadnock soil

Position on landscape: Crests, shoulder slopes, and side slopes
Parent material: Glacial till
Slope range: 3 to 15 percent
Slope features: Convex
Boulders on surface: 3 to 15 percent

Typical Profile

Surface layer:
0 to 2 inches, black highly decomposed organic material

Subsurface layer:
2 to 5 inches, gray fine sandy loam
Subsoil:
5 to 8 inches, dark reddish brown fine sandy loam
8 to 12 inches, yellowish red fine sandy loam
12 to 16 inches, yellowish brown fine sandy loam
16 to 22 inches, yellowish brown gravelly loamy sand
Substratum:
22 to 27 inches, light olive brown very gravelly loamy coarse sand
27 to 65 inches, olive very gravelly loamy coarse sand
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Well drained
Permeability: Moderate in the surface, subsurface, and subsoil, and moderately rapid in the substratum
Available water capacity: Low
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None

Skerry soil

Position on landscape: Footslopes and toeslopes
Parent material: Dense glacial till
Slope range: 3 to 8 percent
Slope Features: Convex
Stones on surface: 3 to 15 percent

Typical Profile

Surface layer:
0 to 2 inches, black highly decomposed organic material
Subsurface layer:
2 to 3 inches, grayish brown, very friable, fine, sandy loam
Subsoil:
3 to 4 inches, dark reddish brown, very friable, fine sandy loam
4 to 8 inches, brown, very friable, fine sandy loam
8 to 18 inches, dark yellowish brown, friable, gravelly, fine, sandy loam
18 to 24 inches, light olive brown, mottled, firm, gravelly, fine, sandy loam
Substratum:
24 to 65 inches, 60 percent olive, mottled, loose, gravelly loamy sand and 40 percent, olive, mottled, firm, gravelly sandy loam

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Moderate in the surface, subsurface, and subsoil, and slow or moderately slow in the substratum
Available water capacity: Low
Depth to restrictive layer: 15 to 30 inches
Hazard of flooding: None

Included Areas

Similar Inclusions

Soils are included in this map unit which are like the Hermon, Monadnock, and Skerry soils in most properties, but differ in some respect, such as color, surface
texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Hermon, Monadnock, and Skerry soils.

Contrasting Inclusions

- Becket soils are well-drained dense glacial till. They are on shoulder slopes and side slopes.
- Sheepscot soils are moderately well drained glaciofluvial deposits. They are on footslopes and toeslopes below the Hermon and Monadnock soils.
- Colonel soils are somewhat poorly drained dense glacial till. They are on footslopes, toeslopes, slight depressions and adjacent to drainageways.
- Brayton soils are poorly drained dense glacial till. They are in depressions and adjacent to drainageways.
- Areas with slopes greater than 15 percent are included.
- Areas with less than 3 percent or greater than 15 percent boulders and stones on the surface are included.

Use and Management

Current uses: Woodland and as a source of gravel

Major Management Concerns

- Boulders on the surface of the Hermon and Monadnock soils
- Cutbanks are not stable on the Hermon and Monadnock soils
- Droughtiness in the Hermon soils
- Poor filter in the Hermon soils
- Slope in some areas
- Seasonal high water table In the Skerry soils
- Frost action in the Skerry soils
- Hazard of seepage

General Management Considerations

Woodland Management:

- The potential productivity of this unit for trees is medium on the Hermon soils, high on the Monadnock soils, and very high on the Skerry soils.
- The Hermon and Monadnock soils are a probable source of gravel and sand.
- Minimizing the risk of erosion is essential in harvesting timber.
- Revegetating disturbed areas around landings, skid trails, roads, and construction sites as soon as possible helps to control soil erosion. Equipment limitations are moderate on the Hermon and Monadnock soils and slight on the Skerry soils.
- Conventional methods of harvesting timber can be used.
- Boulders and stones on the surface can interfere with felling, yarding, and other operations involving the use of equipment.
- Seedling mortality can be reduced on the Hermon soils by planting seedlings in spring when soil moisture levels are highest and by using planting stock that is larger than usual or containerized. Reinforcement planting may be needed.
- During some periods of heavy rainfall, the water table is perched at a shallow depth for a short time in the Skerry soils. Trees commonly are subject to windthrow because the soil is saturated during these periods and because root growth is limited by the dense substratum.
- Care should be taken in harvesting and thinning to reduce trees exposed to the prevailing winds.
- Harvesting by stripcutting will expose fewer trees to the prevailing wind and help to prevent windthrow.
- Plant competition delays natural regeneration but does not prevent the eventual development of a fully stocked, normal stand of trees.
- After harvesting, reforestation must be carefully managed to reduce competition from undesirable understory plants.
- Competing vegetation can be controlled by properly preparing the site and by eliminating unwanted weeds, brush or trees.

Recreation Development:

- If this unit is used for camping areas, picnic areas, and paths and trails, the main limitations are boulders and stones on the surface, slope in some areas' and seasonal high water table in the Skerry soils.
- Drainage will help reduce wetness problems in the Skerry soils.
- Erosion and sedimentation can be controlled and the beauty of the area enhanced by maintaining adequate plant cover. Plant cover can be maintained by limiting traffic.

Urban Development:

- If the Hermon soils are used for septic tank absorption fields, there is a possibility of groundwater contamination due to the poor filtering action of the substratum. Finertextured fill material below the bottom of the absorption field can help prevent this from occurring.
- If the Skerry soils are used for septic tank absorption fields, the limitation of seasonal high water table can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- Slope is a concern in installing septic tank absorption fields. Absorption lines should be installed on the contour.
- As the slope increases, building site development becomes more difficult.
- The rock fragment content of the Hermon and Monadnock soils causes moderate difficulties in excavation.
- Wetness in the Skerry soils can be reduced by installing drainage tile around footings and backfilling with material that has good permeability.
- Access roads must be designed to provide proper grade and drains are needed to control surface runoff and keep soil losses to a minimum.
- The rock fragment content of the Hermon and Monadnock toils causes moderate difficulties in the excavation, grading, and ditching activities involved in the construction and maintenance of roads.
- If the Skerry soils are used as a base for roads, a coarse grained subgrade to frost depth is needed to prevent frost action.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.
- The Hermon and Monadnock soils are a probable source of gravel and sand.

HWE—Hogback-Abram-Rawsonville complex, 15 to 60 percent slopes, very stony

Setting
Landform: Hills and ridges on coastal islands and peninsulas, or in close proximity to a coastal setting.
Description of areas: Elongated in shape and from 20 to over 200 acres in size

Composition

Hogback and similar inclusions: 30 percent
Abram and similar inclusions: 25 percent

Rawsonville and similar inclusions: 25 percent
Contrasting inclusions: 20 percent

Hogback soil

Position on landscape: Crests, shoulder slopes, and side slopes
Parent material: Glacial till
Slope range: 15 to 60 percent
Slope features: Convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layers:
0 to 1 inch, black sapric material
Subsurface layer:
1 to 2 inches, reddish gray fine sandy loam
Subsoil:
2 to 14 inches, dusky red fine sandy loam
Bedrock:
14 inches, granite

Soil Properties and Qualities

Depth class: Shallow
Drainage class: Somewhat excessively drained
Permeability: Moderately rapid
Available water capacity: Low
Depth to restrictive layer: 10 to 20 inches
Hazard of flooding: None
\quad Abram soil
Position on landscape: Crest and shoulder slopes
Parent material: Glacial till
Slope range: 15 to 60 percent
Slope features: Convex
Stones on surface: 0.1 to 3 percent
Typical Profile
Surface layers:
0 to 2 inches, black, highly decomposed organic material
Subsurface layers:
2 to 5 inches, brown sandy loam
Subsoil:
5 to 6 inches, reddish brown sandy loam
Bedrock:
6 inches, granite

Soil Properties and Qualities

Depth class: Very shallow
Drainage class: Excessively drained
Permeability: Moderately rapid
Available water capacity: Very low
Depth to restrictive layer: 1 to 10 inches
Hazard of flooding: None

Rawsonville soil

Position on landscape: Side slopes and footslopes
Parent material: Glacial till
Slope range: 15 to 25 percent
Slope features Convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, dark reddish brown sapric material
Subsurface layer:
2 to 4 inches, pinkish gray fine sandy loam
Subsoil:
4 to 8 inches, dark reddish brown fine sandy loam
8 to 15 inches, reddish brown fine sandy loam
15 to 24 inches, strong brown fine sandy loam
24 to 30 inches, yellowish brown gravelly sandy loam
Substratum:
30 to 36 inches, brown gravelly sandy loam
Bedrock:
36 inches, schist
Soil Properties and Qualities
Depth class: Moderately deep
Drainage class: Well drained
Permeability: Moderate or moderately rapid
Available water capacity: Low
Depth to restrictive layer: 20 to 40 inches
Hazard of flooding: None

Included Areas

Similar Inclusions

Soils are included in this map unit which are like the Hogback, Abram, and Rawsonville soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Hogback, Abram, and Rawsonville soils.

Contrasting Inclusions

- Ricker soils are very shallow well drained organic soils. They are intermingled with Abram soils and rock outcrop on crests, shoulder slopes and side slopes.
- Areas of rock outcrop are on crests, shoulder slopes, and side slopes.
- Well drained and moderately well drained glacial till that have bedrock between 40 to 60 inches are on side slopes, shoulder slopes, and footslopes are included.
- Lyman soils are shallow somewhat excessively drained on crests, shoulder slopes, and side slopes. They have less organic carbon in their subsoil than Hogback soils.
- Tunbridge soils are moderately deep well drained soils on side slopes and footslopes. They have less organic carbon in their subsoil than Rawsonville soils.
- Areas of shallow or moderately deep glacial till that are very gravelly or extremely gravelly.
- Areas that have greater than 3 percent stones and boulders on the surface are included.
- Areas with slopes greater than 60 percent or less than 15 percent are included.

Use and Management

Current uses: Woodland

Major Management Concerns

- Slope
- Depth to bedrock
- Restricted rooting depth
- Stones on the surface
- Hazard of seepage

General Management Considerations

Woodland Management:

- The potential productivity of this unit for trees is medium on the Hogback soils, very low on the Abram soils, and high on the Rawsonville soils.
- Minimizing the risk of erosion is essential in harvesting timber.
- Proper design of road drainage systems and care in the placement of culverts help to control erosion. Spoil from excavations is subject to rill and gully erosion and to sloughing. Roads and landings can be protected from erosion by constructing waterbars and by seeding cuts and fills. Laying out skid trails and roads on the contour will reduce erosion.
- Revegetating disturbed areas around landings, skid trails, roads, and construction sites as soon as possible helps to control soil erosion.
- The steepness of slope limits the kinds of equipment that can be used in forest management.
- Trees are subject to windthrow because of restricted rooting depth due to the depth to bedrock.
- Care should be taken in harvesting and thinning to reduce trees exposed to he prevailing winds.
- Harvesting by stripcutting will expose fewer trees to the prevailing wind and help to prevent windthrow.
- Periodic salvaging of windthrown trees is advisable.
- Plant competition is moderate on the Hogback soils and slight on the Abram and Rawsonville soils.
- Competing vegetation can be controlled by properly preparing the site and by eliminating unwanted weeds, brush or trees.

Recreation Management:

- Slope limits the use of most areas of this unit mainly to a few paths and trails which should extend across the slope.
- Erosion and sedimentation can be controlled and the beauty of the area enhanced by maintaining adequate plant cover. Plant cover can be maintained by limiting traffic.

Urban Development:

- Septic systems should not be located in these areas.
- Septic systems should be located on inclusions of deeper less sloping soils in this map unit. If possible, fill material can be used to raise the level of the absorption field.
- Slope is a serious concern in installing septic tank absorption fields. Absorption lines should be installed on the contour.
- Cuts needed to provide level building sites can expose bedrock.
- If possible, dwellings with basements should be located on inclusions of deeper less sloping soils in this map unit; or the bedrock should be removed, or the foundation set on bedrock and backfilled to the established grade.
- As the slope increases, building site development becomes more difficult.
- The construction and maintenance of roads on this unit is very difficult due to the slope and depth to bedrock.
- Excavation, gradings and ditching activities involved in the construction and maintenance of roads can expose bedrock. Access roads must be designed to provide proper grade and drains are needed to control surface runoff and keep soil losses to a minimum. Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

HXC—Hogback-Rawsonville-Abram complex, 3 to 15 percent slopes, very stony

Setting
Landform: Hills, ridges, and till plains on coastal islands and peninsulas, or in close proximity to a coastal setting.
Description of areas: Irregular in shape and from 20 to over 500 acres in size

Composition

Hogback and similar inclusions: 30 percent
Rawsonville and similar inclusions: 30 percent
Abram and similar inclusions: 15 percent
Contrasting Inclusions: 25 percent

Hogback soil

Position on landscape: Crests, shoulder slopes, and upper side slopes
Parent material: Glacial till
Slope Range: 3 to 15 percent
Slope features: Convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 1 inch, black sapric material
Subsurface layers:
1 to 2 inches, reddish gray fine sandy loam
Subsoil:
2 to 14 inches, dusky red fine sandy loam
Bedrock:
14 inches, granite

Soil Properties and Qualities

Depth class: Shallow
Drainage class: Somewhat excessively drained
Permeability: Moderately rapid
Available water capacity: Low
Depth to restrictive layer: 10 to 20 inches
Hazard of flooding: None

Rawsonville soil

Position on landscape: Side slopes and footslopes
Parent material: Glacial till
Slope range: 3 to 15 percent
Slope features: Convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, dark reddish brown sapric material
Subsurface layer:
2 to 4 inches, pinkish gray fine sandy loam
Subsoil:
4 to 8 inches, dark reddish brown fine sandy loam
8 to 15 inches, reddish brown fine sandy loam
15 to 24 inches, strong brown fine sandy loam
24 to 30 inches, yellowish brown gravelly sandy loam
Substratum:
30 to 36 inches, brown gravelly sandy loam
Bedrock:
36 inches, schist
Soil Properties and Qualities
Depth class: Moderately deep
Drainage class: Well drained
Permeability: Moderate or moderately rapid
Available water capacity: Low
Depth to restrictive layer: 20 to 40 inches
Hazard of flooding: None

Abram soil
Position on landscape: Crests of knolls and ridges
Parent material: Glacial till
Slope range: 3 to 15 percent
Slope features: Convex
Stones on surface: 0.1 to 3 percent
\section*{Typical Profile}
Surface layer:
0 to 2 inches, black, highly decomposed organic material
Subsurface layer:
2 to 5 inches, brown sandy loam
Subsoil:
5 to 6 inches, reddish brown sandy loam
Bedrock:
6 inches, granite
Soil Properties and Qualities
Depth class: Very shallow
Drainage class: Excessively drained
Permeability: Moderately rapid
Available water capacity: Very low

Depth to restrictive layer: 1 to 10 inches to bedrock Hazard of flooding: None

Included Areas

Similar Inclusions

Soils are included in this map unit which are like the Hogback, Rawsonville, and Abram soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Hogback, Rawsonville, and Abram soils.

Contrasting Inclusions

- Ricker soils are very shallow well drained organic soils. They are intermingled with Abram soils and rock outcrop on the crests of knolls and ridges.
- Rock outcrop is intermingled with Abram and Ricker soils on the crests of knolls and ridges.
- Moderately deep moderately well drained and somewhat poorly drained glacial till are on side slopes and footslopes of knolls and ridges.
- Well drained and moderately well drained glacial till with bedrock between 40 to 60 inches are on side slopes; shoulder slopes, and footslopes.
- Lyman soils are shallow somewhat excessively drained soils on crests, shoulder slopes, and upper side slopes. They have less organic carbon in their subsoil than Hogback soils.
- Tunbridge soils are moderately deep well drained soils on side slopes and footslopes. They have less organic carbon in their subsoil than Rawsonville soils.
- Areas of soils that are similar to Hogback and Rawsonville soils and have greater than 35 percent rock fragments.
- Marlow soils are very deep well drained dense glacial till. They are on side slopes and shoulder slopes.
- Dixfield soils are very deep moderately well drained dense glacial till. They are on footslopes and side slopes.
- Lamoine soils are somewhat poorly drained glaciomarine deposits. They are on footslopes, toeslopes; and in slight depressions where this unit is adjacent to glaciomarine deposits.
- Areas with slopes greater than 15 percent and less than 3 percent are included.

Use and Management

Current uses: Woodland

Major Management Concerns

- Depth to bedrock
- Restricted rooting depth
- Slope in some areas
- Frost action in the Rawsonville soils
- Stones on the surface
- Hazard of seepage

General Management Considerations

Woodland Management:

- The potential productivity of this unit for trees is medium on the Hogback soils, high on the Rawsonville soils, and very low on the Abram soils.
- This unit has potential for the production and management of Balsam fir for wreath brush and Christmas trees.
- These areas have good natural reproduction of spruce and fir. Proper thinning practices will reduce overcrowding and promote the growth of these species.
- Minimizing the risk of erosion is essential in harvesting timber. Revegetating disturbed areas around landings; skid trails; roads; and construction sites as soon as possible helps to control soil erosion. Equipment limitations are slight.
- Conventional methods of harvesting timber can be used. Seedling mortality is moderate on the Hogback soils, slight on the Rawsonville soils, and severe on the Abram soils.
- Seedling mortality can be reduced on the Hogback and Abram soils by planting seedlings in spring when soil moisture levels are highest and by using planting stock that is larger than usual or containerized. Reinforcement planting may be needed.
- Care should be taken in harvesting and thinning to reduce trees exposed to the prevailing winds.
- Harvesting by stripcutting will expose fewer trees to the prevailing wind and help to prevent windthrow.
- Periodic salvaging of windthrown trees is advisable.
- Competing vegetation can be controlled by properly preparing the site and by eliminating unwanted weeds brush, or trees.

Recreation Management:

- If this unit is used for camping areas, picnic areas, and paths and trails, the main limitations are depth to bedrock and stones on, the surface.
- Erosion and sedimentation can be controlled and the beauty of the area enhanced by maintaining adequate plant cover. Plant cover can be maintained by limiting traffic.

Urban Development:

- Septic systems should be located on inclusions of deeper soils in this map unit if possible or fill material can be used to raise the level of the absorption field.
- Slope is a concern in installing septic tank absorption fields. Absorption lines should be installed on the contour.
- The limitation for dwellings with basements is severe. Cuts needed to provide level building sites can expose bedrock.
- Dwellings with basements should be located on inclusions of deeper soils in this map unit if possible, or the bedrock should be removed, or the foundation set on bedrock and backfilled to the established grade.
- Excavation, grading, and ditching activities involved in the construction and maintenance of roads can expose bedrock.
- Access roads must be designed to provide proper grade and drains are needed to control surface runoff and keep soil losses to a minimum.
- If the Rawsonville soils are used as a base for roads a coarse grained subgrade to frost depth is needed to prevent frost action.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

Kn—Kinsman loamy sand

Setting

Landform: Stream terraces, kame terraces, outwash plains, outwash deltas, old beach terraces, and till plains
Description of areas: Irregular or elongated in shape and from 6 to 20 acres in size

Composition

Kinsman and similar inclusions: 75 percent
Contrasting inclusions: 25 percent

Kinsman soil

Position on landscape: Toeslopes and depressions
Parent material: Glaciofluvial sands
Slope range: 0 to 3 percent
Slope features: Nearly level
Stones on surface: None

Typical Profile

Surface layer:
0 to 4 inches, black muck (sapric material)
Subsurface layer:
4 to 8 inches, light brownish gray sand
Subsoil:
8 to 12 inches, dark reddish brown sand
12 to 18 inches, dark reddish brown, mottled, sand
18 to 32 inches, dark brown, mottled, sand
32 to 42 inches, olive brown, mottled, sand
Substratum:
42 to 65 inches, olive, mottled, sand

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Poorly drained
Permeability: Rapid
Available water capacity: Low
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None

Included Areas

Similar Inclusions

Soils are included in this map unit which are like the Kinsman soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Kinsman soils.

Contrasting Inclusions

- Wonsqueak soils are very poorly drained organic soils. They are in the lowest part of depressions
- Very poorly drained glaciofluvial sand and in the lowest part of depressions
- Croghan soils are moderately well drained glaciofluvial sand. They are on higher positions in the landscape
- Nicholville soils are moderately well drained glaciolacustrine deposits. They are on higher knolls.

Use and Management

Current uses: Idle land

Major Management Concerns

- Seasonal high water table
- Cutbanks are not stable
- Hazard of seepage
- Poor filter

General Management Considerations

Urban Development:

- Follow state or local regulations on septic system installation.
- Septic systems should not be located in these areas.
- These areas should be avoided as sites for dwellings.
- Roadfill is needed to raise the roadbase above the seasonal high water table.
- This map unit is an aquifer recharge area and because of the permeability of this soil, pollutants can move quickly through the soil and into the ground water. Contamination of the ground water is therefore possible if precautions are not taken. Restrictions on the types of activities that may occur, limitations on the density of housing, and special engineering designs for septic systems are possible precautionary measures.

Blueberry Management:
This unit is poorly suited to blueberry production due to seasonal high water table.
Hay and Pasture:
This unit is very poorly suited to hay and pasture due to seasonal high water table.

KW—Kinsman-Wonsqueak association, 0 to 3 percent slopes

Setting

Landform: Outwash plains, kame terraces, beach terraces, stream terraces, and at the base of glaciated uplands
Description of areas: Irregular in shape and from 20 to over 100 acres in size

Composition

Kinsman and similar soils: 45 percent
Wonsqueak and similar soils: 35 percent
Inclusions: 20 percent
Kinsman soil
Position on landscape: Higher positions on the perimeter of the unit
Parent material: Glaciofluvial sands
Slope range: 0 to 3 percent
Slope features: Nearly level or concave
Stones on surface: None

Typical Profile

Surface layer:
0 to 4 inches, black muck (sapric material)
Subsurface layer:
4 to 8 inches, light brownish gray sand
Subsoil:
8 to 12 inches, dark reddish brown sand 12 to 18 inches, dark reddish brown, mottled, sand
18 to 32 inches, dark brown, mottled, sand
32 to 42 inches, olive brown, mottled, sand
Substratum:
42 to 65 inches, olive, mottled, sand

Soil Properties and Qualities
Depth class: Very deep
Drainage class: Poorly drained
Permeability: Rapid
Available water capacity: Low
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None

Wonsqueak soil

Position on landscape: Depressions
Parent material: Highly decomposed organic material underlain by mineral material Slope range: 0 to 2 percent
Slope features: Nearly level
Stones on surface: None
Typical Profile
Surface tier:
0 to 12 inches, black muck (sapric material)
Subsurface tier:
12 to 30 inches, black muck (sapric material)
Substratum:
30 to 65 inches, greenish gray silty clay loam

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Very poorly drained
Permeability: Moderately slow or moderate
Available water capacity: Very high
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Kinsman and Wonsqueak soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Kinsman and Wonsqueak soils.

Inclusions

- Croghan soils are moderately well drained glaciofluvial sand. They are on small knolls or in higher positions near the edges on the unit.
- Bucksport soils are very poorly drained highly decomposed organic materials. They are intermingled with the Wonsqueak soils.
- Areas of Kinsman soils that have a cemented subsoil in more than 40 percent of the soil are included.
- Areas of very poorly drained glaciofluvial sand are included. They are adjacent to the Wonsqueak soils.
- Areas of soils that are poorly drained and somewhat poorly drained glaciofluvial sands underlain by silt loam and silty clay loam are included. They are in areas adjacent to glaciomarine deposits.
- Areas of soils that are somewhat poorly drained and poorly drained glaciofluvial and glaciolacustrine very fine sand and silt are included. They are mainly in areas adjacent to drainageways.
- Small areas with stones on the surface are included.
- Areas with slopes greater than 3 percent are also included.

Use and Management

Current uses: Woodland

Major Management Concerns

- Seasonal high water table
- Hazard of seepage
- Cutbanks are not stable on the Kinsman soils
- Poor filter on the Kinsman soils
- Low strength on the Wonsqueak soils
- Excess humus on the Wonsqueak soils

General Management Considerations

Woodland Management:

- The potential productivity of this unit for trees is medium on the Kinsman soils and very low on the Wonsqueak soils.
- Minimizing the risk of erosion is essential in harvesting timber.
- Revegetating disturbed areas around landings, skid trails, roads, and construction sites as soon as possible helps to control soil erosion.
- Conventional methods of harvesting timber generally can be used but their use may be limited when the soil is wet.
- Because of the seasonal high water table harvesting operations should be restricted to winter months when the soil is frozen and when equipment is easiest to use and causes the least damage to the site.
- Roadfill is needed to raise the roadbase above the seasonal high water table.
- Only trees that can tolerate seasonal wetness should be planted.
- Trees commonly are subject to windthrow during periods when the soil is excessively wet and winds are strong.
- Care should be taken in harvesting and thinning to reduce trees exposed to the prevailing winds.
- Harvesting by stripcutting will expose fewer trees to the prevailing wind and help to prevent windthrow.
- If the site is not adequately prepared, competition from undesirable plants can prevent or prolong natural or artificial reestablishment of trees.
- Competing vegetation can be controlled by properly preparing the site and by eliminating unwanted weeds, brush, or trees.

Recreation Management:

If this unit is used for camping areas, picnic areas, and paths and trails, the main limitations are the seasonal high water table and excess humus in the Wonsqueak soils.

Urban Development:

- Follow state or local regulations on septic system installation.
- Septic systems should not be located in these areas.
- These areas should be avoided as sites for dwellings.
- Roadfill is needed to raise the roadbase above the seasonal high water table.
- If the soils are used as a base for roads, a coarse grained subgrade to frost depth is needed to prevent frost action.

LaB—Lamoine silt loam, 0 to 6 percent slopes

Setting
Landform: Terraces and plains
Description of areas: Irregular in shape and from 6 to 25 acres in size

Composition

Lamoine and similar soils: 80 percent
Inclusions: 20 percent

Lamoine soil

Position on landscape: Throughout
Parent material: Glaciomarine deposits
Slope range: 0 to 6 percent
Slope features: Nearly level or convex
Stones on surface: None

Typical Profile

Surface layer:
0 to 7 inches, brown, friable, silt loam
Subsoil:
7 to 10 inches, dark yellowish brown, mottled, friable, silt loam
10 to 16 inches, light olive brown, mottled, friable, silt loam
16 to 21 inches, olive, mottled, firm, silty clay loam
Substratum:
21 to 65 inches, olive, mottled, firm, silty clay

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Somewhat poorly drained
Permeability: Moderately slow or moderate in the surface, slow or moderately slow in
the upper subsoil, and very slow or slow in the lower subsoil and substratum
Available water capacity: Moderate
Depth to restrictive layer: 16 to 30 inches to firm substratum
Hazard of flooding: None
Depth to water table: 0.5 to 2.5 feet, perched, October to June

Included Areas

Similar soils

Soils are included in this map unit which are like the Lamoine soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Lamoine soils.

Inclusions

- Scantic soils are poorly drained. They are in depressions or along drainageways (fig. 6).
- Biddeford soils are very poorly drained. They are in the lowest depressions or along drainageways.
- Buxton soils are moderately well drained. They are on small convex knolls, on short steep slopes, or on the side slopes of drainageways.
- Areas with slopes greater than 6 percent are included.

Use and Management

Current uses: Hayland, pasture, or homesites

Major Management Concerns

- Seasonal high water table
- Very slow or slow permeability
- Low strength
- Frost action

Figure 6.-An area of somewhat poorly drained Lamoine silt loam, 0 to 6 percent slopes occurs in areas that are slightly higher in elevation and have the higher density of buttercup populations shown in the above picture. The poorly drained Scantic silt loam is found in lower elevations and slight depressions. In the above photo, the Scantic soil is found in the areas with darker grasses, sedges, and rushes with less dense populations of buttercups.

General Management Considerations

Urban Development:

- Follow state or local regulations on septic system installation.
- If this map unit is used for septic tank absorption fields, the limitation of seasonal high water table can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- If this map unit is used for septic tank absorption fields, permeability limitations can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the firm substratum.
- Wetness can be reduced by installing drainage tile around footings and backfilling with material that has good permeability.
- Roads should be designed to offset the limited ability of this unit to support a load.
- Roadfill is needed to raise the roadbase above the seasonal high water table.
- If the soil is used as a base for roads, a coarse grained subgrade to frost depth is needed to prevent frost action.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

Blueberry Management:

This unit is poorly suited to blueberry production due to seasonal high water table.

Hay and Pasture:

- If this unit is used for hay and pasture, the main limitation is seasonal high water table.
- Grazing when the soil is wet results in compaction of the surface layer, poor tilth, and excessive runoff.
- The seasonal high water table limits the use of equipment in the spring and late fall.
- The use of proper stocking rates, pasture rotation, and restricted grazing during wet periods helps to keep the pasture in good condition and to protect the soil from erosion.
- Proper grazing practices, weed control, lime, and fertilizer are needed for maximum quality of forage.

LbB—Lamoine-Buxton complex, 0 to 8 percent slopes

Setting

Landform: Plains, basins, and terraces
Description of areas: Irregular in shape and from 6 to over 100 acres in size

Composition

Lamoine and similar soils: 50 percent
Buxton and similar soils: 35 percent
Inclusions: 15 percent

Lamoine soil

Position on landscape: Footslopes, toeslopes, and slight depressions
Parent material: Glaciomarine deposits
Slope range: 0 to 5 percent
Slope features: Nearly level or slightly concave or convex
Stones on surface: None

Typical Profile

Surface layer:
0 to 7 inches, brown, friable, silt loam
Subsoil:
7 to 10 inches, dark yellowish brown, mottled, friable, silt loam
10 to 16 inches, light olive brown, mottled, friable, silt loam
16 to 21 inches, olive, mottled, firm, silty clay loam
Substratum:
21 to 65 inches, olive, mottled, firm, silty clay
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Somewhat poorly drained
Permeability: Moderately slow or moderate in the surface, slow or moderately slow in the upper subsoil, and very slow or slow in the lower subsoil and substratum
Available water capacity: Moderate
Depth to restrictive layer: 16 to 30 inches to firm substratum
Hazard of flooding: None
Buxton soil
Position on landscape: Crests, shoulder slopes, and on the side slopes of drainageways
Parent material: Glaciomarine deposits

Slope range: 5 to 8 percent
Slope features: Convex
Stones on surface: None

Typical Profile

Surface layer:
0 to 9 inches, dark brown, very friable, silt loam
Subsoil:
9 to 17 inches, dark yellowish brown and olive brown, friable, silt loam and silty clay loam
17 to 22 inches, olive, mottled, firm, silty clay loam

Substratum:

22 to 65 inches, olive, mottled, firm, silty clay

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Moderately slow or moderate in the surface, slow or moderately slow in the upper subsoil, and very slow or slow in the lower subsoil and substratum
Available water capacity: Moderate
Depth to restrictive layer: 18 to 35 inches to firm substratum
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Lamoine and Buxton soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Lamoine and Buxton soils.

Inclusions

- Scantic soils are poorly drained glaciomarine deposits. They are in depressions and along drainageways.
- Biddeford soils are very poorly drained glaciomarine deposits. They are in the lowest depressions and adjacent to drainageways.
- Nicholville soils are moderately well drained glaciofluvial or glaciolacustrine very fine sand and silt. They are in areas where this unit is adjacent to glaciofluvial sands and gravels.
- Lyman soils are somewhat excessively drained shallow glacial till and Tunbridge soils are well drained moderately deep glacial till. They are intermingled together on small isolated bedrock-controlled knolls.
- Areas with slopes greater than 8 percent are included.

Use and Management

Current uses: Hayland, pasture, and homesites

Major Management Concerns

- Seasonal high water table
- Very slow or slow permeability
- Low strength
- Frost action

General Management Considerations

Urban Development:

- Follow state or local regulations on septic system installation.
- If this map unit is used for septic tank absorption fields, the limitation of seasonal high water table can be overcome by increasing the size of the absorption field or
increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- If this map unit is used for septic tank absorption fields, permeability limitations can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the firm substratum.
- Wetness can be reduced by installing drainage tile around footings and backfilling with material that has good permeability.
- Roads should be designed to offset the limited ability of this unit to support a load.
- Roadfill is needed to raise the roadbase above the seasonal high water table in the Lamoine soils.
- If the soil is used as a base for roads, a coarse grained subgrade to frost depth is needed to prevent frost action.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

Blueberry Management:

- This unit is poorly suited to blueberry production due to seasonal high water table.

Hay and Pasture:

- Grazing when the soil is wet results in compaction of the surface layer, poor tilth, and excessive runoff.
- The seasonal high water table limits the use of equipment in the spring and late fall.
- The use of proper stocking rates, pasture rotation, and restricted grazing during wet periods helps to keep the pasture in good condition and to protect the soil from erosion.
- Proper grazing practices, weed control, lime, and fertilizer are needed for maximum quality of forage.

LCB—Lamoine-Buxton-Scantic complex, 0 to 15 percent slopes

Setting
Landform: Basins and terraces
Description of areas: Irregular in shape and from 20 to over 300 acres in size

Composition

Lamoine and similar soils: 45 percent
Buxton and similar soils: 20 percent Scantic and similar soils: 20 percent Inclusions: 15 percent

Lamoine soil

Position on landscape: Side slopes and toeslopes
Parent material: Glaciomarine deposits
Slope range: 0 to 5 percent
Slope features: Nearly level, concave, convex, and smooth
Stones on surface: None

Typical Profile

Surface layer:
0 to 7 inches, dark brown, friable, silt loam
Subsoil:
7 to 10 inches, dark yellowish brown, mottled, friable, silt loam
10 to 16 inches, light olive brown, mottled, friable, silt loam
16 to 21 inches, olive, mottled, firm, silty clay loam

Substratum:

21 to 65 inches, olive, mottled, firm, silty clay
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Somewhat poorly drained
Permeability: Moderately slow or moderate in the surface, slow or moderately slow in the upper subsoil, and very slow or slow in the lower subsoil and substratum
Available water capacity: Moderate
Depth to restrictive layer: 16 to 30 inches to dense substratum
Hazard of flooding: None

Buxton soil

Position on landscape: Crests, side slopes, and shoulder slopes
Parent material: Glaciomarine deposits
Slope range: 8 to 15 percent
Slope features: Convex and smooth
Stones on surface: None

Typical Profile

Surface layer:
0 to 9 inches, dark brown, very friable, silt loam
Subsoil:
9 to 17 inches, dark yellowish brown, friable, silt loam
17 to 22 inches, olive, mottled, firm, silty clay loam

Substratum:

22 to 65 inches, olive, mottled, firm, silty clay

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Moderately slow or moderate in the surface, slow or moderately slow in the upper subsoil, and very slow or slow in the lower subsoil and substratum Available water capacity: Moderate
Depth to restrictive layer: 18 to 35 inches to firm substratum
Hazard of flooding: None

Scantic soil

Position on landscape: Depressions and toeslopes
Parent material: Glaciomarine deposits
Slope range: 0 to 3 percent
Slope features: Nearly level or concave
Stones on surface: None

Typical Profile

Surface layer:
0 to 4 inches, dark grayish brown, very friable, silt loam
4 to 9 inches, dark grayish brown, mottled, very friable, silt loam

Subsurface layer:
9 to 11 inches, olive gray, mottled, friable, silt loam
Subsoil:
11 to 16 inches, olive gray, mottled, firm, silty clay loam
16 to 29 inches, olive gray, mottled, firm, silty clay
Substratum:
29 to 65 inches, olive gray, mottled, firm, clay

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Poorly drained
Permeability: Moderately slow or moderate in the surface and subsurface and very
slow or slow in the subsoil and substratum
Available water capacity: High
Depth to restrictive layer: 25 to 50 inches to firm substratum
Hazard of flooding: None
Depth to water table: 0 to 4.0 feet, perched, October to June

Included Areas

Similar soils

Soils are included in this map unit which are like the Lamoine, Buxton, and Scantic soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Lamoine, Buxton, and Scantic soils.

Inclusions

- Biddeford soils are very poorly drained glaciomarine deposits. They are in depressions and adjacent to drainageways.
- Bucksport and Wonsqueak soils are very poorly drained highly decomposed organic materials. They are in small bogs.
- Nicholville soils are moderately well drained glaciolacustrine and glaciofluvial very fine sand and silt. They are in areas adjacent to glaciofluvial sand and gravel and major drainage systems.
- Areas of soils similar to Nicholville soils that are somewhat poorly drained and poorly drained. They are in depressions or on toeslopes in areas adjacent to glaciofluvial sand and gravel and major drainage systems.
- Colonel soils are somewhat poorly drained dense glacial till. They are on small stony ridges and knolls.
- Tunbridge soils are moderately deep well drained glacial till. They are on isolated bedrock-controlled knolls and ridges.
- Small areas with stones on the surface are adjacent to glacial till ridges.
- Areas with slopes greater than 15 percent are included.

Use and Management

Current uses: Woodland
Major Management Concerns

- Seasonal high water table
- Low strength
- Slope in some areas
- Frost action
- Shrink-swell potential in the Buxton soils
- Very slow and slow permeability
- Restricted rooting depth

General Management Considerations

Woodland Management:

- The potential productivity of this unit for trees is high on the Lamoine and Buxton soils and medium on the Scantic soils.
- This unit has potential for the production and management of Balsam fir for wreath brush and Christmas trees.
- These areas have good natural reproduction of spruce and fir. Proper thinning practices will reduce overcrowding and promote the growth of these species.
- Minimizing the risk of erosion is essential in harvesting timber.
- Proper design of road drainage systems and care in the placement of culverts help to control erosion. Spoil from excavations is subject to rill and gully erosion and to sloughing.
- Roads and landings can be protected from erosion by constructing waterbars and by seeding cuts and fills.
- Revegetating disturbed areas around landings, skid trails, roads, and construction sites as soon as possible helps to control soil erosion.
- Conventional methods of harvesting timber generally can be used but their use may be limited when the soil is wet.
- These soils may be compacted if heavy equipment is used when these soils are wet.
- Because of the seasonal high water table, harvesting operations should be restricted to the driest part of the year or to when the soil is frozen and equipment is easiest to use and causes the least damage to the site.
- Roadfill is needed to raise the roadbase above the seasonal high water table.
- Only trees that can tolerate seasonal wetness should be planted on the Scantic soils.
- Trees commonly are subject to windthrow during periods when the soil is excessively wet and winds are strong.
- Windthrow is severe on these soils because the seasonal high water table causes trees to be shallow rooted.
- Care should be taken in harvesting and thinning to reduce trees exposed to the prevailing winds.
- Harvesting by stripcutting will expose fewer trees to the prevailing wind and help to prevent windthrow.
- Periodic salvaging of windthrown trees is advisable.
- If the site is not adequately prepared, competition from undesirable plants can prevent or prolong natural or artificial reestablishment of trees.
- After harvesting, reforestation must be carefully managed to reduce competition from undesirable understory plants.
- Competing vegetation can be controlled by properly preparing the site and by eliminating unwanted weeds, brush, or trees.

Recreation Management:

- If this unit is used for camping areas, picnic areas, and paths and trails, the main limitations are the seasonal high water table and very slow and slow permeability.
- Drainage will help reduce wetness problems.
- Erosion and sedimentation can be controlled and the beauty of the area enhanced by maintaining adequate plant cover. Plant cover can be maintained by limiting traffic.

Urban Development:

- Follow state or local regulations on septic system installation.
- If this map unit is used for septic tank absorption fields, the limitation of seasonal high water table can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- If this map unit is used for septic tank absorption fields, permeability limitations can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the dense substratum.
- Wetness can be reduced by installing drainage tile around footings and backfilling with material that has good permeability.
- Roads should be designed to offset the limited ability of this unit to support a load.
- Roadfill is needed to raise the roadbase above the seasonal high water table in the Lamoine and Scantic soils.
- If the soils are used as a base for roads, a coarse-grained subgrade to frost depth is needed to prevent frost action.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

LEB—Lamoine-Creasey-Scantic complex, 0 to 8 percent slopes

Setting

Landform: Terraces, basins, and plains
Description of areas: Irregular in shape and from 20 to over 100 acres in size

Composition

Lamoine and similar soils: 30 percent
Creasey and similar soils: 30 percent
Scantic and similar soils: 20 percent
Inclusions: 20 percent

Lamoine soil

Position on landscape: Side slopes and footslopes
Parent material: Glaciomarine deposits
Slope range: 0 to 5 percent
Slope features: Nearly level, slightly convex or concave
Stones on surface: None

Typical Profile

Surface layer:
0 to 7 inches, dark brown, friable, silt loam
Subsoil:
7 to 10 inches, dark yellowish brown, mottled, friable, silt loam
10 to 16 inches, light olive brown, mottled, friable, silt loam
16 to 21 inches, olive, mottled, firm, silty clay loam

Substratum:

21 to 65 inches, olive, mottled, firm, silty clay
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Somewhat poorly drained
Permeability: Moderately slow or moderate in the surface, slow or moderately slow in the upper subsoil, and very slow or slow in the lower subsoil and substratum

Available water capacity: Moderate
Depth to restrictive layer: 16 to 30 inches to dense substratum Hazard of flooding: None

Creasey soil

Position on landscape: Crests and shoulder slopes
Parent material: Glacial till Slope range: 0 to 8 percent
Slope features: Convex
Stones on surface: None

Typical Profile

Surface layer:
0 to 8 inches, dark reddish brown gravelly silt loam
Subsoil:
8 to 13 inches, yellowish red gravelly silt loam
13 to 17 inches, reddish brown gravelly silt loam
Bedrock:
17 inches, sandstone

Soil Properties and Qualities

Depth class: Shallow
Drainage class: Somewhat excessively drained
Permeability: Moderate or moderately rapid
Available water capacity: Very low
Depth to restrictive layer: 10 to 20 inches to bedrock
Hazard of flooding: None

Scantic soil

Position on landscape: Depressions and toeslopes
Parent material: Glaciomarine deposits
Slope range: 0 to 3 percent
Slope features: Nearly level
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 4 inches, dark grayish brown, very friable, silt loam
4 to 9 inches, dark grayish brown, mottled, very friable, silt loam
Subsurface layer:
9 to 11 inches, olive gray, mottled, friable, silt loam
Subsoil:
11 to 16 inches, olive gray, mottled, firm, silty clay loam
16 to 29 inches, olive gray, mottled, firm, silty clay
Substratum:
29 to 65 inches, olive gray, mottled, firm, clay

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Poorly drained
Permeability: Moderately slow or moderate in the surface and subsurface and very
slow or slow in the subsoil and substratum
Available water capacity: High

Depth to restrictive layer: 25 to 50 inches to dense substratum Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Lamoine, Creasey, and Scantic soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Lamoine, Creasey, and Scantic soils.

Inclusions

- Areas of soils similar to Creasey soils that are moderately deep to bedrock are included.
- Moderately well drained or somewhat poorly drained shallow or moderately deep soils are on footslopes and toeslopes are included.
- Lyman soils are shallow excessively drained glacial till and Tunbridge soils are moderately deep well drained glacial till. They are underlain by granite, gneiss, schist, or phyllite.
- Abram soils are very shallow excessively drained glacial till. They are intermingled with the Creasey soils on the crests of knolls.
- Buxton soils are moderately well drained glaciomarine deposits. They are intermingled with the Lamoine soils in more sloping and higher positions.
- Biddeford soils are very poorly drained glaciomarine deposits. They are in depressions and adjacent to drainageways.
- Areas of rock outcrop on the crests of knolls.
- Slopes greater than 8 percent.

Use and Management

Current uses: Woodland

Major Management Concerns

- Seasonal high water table in the Lamoine and Scantic soils
- Low strength in the Lamoine and Scantic soils
- Frost action in the Lamoine and Scantic soils
- Very slow and slow permeability in the Lamoine and Scantic soils
- Depth to bedrock in the Creasey soils
- Hazard of seepage in the Creasey soils
- Restricted rooting depth
- Slope in some areas

General Management Considerations

Woodland Management:

- The potential productivity of this unit for trees is high on the Lamoine soils and medium on the Creasey and Scantic soils.
- This unit has potential for the production and management of Balsam fir for wreath brush and Christmas trees.
- These areas have good natural reproduction of spruce and fir. Proper thinning practices will reduce overcrowding and promote the growth of these species.
- Minimizing the risk of erosion is essential in harvesting timber.
- Roads and landings can be protected from erosion by constructing waterbars and by seeding cuts and fills.
- Revegetating disturbed areas around landings, skid trails, roads, and construction sites as soon as possible helps to control soil erosion.
- Conventional methods of harvesting timber generally can be used but their use may be limited when the Lamoine and Scantic soils are wet.
- The Lamoine and Scantic soils may be compacted if heavy equipment is used when these soils are wet.
- Because of the seasonal high water table, harvesting operations on the Lamoine and Scantic soils should be restricted to the driest part of the year or to when the soil is frozen and equipment is easiest to use and causes the least damage to the site.
- Roadfill is needed to raise the roadbase above the seasonal high water table in the Lamoine and Scantic soils.
- Seedling mortality can be reduced on the Creasey soils by planting seedlings in spring when soil moisture levels are highest and by using planting stock that is larger than usual or containerized. Reinforcement planting may be needed.
- Only trees that can tolerate seasonal wetness should be planted on the Scantic soils.
- Trees are subject to windthrow because of restricted rooting depth due to seasonal high water table in the Lamoine and Scantic soils and depth to bedrock in the Creasey soils.
- Trees commonly are subject to windthrow during periods when the Lamoine and Scantic soils are excessively wet and winds are strong.
- Care should be taken in harvesting and thinning to reduce trees exposed to the prevailing winds.
- Harvesting by stripcutting will expose fewer trees to the prevailing wind and help to prevent windthrow.
- Periodic salvaging of windthrown trees is advisable.
- After harvesting, reforestation must be carefully managed to reduce competition from undesirable understory plants.
- If the site is not adequately prepared, competition from undesirable plants can prevent or prolong natural or artificial reestablishment of trees.
- Competing vegetation can be controlled by properly preparing the site and by eliminating unwanted weeds, brush, or trees.

Recreation Management:

- If this unit is used for camping areas, picnic areas, and paths and trails, the main limitations are the seasonal high water table and very slow and slow permeability in the Lamoine and Scantic soils and the depth to bedrock in the Creasey soils.
- Drainage will help reduce wetness problems in the Lamoine and Scantic soils.
- Erosion and sedimentation can be controlled and the beauty of the area enhanced by maintaining adequate plant cover. Plant cover can be maintained by limiting traffic.

Urban Development:

- Follow state or local regulations on septic system installation.
- Septic systems should not be located on the Scantic soils.
- If the Lamoine and Scantic soils are used for septic tank absorption fields, the limitation of seasonal high water table can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- If the Lamoine and Scantic soils are used for septic tank absorption fields, permeability limitations can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the dense substratum.
- Septic systems should be located on deeper soils in this map unit or fill material can be used to raise the level of the absorption field.
- Scantic soils should be avoided as sites for dwellings.
- Wetness in the Lamoine and Scantic soils can be reduced by installing drainage tile around footings and backfilling with material that has good permeability.
- Cuts needed to provide level building sites can expose bedrock in the Creasey soil.
- Dwellings with basements should be located on deeper soils in this map unit, or the bedrock should be removed, or the foundation set on bedrock and backfilled to the established grade.
- Roads should be designed to offset the limited ability of the Lamoine and Scantic soils to support a load.
- Roadfill is needed to raise the roadbase above the seasonal high water table in the Lamoine and Scantic soils.
- If the Lamoine and Scantic soils are used as a base for roads, a coarse grained subgrade to frost depth is needed to prevent frost action.
- Excavation, grading, and ditching activities involved in the construction and maintenance of roads can expose bedrock in the Creasey soils.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

LHB—Lamoine-Nicholville complex, 0 to 8 percent slopes

Setting

Landform: Terrace
Description of areas: Irregular in shape and from 20 to 100 acres in size

Composition

Lamoine and similar soils: 50 percent
Nicholville and similar soils: 25 percent
Inclusions: 25 percent

Lamoine soil

Position on landscape: Footslopes, depressions, and adjacent to drainageways Parent material: Glaciomarine deposits Slope range: 0 to 5 percent
Slope features: Concave or nearly level
Stones on surface: None

Typical Profile

Surface layer:
0 to 7 inches, dark brown, friable, silt loam
Subsoil:
7 to 10 inches, dark yellowish brown, mottled, friable, silt loam
10 to 16 inches, light olive brown, mottled, friable, silt loam
16 to 21 inches, olive, mottled, firm, silty clay loam

Substratum:

21 to 65 inches, olive, mottled, firm, silty clay

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Somewhat poorly drained
Permeability: Moderately slow or moderate in the surface, slow or moderately slow in the upper subsoil, and very slow or slow in the lower subsoil and substratum Available water capacity: Moderate

Depth to restrictive layer: 16 to 30 inches to dense substratum Hazard of flooding: None

Nicholville soil

Position on landscape: Side slopes and head slopes
Parent material: Glaciofluvial and glaciolacustrine deposits
Slope range: 3 to 8 percent
Slope features: Convex
Stones on surface: None

Typical Profile

Surface layer:

0 to 2 inches, very dusky red sapric material
Subsurface layer:
2 to 3 inches, brown very fine sandy loam
Subsoil:
3 to 4 inches, dusky red very fine sandy loam
4 to 8 inches, brown very fine sandy loam
8 to 17 inches, dark yellowish brown very fine sandy loam
17 to 30 inches, light olive brown, mottled, loamy very fine sand

Substratum:

30 to 65 inches, olive brown, mottled, loamy very fine sand
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Moderate
Available water capacity: High
Depth to restrictive layer: 15 to 30 inches
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Lamoine and Nicholville soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Lamoine and Nicholville soils.

Inclusions

- Soils that are similar to Nicholville soils but that are somewhat poorly drained or poorly drained. They are in depressions within areas of Nicholville soils and intermingled with the Lamoine soils.
- Areas of soils similar to Nicholville soils that have silty clay loam or silty clay deeper than 40 inches are included.
- Scantic soils are poorly drained glaciomarine deposits. They are in depressions and adjacent to drainageways.
- Kinsman soils are poorly drained glaciofluvial sand. They are in depressions in areas of Nicholville soils that are adjacent to glaciofluvial sand and gravel.
- Wonsqueak and Bucksport soils are very poorly drained organic materials. They are in depressions and adjacent to drainageways.
- Croghan soils are moderately well drained glaciofluvial sand. They are in higher positions adjacent to glaciofluvial sand and gravel.

Use and Management

Current uses: Wooded

Major Management Concerns

- Seasonal high water table
- Frost action
- Slow and very slow permeability in the Lamoine soils
- Slope in some areas

General Management Considerations

Woodland Management:

- The potential productivity of this unit for trees is high in the Lamoine soils and extremely high in the Nicholville soils.
- This unit has potential for the production and management of Balsam fir for wreath brush and Christmas trees.
- Minimizing the risk of erosion is essential in harvesting timber.
- Laying out skid trails and roads on the contour will reduce erosion.
- Revegetating disturbed areas around landings, skid trails, roads, and construction sites as soon as possible helps to control soil erosion.
- Conventional methods of harvesting timber generally can be used but their use may be limited when the Lamoine soil is wet.
- Because of the seasonal high water table in the Lamoine soils, harvesting operations should be restricted to the driest part of the year or to when the soil is frozen and equipment is easiest to use and causes the least damage to the site.
- Roadfill is needed to raise the roadbase above the seasonal high water table in the Lamoine soils.
- Care should be taken in harvesting and thinning to reduce trees exposed to the prevailing winds.
- Harvesting by stripcutting will expose fewer trees to the prevailing wind and help to prevent windthrow.
- Plant competition is severe on the Lamoine soils and moderate on Nicholville soils.
- If the site is not adequately prepared, competition from undesirable plants can prevent or prolong natural or artificial reestablishment of trees.
- Competing vegetation can be controlled by properly preparing the site and by eliminating unwanted weeds, brush, or trees.

Recreation Management:

- If this unit is used for camping areas, picnic areas, and paths and trails, the main limitations are the seasonal high water table and very slow or slow permeability in the Lamoine soils.
- Erosion and sedimentation can be controlled and the beauty of the area enhanced by maintaining adequate plant cover. Plant cover can be maintained by limiting traffic.
- Drainage will help reduce wetness problems in the Lamoine soils.

Urban Development:

- Follow state or local regulations on septic system installation.
- If this map unit is used for septic tank absorption fields, the limitation of seasonal high water table can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- If the Lamoine soils are used for septic tank absorption fields, permeability limitations can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the dense substratum.
- Wetness can be reduced by installing drainage tile around footings and backfilling with material that has good permeability.
- Roads should be designed to offset the limited ability of the Lamoine soils to support a load.
- Roadfill is needed to raise the roadbase above the seasonal high water table in the Lamoine soils.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

LKB—Lamoine-Rawsonville-Scantic complex, 0 to 8 percent slopes, very stony

$$
\begin{aligned}
& \text { Setting } \\
& \text { Landform: Terraces, basins, and plains in close proximity to a coastal setting } \\
& \text { Description of areas: Irregular in shape and from } 20 \text { to over } 300 \text { acres in size } \\
& \text { Composition }
\end{aligned}
$$

Lamoine and similar soils: 30 percent
Rawsonville and similar soils: 25 percent
Scantic and similar soils: 20 percent
Inclusions: 25 percent

Lamoine soil

Position on landscape: On footslopes and toeslopes between bedrock-controlled ridges
Parent material: Glaciomarine deposits
Slope range: 0 to 5 percent
Slope features: Nearly level, concave, or slightly convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:

0 to 7 inches, dark brown, friable, silt loam
Subsoil:
7 to 10 inches, dark yellowish brown, mottled, friable, silt loam
10 to 16 inches, light olive brown, mottled, friable, silt loam
16 to 21 inches, olive, mottled, firm, silty clay loam

Substratum:

21 to 65 inches, olive, mottled, firm, silty clay

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Somewhat poorly drained
Permeability: Moderately slow or moderate in the surface, slow or moderately slow in
the upper subsoil, and very slow or slow in the lower subsoil and substratum
Available water capacity: Moderate
Depth to restrictive layer: 16 to 30 inches to dense substratum
Hazard of flooding: None

Rawsonviile soil

Position on landscape: Crests, shoulder slopes, and side slopes of ridges and knolls
Parent material: Glacial till
Slope range: 3 to 8 percent
Slope features: Convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, dark reddish brown sapric material
Subsurface layer:
2 to 4 inches, pinkish gray fine sandy loam
Subsoil:
4 to 8 inches, dark reddish brown fine sandy loam
8 to 15 inches, reddish brown fine sandy loam
15 to 24 inches, strong brown fine sandy loam
24 to 30 inches, yellowish brown gravelly sandy loam
Substratum:
30 to 36 inches: brown gravelly sandy loam
Bedrock:
36 inches, schist
Soil Properties and Qualities
Depth class: Moderately deep
Drainage class: Well drained
Permeability: Moderate or moderately rapid
Available water capacity: Low
Depth to restrictive layer: 20 to 40 inches to bedrock
Hazard of flooding: None

Scantic soil

Position on landscape: In depressions and drainageways between bedrock-controlled ridges
Parent material: Glaciomarine deposits
Slope range: 0 to 3 percent
Slope features: Nearly level or concave
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 4 inches, dark grayish brown, very friable, silt loam
4 to 9 inches, dark grayish brown, mottled, very friable, silt loam
Subsurface layer:
9 to 11 inches, olive gray, mottled, friable, silt loam
Subsoil:
11 to 16 inches, olive gray, mottled, firm, silty clay loam
16 to 29 inches, olive gray, mottled, firm, silty clay
Substratum:
29 to 65 inches, olive gray, mottled, firm, clay
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Poorly drained

Permeability: Moderately slow or moderate in the surface and subsurface and very slow or slow in the subsoil and substratum
Available water capacity: High
Depth to restrictive layer: 25 to 50 inches to dense substratum
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Lamoine, Rawsonville, and Scantic soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Lamoine, Rawsonville, and Scantic soils.

Inclusions

- Abram soils are very shallow excessively drained glacial till. They are on the crests of bedrock-controlled knolls.
- Ricker soils are very shallow well drained organic materials. They are on the crests of bedrock-controlled knolls.
- Hogback soils are shallow somewhat excessively drained glacial till. They are intermingled with the Rawsonville soils on crests and shoulder slopes.
- Tunbridge soils are moderately deep well drained soils on crests, shoulder slopes, and side slopes of ridges and knolls. They have less organic carbon in their subsoil than Rawsonville soils.
- Buxton soils are moderately well drained glaciomarine deposits. They are intermingled with the Lamoine soils in more sloping areas and higher positions.
- Biddeford soils are very poorly drained glaciomarine deposits. They are in depressions and adjacent to drainageways.
- Areas of soils similar to Rawsonville soils that are moderately well drained are included. They are on footslopes of knolls and ridges.
- Areas of Lamoine and Scantic soils without stones on the surface are included.
- Areas with slopes greater than 8 percent are included.

Use and Management
Current uses: Woodland

Major Management Concerns

- Seasonal high water table in the Lamoine and Scantic soils
- Low strength in the Lamoine and Scantic soils
- Very slow and slow permeability in the Lamoine and Scantic soils
- Depth to bedrock in the Rawsonville soils
- Hazard of seepage in the Rawsonville soils
- Frost action
- Slope in some areas
- Restricted rooting depth

General Management Considerations

Woodland Management:

- The potential productivity of this unit for trees is high on the Lamoine and Rawsonville soils and medium on the Scantic soils.
- This unit has potential for the production and management of Balsam fir for wreath brush and Christmas trees.
- These areas have good natural reproduction of spruce and fir. Proper thinning practices will reduce overcrowding and promote the growth of these species.
- Minimizing the risk of erosion is essential in harvesting timber.
- Roads and landings can be protected from erosion by constructing waterbars and by seeding cuts and fills.
- Revegetating disturbed areas around landings, skid trails, roads, and construction sites as soon as possible helps to control soil erosion.
- Conventional methods of harvesting timber generally can be used but their use may be limited when the Lamoine and Scantic soils are wet.
- The Lamoine and Scantic soils may be compacted if heavy equipment is used when these soils are wet.
- Because of the seasonal high water table, harvesting operations on the Lamoine and Scantic soils should be restricted to the driest part of the year or to when the soil is frozen and equipment is easiest to use and causes the least damage to the site.
- Roadfill is needed to raise the roadbase above the seasonal high water table in the Lamoine and Scantic soils.
- Only trees that can tolerate seasonal wetness should be planted on the Scantic soils.
- Trees are subject to windthrow because of restricted rooting depth due to seasonal high water table in the Lamoine and Scantic soils and depth to bedrock in the Rawsonville soils.
- Care should be taken in harvesting and thinning to reduce trees exposed to the prevailing winds.
- Harvesting by stripcutting will expose fewer trees to the prevailing wind and help to prevent windthrow.
- If the site is not adequately prepared, competition from undesirable plants can prevent or prolong natural or artificial reestablishment of trees.
- Competing vegetation can be controlled by properly preparing the site and by eliminating unwanted weeds, brush, or trees.

Recreation Management:

- If this unit is used for camping areas, picnic areas, and paths and trails, the main limitations are the seasonal high water table and very slow and slow permeability in the Lamoine and Scantic soils.
- Drainage will help reduce wetness problems in the Lamoine and Scantic soils.
- Erosion and sedimentation can be controlled and the beauty of the area enhanced by maintaining adequate plant cover. Plant cover can be maintained by limiting traffic.

Urban Development:

- Follow state or local regulations on septic system installation.
- Septic systems should not be located on the Scantic soils.
- If the Lamoine and Scantic soils are used for septic tank absorption fields, the limitation of seasonal high water table can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- If the Lamoine and Scantic soils are used for septic tank absorption fields, permeability limitations can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the dense substratum.
- Septic systems should be located on deeper soils in this map unit or fill material can be used to raise the level of the absorption field.
- Scantic soils should be avoided as sites for dwellings.
- Wetness in the Lamoine and Scantic soils can be reduced by installing drainage tile around footings and backfilling with material that has good permeability.
- Cuts needed to provide level building sites can expose bedrock in the Rawsonville soils.
- Rawsonville soils have severe limitations for dwellings with basements due to the depth to bedrock. Dwellings with basements should be located on deeper soils in
this map unit, or the bedrock should be removed, or the foundation set on bedrock and backfilled to the established grade.
- Roads should be designed to offset the limited ability of the Lamoine and Scantic soils to support a load.
- Roadfill is needed to raise the roadbase above the seasonal high water table in the Lamoine and Scantic soils.
- Excavation, grading, and ditching activities involved in the construction and maintenance of roads can expose bedrock in the Rawsonville soils.
- If the soils are used as a base for roads, a coarse-grained subgrade to frost depth is needed to prevent frost action.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

LmB-Lamoine-Scantic complex, 0 to 5 percent slopes

Setting

Landform: Terraces, plains, and basins
Description of areas: Irregular in shape and from 6 to over 50 acres in size

Composition

Lamoine and similar soils: 55 percent
Scantic and similar soils: 35 percent
Inclusions: 10 percent

Lamoine soil

Position on landscape: Side slopes and crests of slight convex rises in elevation Parent material: Glaciomarine deposits Slope range: 0 to 5 percent Slope features: Nearly level, convex, or slightly concave.

Stones on surface: None

Typical Profile

Surface layer:
0 to 7 inches, brown, friable, silt loam
Subsoil:
7 to 10 inches, dark yellowish brown, mottled, friable, silt loam
10 to 16 inches, light olive brown, mottled, friable, silt loam
16 to 21 inches, olive, mottled, firm, silty clay loam

Substratum:

21 to 65 inches, olive, mottled, firm, silty clay

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Somewhat poorly drained
Permeability: Moderately slow or moderate in the surface, slow or moderately slow in the upper subsoil, and very slow or slow in the lower subsoil and substratum Available water capacity: Moderate
Depth to restrictive layer: 16 to 30 inches to firm substratum
Hazard of flooding: None

Scantic soil

Position on landscape: Footslopes, toeslopes, depressions, and drainageways
Parent material: Glaciomarine deposits
Slope range: 0 to 3 percent
Slope features: Nearly level or concave
Stones on surface: None

Typical Profile

Surface layer:
0 to 4 inches, dark grayish brown, very friable, silt loam
4 to 9 inches, dark grayish brown, mottled, very friable, silt loam
Subsurface layer:
9 to 11 inches, olive gray, mottled, friable, silt loam
Subsoil:
11 to 16 inches, olive gray, mottled, firm, silty clay loam
16 to 29 inches, olive gray, mottled, firm, silty clay
Substratum:
29 to 65 inches, olive gray, mottled, firm, clay

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Poorly drained
Permeability: Moderately slow or moderate in the surface and subsurface and very
slow or slow in the subsoil and substratum
Available water capacity: High
Depth to restrictive layer: 25 to 50 inches to firm substratum
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Lamoine and Scantic soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Lamoine and Scantic soils.

Inclusions

- Buxton soils are moderately well drained glaciomarine deposits. They are on small knolls and steeper slopes.
- Biddeford soils are very poorly drained glaciomarine deposits. They are in depressions or adjacent to drainageways.
- Wonsqueak soils are very poorly drained highly decomposed organic material over mineral material. They are in bogs, depressions, and adjacent to drainageways.
- Areas with slopes greater than 5 percent are included.

Use and Management

Current uses: Hayland, pasture, homesites, or idle land.

Major Management Concerns

- Seasonal high water table
- Very slow or slow permeability
- Low strength
- Frost action

General Management Considerations

Urban Development:

- Follow state or local regulations on septic system installation.
- Septic systems should not be located on Scantic soils.
- If this map unit is used for septic tank absorption fields, the limitation of seasonal high water table can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- If this map unit is used for septic tank absorption fields, permeability limitations can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the firm substratum.
- Scantic soils should be avoided as sites for dwellings.
- Wetness can be reduced by installing drainage tile around footings and backfilling with material that has good permeability.
- Roads should be designed to offset the limited ability of this unit to support a load.
- Roadfill is needed to raise the roadbase above the seasonal high water table.
- If the soil is used as a base for roads, a coarse-grained subgrade to frost depth is needed to prevent frost action.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

Blueberry Management:

This unit is poorly suited to blueberry production due to seasonal high water table.

Hay and Pasture:

- If this unit is used for hay and pasture, the main limitation is seasonal high water table.
- Grazing when the soil is wet results in compaction of the surface layer, poor tilth, and excessive runoff.
- The seasonal high water table limits the use of equipment in the spring and late fall.
- The use of proper stocking rates, pasture rotation, and restricted grazing during wet periods helps to keep the pasture in good condition and to protect the soil from erosion.
- Proper grazing practices, weed control, lime, and fertilizer are needed for maximum quality of forage.

LnB—Lamoine-Scantic complex, 0 to 5 percent slopes, very stony

Setting
Landform: Plains, basins, and terraces
Description of areas: Irregular in shape and from 6 to over 50 acres in size

Composition

Lamoine and similar soils: 55 percent
Scantic and similar soils: 35 percent
Inclusions: 10 percent

Lamoine soil

Position on landscape: Side slopes
Parent material: Glaciomarine deposits
Slope range: 0 to 5 percent
Slope features: Convex, nearly level, or slightly concave
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 7 inches, brown, friable, silt loam
Subsoil:
7 to 10 inches, dark yellowish brown, mottled, friable, silt loam
10 to 16 inches, light olive brown, mottled, friable, silt loam
16 to 21 inches, olive, mottled, firm, silty clay loam
Substratum:
21 to 65 inches, olive, mottled, firm, silty clay
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Somewhat poorly drained
Permeability: Moderately slow or moderate in the surface, slow or moderately slow in the upper subsoil, and very slow or slow in the lower subsoil and substratum
Available water capacity: Moderate
Depth to restrictive layer: 16 to 30 inches to firm substratum
Hazard of flooding: None

Scantic soil

Position on landscape: Depressions, toeslopes, and drainageways
Parent material: Glaciomarine deposits
Slopr range: 0 to 3 percent
Slope features: Nearly level or concave
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 4 inches, dark grayish brown, very friable, silt loam
4 to 9 inches, dark grayish brown, mottled, very friable, silt loam
Subsurface layer:
9 to 11 inches, olive gray, mottled, friable, silt loam
Subsoil:
11 to 16 inches, olive gray, mottled, firm, silty clay loam
16 to 29 inches, olive gray, mottled, firm, silty clay
Substratum:
29 to 65 inches, olive gray, mottled, firm, clay

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Poorly drained
Permeability: Moderately slow or moderate in the surface and subsurface and very
slow or slow in the subsoil and substratum
Available water capacity: High
Depth to restrictive layer: 25 to 50 inches to firm substratum
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Lamoine and Scantic soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Lamoine and Scantic soils.

Inclusions

- Buxton soils are moderately well drained glaciomarine deposits. They are on the crests and side slopes of knolls.
- Biddeford soils are very poorly drained glaciomarine deposits. They are in the lowest depressions and adjacent to drainageways.
- Colonel soils are somewhat poorly drained dense glacial till. They are on small stony knolls.
- Lyman soils are somewhat excessively drained shallow glacial till and Tunbridge soils are well drained moderately deep glacial till. They are intermingled together on small isolated bedrock-controlled knolls.
- Areas with slopes greater than 5 percent is included.
- Areas with greater than 3 percent stones on the surface are included.

Use and Management

Current Uses: Hayland, pasture, idle land, and some homesites

Major Management Concerns

- Seasonal high water table
- Very slow or slow permeability
- Low strength
- Frost action
- Stones on the surface

General Management Considerations

Urban Development:

- Follow state or local regulations on septic system installation.
- Septic systems should not be located on Scantic soils.
- If this map unit is used for septic tank absorption fields, permeability limitations can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the firm substratum.
- If this map unit is used for septic tank absorption fields, the limitation of seasonal high water table can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- Scantic soils should be avoided as sites for dwellings.
- Wetness can be reduced by installing drainage tile around footings and backfilling with material that has good permeability.
- Roads should be designed to offset the limited ability of this unit to support a load.
- Roadfill is needed to raise the roadbase above the seasonal high water table.
- If the soil is used as a base for roads, a coarse grained subgrade to frost depth is needed to prevent frost action.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

Blueberry Management:

This unit is poorly suited to blueberry production due to seasonal high water table.

Hay and Pasture:

- If this unit is used for hay and pasture, the main limitations are seasonal high water table and surface stones.
- Grazing when the soil is wet results in compaction of the surface layer, poor tilth, and excessive runoff.
- The seasonal high water table limits the use of equipment in the spring and late fall.
- Surface stones limit the use of equipment for harvesting hay.
- The use of proper stocking rates, pasture rotation, and restricted grazing during wet periods helps to keep the pasture in good condition and to protect the soil from erosion.
- Proper grazing practices, weed control, lime, and fertilizer are needed for maximum quality of forage.

LSB—Lamoine-Scantic-Colonel complex, 0 to 8 percent slopes, very stony

Setting
Landform: Terraces, plains, and basins
Description of areas: Irregular in shape and from 20 to over 300 acres in size

Composition

Lamoine and similar soils: 35 percent
Scantic and similar soils: 20 percent
Colonel and similar soils: 20 percent
Inclusions: 25 percent

Lamoine soil

Position on landscape: Crests and side slopes
Parent material: Glaciomarine deposits
Slope range: 0 to 5 percent
Slope features: Convex or nearly level
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer::
0 to 7 inches, dark brown, friable, silt loam
Subsoil:
7 to 10 inches, dark yellowish brown, mottled, friable, silt loam
10 to 16 inches, light olive brown, mottled, friable, silt loam
16 to 21 inches, olive, mottled, firm, silty clay loam

Substratum:

21 to 65 inches, olive, mottled, firm, silty clay

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Somewhat poorly drained
Permeability: Moderately slow or moderate in the surface, slow or moderately slow in
the upper subsoil, and very slow or slow in the lower subsoil and substratum
Available water capacity: Moderate
Depth to restrictive layer: 16 to 30 inches to dense substratum
Hazard of flooding: None

Scantic soil

Position on landscape: Depressions and adjacent to drainageways.
Parent material: Glaciomarine deposits
Slope range: 0 to 3 percent
Slope features: Concave or nearly level
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 4 inches, dark grayish brown, very friable, silt loam
4 to 9 inches, dark grayish brown, mottled, very friable, silt loam
Subsurface layer:
9 to 11 inches, olive gray, mottled, friable, silt loam
Subsoil:
11 to 16 inches, olive gray, mottled, firm, silty clay loam
16 to 29 inches, olive gray, mottled, firm, silty clay
Substratum:
29 to 65 inches, olive gray, mottled, firm, clay

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Poorly drained
Permeability: Moderately slow or moderate in the surface and subsurface and very
slow or slow in the subsoil and substratum
Available water capacity: High
Depth to restrictive layer: 25 to 50 inches to dense substratum
Hazard of flooding: None

Colonel soil

Position on landscape: Crests, side slopes, and toeslopes
Parent material: Dense glacial till Slope range: 3 to 8 percent
Slope features: Convex or nearly level
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 3 inches, black sapric material
Subsurface layer:
3 to 6 inches, gray, very friable, gravelly fine sandy loam
Subsoil:
6 to 9 inches, dark reddish brown, very friable, gravelly fine sandy loam
9 to 13 inches, yellowish brown, friable, gravelly fine sandy loam
13 to 22 inches, yellowish brown, mottled, friable, gravelly fine sandy loam
22 to 26 inches, light olive brown, mottled, friable, gravelly fine sandy loam

Substratum:

26 to 65 inches, olive, mottled, firm, gravelly fine sandy loam

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Somewhat poorly drained
Permeability: Moderate in the surface, subsurface, and subsoil, and slow or moderately slow in the substratum

Available water capacity: Moderate
Depth to restrictive layer: 15 to 30 inches to dense substratum
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Lamoine, Scantic, and Colonel soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Lamoine, Scantic, and Colonel soils.

Inclusions

- Dixfield and Skerry soils are moderately well drained dense glacial till. They are on higher ridges and knolls.
- Brayton soils are poorly drained dense glacial till. They are in depressions and adjacent to drainageways.
- Biddeford soils are very poorly drained glaciomarine deposits. They are in the lowest depressions and adjacent to drainageways.
- Buxton soils are moderately well drained glaciomarine deposits. They are on slightly convex knolls and steeper slopes.
- Areas of Lamoine and Scantic soils without stone on the surface are included.
- Nicholville soils are moderately well drained glaciolacustrine or glaciofluvial very fine sand and silt. They are on footslopes below glacial till ridges.
- Tunbridge soils are moderately deep well drained glacial till. They are on side slopes and crests of small knolls and ridges.
- Areas with greater than 3 percent stones on the surface are included.
- Slopes greater than 8 percent are included.

Use and Management

Current uses: Woodland

Major Management Concerns

- Seasonal high water table
- Frost action
- Restricted rooting depth
- Very slow and slow permeability in the Lamoine and Scantic soils and slow and moderately slow permeability in the Colonel soils
- Slope in some areas
- Stones on the surface
- Low strength in the Lamoine and Scantic soils

General Management Considerations

Woodland Management:

- The potential productivity of this unit for trees is high in the Lamoine and Colonel soils and medium in the Scantic soils.
- This unit has potential for the production and management of Balsam fir for wreath brush and Christmas trees.
- These areas have good natural reproduction of spruce and fir. Proper thinning practices will reduce overcrowding and promote the growth of these species.
- Minimizing the risk of erosion is essential in harvesting timber.
- Proper design of road drainage systems and care in the placement of culverts help to control erosion. Spoil from excavations is subject to rill and gully erosion and to sloughing.
- Roads and landings can be protected from erosion by constructing waterbars and by seeding cuts and fills.
- Revegetating disturbed areas around landings, skid trails, roads, and construction sites as soon as possible helps to control soil erosion.
- Conventional methods of harvesting timber generally can be used but their use may be limited when the soil is wet.
- The Lamoine and Scantic soils may be compacted if heavy equipment is used when these soils are wet.
- Because of the seasonal high water table, harvesting operations should be restricted to the driest part of the year or to when the soil is frozen and equipment is easiest to use and causes the least damage to the site.
- Roadfill is needed to raise the roadbase above the seasonal high water table.
- Only trees that can tolerate seasonal wetness should be planted on the Scantic soils.
- Trees commonly are subject to windthrow during periods when the soil is excessively wet and winds are strong.
- Windthrow is severe because the seasonal high water table and dense substratum in Colonel soils and seasonal high water table in the Lamoine and Scantic soils cause trees to be shallow rooted.
- Care should be taken in harvesting and thinning to reduce trees exposed to the prevailing winds.
- Harvesting by stripcutting will expose fewer trees to the prevailing wind and help to prevent windthrow.
- Periodic salvaging of windthrown trees is advisable.
- If the site is not adequately prepared, competition from undesirable plants can prevent or prolong natural or artificial reestablishment of trees.
- Competing vegetation can be controlled by properly preparing the site and by eliminating unwanted weeds, brush, or trees.

Recreation Management:

- If this unit is used for camping areas, picnic areas, and paths and trails, the main limitations are the seasonal high water table and very slow and slow permeability in the Lamoine and Scantic soils.
- Drainage will help reduce wetness problems.
- Erosion and sedimentation can be controlled and the beauty of the area enhanced by maintaining adequate plant cover. Plant cover can be maintained by limiting traffic.

Urban Development:

- Follow state or local regulations on septic system installation.
- If this map unit is used for septic tank absorption fields, the limitation of seasonal high water table can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- If this map unit is used for septic tank absorption fields, permeability limitations can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the dense substratum.
- Wetness can be reduced by installing drainage tile around footings and backfilling with material that has good permeability.
- Roadfill is needed to raise the roadbase above the seasonal high water table.
- If the soils are used as a base for roads, a coarse-grained subgrade to frost depth is needed to prevent frost action.
- Roads should be designed to offset the limited ability of the Lamoine and Scantic soils to support a load.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

LTB—Lamoine-Tunbridge-Scantic complex, 0 to 8 percent slopes, very stony

Setting

Landform: Terraces, basins, and plains
Description of areas: Irregular in shape and from 20 to over 300 acres in size

Composition

Lamoine and similar soils: 30 percent
Tunbridge and similar soils: 25 percent
Scantic and similar soils: 20 percent
Inclusions: 25 percent

Lamoine soil

Position on landscape: On footslopes and toeslopes between bedrock-controlled ridges
Parent material: Glaciomarine deposits
Slope range: 0 to 5 percent
Slope features: Nearly level, concave, or slightly convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 7 inches, dark brown, friable, silt loam
Subsoil:
7 to 10 inches, dark yellowish brown, mottled, friable, silt loam
10 to 16 inches, light olive brown, mottled, friable, silt loam
16 to 21 inches, olive, mottled, firm, silty clay loam
Substratum:
21 to 65 inches, olive, mottled, firm, silty clay
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Somewhat poorly drained
Permeability: Moderately slow or moderate in the surface, slow or moderately slow in the upper subsoil, and very slow or slow in the lower subsoil and substratum
Available water capacity: Moderate
Depth to restrictive layer: 16 to 30 inches to dense substratum
Hazard of flooding: None

Tunbridge soil

Position on landscape: Crests, shoulder slopes, and side slopes of ridges and knolls Parent material: Glacial till
Slope range: 3 to 8 percent
Slope features: Convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, dark brown sapric material
Subsurface layer:
2 to 4 inches, grayish brown fine sandy loam
Subsoil:
4 to 5 inches, dark brown fine sandy loam
5 to 10 inches, brown fine sandy loam
10 to 17 inches, dark yellowish brown fine sandy loam
17 to 28 inches, light olive brown gravelly fine sandy loam
Bedrock:
28 inches, schist

Soil Properties and Qualities

Depth class: Moderately deep
Drainage class: Well drained
Permeability: Moderate or moderately rapid
Available water capacity: Low
Depth to restrictive layer: 20 to 40 inches to bedrock
Hazard of flooding: None

Scantic soil

Position on landscape: In depressions and drainageways between bedrock-controlled ridges
Parent material: Glaciomarine deposits
Slope range: 0 to 3 percent
Slope features: Nearly level or concave
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 4 inches, dark grayish brown, very friable, silt loam
4 to 9 inches, dark grayish brown, mottled, very friable, silt loam
Subsurface layer:
9 to 11 inches, olive gray, mottled, friable, silt loam
Subsoil:
11 to 16 inches, olive gray, mottled, firm, silty clay loam
16 to 29 inches, olive gray, mottled, firm, silty clay
Substratum:
29 to 65 inches, olive gray, mottled, firm, clay
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Poorly drained
Permeability: Moderately slow or moderate in the surface and subsurface and very slow or slow in the subsoil and substratum
Available water capacity: High
Depth to restrictive layer: 25 to 50 inches to dense substratum
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Lamoine, Tunbridge, and Scantic soils in most properties, but differ in some respect, such as color, surface
texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Lamoine, Tunbridge, and Scantic soils.

Inclusions

- Abram soils are very shallow excessively drained glacial till. They are on the crests of bedrock-controlled knolls.
- Ricker soils are very shallow well drained organic materials. They are on the crests of bedrock-controlled knolls.
- Lyman soils are shallow somewhat excessively drained glacial till. They are intermingled with the Tunbridge soils on crests and shoulder slopes.
- Areas of rock outcrop on the crests of small knolls are included.
- Buxton soils are moderately well drained glaciomarine deposits. They are intermingled with the Lamoine soils in more sloping areas and higher positions.
- Biddeford soils are very poorly drained glaciomarine deposits. They are in depressions and adjacent to drainageways.
- Areas of soils similar to Tunbridge soils that are moderately well drained are included. They are on footslopes of knolls and ridges.
- Areas of Lamoine and Scantic soils without stones on the surface are included.
- Areas with slopes greater than 8 percent are included.

Use and Management

Current uses: Woodland

Major Management Concerns

- Seasonal high water table in the Lamoine and Scantic soils
- Low strength in the Lamoine and Scantic soils
- Very slow and slow permeability in the Lamoine and Scantic soils
- Depth to bedrock in the Tunbridge soils
- Hazard of seepage in the Tunbridge soils
- Frost action
- Slope in some areas
- Restricted rooting depth

General Management Considerations

Woodland Management:

- The potential productivity of this unit for trees is high on the Lamoine and Tunbridge soils and medium on the Scantic soils.
- This unit has potential for the production and management of Balsam fir for wreath brush and Christmas trees.
- These areas have good natural reproduction of spruce and fir. Proper thinning practices will reduce overcrowding and promote the growth of these species.
- Minimizing the risk of erosion is essential in harvesting timber.
- Roads and landings can be protected from erosion by constructing waterbars and by seeding cuts and fills.
- Revegetating disturbed areas around landings, skid trails, roads, and construction sites as soon as possible helps to control soil erosion.
- Conventional methods of harvesting timber generally can be used but their use may be limited when the Lamoine and Scantic soils are wet.
- The Lamoine and Scantic soils may be compacted if heavy equipment is used when these soils are wet.
- Because of the seasonal high water table, harvesting operations on the Lamoine and Scantic soils should be restricted to the driest part of the year or to when the soil is frozen and equipment is easiest to use and causes the least damage to the site.
- Roadfill is needed to raise the roadbase above the seasonal high water table in the Lamoine and Scantic soils.
- Only trees that can tolerate seasonal wetness should be planted on the Scantic soils.
- Trees are subject to windthrow because of restricted rooting depth due to seasonal high water table in the Lamoine and Scantic soils and depth to bedrock in the Tunbridge soils.
- Care should be taken in harvesting and thinning to reduce trees exposed to the prevailing winds.
- Harvesting by stripcutting will expose fewer trees to the prevailing wind and help to prevent windthrow.
- If the site is not adequately prepared, competition from undesirable plants can prevent or prolong natural or artificial reestablishment of trees.
- Competing vegetation can be controlled by properly preparing the site and by eliminating unwanted weeds, brush, or trees.

Recreation Management:

- If this unit is used for camping areas, picnic areas, and paths and trails, the main limitations are the seasonal high water table and very slow and slow permeability in the Lamoine and Scantic soils.
- Drainage will help reduce wetness problems in the Lamoine and Scantic soils.
- Erosion and sedimentation can be controlled and the beauty of the area enhanced by maintaining adequate plant cover. Plant cover can be maintained by limiting traffic.

Urban Development:

- Follow state or local regulations on septic system installation.
- Septic systems should not be located on the Scantic soils.
- If the Lamoine and Scantic soils are used for septic tank absorption fields, the limitation of seasonal high water table can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- If the Lamoine and Scantic soils are used for septic tank absorption fields, permeability limitations can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the dense substratum.
- Septic systems should be located on deeper soils in this map unit or fill material can be used to raise the level of the absorption field.
- Scantic soils should be avoided as sites for dwellings.
- Wetness in the Lamoine and Scantic soils can be reduced by installing drainage tile around footings and backfilling with material that has good permeability.
- Cuts needed to provide level building sites can expose bedrock in the Tunbridge soils.
- Dwellings with basements should be located on deeper soils in this map unit, or the bedrock should be removed, or the foundation set on bedrock and backfilled to the established grade.
- Roads should be designed to offset the limited ability of the Lamoine and Scantic soils to support a load.
- Roadfill is needed to raise the roadbase above the seasonal high water table in the Lamoine and Scantic soils.
- Excavation, grading, and ditching activities involved in the construction and maintenance of roads can expose bedrock in the Tunbridge soils.
- If the soils are used as a base for roads, a coarse grained subgrade to frost depth is needed to prevent frost action.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

LUE—Lyman-Abram-Tunbridge complex, 15 to 60 percent slopes, very stony

Setting
Landform: Hills and ridges
Description of areas: Elongated in shape and from 20 to over 200 acres in size

Composition

Lyman and similar inclusions: 30 percent
Abram and similar inclusions: 25 percent
Tunbridge and similar inclusions: 25 percent
Contrasting inclusions: 20 percent

Lyman soil

Position on landscape: Crests, shoulder slopes, and side slopes
Parent material: Glacial till
Slope range: 15 to 60 percent
Slope features: Convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layers:
0 to 2 inches, dark reddish brown sapric material
Subsurface layer:
2 to 3 inches, brown fine sandy loam
Subsoil:
3 to 4 inches, dark reddish brown fine sandy loam
4 to 8 inches, dark yellowish brown gravelly fine sandy loam
8 to 12 inches, yellowish brown gravelly fine sandy loam
12 to 17 inches, olive brown gravelly fine sandy loam
Bedrock:
17 inches, schist

Soil Properties and Qualities

Depth class: Shallow
Drainage class: Somewhat excessively drained
Permeability: Moderately rapid
Available water capacity: Low
Depth to restrictive layer: 10 to 20 inches
Hazard of flooding: None

Abram soil

Position on landscape: Crest and shoulder slopes
Parent material: Glacial till
Slope range: 15 to 60 percent
Slope features: Convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layers:
0 to 2 inches, black, highly decomposed organic material
Subsurface layers:
2 to 5 inches, brown sandy loam
Subsoil:
5 to 6 inches, reddish brown sandy loam
Bedrock:
6 inches, granite
Soil Properties and Qualities
Depth class: Very shallow
Drainage class: Excessively drained
Permeability: Moderately rapid
Available water capacity: Very low
Depth to restrictive layer: 1 to 10 inches
Hazard of flooding: None

Tunbridge soil

Position on landscape: Side slopes and footslopes
Parent material: Glacial till
Slope range: 15 to 25 percent
Slope features: Convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layers:

0 to 2 inches, dark brown highly decomposed organic material

Subsurface layers:

2 to 4 inches, grayish brown fine sandy loam
Subsoil:
4 to 6 inches, dark brown fine sandy loam
5 to 10 inches, brown fine sandy loam
10 to 17 inches, dark yellowish brown fine sandy loam
17 to 28 inches, light olive brown gravelly fine sandy loam
Bedrock:
28 inches, schist

Soil Properties and Qualities

Depth class: Moderately deep
Drainage class: Well drained
Permeability: Moderate or moderately rapid
Available water capacity: Low
Depth to restrictive layer: 20 to 40 inches
Hazard of flooding: None

Included Areas

Similar Inclusions

Soils are included In this map unit which are like the Lyman, Abram, and Tunbridge soils in most properties, but differ in some respect, such as color; surface texture; or consistence. Interpretations for most common uses are reasonably similar to those for the Lyman, Abram; and Tunbridge soils.

Contrasting Inclusions

- Ricker soils are very shallow well drained organic soils; they are intermingled with Abram soils and rock outcrop on crests; shoulder slopes and side slopes.
- Areas of rock outcrop are on crests, shoulder slopes, and side slopes.
- Creasey soils are shallow somewhat excessively drained glacial till underlain by sandstone conglomerate bedrock. These soils are mainly in the towns of Perry and Robbinston.
- Included are well drained and moderately well drained glacial till that have bedrock between 40 to 60 inches and are on side slopes, shoulder slopes, and footslopes.
- Areas of shallow or moderately deep glacial tills that are very gravelly or extremely gravelly are included.
- Areas that have greater than 3 percent stones and boulders on the surface are included.
- Slopes greater than 60 percent or less than 15 percent.

Use and Management

Current uses: Woodland

Major Management Concerns

- Slope
- Depth to bedrock
- Restricted rooting depth
- Stones on the surface
- Hazard of seepage

General Management Considerations

Woodland Management:

- The potential productivity of this unit for trees is medium on the Lyman soils, very low on the Abram soils, and high on the Tunbridge soils.
- Minimizing the risk of erosion is essential in harvesting timber.
- Proper design of road drainage systems and care in the placement of culverts help to control erosion. Spoil from excavations is subject to rill and gully erosion and to sloughing. Roads and landings can be protected from erosion by constructing waterbars and by seeding cuts and fills. Laying out skid trails and roads on the contour will reduce erosion.
- Revegetating disturbed areas around landings, skid trails, roads, and construction sites as soon as possible helps to control soil erosion.
- The steepness of slope limits the kinds of equipment that can be used in forest management.
- Trees are subject to windthrow because of restricted rooting depth due to the depth to bedrock.
- Care should be taken in harvesting and thinning to reduce trees exposed to he prevailing winds.
- Harvesting by stripcutting will expose fewer trees to the prevailing wind and help to prevent windthrow.
- Periodic salvaging of windthrown trees is advisable.
- Competing vegetation can be controlled by properly preparing the site and by eliminating unwanted weeds, brush or trees.

Recreation Management:

- If this unit is used for camping areas, picnic areas, and paths and trails, the main limitations are slope, depth to bedrock, and stones and boulders on the surface.
- Slope limits the use of most areas of this unit mainly to a few paths and trails which should extend across the slope.
- Erosion and sedimentation can be controlled and the beauty of the area enhanced by maintaining adequate plant cover. Plant cover can be maintained by limiting traffic.

Urban Development:

- Septic systems should be located on inclusions of deeper less sloping soils in this map unit.
- Fill material can be used to raise the level of the absorption field.
- Slope is a serious concern in installing septic tank absorption fields. Absorption lines should be installed on the contour.
- These areas should be avoided as sites for dwellings.
- Cuts needed to provide level building sites can expose bedrock.
- Dwellings with basements should be located on inclusions of deeper less sloping soils in this map unit if possible, or the bedrock should be removed, or the foundation set on bedrock and backfilled to the established grade.
- As the slope increases, building site development becomes more difficult.
- The construction and maintenance of roads on this unit is very difficult due to the slope and depth to bedrock.
- Excavation, gradings and ditching activities involved in the construction and maintenance of roads can expose bedrock. Access roads must be designed to provide proper grade and drains are needed to control surface runoff and keep soil losses to a minimum. Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

LYC-Lyman-Tunbridge-Abram complex, 3 to 15 percent slopes, very stony

Setting
Landform: Hills, ridges, and till plains.
Description of areas: Irregular in shape and from 20 to over 500 acres in size
\section*{Composition}

Lyman and similar inclusions: 30 percent
Tunbridge and similar inclusions: 30 percent
Abram and similar inclusions: 15 percent
Contrasting Inclusions: 25 percent

Lyman soil

Position on landscape: Crests, shoulder slopes, and upper side slopes
Parent material: Glacial till
Slope range: 3 to 15 percent
Slope features: Convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, dark reddish brown sapric material
Subsurface layer:
2 to 3 inches, brown fine sandy loam

Subsoil:
3 to 4 inches, dark reddish brown fine sandy loam
4 to 8 inches, dark yellowish brown gravelly fine sandy loam
8 to 12 inches, yellowish brown gravelly fine sandy loam
12 to 17 inches, olive brown gravelly fine sandy loam
Bedrock:
17 inches, schist

Soil Properties and Qualities

Depth class: Shallow
Drainage class: Somewhat excessively drained
Permeability: Moderately rapid
Available water capacity: Low
Depth to restrictive layer: 10 to 20 inches to bedrock
Hazard of flooding: None

Tunbridge soil

Position on landscape: Side slopes and footslopes
Parent material: Glacial till
Slope range: 3 to 15 percent
Slope features: Convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, dark brown sapric material
Subsurface layer:
2 to 4 inches, grayish brown fine sandy loam
Subsoil:
4 to 5 inches, dark brown fine sandy loam
5 to 10 inches, brown fine sandy loam
10 to 17 inches, dark yellowish brown fine sandy loam
17 to 28 inches, light olive brown gravelly fine sandy loam
Bedrock:
28 inches, schist
Soil Properties and Qualities
Depth class: Moderately deep
Drainage class: Well drained
Permeability: Moderate or moderately rapid
Available water capacity: Low
Depth to restrictive layer: 20 to 40 inches to bedrock
Hazard of flooding: None
Abram soil
Position on landscape: Crests
Parent material: Glacial till
Slope range: 3 to 15 percent
Slope features: Convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, black sapric material

Subsurface layer:

2 to 5 inches, brown sandy loam
Subsoil:
5 to 6 inches, reddish brown sandy loam
Bedrock:
6 inches, granite

Soil Properties and Qualities

Depth class: Very shallow
Drainage class: Excessively drained
Permeability: Moderately rapid
Available water capacity: Very low
Depth to restrictive layer: 1 to 10 inches to bedrock
Hazard of flooding: None

Included Areas

Similar Inclusions

Soils are included in this map unit which are like the Lyman, Tunbridge and Abram soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Lyman, Tunbridge and Abram soils.

Contrasting Inclusions

- Ricker soils are very shallow well drained organic soils. They are intermingled with Abram soils and rock outcrop on the crests of knolls and ridges.
- Rock outcrop is intermingled with Abram and Ricker soils on the crests of knolls and ridges.
- Creasey soils are shallow somewhat excessively drained glacial till underlain by sandstone conglomerate bedrock. These soils are predominantly in the towns of Perry and Robbinston.
- Moderately deep, moderately well drained and somewhat poorly drained glacial till are on side slopes and footslopes of knolls and ridges.
- Well drained and moderately well drained glacial till with bedrock between 40 to 60 inches are on side slopes, shoulder slopes, and footslopes.
- Areas of soils that are similar to Lyman and Tunbridge soils and have greater than 35 percent rock fragments are included.
- Marlow and Becket soils are very deep well drained dense glacial till. They are on side slopes and shoulder slopes.
- Dixfield soils are very deep moderately well drained dense glacial till. They are on footslopes and side slopes.
- Colonel soils are very deep somewhat poorly drained dense glacial till. They are on footslopes and in slight depressions.
- Lamoine soils are somewhat poorly drained glaciomarine deposits. They are on footslopes, toeslopes; and in slight depressions.
- Scantic soils are poorly drained glaciomarine deposits. They are in depressions and drainageways.
- Slopes greater than 15 percent and less than 3 percent.

Use and Management

Current uses: Woodland

Major Management Concerns

- Depth to bedrock
- Restricted rooting depth
- Slope in some areas
- Frost action in the Tunbridge soils
- Stones on the surface
- Hazard of seepage

General Management Considerations

Woodland Management:

- The potential productivity of this unit for trees is medium on the Lyman soils, high on the Tunbridge soils, and very low on the Abram soils.
- This unit has potential for the production and management of Balsam fir for wreath brush and Christmas trees.
- These areas have good natural reproduction of spruce and fir. Proper thinning practices will reduce overcrowding and promote the growth of these species.
- Minimizing the risk of erosion is essential in harvesting timber. Revegetating disturbed areas around landings, skid trails, roads, and construction sites as soon as possible helps to control soil erosion.
- Conventional methods of harvesting timber can be used.
- Seedling mortality can be reduced on the Lyman and Abram soils by planting seedlings in spring when soil moisture levels are highest and by using planting stock that is larger than usual or containerized. Reinforcement planting may be needed.
- Trees are subject to windthrow because of restricted rooting depth due to the depth to bedrock.
- Care should be taken in harvesting and thinning to reduce trees exposed to the prevailing winds.
- Harvesting by stripcutting will expose fewer trees to the prevailing wind and help to prevent windthrow.
- Periodic salvaging of windthrown trees is advisable.
- Competing vegetation can be controlled by properly preparing the site and by eliminating unwanted weeds brush, or trees.

Recreation Management:

- If this unit is used for camping areas, picnic areas, and paths and trails, the main limitations are depth to bedrock and stones on, the surface.
- Erosion and sedimentation can be controlled and the beauty of the area enhanced by maintaining adequate plant cover. Plant cover can be maintained by limiting traffic.

Urban Development:

- This map unit has limitations for septic tank absorption fields due to the depth to bedrock. Septic systems should be located on inclusions of deeper soils in this map unit if possible or fill material can be used to raise the level of the absorption field.
- Slope is a concern in installing septic tank absorption fields. Absorption lines should be installed on the contour.
- Dwellings with basements should be located on inclusions of deeper soils in this map unit if possible, or the bedrock should be removed, or the foundation set on bedrock and backfilled to the established grade.
- Excavation, grading, and ditching activities involved in the construction and maintenance of roads can expose bedrock.
- Access roads must be designed to provide proper grade and drains are needed to control surface runoff and keep soil losses to a minimum.
- If the Tunbridge soils are used as a base for roads a coarse grained subgrade to frost depth is needed to prevent frost action.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

MaC—Marlow fine sandy loam, 8 to 15 percent slopes

Setting

Landform: Drumlins, hills, and ridges
Description of areas: Elongated or irregular in shape and from 6 to over 50 acres in size

Composition
Marlow and similar soils: 80 percent
Inclusions: 20 percent

Marlow soil

Position on landscape: Crests, shoulder slopes, and side slopes
Parent material: Dense glacial till
Slope features: Convex
Stones on surface: None

Typical Profile

Surface layer:
0 to 7 inches, dark brown, friable, fine sandy loam
Subsoil:
7 to 9 inches, brown, friable, fine sandy loam
9 to 16 inches, dark yellowish brown, friable, fine sandy loam
16 to 22 inches, light olive brown, friable, fine sandy loam
Substratum:
22 to 65 inches, olive brown, firm, fine sandy loam

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Well drained
Permeability: Moderate in the surface, subsurface, and subsoil, and slow or moderately slow in the substratum
Available water capacity: Moderate
Depth to restrictive layer: 20 to 38 inches to firm substratum
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Marlow soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Marlow soils.

Inclusions

- Dixfield soils are moderately well drained dense glacial till. They are on lower sideslopes and footslopes.
- Colonel soils are somewhat poorly drained dense glacial till. They are in depressions, on toeslopes, or adjacent to drainageways.
- Lyman soils are somewhat excessively drained shallow glacial till. They are on the crests of hills and ridges.
- Tunbridge soils are well drained moderately deep glacial till. They are intermingled with the Lyman soils on the crests of hills and ridges.
- Areas with slopes greater than 15 percent and less than 8 percent are included.
- Small areas with stones on the surface are included.

Use and Management

Current uses: Blueberry production, hayland, pasture, and homesites

Major Management Concerns

- Slow or moderately slow permeability
- Slope
- Firm layer
- Frost action
- Restricted rooting depth

General Management Considerations

Urban Development:

- Follow state or local regulations on septic system installation.
- If this map unit is used for septic tank absorption fields, permeability limitations can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the firm substratum.
- Slope is a concern in installing septic tank absorption fields. Absorption lines should be installed on the contour.
- As the slope increases, building site development becomes more difficult.
- A seasonal high water table is perched above the firm substratum for a short period of time in the early spring. Drainage should be provided for buildings with basements.
- Excavation for building sites is difficult due to the firm substratum.
- Access roads must be designed to provide proper grade and drains are needed to control surface runoff and keep soil losses to a minimum.
- If the soil is used as a base for roads, a coarse-grained subgrade to frost depth is needed to prevent frost action.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

Blueberry Management:

- This unit is well suited to blueberry production.
- This unit has very few or no surface stones, and is well suited to flail mowing. Mechanical harvesting is moderately difficult due to slope.
- Irrigation and cultural practices such as weed control, insect and disease control, and fertility management will result in increased yields of blueberries.
- Irrigation water should be applied in amounts sufficient to wet the root zone but in amounts small enough to prevent the leaching of plant nutrients, insecticides, and herbicides.
- Water needs to be applied at a slow rate over a long period to insure that the root zone is properly wetted.
- Fertilization needs can be determined by leaf tissue analysis. Proper fertilization can result in greater top and rhizome growth and higher yields.
- The use of honeybees for pollination will increase the fruit set and result in higher yields.

Hay and Pasture:

- If this unit is used for hay and pasture, there are few limitations.
- The use of proper stocking rates, pasture rotation, and restricted grazing during wet periods helps to keep the pasture in good condition and to protect the soil from erosion.
- Proper grazing practices, weed control, lime, and fertilizer are needed for maximum quality of forage.

MbC—Marlow fine sandy loam, 8 to 15 percent slopes, very stony

Setting

Landform: Drumlins, hills, and ridges
Description of areas: Elongated or irregular in shape and from 6 to over 50 acres in size

Composition

Marlow and similar soils: 80 percent
Inclusions: 20 percent

Marlow soil

Position on landscape: Crests, shoulder slopes, and side slopes
Parent material: Dense glacial till
Slope features: Convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 1 inch, dark reddish brown sapric material
Subsurface layer:
1 to 3 inches, brown, very friable, fine sandy loam
Subsoil:
3 to 5 inches, dark brown, friable, fine sandy loam
5 to 10 inches, brown, friable, fine sandy loam
10 to 17 inches, dark yellowish brown, friable, fine sandy loam
17 to 23 inches, light olive brown, friable, fine sandy loam

Substratum:

23 to 65 inches, olive brown, firm, fine sandy loam
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Well drained
Permeability: Moderate in the surface, subsurface, and subsoil, and slow or moderately slow in the substratum
Available water capacity: Moderate
Depth to restrictive layer: 20 to 38 inches to firm substratum
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Marlow soils in most properties, but differ in some respect, such as color, surface texture, or consistence.

Interpretations for most common uses are reasonably similar to those for the Marlow soils.

Inclusions

- Dixfield soils are moderately well drained dense glacial till. They are on lower side slopes and footslopes.
- Colonel soils are somewhat poorly drained dense glacial till. They are in depressions, on toeslopes, or adjacent to drainageways.
- Lyman soils are somewhat excessively drained shallow glacial till. They are on the crests of hills and ridges.
- Tunbridge soils are well drained moderately deep glacial till. They are intermingled with the Lyman soils on the crests of hills and ridges.
- Slopes greater than 15 percent and less than 8 percent.

Use and Management

Current uses: Blueberry production, pasture, and homesites

Major Management Concerns

- Slow or moderately slow permeability
- Stones on the surface
- Slope
- Firm layer
- Frost action
- Restricted rooting depth

General Management Considerations

Urban Development:

- Follow state or local regulations on septic system installation.
- If this map unit is used for septic tank absorption fields, permeability limitations can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the firm substratum.
- Slope is a concern in installing septic tank absorption fields. Absorption lines should be installed on the contour.
- As the slope increases, building site development becomes more difficult.
- A seasonal high water table is perched above the firm substratum for a short period of time in the early spring. Drainage should be provided for buildings with basements and crawl spaces.
- Excavation for building sites is difficult due to the firm substratum.
- Access roads must be designed to provide proper grade; and drains are needed to control surface runoff and keep soil losses to a minimum.
- If the soil is used as a base for roads, a coarse-grained subgrade to frost depth is needed to prevent frost action.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

Blueberry Management:

- This unit is well suited to blueberry production.
- This unit is not suited to flail mowing or mechanical harvesting because of surface stones.
- Irrigation and cultural practices such as weed control, insect and disease control, and fertility management will result in increased yields of blueberries.
- Irrigation water should be applied in amounts sufficient to wet the root zone but in amounts small enough to prevent the leaching of plant nutrients, insecticides, and herbicides.
- Water needs to be applied at a slow rate over a long period to insure that the root zone is properly wetted.
- Fertilization needs can be determined by leaf tissue analysis. Proper fertilization can result in greater top and rhizome growth and higher yields.
- The use of honeybees for pollination will increase the fruit set and result in higher yields.

Hay and Pasture:

- If this unit is used for hay and pasture, the main limitation is stones on the surface.
- Surface stones limit the use of equipment for harvesting hay.
- The use of proper stocking rates, pasture rotation, and restricted grazing during wet periods helps to keep the pasture in good condition and to protect the soil from erosion.
- Proper grazing practices, weed control, lime, and fertilizer are needed for maximum quality of forage.

MDD—Marlow-Dixfield association, 8 to 30 percent slopes, very stony

Setting

Landform: Drumlins, ridges, and hills
Description of areas: Oblong in shape and from 20 to over 100 acres in size

Composition

Marlow and similar soils: 55 percent Dixfield and similar soils: 30 percent Inclusions: 15 percent

Marlow soil

Position on landscape: Crests, shoulder slopes, and side slopes
Parent material: Dense glacial till
Slope range: 15 to 30 percent
Slope features: Convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 1 inch, dark reddish brown sapric material
Subsurface layer:
1 to 3 inches, brown, very friable, fine sandy loam
Subsoil:
3 to 5 inches, dark brown, friable, fine sandy loam
5 to 10 inches, brown, friable, fine sandy loam
10 to 17 inches, dark yellowish brown, friable, fine sandy loam
17 to 23 inches, light olive brown, friable, fine sandy loam
Substratum:
23 to 65 inches, olive brown, firm, fine sandy loam

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Well drained
Permeability: Moderate in the surface, subsurface, and subsoil, and slow or moderately slow in the substratum
Available water capacity: Moderate
Depth to restrictive layer: 20 to 38 inches to dense substratum
Hazard of flooding: None

Dixfield soil

Position on landscape: Lower side slopes and footslopes
Parent material: Dense glacial till
Slope range: 8 to 15 percent
Slope features: Smooth and convex
Stones on surface: 0.1 to 3 percent
Typical Profile
Surface layer:
0 to 3 inches, dark brown sapric material
Subsurface layer:
3 to 6 inches, grayish brown, friable, fine sandy loam
Subsoil:
6 to 8 inches, dark reddish brown, friable, fine sandy loam
8 to 15 inches, brown, friable, gravelly fine sandy loam
15 to 20 inches, dark yellowish brown, friable, gravelly fine sandy loam
20 to 31 inches, olive brown, mottled, friable, gravelly fine sandy loam
Substratum:
31 to 65 inches, light olive brown, mottled, firm, gravelly fine sandy loam
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Moderate in the surface, subsurface, and subsoil, and slow or moderately slow in the substratum
Available water capacity: Moderate
Depth to restrictive layer: 18 to 33 inches to dense substratum
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Marlow and Dixfield soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Marlow and Dixfield soils.

Inclusions

- Colonel soils are somewhat poorly drained dense glacial till. They are on toeslopes, in slight depressions, or adjacent to drainageways.
- Tunbridge soils are well drained moderately deep glacial till. They are on the crests and shoulder slopes of knolls and ridges.
- Lyman soils are somewhat excessively drained shallow glacial till. They are on the crests of knolls and ridges intermingled with the Tunbridge soils.
- Becket soils are well drained and Skerry soils are moderately well drained dense glacial till that have greater than 20 percent sand lenses in the substratum. Becket
soils are intermingled with the Marlow soils and Skerry soils are intermingled with the Dixfield soils.
- Slopes greater than 30 percent and less than 8 percent.

Use and Management

Current uses: Woodland

Major Management Concerns

- Slope
- Restricted rooting depth
- Seasonal high water table in the Dixfield soil
- Frost action
- Slow and moderately slow permeability
- Stones on the surface

General Management Considerations

Woodland Management:

- The potential productivity of this unit for trees is very high in the Dixfield soils and high in the Marlow soils.
- This unit has potential for the production and management of Balsam fir for wreath brush and Christmas trees.
- These areas have good natural reproduction of spruce and fir. Proper thinning practices will reduce overcrowding and promote the growth of these species.
- Minimizing the risk of erosion is essential in harvesting timber.
- Proper design of road drainage systems and care in the placement of culverts help to control erosion. Spoil from excavations is subject to rill and gully erosion and to sloughing.
- Roads and landings can be protected from erosion by constructing waterbars and by seeding cuts and fills.
- Laying out skid trails and roads on the contour will reduce erosion.
- Planting trees on the contour and interplanting with a cover crop helps to control erosion.
- Revegetating disturbed areas around landings, skid trails, roads, and construction sites as soon as possible will help to control soil erosion.
- Conventional methods of harvesting timber are moderately difficult to use because of slope.
- Stones on the surface can interfere with felling, yarding, and other operations involving the use of equipment.
- Trees are subject to windthrow because of restricted rooting depth caused by the dense substratum.
- During some periods of heavy rainfall, the water table is perched at a shallow depth for a short time. Trees commonly are subject to windthrow because the soil is saturated during these periods and because root growth is limited by the dense substratum.
- Care should be taken in harvesting and thinning to reduce trees exposed to the prevailing winds.
- Harvesting by stripcutting will expose fewer trees to the prevailing wind and help to prevent windthrow.
- Periodic salvaging of windthrown trees is advisable.
- Plant competition delays natural regeneration but does not prevent the eventual development of a fully stocked, normal stand of trees.
- Competing vegetation can be controlled by properly preparing the site and by eliminating unwanted weeds, brush, or trees.

Recreation Management:

- If this unit is used for camping areas, picnic areas, and paths and trails, the main limitation is slope.
- Erosion and sedimentation can be controlled and the beauty of the area enhanced by maintaining adequate plant cover. Plant cover can be maintained by limiting traffic.

Urban Development:

- Follow state or local regulations on septic system installation.
- If this map unit is used for septic tank absorption fields, permeability limitations can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the dense substratum.
- Slope is a concern in installing septic tank absorption fields. Absorption lines should be installed on the contour.
- If the Dixfield soils are used for septic tank absorption fields, the limitation of seasonal high water table can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- As the slope increases, building site development becomes more difficult.
- Wetness in the Dixfield soils can be reduced by installing drainage tile around footings and backfilling with material that has good permeability.
- A seasonal high water table is perched above the dense substratum in the Marlow soils for a short period of time in the early spring. Drainage should be provided for dwellings with basements.
- Excavation for building sites is difficult due to the dense substratum.
- Access roads must be designed to provide proper grade and drains are needed to control surface runoff and keep soil losses to a minimum.
- If the Dixfield soils are used as a base for roads, a coarse grained subgrade to frost depth is needed to prevent frost action.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

MFD—Marlow-Rawsonville-Dixfield complex, 8 to 30 percent slopes, very stony

Setting
Landform: Hills, ridges, and drumlins
Description of areas: Irregular in shape and from 20 to over 100 acres in size

Composition

Marlow and similar soils: 35 percent
Rawsonville and similar soils: 25 percent
Dixfield and similar soils: 20 percent
Inclusions: 20 percent

Marlow soil

Position on landscape: Crests, shoulder slopes, and side slopes
Parent material: Dense glacial till

Slope range: 15 to 30 percent
Slope features: Convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 1 inch, dark reddish brown sapric material
Subsurface layer:
1 to 3 inches, brown, very friable, fine sandy loam
Subsoil:
3 to 5 inches, dark brown, friable, fine sandy loam
5 to 10 inches, brown, friable, fine sandy loam
10 to 17 inches, dark yellowish brown, friable, fine sandy loam
17 to 23 inches, light olive brown, friable, fine sandy loam

Substratum:

23 to 65 inches, olive brown, firm, fine sandy loam

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Well drained
Permeability: Moderate in the surface, subsurface, and subsoil, and slow or moderately slow in the substratum
Available water capacity: Moderate
Depth to restrictive layer: 20 to 38 inches to dense substratum
Hazard of flooding: None

Rawsonville soil

Position on landscape: Crests and shoulder slopes
Parent material: Glacial till
Slope range: 15 to 30 percent
Slope features: Convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, dark reddish brown sapric material
Subsurface layer:
2 to 4 inches, pinkish gray fine sandy loam
Subsoil:
4 to 8 inches, dark reddish brown fine sandy loam
8 to 15 inches, reddish brown fine sandy loam
15 to 24 inches, strong brown fine sandy loam
24 to 30 inches, yellowish brown gravelly sandy loam
Substratum:
30 to 36 inches, brown gravelly sandy loam
Bedrock:
36 inches,schist
Soil Properties and Qualities
Depth class: Moderately deep
Drainage class: Well drained
Permeability: Moderate or moderately rapid
Available water capacity: Low

Depth to restrictive layer: 20 to 40 inches to bedrock Hazard of flooding: None

Dixfield soil

Position on landscape: Footslopes
Parent material: Dense glacial till
Slope range: 8 to 15 percent
Slope features: Convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 3 inches, dark brown sapric material
Subsurface layer:
3 to 6 inches, grayish brown, friable, fine sandy loam
Subsoil:
6 to 8 inches, dark reddish brown, friable, fine sandy loam
8 to 15 inches, brown, friable, gravelly fine sandy loam
15 to 20 inches, dark yellowish brown, friable, gravelly fine sandy loam
20 to 31 inches, olive brown, mottled, friable, gravelly fine sandy loam
Substratum:
31 to 65 inches, light olive brown, mottled, firm, gravelly fine sandy loam
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Moderate in the surface, subsurface, and subsoil, and slow or moderately slow in the substratum
Available water capacity Moderate
Depth to restrictive layer: 18 to 33 inches to dense substratum
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Marlow, Rawsonville, and Dixfield soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Marlow, Rawsonville, and Dixfield soils.

Inclusions

- Areas of soils similar to Marlow, Rawsonville, and Dixfield soils with bedrock between 40 to 60 inches.
- Colonel soils are somewhat poorly drained dense glacial till. They are on toeslopes, in slight depressions, and adjacent to drainageways.
- Hogback soils are somewhat excessively drained shallow glacial till. They are intermingled with the Rawsonville soils on the crests of ridges and knolls.
- Abram soils are excessively drained very shallow glacial till. They are intermingled with the Rawsonville and Hogback soils on the crests of ridges and knolls.
- Ricker soils are well drained very shallow organic soils. They are intermingled with rock outcrop on the crests of ridges and knolls.
- Tunbridge soils are well drained moderately deep soils on crests and shoulder slopes. They have less organic carbon in their subsoil than Rawsonville soils.
- Areas of rock outcrop on the crests of ridges and knolls.
- Slopes greater than 30 percent and less than 8 percent.
- Areas with extremely stony or bouldery surfaces.

Use and Management

Current uses: Woodland

Major Management Concerns

- Slope
- Depth to bedrock in the Rawsonville soils
- Seasonal high water table in the Dixfield soils
- Restricted rooting depth
- Stones on the surface
- Slow and moderately slow permeability in the Dixfield and Marlow soils
- Hazard of seepage

General Management Considerations

Woodland Management:

- The potential productivity of this unit for trees is very high in the Dixfield soils and high in the Marlow and Rawsonville soils.
- This unit has potential for the production and management of Balsam fir for wreath brush and Christmas trees.
- These areas have good natural reproduction of spruce and fir. Proper thinning practices will reduce overcrowding and promote the growth of these species.
- Minimizing the risk of erosion is essential in harvesting timber.
- Proper design of road drainage systems and care in the placement of culverts help to control erosion. Spoil from excavations is subject to rill and gully erosion and to sloughing.
- Roads and landings can be protected from erosion by constructing waterbars and by seeding cuts and fills.
- Laying out skid trails and roads on the contour will reduce erosion.
- Planting trees on the contour and interplanting with a cover crop helps to control erosion.
- Revegetating disturbed areas around landings, skid trails, roads, and construction sites as soon as possible will help to control soil erosion.
- Conventional methods of harvesting timber are moderately difficult to use because of slope on the Marlow and Rawsonville soils.
- Trees are subject to windthrow because of restricted rooting depth due to the dense substratum in the Marlow and Dixfield soils and depth to bedrock in the Rawsonville soils.
- During some periods of heavy rainfall, the water table is perched at a shallow depth for a short time. Trees commonly are subject to windthrow because the soil is saturated during these periods and because root growth is limited.
- Care should be taken in harvesting and thinning to reduce trees exposed to the prevailing winds.
- Harvesting by stripcutting will expose fewer trees to the prevailing wind and help to prevent windthrow.
- Periodic salvaging of windthrown trees is advisable.
- Plant competition delays natural regeneration but does not prevent the eventual development of a fully stocked, normal stand of trees.
- Competing vegetation can be controlled by properly preparing the site and by eliminating unwanted weeds, brush, or trees.

Recreation Management:

- If this unit is used for camping areas, picnic areas, and paths and trails, the main limitations are slope and stones on the surface.
- Erosion and sedimentation can be controlled and the beauty of the area enhanced by maintaining adequate plant cover. Plant cover can be maintained by limiting traffic.

Urban Development:

- Follow state or local regulations on septic system installation.
- If the Marlow and Dixfield soils are used for septic tank absorption fields, permeability limitations can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the dense substratum.
- Slope is a concern in installing septic tank absorption fields. Absorption lines should be installed on the contour.
- The Rawsonville soils have severe limitations for septic tank absorption fields due to the depth to bedrock. Septic systems should be located on deeper soils in this map unit or fill material can be used to raise the level of the absorption field.
- If Dixfield soils are used for septic tank absorption fields, the limitation of seasonal high water table can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- As the slope increases, building site development becomes more difficult.
- Cuts needed to provide level building sites can expose bedrock in the Rawsonville soils.
- Rawsonville soils have severe limitations for dwellings with basements. Dwellings with basements should be located on deeper soils in this map unit, or the bedrock should be removed, or the foundation set on bedrock and backfilled to the established grade.
- Wetness in the Dixfield soils can be reduced by installing drainage tile around footings and backfilling with material that has good permeability.
- A seasonal high water table is perched above the dense substratum in the Marlow soils for a short period of time in the early spring. Drainage should be provided for dwellings with basements.
- Excavation for building sites is difficult in the Marlow and Dixfield soils due to the dense substratum.
- Access roads must be designed to provide proper grade and drains are needed to control surface runoff and keep soil losses to a minimum.
- Excavation, grading, and ditching activities involved in the construction and maintenance of roads can expose bedrock in the Rawsonville soils.
- If the Dixfield soils are used as a base for roads, a coarse grained subgrade to frost depth is needed to prevent frost action.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

MGD—Marlow-Tunbridge-Dixfield complex, 8 to 30 percent slopes, very stony

Setting
Landform: Hills, ridges, and drumlins
Description of areas: Irregular in shape and from 20 to over 100 acres in size

Composition

Marlow and similar soils: 35 percent
Tunbridge and similar soils: 25 percent

Dixfield and similar soils: 20 percent
Inclusions: 20 percent

Marlow soil

Position on landscape: Crests, shoulder slopes, and side slopes
Parent material: Dense glacial till
Slope range: 15 to 30 percent
Slope features: Convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 1 inch, dark reddish brown sapric material
Subsurface layer:
1 to 3 inches, brown, very friable, fine sandy loam
Subsoil:
3 to 5 inches, dark brown, friable, fine sandy loam
5 to 10 inches,brown, friable, fine sandy loam
10 to 17 inches, dark yellowish brown, friable, fine sandy loam
17 to 23 inches, light olive brown, friable, fine sandy loam
Substratum:
23 to 65 inches, olive brown, firm, fine sandy loam
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Well drained
Permeability: Moderate in the surface, subsurface, and subsoil, and slow or moderately slow in the substratum
Available water capacity: Moderate
Depth to restrictive layer: 20 to 38 inches to dense substratum
Hazard of flooding: None

Tunbridge soil

Position on landscape: Crests and shoulder slopes
Parent material: Glacial till
Slope range: 15 to 30 percent
Slope features: Convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, dark brown sapric material
Subsurface layer:
2 to 4 inches, grayish brown fine sandy loam
Subsoil:
4 to 5 inches, dark brown fine sandy loam
5 to 10 inches, brown fine sandy loam
10 to 17 inches, dark yellowish brown fine sandy loam
17 to 28 inches, light olive brown gravelly fine sandy loam
Bedrock:
28 inches, schist

Soil Properties and Qualities
Depth class: Moderately deep
Drainage class: Well drained
Permeability: Moderate or moderately rapid
Available water capacity: Low
Depth to restrictive layer: 20 to 40 inches to bedrock
Hazard of flooding: None

Dixfield soil

Position on landscape: Footslopes
Parent material: Dense glacial till
Slope range: 8 to 15 percent
Slope features: Convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 3 inches, dark brown sapric material
Subsurface layer:
3 to 6 inches, grayish brown, friable, fine sandy loam
Subsoil:
6 to 8 inches, dark reddish brown, friable, fine sandy loam
8 to 15 inches, brown, friable, gravelly fine sandy loam
15 to 20 inches, dark yellowish brown, friable, gravelly fine sandy loam
20 to 31 inches, olive brown, mottled, friable, gravelly fine sandy loam
Substratum:
31 to 65 inches, light olive brown, mottled, firm, gravelly fine sandy loam
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Moderate in the surface, subsurface, and subsoil, and slow or moderately slow in the substratum
Available water capacity: Moderate
Depth to restrictive layer: 18 to 33 inches to dense substratum
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Marlow, Tunbridge, and Dixfield soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Marlow, Tunbridge, and Dixfield soils.

Inclusions

- Areas of soils similar to Marlow, Tunbridge, and Dixfield soils with bedrock between 40 to 60 inches.
- Colonel soils are somewhat poorly drained dense glacial till. They are on toeslopes, in slight depressions, and adjacent to drainageways.
- Lyman soils are somewhat excessively drained shallow glacial till. They are intermingled with the Tunbridge soils on the crests of ridges and knolls.
- Abram soils are excessively drained very shallow glacial till. They are intermingled with the Tunbridge and Lyman soils on the crests of ridges and knolls.
- Skerry soils are moderately well drained and Becket soils are well drained dense glacial till that have greater than 20 percent sand lenses in the substratum. Skerry soils are intermingled with the Dixfield soils and Becket soils are intermingled with the Marlow soils.
- Ricker soils are well drained very shallow organic soils. They are intermingled with rock outcrop on the crests of ridges and knolls.
- Areas of rock outcrop on the crests of ridges and knolls are included.
- Slopes greater than 30 percent and less than 8 percent are included.
- Areas with extremely stony or bouldery surfaces are included.

Use and Management

Current uses: Woodland

Major Management Concerns

- Slope
- Depth to bedrock in the Tunbridge soils
- Seasonal high water table in the Dixfield soils
- Restricted rooting depth
- Stones on the surface
- Slow and moderately slow permeability in the Dixfield and Marlow soils
- Hazard of seepage

General Management Considerations

Woodland Management:

- The potential productivity of this unit for trees is very high in the Dixfield soils and high in the Marlow and Tunbridge soils.
- This unit has potential for the production and management of Balsam fir for wreath brush and Christmas trees.
- These areas have good natural reproduction of spruce and fir. Proper thinning practices will reduce overcrowding and promote the growth of these species.
- Minimizing the risk of erosion is essential in harvesting timber.
- Proper design of road drainage systems and care in the placement of culverts help to control erosion. Spoil from excavations is subject to rill and gully erosion and to sloughing.
- Roads and landings can be protected from erosion by constructing waterbars and by seeding cuts and fills.
- Laying out skid trails and roads on the contour will reduce erosion.
- Planting trees on the contour and interplanting with a cover crop helps to control erosion.
- Revegetating disturbed areas around landings, skid trails, roads, and construction sites as soon as possible will help to control soil erosion.
- Conventional methods of harvesting timber are moderately difficult to use because of slope on the Marlow and Tunbridge soils.
- Trees are subject to windthrow because of restricted rooting depth due to the dense substratum in the Marlow and Dixfield soils and depth to bedrock in the Tunbridge soils.
- During some periods of heavy rainfall, the water table is perched at a shallow depth for a short time. Trees commonly are subject to windthrow because the soil is saturated during these periods and because root growth is limited.
- Care should be taken in harvesting and thinning to reduce trees exposed to the prevailing winds.
- Harvesting by stripcutting will expose fewer trees to the prevailing wind and help to prevent windthrow.
- Periodic salvaging of windthrown trees is advisable.
- Plant competition delays natural regeneration but does not prevent the eventual development of a fully stocked, normal stand of trees.
- Competing vegetation can be controlled by properly preparing the site and by eliminating unwanted weeds, brush, or trees.

Recreation Management:

- If this unit is used for camping areas, picnic areas, and paths and trails, the main limitations are slope and stones on the surface.
- Erosion and sedimentation can be controlled and the beauty of the area enhanced by maintaining adequate plant cover. Plant cover can be maintained by limiting traffic.

Urban Development:

- Follow state or local regulations on septic system installation.
- If the Marlow and Dixfield soils are used for septic tank absorption fields, permeability limitations can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the dense substratum.
- Slope is a concern in installing septic tank absorption fields. Absorption lines should be installed on the contour.
- The Tunbridge soils have severe limitations for septic tank absorption fields due to the depth to bedrock. Septic systems should be located on deeper soils in this map unit or fill material can be used to raise the level of the absorption field.
- If Dixfield soils are used for septic tank absorption fields, the limitation of seasonal high water table can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- As the slope increases, building site development becomes more difficult.
- Cuts needed to provide level building sites can expose bedrock in the Tunbridge soils.
- Tunbridge soils have severe limitations for dwellings with basements. Dwellings with basements should be located on deeper soils in this map unit, or the bedrock should be removed, or the foundation set on bedrock and backfilled to the established grade.
- Wetness in the Dixfield soils can be reduced by installing drainage tile around footings and backfilling with material that has good permeability.
- A seasonal high water table is perched above the dense substratum in the Marlow soils for a short period of time in the early spring. Drainage should be provided for dwellings with basements.
- Excavation for building sites is difficult in the Marlow and Dixfield soils due to the dense substratum.
- Access roads must be designed to provide proper grade and drains are needed to control surface runoff and keep soil losses to a minimum.
- Excavation, grading, and ditching activities involved in the construction and maintenance of roads can expose bedrock in the Tunbridge soils.
- If the Dixfield soils are used as a base for roads, a coarse grained subgrade to frost depth is needed to prevent frost action.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

MmA-Masardis fine sandy loam, 0 to 3 percent slopes

Setting

Landform: Outwash plains, deltas, and kame terraces
Description of areas: Irregular in shape and from 6 to 1,000 acres in size

Composition

Masardis and similar soils: 90 percent
Inclusions: 10 percent

Masardis soil

Position on landscape: On rises and dips throughout the nearly level slopes.
Parent material: Glaciofluvial sand and gravel
Slope features: Nearly level and smooth
Stones on surface: None

Typical Profile

Surface layer:
0 to 1 inch, dark reddish brown sapric material
Subsurface layer:
1 to 2 inches, reddish gray fine sandy loam

Subsoil:

2 to 4 inches, dark reddish brown fine sandy loam
4 to 9 inches, brown fine sandy loam
9 to 12 inches, dark yellowish brown gravelly fine sandy loam
12 to 16 inches, olive brown gravelly sandy loam

Substratum:

16 to 65 inches, olive brown very gravelly sand

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Somewhat excessively drained
Permeability: Moderately rapid in the surface, subsurface, and subsoil, and rapid in the substratum
Available water capacity: Low
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Masardis soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Masardis soils.

Inclusions

- Colton soils are excessively drained glaciofluvial sand and gravel that have fine sandy loam or sandy loam surface caps less than 10 inches thick. They are intermingled with the Masardis soils.
- Sheepscot soils are moderately well drained glaciofluvial sand and gravel. They are on footslopes, toeslopes, or in depressions.
- Adams soils are excessively drained glaciofluvial sand. They are usually on the perimeters of this unit.
- Areas of well drained and somewhat excessively drained glaciofluvial sand that have less than 35 percent rock fragments are intermingled with the Masardis soils in the Deblois and Beddington area.
- Slopes greater than 3 percent are included.

Use and Management

Current uses: Wild blueberry production, hayland, pasture, homesites, and as a source of gravel

Major Management Concerns

- Poor filter
- Hazard of seepage
- Cutbanks are not stable
- Droughtiness

General Management Considerations

Urban Development:

- Follow state or local regulations on septic system installation.
- If this map unit is used for septic tank absorption fields, there is a possibility of groundwater contamination due to the poor filtering action of the substratum. Finertextured fill material below the bottom of the absorption field can help prevent this from occurring.
- This map unit is an aquifer recharge area and because of the permeability of these soils, pollutants can move quickly through the soil and into the ground water. Contamination of the ground water is therefore possible if precautions are not taken. Restrictions on the types of activities that may occur, limitations on the density of housing, and special engineering designs for septic systems are possible precautionary measures.
- These areas are a probable source of gravel and sand.

Blueberry Management:

- This unit is well suited to blueberry production.
- This unit has very few or no surface stones, and is well suited to flail mowing and mechanical harvesting.
- In expansive open areas, such as the blueberry barrens in western Washington County, windbreaks help to trap blowing snow which provides protection from winterkill and increases the water available for plant growth. Windbreaks also reduce wind speed thus creating a more favorable environment for honeybee pollination.
- Irrigation and cultural practices such as weed control, insect and disease control, and fertility management will result in increased yields of blueberries.
- Irrigation water should be applied in amounts sufficient to wet the root zone but in amounts small enough to prevent the leaching of plant nutrients, insecticides, and herbicides.
- Water needs to be applied at a slow rate over a long period to insure that the root zone is properly wetted.
- Fertilization needs can be determined by leaf tissue analysis. Proper fertilization can result in greater top and rhizome growth and higher yields.
- The use of honeybees for pollination will increase the fruit set and result in higher yields.

Hay and Pasture:

- If this unit is used for hay and pasture, the main limitation is droughtiness.
- The use of proper stocking rates and pasture rotation helps to keep the pasture in good condition and to protect the soil from erosion.
- Proper grazing practices, weed control, lime, and fertilizer are needed for maximum quality of forage.

MmB—Masardis fine sandy loam, 3 to 8 percent slopes

Setting

Landform: Outwash plains, deltas, and kame terraces Description of areas: Irregular in shape and from 6 to 50 acres in size

Composition

Masardis and similar soils: 80 percent
Inclusions: 20 percent

Masardis soil

Position on landscape: Throughout the gentle slopes at the perimeters of wide depressions
Parent material: Glaciofluvial sand and gravel
Slope features: Convex and smooth
Stones on surface: None

Typical Profile

Surface layer:
0 to 1 inch, dark reddish brown sapric material
Subsurface layer:
1 to 2 inches, reddish gray fine sandy loam
Subsoil:
2 to 4 inches, dark reddish brown fine sandy loam
4 to 9 inches, brown fine sandy loam
9 to 12 inches, dark yellowish brown gravelly fine sandy loam
12 to 16 inches, olive brown gravelly sandy loam

Substratum:

16 to 65 inches, olive brown very gravelly sand

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Somewhat excessively drained
Permeability: Moderately rapid in the surface, subsurface, and subsoil, and rapid in the substratum
Available water capacity: Low
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Masardis soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Masardis soils.

Inclusions

- Colton soils are excessively drained glaciofluvial sand and gravel that have fine sandy loam or sandy loam surface caps less than 10 inches thick. They are intermingled with the Masardis soils.
- Sheepscot soils are moderately well drained glaciofluvial sand and gravel. They are on toeslopes or at the base of depressions.
- Adams soils are excessively drained glaciofluvial sand. They are usually on the perimeters of this unit.
- Areas of well drained and somewhat excessively drained glaciofluvial sand that have less than 35 percent rock fragments are intermingled with the Masardis soils in the Deblois and Beddington area.
- Slopes greater than 8 percent and less than 3 percent.

Use and Management

Current uses: Wild blueberry production, hayland, pasture, homesites, and as a source of gravel.

Major Management Concerns

- Poor filter
- Hazard of seepage
- Cutbanks are not stable
- Droughtiness

General Management Considerations

Urban Development:

- Follow state or local regulations on septic system installation.
- If this map unit is used for septic tank absorption fields, there is a possibility of groundwater contamination due to the poor filtering action of the substratum. Finertextured fill material below the bottom of the absorption field can help prevent this from occurring.
- This map unit is an aquifer recharge area and because of the permeability of these soils, pollutants can move quickly through the soil and into the ground water. Contamination of the ground water is therefore possible if precautions are not taken. Restrictions on the types of activities that may occur, limitations on the density of housing, and special engineering designs for septic systems are possible precautionary measures.
- These areas are a probable source of gravel and sand.

Blueberry Management:

- This unit is well suited to blueberry production.
- This unit has very few or no surface stones, and is well suited to flail mowing and mechanical harvesting.
- In expansive open areas, such as the blueberry barrens in western Washington County, windbreaks help to trap blowing snow which provides protection from winterkill and increases the water available for plant growth. Windbreaks also reduce wind speed thus creating a more favorable environment for honeybee pollination.
- Irrigation and cultural practices such as weed control, insect and disease control, and fertility management will result in increased yields of blueberries.
- Irrigation water should be applied in amounts sufficient to wet the root zone but in amounts small enough to prevent the leaching of plant nutrients, insecticides, and herbicides.
- Water needs to be applied at a slow rate over a long period to insure that the root zone is properly wetted.
- Fertilization needs can be determined by leaf tissue analysis. Proper fertilization can result in greater top and rhizome growth and higher yields.
- The use of honeybees for pollination will increase the fruit set and result in higher yields.

Hay and Pasture:

- If this unit is used for hay and pasture, the main limitation is droughtiness.
- The use of proper stocking rates and pasture rotation helps to keep the pasture in good condition and to protect the soil from erosion.
- Proper grazing practices, weed control, lime, and fertilizer are needed for maximum quality of forage.

MmC—Masardis fine sandy loam, 8 to 15 percent slopes

Setting
 Landform: Outwash plains, deltas, kettles, kames, and kame terraces Description of areas: Irregular in shape and from 6 to 50 acres in size

Composition

Masardis and similar soils: 85 percent
Inclusions: 15 percent

Masardis soil

Position on landscape: Throughout the strong slopes of wide depressions, on the perimeters of outwash plains and deltas, and on the shoulder slopes of kames and kettles.
Parent material: Glaciofluvial sands and gravels
Slope features: Convex and smooth

Stones on surface: None

Typical Profile

Surface layer:
0 to 1 inch, dark reddish brown sapric material
Subsurface layer:
1 to 2 inches, reddish gray fine sandy loam
Subsoil:
2 to 4 inches, dark reddish brown fine sandy loam
4 to 9 inches, brown fine sandy loam
9 to 12 inches, dark yellowish brown gravelly fine sandy loam
12 to 16 inches, olive brown gravelly sandy loam

Substratum:

16 to 65 inches, olive brown very gravelly sand

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Somewhat excessively drained
Permeability: Moderately rapid in the surface, subsurface, and subsoil, and rapid in the substratum
Available water capacity: Low
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Masardis soils in most properties, but differ in some respect, such as color, surface texture, or consistence.

Interpretations for most common uses are reasonably similar to those for the Masardis soils.

Inclusions

- Colton soils are excessively drained glaciofluvial sand and gravel that have fine sandy loam or sandy loam surface caps less than 10 inches thick. They are intermingled with the Masardis soils.
- Sheepscot soils are moderately well drained glaciofluvial sand and gravel. They are on toeslopes or at the base of depressions.
- Adams soils are excessively drained glaciofluvial sand. They are usually on the perimeters of this unit.
- Areas of well drained and somewhat excessively drained glaciofluvial sand that have less than 35 percent rock fragments are intermingled with the Masardis soils in the Deblois and Beddington area.
- Slopes greater than 15 percent and less than 8 percent are included.

Use and Management

Current uses: Wild blueberry production, hayland, pasture, homesites, and as a source of gravel.

Major Management Concerns

- Poor filter
- Hazard of seepage
- Cutbanks are not stable
- Droughtiness
- Slope

General Management Considerations

Urban Development:

- Follow state or local regulations on septic system installation.
- If this map unit is used for septic tank absorption fields, there is a possibility of groundwater contamination due to the poor filtering action of the substratum. Finertextured fill material below the bottom of the absorption field can help prevent this from occurring.
- As the slope increases, building site development becomes more difficult.
- Access roads must be designed to provide proper grade and drains are needed to control surface runoff and keep soil losses to a minimum.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.
- This map unit is an aquifer recharge area and because of the permeability of these soils, pollutants can move quickly through the soil and into the ground water. Contamination of the ground water is therefore possible if precautions are not taken. Restrictions on the types of activities that may occur, limitations on the density of housing, and special engineering designs for septic systems are possible precautionary measures.
- These areas are a probable source of gravel and sand.

Blueberry Management:

- This unit is well suited to blueberry production.
- This unit has very few or no surface stones, and is well suited to flail mowing. Mechanical harvesting is moderately difficult due to slope.
- In expansive open areas, such as the blueberry barrens in western Washington

County, windbreaks help to trap blowing snow which provides protection from winterkill and increases the water available for plant growth. Windbreaks also reduce wind speed thus creating a more favorable environment for honeybee pollination.

- Irrigation and cultural practices such as weed control, insect and disease control, and fertility management will result in increased yields of blueberries.
- Irrigation water should be applied in amounts sufficient to wet the root zone but in amounts small enough to prevent the leaching of plant nutrients, insecticides, and herbicides.
- Water needs to be applied at a slow rate over a long period to insure that the root zone is properly wetted.
- Fertilization needs can be determined by leaf tissue analysis. Proper fertilization can result in greater top and rhizome growth and higher yields.
- The use of honeybees for pollination will increase the fruit set and result in higher yields.
Hay and Pasture:
- If this unit is used for hay and pasture, the main limitation is droughtiness.
- The use of proper stocking rates and pasture rotation helps to keep the pasture in good condition and to protect the soil from erosion.
- Proper grazing practices, weed control, lime, and fertilizer are needed for maximum quality of forage.

MmE—Masardis fine sandy loam, 15 to 45 percent slopes

Setting
 Landform: Outwash plains and deltas, eskers, kettles, kames, and kame terraces Description of areas: Irregular in shape and from 6 to 300 acres in size

Composition
Masardis and similar soils: 90 percent Inclusions: 10 percent
\quad Masardis soil
Position on landscape: Side slopes, shoulder slopes, and crests
Parent material: Glaciofluvial sands and gravels
Slope features: Convex and smooth
Stones on surface: None
Typical Profile
Surface layer:
0 to 1 inch, dark reddish brown sapric material
Subsurface layer:
1 to 2 inches, reddish gray fine sandy loam
Subsoil:
2 to 4 inches, dark reddish brown fine sandy loam
4 to 9 inches, brown fine sandy loam
9 to 12 inches, dark yellowish brown gravelly fine sandy loam
12 to 16 inches, olive brown gravelly sandy loam
Substratum:
16 to 65 inches, olive brown very gravelly sand

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Somewhat excessively drained
Permeability: Moderately rapid in the surface, subsurface, and subsoil, and rapid in the substratum
Available water capacity: Low
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Masardis soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Masardis soils.

Inclusions

- Colton soils are excessively drained glaciofluvial sand and gravel that have fine sandy loam or sandy loam surface caps less than 10 inches thick. They are intermingled with the Masardis soils.
- Sheepscot soils are moderately well drained glaciofluvial sand and gravel. They are on toeslopes.
- Croghan soils are moderately well drained glaciofluvial sand. They are on toeslopes adjacent to depressions.
- Adams soils are excessively drained glaciofluvial sand. They are on the lower side slopes at the perimeter of the unit.
- Wonsqueak, Bucksport, and Sebago soils are very poorly drained organic soils and are located at the base of closed depressions created by complex kettle and kame topography and pitted outwash deltas and plains.
- Areas with slopes greater than 45 percent and less than 15 percent are included.

Use and Management

Current uses: Wild blueberry production, overgrown blueberry land, and as a source of gravel

Major Management Concerns

- Poor filter
- Slope
- Hazard of seepage
- Cutbanks are not stable
- Droughtiness

General Management Considerations

Urban Development:

- Follow state or local regulations on septic system installation.
- If this map unit is used for septic tank absorption fields, there is a possibility of groundwater contamination due to the poor filtering action of the substratum. Finertextured fill material below the bottom of the absorption field can help prevent this from occurring.
- Slope is a serious concern in installing septic tank absorption fields. Absorption lines should be installed on the contour.
- As the slope increases, building site development becomes more difficult.
- Access roads must be designed to provide proper grade and drains are needed to control surface runoff and keep soil losses to a minimum.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.
- This map unit is an aquifer recharge area and because of the permeability of these soils, pollutants can move quickly through the soil and into the ground water. Contamination of the ground water is therefore possible if precautions are not taken. Restrictions on the types of activities that may occur, limitations on the density of housing, and special engineering designs for septic systems are possible precautionary measures.
- These areas are a probable source of gravel and sand.

Blueberry Management:

- This unit is moderately well suited to blueberry production but blueberries generally are not grown on the soil.
- The use of herbicides on this unit may result in areas of bare soil. Mulching of these areas may be necessary in order to prevent erosion.
- Flail mowing and mechanical harvesting are difficult on this unit because of slope.
- Irrigation and cultural practices such as weed control, insect and disease control, and fertility management will result in increased yields of blueberries.
- Irrigation water should be applied in amounts sufficient to wet the root zone but in amounts small enough to prevent the leaching of plant nutrients, insecticides, and herbicides.
- Water needs to be applied at a slow rate over a long period to insure that the root zone is properly wetted.
- Fertilization needs can be determined by leaf tissue analysis. Proper fertilization can result in greater top and rhizome growth and higher yields.
- The use of honeybees for pollination will increase the fruit set and result in higher yields.

Hay and Pasture:

- If this unit is used for hay and pasture, the main limitations are slope and droughtiness.
- Slope limits the use of equipment for harvesting hay.
- The use of proper stocking rates and pasture rotation helps to keep the pasture in good condition and to protect the soil from erosion.
- Proper grazing practices, weed control, lime, and fertilizer are needed for maximum quality of forage.

MRE—Masardis-Adams complex, 15 to 70 percent slopes

Setting
Landform: Outwash plains, deltas, eskers, kettles, kames, and kame terraces
Description of areas: Irregular or elongated in shape and from 20 to over 100 acres in size

Composition

Masardis and similar inclusions: 60 percent
Adams and similar inclusions: 25 percent
Contrasting inclusions: 15 percent

Masardis soil

Position on landscape: Crests and side slopes
Parent material: Glaciofluvial sand and gravel
Slope range: 15 to 70 percent
Slope features: Convex
Stones on surface: None

Typical Profile

Surface layers:
0 to 1 inch, dark reddish brown highly decomposed organic material
Subsurface layers:
1 to 2 inches, reddish gray fine sandy loam
Subsoil:
2 to 4 inches, dark reddish brown fine sandy loam
4 to 9 inches, brown fine sandy loam
9 to 12 inches, dark yellowish brown gravelly fine sandy loam
12 to 16 inches, olive brown gravelly sandy loam
Substratum:
16 to 66 inches: olive brown very gravelly sand

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Somewhat excessively drained
Permeability: Moderately rapid in the surface, subsurface, and subsoil; and rapid in the substratum
Available water capacity: Low
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None

Adams soil

Position on landscape: Lower side slopes and footslopes
Parent material: Glaciofluvial sand
Slope ranges: 15 to 70 percent
Slope features: Convex
Stones on surface: None

Typical Profile

Surface layers:
0 to 1 inch, dark reddish brown highly decomposed organic material
Subsurface layer:
1 to 4 inches, brown loamy sand
Subsoil:
4 to 7 inches, dark reddish brown loamy sand
7 to 12 inches, brown sand
12 to 16 inches, dark yellowish brown sand
16 to 22 inches, yellowish brown sand
Substratum:
22 to 56 inches: light olive brown sand
56 to 65 inches, olive sand
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Somewhat excessively drained

Permeability: Rapid in the surface, subsurface, and subsoil, and very rapid in the substratum
Available water capacity: Very low
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None

Included Areas

Similar Inclusions:

Soils are included in this map unit which are like the Masardis and Adams soils in most properties, but differ in some respect, such as color, surface texture or consistence. Interpretations for most common uses are reasonably similar to those for the Masardis and Adams soils.

Contrasting Inclusions

- Kinsman soils are poorly drained glaciofluvial sand. They are in small depressions at the bottom of kettle holes.
- Bucksport, Wonsqueak, Sebago, and Moosabec soils are very poorly drained organic materials. They are in bogs at the bottom of kettle holes.
- Croghan soils are moderately well drained glaciofluvial sand. They are on toeslopes and in slight depressions.
- Sheepscot soils are moderately well drained glaciofluvial sand and gravel. They are on footslopes and toeslopes.
- Nicholville soils are moderately well drained glaciofluvial and glaciolacustrine very fine sand and silt. They are on toeslopes and at the edges of depressions.
- Colton soils are excessively drained glaciofluvial sand and gravel that have a loamy surface cap less than 10 inches thick. They are intermingled with the Masardis soils.
- Areas with slopes less than 15 percent are included.

Use and Management

Current uses: Woodland or overgrown blueberry land

Major Management Concerns

- Slope
- Cutbanks are not stable
- Droughtiness
- Poor filter
- Hazard of seepage

General Management Considerations

Woodland Management:

- The potential productivity of this unit for trees is medium on the Masardis soils and high on the Adams soils.
- Minimizing the risk of erosion is essential in harvesting timber.
- Proper design of road drainage systems and care in the placement of culverts help to control erosion. Spoil from excavations is subject to rill and gully erosion and to sloughing.
- Roads and landings can be protected from erosion by constructing waterbars and by seeding cuts and fills.
- Laying out skid trails and roads on the contour will reduce erosion.
- Planting trees on the contour and interplanting with a cover crop helps to control erosion.
- Revegetating disturbed areas around landings, skid trails, roads, and construction sites as soon as possible will help to control soil erosion.
- The steepness of slope limits the kinds of equipment that can be used in forest management.
- Seedling mortality can be reduced by planting seedlings in spring when soil moisture levels are highest and by using planting stock that is larger than usual or containerized. Reinforcement planting may be needed.
- Plant competition delays natural regeneration but does not prevent the eventual development of a fully stocked, normal stand of trees.
- Competing vegetation can be controlled by properly preparing the site and by eliminating unwanted weeds, brush, or trees.

Recreation Management:

- If this unit is used for camping areas, picnic areas, and paths and trails, the main limitation is slope. Slope limits the use of most areas of this unit mainly to a few paths and trails which should extend across the slope.
- Erosion and sedimentation can be controlled and the beauty of the area enhanced by maintaining adequate plant cover. Plant cover can be maintained by limiting traffic.

Urban Development:

- If this map unit is used for septic tank absorption fields, there is a possibility of groundwater contamination due to the poor filtering action of the substratum. Finer textured fill material below the bottom of the absorption field can help prevent this from occurring.
- Slope is a serious concern in installing septic tank absorption fields. Absorption lines should be installed on the contour.
- As the slope increases, building site development becomes more difficult.
- Access roads must be designed to provide proper grade and drains are needed to control surface runoff and keep soil losses to a minimum.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.
- This map unit is an aquifer recharge area and because of the permeability of these soils, pollutants can move quickly through the soil and into the ground water. Contamination of the ground water is therefore possible if precautions are not taken. Restrictions on the types of activities that may occur, limitations on the density of housing, and special engineering designs for septic systems are possible precautionary measures.
- These areas are a probable source of gravel and sand.

MSC—Masardis-Sheepscot complex, 0 to 15 percent slopes

Setting
Landform: Outwash plains, deltas, and kame terraces
Description of areas: Irregular in shape and from 20 to 500 acres in size
\section*{Composition}

Masardis and similar inclusions: 55 percent
Sheepscot soil and similar inclusions: 25 percent
Contrasting Inclusions: 20 percent

Masardis soil

Position on landscape: Crests, shoulder slopes, and side slopes
Parent material: Glaciofluvial sand and gravel
Slope range: 3 to 15 percent
Slope features: Convex
Stones on surface: None

Typical Profile

Surface layer:
0 to 1 inch, dark reddish brown sapric material
Subsurface layer:
1 to 2 inches, reddish gray fine sandy loam
Subsoil:
2 to 4 inches, dark reddish brown fine sandy loam
4 to 9 inches, brown flne sandy loam
9 to 12 inches, dark yellowish brown gravelly fine sandy loam
12 to 16 inches, olive brown gravelly sandy loam
Substratum:
16 to 65 inches, olive brown very gravelly sand

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Somewhat excessively drained
Permeability: Moderately rapid in the surface, subsurface, and subsoil, and rapid in the substratum
Available water capacity: Low
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None

Sheepscot soil

Position on landscape: Footslopes and toeslopes
Parent material: Glaciofluvial sand and gravel
Slope range: 0 to 8 percent
Slope features: Concave or nearly level
Stones on surface: None

Typical Profile

Surface layers:
0 to 4 inches, very dark brown highly decomposed organic material
Subsurface layers:
4 to 7 inches, light gray fine sandy loam
Subsoil:
7 to 9 inches, dark reddish brown sandy loam
9 to 16 inches, brown gravelly sandy loam
16 to 23 inches, strong brown very gravelly loamy sand
23 to 29 inches, dark yellowish brown, mottled, very gravelly sand
Substratum:
29 to 65 inches, light olive brown, mottled, very gravelly sand
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Moderately well drained

Permeability: Moderate or moderately rapid in the surface, subsurface and upper subsoil, and rapid in the lower subsoil and substratum
Available water capacity: Low
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None

Included Areas

Similar Inclusions

Soils are included in this map unit which are like the Masardis and Sheepscot soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Masardis and Sheepscot soils.

Contrasting Inclusion

- Adams soils are excessively drained glaciofluvial sand. They are on side slopes below the Masardis soils.
- Colton soils are excessively drained glaciofluvial sand and gravel that have a loamy surface cap less than 10 inches thick. They are intermingled with the Masardis soils.
- Croghan soils are moderately well drained glaciofluvial sand. They are on footslopes and in depressions near the perimeter of the unit.
- Nicholville soils are moderately well drained glaciofluvial or glaciolacustrine very fine sand and silt. They are at the perimeter of the unit in nearly level areas or in slight depressions.
- Bucksport, Wonsqueak. Moosabec and Sebago soils are very poorly drained organic materials. They are in small bogs in depressions, kettle holes, and adjacent to drainageways.
- Kinsman, soils are poorly drained glaciofluvial sand. They are in depressions and adjacent to drainageways.
- Areas of well drained and somewhat excessively drained glaciofluvial sand and gravel that have less than 35 percent rock fragments are intermingled with the Masardis soils in the Beddington and Deblois area.
- Areas with slopes greater than 15 percent.

Use and Management

Current uses: Woodland, overgrown blueberry fields, and as a source of sand and gravel

Major Management Concerns

- Seasonal high water table in the Sheepscot soils
- Cutbanks are not stable
- Slope in some areas
- Doughtiness
- Poor filter
- Hazard of seepage

General Management Considerations

Woodland Management:

- The potential productivity of this unit for trees is medium on the Masardis soils and high on the Sheepscot soils.
- Minimizing the risk of erosion is essential in harvesting timber.
- Revegetating disturbed areas around landings, skid trails, roads, and construction sites as soon as possible will help to control soil erosion.
- Conventional methods of harvesting timber can be used.
- Seedling mortality can be reduced by planting seedlings in spring when soil
moisture levels are highest and by using planting stock that is larger than usual or containerized. Reinforcement planting may be needed.
- Plant competition delays natural regeneration but does not prevent the eventual development of a fully stocked normal stand of trees. Competing vegetation can be controlled by properly preparing the site and by eliminating unwanted weeds, brush or trees.

Recreation Management:

- If this unit is used for camping areas, picnic areas, and paths and trails, the main limitations are slope on the Masardis soils and the seasonal high water table in the Sheepscot soils.
- Drainage will help reduce wetness problems in the Sheepscot soils.
- Erosion and sedimentation can be controlled and the beauty of the area enhanced by maintaining adequate plant cover. Plant cover can be maintained by limiting traffic.

Urban Development:

- If this map unit is used for septic tank absorption fields, there is a possibility of groundwater contamination due to the poor filtering action of the substratum. Finertextured fill material below the bottom of the absorption field can help prevent this from occurring.
- If the Sheepscot soils are used for septic tank absorption fields, the limitation of seasonal high water table can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- Slope is a concern in installing septic tank absorption fields. Absorption lines should be installed on the contour.
- As the slope increases, building site development becomes more difficult.
- Wetness in the Sheepscot soils can be reduced by installing drainage tile around footings and backfilling with material that has good permeability.
- Access roads must be designed to provide proper grade and drains are needed to control surface runoff and keep soil losses to a minimum.
- Roadfill is needed to raise the roadbase above the seasonal high water table in the Sheepscot soils.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.
- This map unit is an aquifer recharge area and because of the permeability of these soils, pollutants can move quickly through the soil and into the ground water. Contamination of the ground water is therefore possible if precautions are not taken. Restrictions on the types of activities that may occur, limitations on the density of housing and special engineering designs for septic systems are possible precautionary measures.
- These areas are a probable source of gravel and sand.

Blueberry Management:

- This unit is well suited to blueberry production although it is mainly wooded or overgrown blueberry land.
- These areas can be cleared, and with proper management, brought into blueberry production.
- The seasonal high water table will limit the use of equipment on the Sheepscot soils in the spring and late fall.
- This unit has very few or no surface stones, and is well suited to flail mowing. Mechanical harvesting is moderately difficult due to slope.
- Irrigation and cultural practices such as weed control, insect and disease control, and fertility management will result in increased yields of blueberries.
- Irrigation water should be applied in amounts sufficient to wet the root zone but in amounts small enough to prevent the leaching of plant nutrients, insecticides, and herbicides.
- Water needs to be applied at a slow rate over a long period to insure that the root zone is properly wetted.
- Fertilization needs can be determined by leaf tissue analysis. Proper fertilization can result in greater top and rhizome growth and higher yield.
- The use of honeybees for pollination will increase the fruit set and results in higher yields.

MT—Medomak and Wonsqueak soils, frequently flooded

Setting

Landform: Floodplains
Description of areas: Irregular or elongated in shape and from 20 to over 400 acres in size

Composition

Medomak and similar soils: 50 percent
Wonsqueak and similar soils: 30 percent
Inclusions: 20 percent

Medomak soil

Position on landscape: Throughout floodplains
Parent material: Alluvial sediments
Slope range: 0 to 2 percent
Slope features: Nearly level
Stones on surface: None

Typical Profile

Surface layer:
0 to 3 inches, black muck (sapric material)
Subsurface layer:
3 to 15 inches, very dark grayish brown, mottled, silt loam
Substratum:
15 to 30 inches, dark grayish brown, mottled, silt loam
30 to 58 inches, very dark grayish brown, mottled, silt loam
58 to 65 inches, dark gray, mottled, very fine sandy loam

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Very poorly drained
Permeability: Moderate
Available water capacity: Very high
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: Frequent, long duration, March to October
Wonsqueak soil
Position on landscape: Throughout floodplains

Parent material: Highly decomposed organic material underlain by mineral material Slope range: 0 to 2 percent
Slope features: Nearly level
Stones on surface: None

Typical Profile

Surface tier:
0 to 12 inches, black muck (sapric material)
Subsurface tier:
12 to 30 inches, black muck (sapric material)

Substratum:

30 to 65 inches, greenish gray silty clay loam
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Very poorly drained
Permeability: Moderately slow to moderately rapid in organic material, and moderately slow to moderate in underlying mineral soil
Available water capacity: Very high
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: Frequent, long duration, March to October

Included Areas

Similar soils

Soils are included in this map unit which are like the Medomak and Wonsqueak soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Medomak and Wonsqueak soils.

Inclusions

- Areas of alluvial sediments that are poorly drained or somewhat poorly drained. They are in slightly higher positions.
- Bucksport, Sebago, and Moosabec soils are very poorly drained organic materials. They are small bogs on the floodplain.
- Biddeford soils are very poorly drained glaciomarine deposits. They are on the perimeter of the unit mainly at elevations below 300 feet.
- Scantic soils are poorly drained glaciomarine deposits. They are on the perimeter of the unit mainly at elevations below 300 feet.

Use and Management

Current uses: Wildlife habitat and woodland

Major Management Concerns

- Flooding
- Seasonal high water table

General Management Considerations

Woodland Management:

- The potential productivity of this unit for trees is low on the Medomak soils and very low on the Wonsqueak soils.
- These wetland areas have the potential for providing important functions such as: controlling flood waters and erosion, improving water quality and availability, providing valuable habitat for wetland wildlife, and providing important recreational opportunities.
- Minimizing the risk of erosion is essential in harvesting timber.
- Because of the seasonal high water table harvesting operations should be
restricted to winter months when the soil is frozen and when equipment is easiest to use and causes the least damage to the site.
- Roadfill is needed to raise the roadbase above the seasonal high water table.
- Only trees that can tolerate seasonal wetness should be planted.
- Care should be taken in harvesting and thinning to reduce trees exposed to the prevailing winds.

Recreation Management:

- If this unit is used for camping areas, picnic areas, and paths and trails, the main limitations are flooding, seasonal high water table, and excess humus in the Wonsqueak soils.

Urban Development:

- Septic tank absorption fields, dwellings with basements, and roads should not be located in the floodplain.
- Follow state or local regulations on septic system installation.

Mvb—Monarda silt loam, 0 to 7 percent slopes, very stony

Setting

Landform: Till plains

Description of areas: Irregular in shape and from 6 to 20 acres in size

Composition

Monarda and similar soils: 75 percent
Inclusions: 25 percent

Monarda soil

Position on landscape: Toeslopes, depressions, and adjacent to drainages
Parent material: Dense glacial till Slope features: Concave or nearly level Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 1 inch, very dark gray much (sapric material)
Subsurface layer:
1 to 6 inches, very dark grayish brown, mottled, very friable, silt loam
6 to 10 inches, light brownish gray, mottled, friable, gravelly silt loam
Subsoil:
10 to 18 inches, light yellowish brown, mottled, very friable, gravelly silt loam
18 to 20 inches, light olive brown, mottled, friable, gravelly silt loam
20 to 23 inches, olive brown, mottled, firm, gravelly silt loam
Substratum:
23 to 65 inches, olive, mottled, firm, gravelly silt loam

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Poorly drained
Permeability: Moderate or moderately rapid in the surface and subsurface, slow to moderate in the subsoil, and very slow or slow in the substratum
Available water capacity: Moderate
Depth to restrictive layer: 12 to 30 inches to dense substratum

Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Monarda soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Monarda soils.

Inclusions

- Telos soils are somewhat poorly drained dense glacial till. They are in higher positions in the landscape.
- Soils that are very poorly drained dense glacial till. They are in the lowest depressions and adjacent to drainageways.
- Bucksport and Wonsqueak soils are very poorly drained highly decomposed organic material. They are in bogs and in the lowest depressions.
- Areas with slopes greater than 7 percent are included.

Use and Management

Current uses: Pasture or idle land

Major Management Concerns

- Seasonal high water table
- Very slow or slow permeability
- Stones on the surface
- Frost action
- Restricted rooting depth

General Management Considerations

Urban Development:

- Follow state or local regulations on septic system installation.
- Septic systems should not be located in these areas.
- If this map unit is used for septic tank absorption fields, the limitation of seasonal high water table can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- If this map unit is used for septic tank absorption fields, permeability limitations can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the dense substratum.
- These areas should be avoided as sites for dwellings.
- Wetness can be reduced by installing drainage tile around footings and backfilling with material that has good permeability. Suitable outlets must be available.
- Excavation for building sites is difficult due to the dense substratum.
- Roadfill is needed to raise the roadbase above the seasonal high water table.
- If the soil is used as a base for roads, a coarse grained subgrade to frost depth is needed to prevent frost action.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

Blueberry Management:

- This unit is poorly suited to blueberry production due to seasonal high water table.

Hay and Pasture:

- This unit is very poorly suited to hay and pasture due to seasonal high water table and stones on the surface.

MWB—Monarda-Telos association, 0 to 8 percent slopes, very stony

Setting

Landform: Upland till plains
Description of areas: Irregular in shape and from 20 to over 100 acres in size

Composition

Monarda and similar soils: 45 percent
Telos and similar soils: 40 percent
Inclusions: 15 percent
Monarda soil
Position on landscape: Depressions and adjacent to drainageways
Parent material: Dense glacial till
Slope range: 0 to 5 percent
Slope features: Nearly level or slightly concave and smooth
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 1 inch, very dark gray much (sapric material)

Subsurface layer:

1 to 6 inches, very dark grayish brown, mottled, very friable, silt loam 6 to 10 inches, light brownish gray, mottled, friable, gravelly silt loam
Subsoil:
10 to 18 inches, light yellowish brown, mottled, very friable, gravelly silt loam
18 to 20 inches, light olive brown, mottled, friable, gravelly silt loam
20 to 23 inches, olive brown, mottled, firm, gravelly silt loam
Substratum:
23 to 65 inches, olive, mottled, firm, gravelly silt loam

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Poorly drained
Permeability: Moderate or moderately rapid in the surface and subsurface, slow to moderate in the subsoil, and very slow or slow in the substratum
Available water capacity: Moderate
Depth to restrictive layer: 12 to 30 inches to dense substratum
Hazard of flooding: None

Telos soil

Position on landscape: Side slopes, footslopes, and toeslopes
Parent material: Dense glacial till
Slope range: 3 to 8 percent
Slope features: Slightly convex or slightly concave and smooth

Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, dark reddish brown sapric material
Subsurface layer:
2 to 3 inches, gray, very friable, silt loam
Subsoil:
3 to 6 inches, dark reddish brown, very friable, silt loam
6 to 10 inches, reddish brown, very friable, gravelly silt loam
10 to 13 inches, yellowish brown, mottled, very friable, gravelly silt loam
13 to 20 inches, light olive brown, mottled, firm, gravelly silt loam

Substratum:

20 to 65 inches, olive, mottled, firm, gravelly silt loam

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Somewhat poorly drained
Permeability: Moderate in the surface, subsurface, and subsoil, and very slow or slow in the substratum
Available water capacity: Moderate
Depth to restrictive layer: 11 to 21 inches to dense substratum
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Monarda and Telos soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Monarda and Telos soils.

Inclusions

- Chesuncook soils are moderately well drained dense glacial till. They are on shoulder slopes of convex knolls.
- Colonel soils are somewhat poorly drained dense glacial till. They have less clay content than Telos soils and are in similar landscape positions.
- Brayton soils are poorly drained dense glacial till. They have less clay content than Monarda soils and are in similar landscape positions.
- Areas of soils similar to the Monarda soils that are very poorly drained. They are in depressions.
- Wonsqueak and Bucksport soils are very poorly drained highly decomposed organic materials. They are in bogs in the lowest depressions.
- Elliottsville soils are moderately deep well drained glacial till. They are on the crests and shoulder slopes of small knolls.
- Slopes greater than 8 percent.

Use and Management

Current uses: Woodland

Major Management Concerns

- Seasonal high water table
- Frost action
- Very slow or slow permeability
- Restricted rooting depth

- Stones on the surface

General Management Considerations

Woodland Management

- The potential productivity of this unit for trees is high.
- This unit has potential for the production and management of Balsam fir for wreath brush and Christmas trees.
- These areas have good natural reproduction of spruce and fir. Proper thinning practices will reduce overcrowding and promote the growth of these species.
- Minimizing the risk of erosion is essential in harvesting timber.
- Revegetating disturbed areas around landings, skid trails, roads, and construction sites as soon as possible will help to control soil erosion.
- Conventional methods of harvesting timber generally can be used but their use may be limited when the soil is wet.
- These soils may be compacted if heavy equipment is used when these soils are wet.
- Because of the seasonal high water table, harvesting operations should be restricted to the driest part of the year or to when the soil is frozen and equipment is easiest to use and causes the least damage to the site.
- Roadfill is needed to raise the roadbase above the seasonal high water table.
- Only trees that can tolerate seasonal wetness should be planted.
- Trees commonly are subject to windthrow during periods when the soil is excessively wet and winds are strong.
- Windthrow is a hazard on these soils because the seasonal high water table and dense substratum cause trees to be shallow rooted.
- Care should be taken in harvesting and thinning to reduce trees exposed to the prevailing winds.
- Periodic salvaging of windthrown trees is advisable.
- After harvesting, reforestation must be carefully managed to reduce competition from undesirable understory plants.
- If the site is not adequately prepared, competition from undesirable plants can prevent or prolong natural or artificial reestablishment of trees.
- Competing vegetation can be controlled by properly preparing the site and by eliminating unwanted weeds, brush, or trees.

Recreation Management:

- If this unit is used for camping areas, picnic areas, and paths and trails, the main limitation is the seasonal high water table.
- Drainage should be provided in order to alleviate wetness problems.
- Erosion and sedimentation can be controlled and the beauty of the area enhanced by maintaining adequate plant cover. Plant cover can be maintained by limiting traffic.

Urban Development:

- Follow state or local regulations on septic system installation.
- If this map unit is used for septic tank absorption fields, the limitation of seasonal high water table can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- If this map unit is used for septic tank absorption fields, permeability limitations can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the dense substratum.
- The Monarda soils should be avoided as sites for dwellings.
- Wetness can be reduced by installing drainage tile around footings and backfilling with material that has good permeability.
- Excavation for building sites is difficult due to the dense substratum.
- Roadfill is needed to raise the roadbase above the seasonal high water table.
- If the soil is used as a base for roads, a coarse grained subgrade to frost depth is needed to prevent frost action.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

MXB—Monarda-Wonsqueak complex, 0 to 5 percent slopes, very stony

Setting
Landform: Upland till plains
Description of areas: Irregular in shape and from 20 to over 100 acres in size

Composition

Monarda and similar soils: 35 percent
Wonsqueak and similar soils: 30 percent
Inclusions: 35 percent
Monarda soil
Position on landscape: Throughout
Parent material: Dense glacial till
Slope range: 0 to 5 percent
Slope features: Nearly level or concave
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 1 inch, very dark gray muck (sapric material)
Subsurface layer:
1 to 6 inches, very dark grayish brown, mottled, very friable, silt loam
6 to 10 inches, light brownish gray, mottled, friable, gravelly silt loam
Subsoil:
10 to 18 inches, light yellowish brown, mottled, very friable, gravelly silt loam
18 to 20 inches, light olive brown, mottled, friable, gravelly silt loam
20 to 23 inches, olive brown, mottled, firm, gravelly silt loam

Substratum:

23 to 65 inches, olive, mottled, firm, gravelly silt loam

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Poorly drained
Permeability: Moderate or moderately rapid in the surface and subsurface, slow to moderate in the subsoil, and very slow or slow in the substratum
Available water capacity: Moderate

Depth to restrictive layer: 12 to 30 inches to dense substratum Hazard of flooding: None

Wonsqueak soil

Position on landscape: In depressions and adjacent to drainageways
Parent material: Highly decomposed organic material underlain by mineral material Slope range: 0 to 2 percent
Slope features: Concave or nearly level
Stones on surface: None

Typical Profile

Surface tier:
0 to 12 inches, black muck (sapric material)
Subsurface tier:
12 to 30 inches, black muck (sapric material)
Substratum:
30 to 65 inches, greenish gray silty clay loam
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Very poorly drained
Permeability: Moderately slow to moderately rapid in organic material, and moderately slow to moderate in underlying mineral soil
Available water capacity: Very high
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Monarda and Wonsqueak soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Monarda and Wonsqueak soils.

Inclusions

- Very poorly drained dense glacial till are on toeslopes intermingled with the Monarda soils.
- Bucksport soils are very poorly drained highly decomposed organic materials. They are intermingled with the Wonsqueak soils.
- Moderately well drained or somewhat poorly drained glacial till with greater than 35 percent rock fragments are on the side slopes and footslopes of small knolls and ridges.
- Somewhat excessively drained and well drained glacial till with greater than 35 percent rock fragments are on the crests of small knolls or ridges.
- Telos soils are poorly drained dense glacial till. They are on slightly higher convex knolls.
- Biddeford soils are very poorly drained glaciomarine deposits. They are intermingled with the Wonsqueak soils at elevations lower than 200 feet.
- Areas with slopes greater than 5 percent are included.

Use and Management

Current uses: Woodland

Major Management Concerns

- Seasonal high water table
- Restricted rooting depth
- Excess humus in the Wonsqueak soils
- Low strength in the Wonsqueak soils
- Frost action
- Very slow and slow permeability in the Monarda soils
- Hazard of seepage
- Stones on the surface of the Monarda soils

General Management Considerations

Woodland Management:

- The potential productivity of this unit for trees is high on the Monarda soils and very low on the Wonsqueak soils.
- This unit has potential for the production and management of Balsam fir for wreath brush and Christmas trees on the Monarda soils.
- Minimizing the risk of erosion is essential in harvesting timber.
- Because of the seasonal high water table harvesting operations should be restricted to winter months when the soil is frozen and when equipment is easiest to use and causes the least damage to the site.
- The soils may be compacted if heavy equipment is used when these soils are wet.
- Roadfill is needed to raise the roadbase above the seasonal high water table.
- Only trees that can tolerate seasonal wetness should be planted.
- Windthrow is a problem on these soils because the seasonal high water table in the Wonsqueak soils and the seasonal high water table and dense substratum in the Monarda soils cause's trees to be shallow rooted.
- Trees commonly are subject to windthrow during periods when the soil is excessively wet and winds are strong.
- Care should be taken in harvesting and thinning to reduce trees exposed to the prevailing winds.
- Harvesting by stripcutting will expose fewer trees to the prevailing wind and help to prevent windthrow.
- After harvesting, reforestation must be carefully managed to reduce competition from undesirable understory plants.
- If the site is not adequately prepared, competition from undesirable plants can prevent or prolong natural or artificial reestablishment of trees.
- Competing vegetation can be controlled by properly preparing the site and by eliminating unwanted weeds, brush, or trees.

Recreation Management:

- If this unit is used for camping areas, picnic areas, and paths and trails, the main limitations are the seasonal high water table and excess humus in the Wonsqueak soils.
- Drainage will help reduce wetness problems.

Urban Development:

- Follow state or local regulations on septic system installation.
- Septic systems should not be located in these areas.
- These areas should be avoided as sites for dwellings.
- Roadfill is needed to raise the roadbase above the seasonal high water table.
- If the soils are used as a base for roads, a coarse-grained subgrade to frost depth is needed to prevent frost action.

NAC-Naskeag-Abram-Ricker complex, 0 to 15 percent slopes, very stony

Setting

Landform: Bedrock-controlled hills, ridges, till plains, coastal islands and coastal peninsulas (fig. 7).
Description of areas: Irregular in shape and from 20 to over 800 acres in size

Composition

Naskeag and similar soils: 35 percent (lower in coastal areas)
Abram and similar soils: 25 percent
Ricker and similar soils: 20 percent (higher in coastal areas)
Inclusions: 20 percent

Naskeag soil

Position on landscape: Depressions and toeslopes
Parent material: Glacial till
Slope range: 0 to 8 percent
Slope features: Concave or nearly level
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 3 inches, black muck (sapric material)

Figure 7.-An area of Naskeag-Abram-Ricker complex, 0 to 15 percent slopes, very stony on Slate Island. The poorly drained Naskeag soil is in closed depressions within the bedrockcontrolled map unit.

Subsurface layer:
3 to 8 inches, grayish brown, mottled, sandy loam
8 to 11 inches, dark grayish brown, mottled, gravelly fine sandy loam
Subsoil:
11 to 18 inches, very dusky red loamy sand
18 to 22 inches, dark reddish brown gravelly loamy sand
22 to 32 inches, dark yellowish brown, mottled, gravelly loamy sand
32 to 38 inches, yellowish brown, mottled, gravelly loamy sand
Bedrock:
38 inches, granite
Soil Properties and Qualities
Depth class: Moderately deep
Drainage class: Poorly drained
Permeability: Rapid
Available water capacity: Low
Depth to restrictive layer: 20 to 40 inches to bedrock
Hazard of flooding: None
Abram soil
Position on landscape: Shoulder slopes, side slopes, and crests
Parent material: Glacial till
Slope range: 3 to 15 percent
Slope features: Convex
Stones on surface: 0.1 to 3 percent
Typical Profile
Surface layer:
0 to 2 inches, black sapric material
Subsurface layer:
2 to 5 inches, brown sandy loam
Subsoil:
5 to 6 inches, reddish brown sandy loam
Bedrock:
6 inches, granite
Soil Properties and Qualities
Depth class: Very shallow
Drainage class: Excessively drained
Permeability: Moderately rapid
Available water capacity: Very low
Depth to restrictive layer: 1 to 10 inches to bedrock
Hazard of flooding: None
Position on landscape: Crests, shoulder slopes, and side slopes
Parent material: Organic deposits underlain by thin mineral material
Slope rang: 3 to 15 percent
Slope features: Convex
Stones on surface: None
Typical Profile
Surface layer:
0 to 1 inch, dark reddish brown fibric material

1 to 4 inches, dark reddish brown hemic material
4 to 5 inches, black sapric material
Subsurface layer:
5 to 7 inches, brown gravelly sandy loam
Bedrock:
7 inches, granite

Soil Properties and Qualities

Depth class: Very shallow
Drainage class: Well drained
Permeability: Moderately rapid in the surface and moderate or moderately rapid in the subsurface
Available water capacity: Very low
Depth to restrictive layer: 1 to 10 inches to bedrock
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Naskeag, Abram, and Ricker soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Naskeag, Abram, and Ricker soils.

Inclusions

- Areas of rock outcrop on crests, shoulder slopes, side slopes, coastal islands and coastal peninsulas.
- Areas of soils similar to Naskeag that have less than 20 inches of mineral soil depth to bedrock. They are on coastal islands or peninsulas, or in proximity to very shallow, excessively drained soils
- Areas of soils similar to Naskeag soils that have fine sandy loam and sandy loam textures. They are intermingled with the Naskeag soils.
- Areas of soils similar to Naskeag soils that are greater than 40 inches to bedrock. They are on toeslopes.
- Areas of soils similar to Ricker that have more than 20 inches of organic material on exposed coastal peninsulas and island shorelines, or in island swales. This accumulation of organic material is due to lower summer temperatures and more summer moisture in the form of fog, as well as coniferous litter.
- Areas of soils similar to Ricker that are somewhat poorly to poorly drained in coastal island swales.
- Lyman soils are somewhat excessively drained shallow glacial till. They are in saddles between knolls and on lower side slopes and footslopes.
- Hogback soils are somewhat excessively drained shallow glacial till with high concentrations of organic carbon near their mineral soil surface. They are on coastal peninsulas and islands, or in close proximity to a coastal setting.
- Rawsonville soils are well drained moderately deep glacial till with high concentrations of organic carbon near their mineral soil surface. They are on coastal peninsulas and islands, or in close proximity to a coastal setting.
- Tunbridge soils are well drained moderately deep glacial till. They are on lower side slopes and footslopes.
- Wonsqueak, Bucksport, Sebago, and Moosabec soils are very poorly drained organic materials. They are in bogs.
- Moderately well drained shallow and moderately deep glacial till are on footslopes and toeslopes.
- Areas with slopes greater than 15 percent.

Use and Management

Current uses: Most areas of this unit are used for woodland management, recreation, and wildlife habitat. Some areas are used for homesite development in coastal areas.

Major Management Concerns

- Seasonal high water table in the Naskeag soils
- Depth to bedrock
- Restricted rooting depth
- Hazard of seepage

General Management Considerations

Woodland Management:

- The potential productivity of this unit for trees is medium on the Naskeag soils and very low on the Abram and Ricker soils.
- This unit has potential for the production and management of Balsam fir for wreath brush and Christmas trees.
- These areas have good natural reproduction of spruce and fir. Proper thinning practices will reduce overcrowding and promote the growth of these species.
- Minimizing the risk of erosion is essential in harvesting timber.
- Conventional methods of harvesting timber generally can be used but their use may be limited when the Naskeag soil is wet.
- Seedling mortality can be reduced by planting seedlings in spring when soil moisture levels are highest and by using planting stock that is larger than usual or containerized. Reinforcement planting may be needed.
- Trees are subject to windthrow because of restricted rooting depth.
- Care should be taken in harvesting and thinning to reduce trees exposed to the prevailing winds.
- Harvesting by stripcutting will expose fewer trees to the prevailing wind and help to prevent windthrow.
- Periodic salvaging of windthrown trees is advisable.
- If the site is not adequately prepared, competition from undesirable plants can prevent or prolong natural or artificial reestablishment of trees.
- Competing vegetation can be controlled by properly preparing the site and by eliminating unwanted weeds, brush, or trees.

Recreation Management:

- If this unit is used for camping areas, picnic areas, and paths and trails, the main limitations are seasonal high water table in the Naskeag soils and depth to bedrock in the Abram and Ricker soils.
- Abram and Ricker soils are fragile due to the very shallow depth to bedrock. Excessive use can destroy the vegetation and expose the soil to erosion.
- Erosion and sedimentation can be controlled and the beauty of the area enhanced by maintaining adequate plant cover. Plant cover can be maintained by limiting traffic.
- Drainage will help reduce wetness problems in the Naskeag soils.

Urban Development:

- Follow state or local regulations on septic system installation.
- If the Naskeag soils are used for septic tank absorption fields, the limitation of seasonal high water table can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- This map unit has severe limitations for septic tank absorption fields due to the depth to bedrock. Septic systems should be located on inclusions of deeper soils in
this map unit if possible or fill material can be used to raise the level of the absorption field.
- Slope is a concern in installing septic tank absorption fields. Absorption lines should be installed on the contour.
- Wetness in the Naskeag soils can be reduced by installing drainage tile around footings and backfilling with material that has good permeability.
- Cuts needed to provide level building sites can expose bedrock.
- Dwellings with basements should be located on inclusions of deeper soils in this map unit if possible, or the bedrock should be removed, or the foundation set on bedrock and backfilled to the established grade.
- Roadfill is needed to raise the roadbase above the seasonal high water table in the Naskeag soils.
- Excavation, grading, and ditching activities involved in the construction and maintenance of roads can expose bedrock.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

NBB—Naskeag-Rawsonville-Hogback complex, 0 to 8 percent slopes, very stony

Setting
Landform: Bedrock-controlled plains and ridges on coastal islands and peninsulas, or in close proximity to a coastal setting.
Description of areas: Irregular in shape and from 20 to over 1000 acres in size

Composition

Naskeag and similar soils: 35 percent
Rawsonville and similar soils: 25 percent
Hogback and similar soils: 15 percent
Inclusions: 25 percent

Naskeag soil

Position on landscape: Depressions and toeslopes
Parent material: Glacial till
Slope range: 0 to 5 percent
Slope features: Nearly level or concave
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 3 inches, black muck (sapric material)
Subsurface layer:
3 to 8 inches, grayish brown, mottled, sandy loam
8 to 11 inches, dark grayish brown, mottled, gravelly fine sandy loam
Subsoil:
11 to 18 inches, very dusky red loamy sand
18 to 22 inches, dark reddish brown gravelly loamy sand

22 to 32 inches, dark yellowish brown, mottled, gravelly loamy sand 32 to 38 inches, yellowish brown, mottled, gravelly loamy sand

Bedrock:

38 inches, granite

Soil Properties and Qualities

Depth class: Moderately deep
Drainage class: Poorly drained
Permeability: Rapid
Available water capacity: Low
Depth to restrictive layer: 20 to 40 inches to bedrock
Hazard of flooding: None

Rawsonville soil

Position on landscape: Shoulder slopes and side slopes
Parent material: Glacial till
Slope range: 3 to 8 percent
Slope features: Convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, dark reddish brown sapric material
Subsurface layer:
2 to 4 inches, pinkish gray fine sandy loam
Subsoil:
4 to 8 inches, dark reddish brown fine sandy loam
8 to 15 inches, reddish brown fine sandy loam
15 to 24 inches, strong brown fine sandy loam
24 to 30 inches, yellowish brown gravelly sandy loam
Substratum:
30 to 36 inches, brown gravelly sandy loam
Bedrock:
36 inches, schist
Soil Properties and Qualities
Depth class: Moderately deep
Drainage class: Well drained
Permeability: Moderate or moderately rapid
Available water capacity: Low
Depth to restrictive layer: 20 to 40 inches to bedrock
Hazard of flooding: None

Hogback soil

Position on landscape: Crests, shoulder slopes, and side slopes
Parent material: Glacial till
Slope range: 3 to 8 percent
Slope features: Convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 1 inch, black sapric material

Subsurface layer:
1 to 2 inches, reddish gray fine sandy loam
Subsoil:
2 to 14 inches, dusky red fine sandy loam
Bedrock:
14 inches, granite

Soil Properties and Qualities

Depth class: Shallow
Drainage class: Somewhat excessively drained
Permeability: Moderately rapid
Available water capacity: Low
Depth to restrictive layer: 10 to 20 inches to bedrock
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Naskeag, Rawsonville, and Hogback soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Naskeag, Rawsonville, and Hogback soils.

Inclusions

- Abram soils are very shallow excessively drained glacial till. They are intermingled with Hogback soils on crests and shoulder slopes
- Ricker soils are very shallow well drained organic materials. They are intermingled with rock outcrop and Abram soils on crests.
- Tunbridge soils are moderately deep well drained soils on shoulder slopes and side slopes. They have less organic carbon in their subsoil than Rawsonville soils.
- Lyman soils are shallow somewhat excessively drained soils on crests, shoulder slopes, and side slopes. They have less organic carbon in their subsoil than Hogback soils.
- Areas of rock outcrop on the crests of knolls.
- Moderately well drained and somewhat poorly drained shallow and moderately deep glacial till are on footslopes and toeslopes.
- Well drained, moderately well drained, and somewhat poorly drained glacial till that have bedrock between 40 to 60 inches. They are on side slopes and footslopes.
- Bucksport and Wonsqueak soils are very poorly drained highly decomposed organic materials. They are in depressions.
- Shallow poorly drained glacial till are intermingled with Naskeag soils in depression.
- Kinsman soils are poorly drained glaciofluvial sand. They are in depressions and toeslopes adjacent to glaciofluvial deposits.
- Colonel soils are somewhat poorly drained dense glacial till. They are on footslopes and toeslopes and are mainly in inland areas.
- Brayton soils are poorly drained dense glacial till. They are in depressions and are mainly in inland areas.
- Slopes greater than 8 percent.
- Areas with greater than 3 percent stones and boulders on the surface.

Use and Management

Current uses: Woodland
Major Management Concerns

- Depth to bedrock
- Restricted rooting depth
- Seasonal high water table in the Naskeag soils
- Stones on the surface
- Hazard of seepage
- Poor filter in the Naskeag soils

General Management Considerations

Woodland Management:

- The potential productivity of this unit for trees is medium in the Naskeag and Hogback soils and high in the Rawsonville soils.
- This unit has potential for the production and management of Balsam fir for wreath brush and Christmas trees.
- These areas have good natural reproduction of spruce and fir. Proper thinning practices will reduce overcrowding and promote the growth of these species.
- Minimizing the risk of erosion is essential in harvesting timber.
- Conventional methods of harvesting timber generally can be used but their use may be limited when the Naskeag soil is wet.
- Roadfill is needed to raise the roadbase above the seasonal high water table in the Naskeag soil.
- Stones on the surface can interfere with felling, yarding, and other operations involving the use of equipment.
- Seedling mortality can be reduced on the Hogback soils by planting seedlings in spring when soil moisture levels are highest and by using planting stock that is larger than usual or containerized. Reinforcement planting may be needed.
- Only trees that can tolerate seasonal wetness should be planted on the Naskeag soils.
- Trees are subject to windthrow because of restricted rooting depth due to depth to bedrock.
- Care should be taken in harvesting and thinning to reduce trees exposed to the prevailing winds.
- Harvesting by stripcutting will expose fewer trees to the prevailing wind and help to prevent windthrow.
- Periodic salvaging of windthrown trees is advisable.
- After harvesting, reforestation must be carefully managed to reduce competition from undesirable understory plants.
- If the site is not adequately prepared, competition from undesirable plants on the Naskeag soils can prevent or prolong natural or artificial reestablishment of trees.
- Competing vegetation can be controlled by properly preparing the site and by eliminating unwanted weeds, brush, or trees.

Recreational Development:

- If this unit is used for camping areas, picnic areas, and paths and trails, the main limitations are depth to bedrock and the seasonal high water table in the Naskeag soils.
- Drainage will help reduce wetness problems in the Naskeag soils.
- Erosion and sedimentation can be controlled and the beauty of the area enhanced by maintaining adequate plant cover. Plant cover can be maintained by limiting traffic.

Urban Development:

- Follow state or local regulations on septic system installation.
- Septic systems should be located on inclusions of deeper soils in this map unit if possible or fill material can be used to raise the level of the absorption field.
- If the Naskeag soils are used for septic tank absorption fields, the limitation of the seasonal high water table can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- If the Naskeag soils are used for septic tank absorption fields, there is a possibility of groundwater contamination due to the poor filtering action of the substratum. Finer-textured fill material below the bottom of the absorption field can help prevent this from occurring.
- Cuts needed to provide level building sites can expose bedrock.
- Dwellings with basements should be located on inclusions of deeper soils in this map unit if possible, or the bedrock should be removed, or the foundation set on bedrock and backfilled to the established grade.
- Wetness in the Naskeag soils can be reduced by installing drainage tile around footings and backfilling with material that has good permeability.
- Excavation, grading, and ditching activities involved in the construction and maintenance of roads can expose bedrock.
- Roadfill is needed to raise the roadbase above the seasonal high water table in the Naskeag soils.
- If the soils are used as a base for roads, a coarse grained subgrade to frost depth is needed to prevent frost action.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

NCB—Naskeag-Tunbridge-Lyman complex, 0 to 8 percent slopes, very stony

Setting

Landform: Bedrock-controlled plains and ridges
Description of areas: Irregular in shape and from 20 to over 1,000 acres in size

Composition

Naskeag and similar soils: 35 percent
Tunbridge and similar soils: 25 percent
Lyman and similar soils: 15 percent
Inclusions: 25 percent

Naskeag soil

Position on landscape: Depressions and toeslopes
Parent material: Glacial till
Slope range: 0 to 5 percent
Slope features: Nearly level or concave
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 3 inches, black muck (sapric material)
Subsurface layer:
3 to 8 inches, grayish brown, mottled, sandy loam
8 to 11 inches, dark grayish brown, mottled, gravelly fine sandy loam
Subsoil:
11 to 18 inches, very dusky red loamy sand
18 to 22 inches, dark reddish brown gravelly loamy sand

22 to 32 inches, dark yellowish brown, mottled, gravelly loamy sand 32 to 38 inches, yellowish brown, mottled, gravelly loamy sand

Bedrock:

38 inches, granite

Soil Properties and Qualities

Depth class: Moderately deep
Drainage class: Poorly drained
Permeability: Rapid
Available water capacity: Low
Depth to restrictive layer: 20 to 40 inches to bedrock
Hazard of flooding: None

Tunbridge soil

Position on landscape: Shoulder slopes and side slopes
Parent material: Glacial till
Slope range: 3 to 8 percent
Slope features: Convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, dark brown sapric material
Subsurface layer:
2 to 4 inches, grayish brown fine sandy loam
Subsoil:
4 to 5 inches, dark brown fine sandy loam
5 to 10 inches, brown fine sandy loam
10 to 17 inches, dark yellowish brown fine sandy loam
17 to 28 inches, light olive brown gravelly fine sandy loam
Bedrock:
28 inches, schist

Soil Properties and Qualities

Depth class: Moderately deep
Drainage class: Well drained
Permeability: Moderate or moderately rapid
Available water capacity: Low
Depth to restrictive layer: 20 to 40 inches to bedrock
Hazard of flooding: None

Lyman soil

Position on landscape: Crests, shoulder slopes, and side slopes
Parent material: Glacial till
Slope range: 3 to 8 percent
Slope features: Convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, dark reddish brown sapric material
Subsurface layer:
2 to 3 inches, brown fine sandy loam

Subsoil:
3 to 4 inches, dark reddish brown fine sandy loam
4 to 8 inches, dark yellowish brown gravelly fine sandy loam
8 to 12 inches, yellowish brown gravelly fine sandy loam
12 to 17 inches, olive brown gravelly fine sandy loam
Bedrock:
17 inches, schist

Soil Properties and Qualities

Depth class: Shallow
Drainage class: Somewhat excessively drained
Permeability: Moderately rapid
Available water capacity: Low
Depth to restrictive layer: 10 to 20 inches to bedrock
Hazard of flooding: None
Depth to water table: Greater than 6 feet

Included Areas

Similar soils

Soils are included in this map unit which are like the Naskeag, Tunbridge, and Lyman soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Naskeag, Tunbridge, and Lyman soils.

Inclusions

- Abram soils are very shallow excessively drained glacial till. They are intermingled with Lyman soils on crests and shoulder slopes
- Ricker soils are very shallow well drained organic materials. They are intermingled with rock outcrop and Abram soils on crests.
- Areas of rock outcrop on the crests of knolls are included.
- Moderately well drained and somewhat poorly drained shallow and moderately deep glacial till are on footslopes and toeslopes.
- Well drained, moderately well drained, and somewhat poorly drained glacial till that have bedrock between 40 to 60 inches. They are on side slopes and footslopes.
- Bucksport and Wonsqueak soils are very poorly drained highly decomposed organic materials. They are in depressions.
- Shallow poorly drained glacial till are intermingled with Naskeag soils in depression.
- Kinsman soils are poorly drained glaciofluvial sand. They are in depressions and toeslopes.
- Colonel soils are somewhat poorly drained dense glacial till. They are on footslopes and toeslopes and are mainly in inland areas.
- Brayton soils are poorly drained dense glacial till. They are in depressions and are mainly in inland areas.
- Areas with slopes greater than 8 percent.
- Areas with greater than 3 percent stones and boulders on the surface are included.

Use and Management

Current uses: Woodland

Major Management Concerns

- Depth to bedrock
- Restricted rooting depth
- Seasonal high water table in the Naskeag soils
- Stones on the surface
- Hazard of seepage
- Poor filter in the Naskeag soils

General Management Considerations

Woodland Management:

- The potential productivity of this unit for trees is medium in the Naskeag and Lyman soils and high in the Tunbridge soils.
- This unit has potential for the production and management of Balsam fir for wreath brush and Christmas trees.
- These areas have good natural reproduction of spruce and fir. Proper thinning practices will reduce overcrowding and promote the growth of these species.
- Minimizing the risk of erosion is essential in harvesting timber.
- Conventional methods of harvesting timber generally can be used but their use may be limited when the Naskeag soil is wet.
- Roadfill is needed to raise the roadbase above the seasonal high water table in the Naskeag soil.
- Stones on the surface can interfere with felling, yarding, and other operations involving the use of equipment.
- Seedling mortality can be reduced on the Lyman soils by planting seedlings in spring when soil moisture levels are highest and by using planting stock that is larger than usual or containerized. Reinforcement planting may be needed.
- Only trees that can tolerate seasonal wetness should be planted on the Naskeag soils.
- Care should be taken in harvesting and thinning to reduce trees exposed to the prevailing winds.
- Harvesting by stripcutting will expose fewer trees to the prevailing wind and help to prevent windthrow.
- Periodic salvaging of windthrown trees is advisable.
- After harvesting, reforestation must be carefully managed to reduce competition from undesirable understory plants.
- If the site is not adequately prepared, competition from undesirable plants on the Naskeag soils can prevent or prolong natural or artificial reestablishment of trees.
- Competing vegetation can be controlled by properly preparing the site and by eliminating unwanted weeds, brush, or trees.

Recreational Development:

- If this unit is used for camping areas, picnic areas, and paths and trails, the main limitations are depth to bedrock and the seasonal high water table in the Naskeag soils.
- Drainage will help reduce wetness problems in the Naskeag soils.
- Erosion and sedimentation can be controlled and the beauty of the area enhanced by maintaining adequate plant cover. Plant cover can be maintained by limiting traffic.

Urban Development:

- Follow state or local regulations on septic system installation.
- This map unit has severe limitations for septic tank absorption fields due to the depth to bedrock. Septic systems should be located on inclusions of deeper soils in this map unit if possible or fill material can be used to raise the level of the absorption field.
- If the Naskeag soils are used for septic tank absorption fields, the limitation of seasonal high water table can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- If the Naskeag soils are used for septic tank absorption fields, there is a possibility of groundwater contamination due to the poor filtering action of the substratum. Finer-textured fill material below the bottom of the absorption field can help prevent this from occurring.
- Cuts needed to provide level building sites can expose bedrock.
- Dwellings with basements should be located on inclusions of deeper soils in this map unit if possible, or the bedrock should be removed, or the foundation set on bedrock and backfilled to the established grade.
- Wetness in the Naskeag soils can be reduced by installing drainage tile around footings and backfilling with material that has good permeability.
- Excavation, grading, and ditching activities involved in the construction and maintenance of roads can expose bedrock.
- Roadfill is needed to raise the roadbase above the seasonal high water table in the Naskeag soils.
- If the soils are used as a base for roads, a coarse grained subgrade to frost depth is needed to prevent frost action.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

NdB—Nicholville very fine sandy loam, 3 to 8 percent slopes

Setting
Landform: Plains and terraces
Description of areas: Irregular in shape and from 6 to 50 acres in size
Composition

Nicholville and similar soils: 80 percent Inclusions: 20 percent

Nicholville soil
Position on landscape: Side slopes and footslopes
Parent material: Glaciofluvial and glaciolacustrine deposits
Slope features: Slightly convex or concave
Stones on surface: None

Typical Profile

Surface layer:
0 to 7 inches, dark brown very fine sandy loam
Subsoil:
7 to 15 inches, dark yellowish brown very fine sandy loam 15 to 28 inches, light olive brown, mottled, loamy very fine sand

Substratum:

28 to 65 inches, olive brown, mottled, loamy very fine sand

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Moderate
Available water capacity: High
Depth to restrictive layer: 15 to 30 inches

Hazard of flooding: None

Depth to water table: 1.5 to 2.5 feet, apparent, November to May

Included Areas

Similar soils

Soils are included in this map unit which are like the Nicholville soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Nicholville soils.

Inclusions

- Areas of soils similar to the Nicholville soils that are somewhat poorly drained or poorly drained. They are in depressions, on toeslopes, and adjacent to drainageways.
- Croghan soils are moderately well drained glaciofluvial sand. They are in slightly higher positions.
- Adams soils are somewhat excessively drained glaciofluvial sand. They are in higher positions and on small knoll or ridges.
- Buxton soils are moderately well drained glaciomarine deposits. They are in sloping areas adjacent to drainageways and on footslopes.
- Lamoine soils are somewhat poorly drained glaciomarine deposits. They are in depressions, on toeslopes, and adjacent to drainageways.
- Small areas of soils that are moderately well drained or somewhat poorly drained and have sandy loam or fine sandy loam surface caps over silty clay loam and silty clay. They are in areas where the Nicholville soils are adjacent to glaciomarine deposits.
- Areas with slopes that are greater than 8 percent and less than 3 percent are included.

Use and Management

Current uses: Hayland, pasture, and homesite development

Major Management Concerns

- Seasonal high water table
- Frost action

General Management Considerations

Urban Development:

- The limitation for septic tank absorption fields is severe. Follow state or local regulations on septic system installation.
- If this map unit is used for septic tank absorption fields, the limitation of seasonal high water table can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- The limitation for dwellings with basements is severe.
- Wetness can be reduced by installing drainage tile around footings and backfilling with material that has good permeability.
- The limitation for roads is severe.
- If the soil is used as a base for roads, a coarse-grained subgrade to frost depth is needed to prevent frost action.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

Blueberry Management:

- This unit is well suited to blueberry production but they are not commonly grown on this soil.
- This unit has very few or no surface stones, and is well suited to flail mowing and mechanical harvesting.
- The seasonal high water table will limit the use of equipment in the spring and late fall.
- Irrigation and cultural practices such as weed control, insect and disease control, and fertility management will result in increased yields of blueberries.
- Irrigation water should be applied in amounts sufficient to wet the root zone but in amounts small enough to prevent the leaching of plant nutrients, insecticides, and herbicides.
- Water needs to be applied at a slow rate over a long period to insure that the root zone is properly wetted.
- Fertilization needs can be determined by leaf tissue analysis. Proper fertilization can result in greater top and rhizome growth and higher yields.
- The use of honeybees for pollination will increase the fruit set and result in higher yields.

Hay and Pasture:

- If this unit is used for hay and pasture, the main limitation is the seasonal high water table.
- Grazing when the soil is wet results in compaction of the surface layer, poor tilth, and excessive runoff.
- The seasonal high water table limits the use of equipment in the spring and late fall.
- The use of proper stocking rates, pasture rotation, and restricted grazing during wet periods helps to keep the pasture in good condition and to protect the soil from erosion.
- Proper grazing practices, weed control, lime, and fertilizer are needed for maximum quality of forage.

NdC—Nicholville very fine sandy loam, 8 to 15 percent slopes

Setting

Landform: Plains and terraces
Description of areas: Irregular in shape and from 6 to 50 acres in size

Composition

Nicholville and similar soils: 75 percent
Inclusions: 25 percent

Nicholville soil

Position on landscape: Side slopes and shoulder slopes
Parent material: Glaciofluvial and glaciolacustrine deposits
Slope features: Convex
Stones on surface: None

Typical Profile

Surface layer:
0 to 7 inches, dark brown very fine sandy loam
Subsoil:
7 to 15 inches, dark yellowish brown very fine sandy loam
15 to 28 inches, light olive brown, mottled, loamy very fine sand

Substratum:

28 to 65 inches, olive brown, mottled, loamy very fine sand

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Moderate
Available water capacity: High
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Nicholville soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Nicholville soils.

Inclusions

- Areas of soils similar to the Nicholville soils that are somewhat poorly drained or poorly drained. They are in depressions, on toeslopes, and adjacent to drainageways.
- Croghan soils are moderately well drained glaciofluvial sand. They are in slightly higher positions.
- Adams soils are somewhat excessively drained glaciofluvial sand. They are in higher positions and on small knoll or ridges.
- Buxton soils are moderately well drained glaciomarine deposits. They are in sloping areas adjacent to drainageways and on footslopes.
- Lamoine soils are somewhat poorly drained glaciomarine deposits. They are in depressions, on toeslopes, and adjacent to drainageways.
- Small areas of soils that are moderately well drained or somewhat poorly drained and have sandy loam or fine sandy loam surface caps over silty clay loam and silty clay. They are in areas where the Nicholville soils are adjacent to glaciomarine deposits.
- Areas with slopes that are greater than 15 percent and less than 8 percent.

Use and Management

Current uses: Hayland, pasture, and homesite development

Major Management Concerns

- Seasonal high water table
- Frost action
- Slope

General Management Considerations

Urban Development:

- Follow state or local regulations on septic system installation.
- If this map unit is used for septic tank absorption fields, the limitation of seasonal high water table can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- Slope is a concern in installing septic tank absorption fields. Absorption lines should be installed on the contour.

Blueberry Management:

- This unit is well suited to blueberry production but they are not commonly grown on this soil.
- This unit has very few or no surface stones, and is well suited to flail mowing. Mechanical harvesting is moderately difficult due to slope.
- The seasonal high water table will limit the use of equipment in the spring and late fall.
- Irrigation and cultural practices such as weed control, insect and disease control, and fertility management will result in increased yields of blueberries.
- Irrigation water should be applied in amounts sufficient to wet the root zone but in amounts small enough to prevent the leaching of plant nutrients, insecticides, and herbicides.
- Water needs to be applied at a slow rate over a long period to insure that the root zone is properly wetted.
- Fertilization needs can be determined by leaf tissue analysis.
- Proper fertilization can result in greater top and rhizome growth and higher yields.
- The use of honeybees for pollination will increase the fruit set and result in higher yields.

Hay and Pasture:

- If this unit is used for hay and pasture, the main limitation is the seasonal high water table.
- Grazing when the soil is wet results in compaction of the surface layer, poor tilth, and excessive runoff.
- The seasonal high water table limits the use of equipment in the spring and late fall.
- The use of proper stocking rates, pasture rotation, and restricted grazing during wet periods helps to keep the pasture in good condition and to protect the soil from erosion.
- Proper grazing practices, weed control, lime, and fertilizer are needed for maximum quality of forage.

NGB—Nicholville-Croghan complex, 0 to 5 percent slopes

Setting
Landform: Plains and terraces
Description of areas: Oblong in shape and from 20 to over 100 acres in size

Composition

Nicholville and similar soils: 55 percent
Croghan and similar soils: 25 percent
Inclusions: 20 percent

Nicholville soil

Position on landscape: Side slopes and footslopes
Parent material: Glaciofluvial and glaciolacustrine deposits
Slope range: 0 to 5 percent
Slope features: Convex or slightly concave
Stones on surface: None

Typical Profile

Surface layer:
0 to 2 inches, very dusky red sapric material
Subsurface layer:
2 to 3 inches, brown very fine sandy loam
Subsoil:
3 to 4 inches, dusky red very fine sandy loam

4 to 8 inches, brown very fine sandy loam
8 to 17 inches, dark yellowish brown very fine sandy loam
17 to 30 inches, light olive brown, mottled, loamy very fine sand

Substratum:

30 to 65 inches, olive brown, mottled, loamy very fine sand

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Moderate
Available water capacity: High
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None

Croghan soil

Position on landscape: Crests and side slopes
Parent material: Glaciofluvial sands
Slope range: 0 to 5 percent
Slope features: Nearly level, concave, or convex
Stones on surface: None

Typical Profile

Surface layer:
0 to 1 inch, dark reddish brown sapric material
Subsurface layer:
1 to 3 inches, light gray loamy sand
Subsoil:
3 to 5 inches, dark reddish brown loamy sand
5 to 11 inches, brown loamy sand
11 to 18 inches, dark yellowish brown loamy sand
18 to 23 inches, light olive brown, mottled, sand
Substratum:
23 to 65 inches, grayish brown, mottled, sand

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Rapid in the surface and subsurface and very rapid in the subsoil and substratum
Available water capacity: Very low
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Nicholville and Croghan soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Nicholville and Croghan soils.

Inclusions

- Adams soils are excessively drained glaciofluvial sand. They are on crests and head slopes.
- Kinsman soils are poorly drained glaciofluvial sand. They are in depressions and adjacent to drainageways.
- Areas of soils that are similar in texture to the Nicholville soils, are moderately well drained, somewhat poorly drained, or poorly drained, and have silty clay loam or silty clay deeper than 40 inches. They are in areas adjacent to glaciomarine deposits.
- Soils that are similar in texture to the Nicholville soils but are somewhat poorly drained or poorly drained. They are in depressions and on toeslopes.
- Bucksport and Wonsqueak soils are very poorly drained organic materials. They are in bogs in small depressions.
- Lamoine soils are somewhat poorly drained and Buxton soils are moderately well drained glaciomarine deposits. They are on side slopes and footslopes adjacent to areas of glaciomarine deposits.
- Slopes greater than 5 percent.

Use and Management

Current uses: Woodland

Major Management Concerns

- Seasonal high water table
- Frost action
- Droughtiness in the Croghan soils
- Cutbanks are not stable in the Croghan soils
- Poor filter in the Croghan soils
- Hazard of seepage in the Croghan soils

General Management Considerations

Woodland Management:

- The potential productivity of this unit for trees is extremely high on Nicholville soils and very high on the Croghan soils.
- This unit has potential for the production and management of Balsam fir for wreath brush and Christmas trees.
- These areas have good natural reproduction of spruce and fir. Proper thinning practices will reduce overcrowding and promote the growth of these species.
- Minimizing the risk of erosion is essential in harvesting timber.
- Revegetating disturbed areas around landings, skid trails, roads, and construction sites as soon as possible will help to control soil erosion.
- Conventional methods of harvesting timber can be used.
- Seedling mortality can be reduced on the Croghan soils by planting seedlings in spring when soil moisture levels are highest and by using planting stock that is larger than usual or containerized. Reinforcement planting may be needed.
- Care should be taken in harvesting and thinning to reduce trees exposed to the prevailing winds.
- Plant competition delays natural regeneration but does not prevent the eventual development of a fully stocked, normal stand of trees.
- Competing vegetation can be controlled by properly preparing the site and by eliminating unwanted weeds, brush, or trees.

Recreation Management:

- If this unit is used for camping areas, picnic areas, and paths and trails, the main limitation is the seasonal high water table in the Croghan soils.
- Erosion and sedimentation can be controlled and the beauty of the area enhanced by maintaining adequate plant cover. Plant cover can be maintained by limiting traffic.
- Drainage will help reduce wetness problems in the Croghan soils.

Urban Development:

- Follow state or local regulations on septic system installation.
- If this map unit is used for septic tank absorption fields, the limitation of seasonal high water table can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- If Croghan soils are used for septic tank absorption fields, there is a possibility of groundwater contamination due to the poor filtering action of the substratum. Finertextured fill material below the bottom of the absorption field can help prevent this from occurring.
- Wetness can be reduced by installing drainage tile around footings and backfilling with material that has good permeability.
- If the unit is used as a base for roads, a coarse grained subgrade to frost depth is needed to prevent frost action.
- Roadfill is needed to raise the roadbase above the seasonal high water table.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

Blueberry Management:

- Although this unit is mainly wooded, it is well suited to blueberry production on the Nicholville soils and very well suited on the Croghan soils.
- These areas can be cleared and, with proper management, brought into blueberry production.
- This unit has very few or no surface stones, and is well suited to flail mowing and mechanical harvesting.
- The seasonal high water table will limit the use of equipment in the spring and late fall.
- Irrigation and cultural practices such as weed control, insect and disease control, and fertility management will result in increased yields of blueberries.
- Irrigation water should be applied in amounts sufficient to wet the root zone but in amounts small enough to prevent the leaching of plant nutrients, insecticides, and herbicides.
- Water needs to be applied at a slow rate over a long period to insure that the root zone is properly wetted.
- Fertilization needs can be determined by leaf tissue analysis. Proper fertilization can result in greater top and rhizome growth and higher yields.
- The use of honeybees for pollination will increase the fruit set and result in higher yields.

NGC—Nicholville-Croghan complex, 5 to 15 percent slopes

Setting

Landform: Plains and terraces
Description of areas: Irregular in shape and from 20 to over 100 acres in size

Composition

Nicholville and similar soils: 55 percent
Croghan and similar soils: 20 percent
Inclusions: 25 percent

Nicholville soil

Position on landscape: Side slopes and footslopes
Parent material: Glaciofluvial and glaciolacustrine deposits
Slope range: 5 to 15 percent
Slope features: Convex or slightly concave
Stones on surface: None

Typical Profile

Surface layer:
0 to 2 inches, very dusky red sapric material
Subsurface layer:
2 to 3 inches, brown very fine sandy loam
Subsoil:
3 to 4 inches, dusky red very fine sandy loam
4 to 8 inches, brown very fine sandy loam
8 to 17 inches, dark yellowish brown very fine sandy loam
17 to 30 inches, light olive brown, mottled, loamy very fine sand
Substratum:
30 to 65 inches, olive brown, mottled, loamy very fine sand

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Moderate
Available water capacity: High
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None

Croghan soil

Position on landscape: Crests and side slopes
Parent material: Glaciofluvial sand
Slope range: 5 to 8 percent
Slope features: Concave or convex
Stones on surface: None

Typical Profile

Surface layer:
0 to 1 inch, dark reddish brown sapric material
Subsurface layer:
1 to 3 inches, light gray loamy sand
Subsoil:
3 to 5 inches, dark reddish brown loamy sand
5 to 11 inches, brown loamy sand
11 to 18 inches, dark yellowish brown loamy sand
18 to 23 inches, light olive brown, mottled, sand
Substratum:
23 to 65 inches, grayish brown, mottled, sand
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Rapid in the surface and subsurface and very rapid in the subsoil and substratum

Available water capacity: Very low
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Nicholville and Croghan soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Nicholville and Croghan soils.

Inclusions

- Adams soils are excessively drained glaciofluvial sand. They are on crests and head slopes.
- Areas of soils that are similar in texture to the Nicholville and Croghan soils, are moderately well drained or somewhat poorly drained, and have silty clay loam or silty clay deeper than 40 inches. They are in areas adjacent to glaciomarine deposits.
- Soils that are similar in texture to the Nicholville soils but are somewhat poorly drained or poorly drained. They are in depressions and on toeslopes.
- Lamoine soils are somewhat poorly drained and Buxton soils are moderately well drained glaciomarine deposits. They are on side slopes and footslopes adjacent to areas of glaciomarine deposits.
- Slopes greater than 15 percent and less than 5 percent.

Use and Management

Current uses: Woodland

Major Management Concerns

- Seasonal high water table
- Slope in some areas
- Frost action
- Droughtiness in the Croghan soils
- Cutbanks are not stable in the Croghan soils
- Poor filter in the Croghan soils
- Hazard of seepage in the Croghan soils

General Management Considerations

Woodland Management:

- The potential productivity of this unit for trees is extremely high in Nicholville soils and very high in Croghan soils.
- This unit has potential for the production and management of Balsam fir for wreath brush and Christmas trees.
- These areas have good natural reproduction of spruce and fir. Proper thinning practices will reduce overcrowding and promote the growth of these species.
- Minimizing the risk of erosion is essential in harvesting timber.
- Proper design of road drainage systems and care in the placement of culverts help to control erosion. Spoil from excavations is subject to rill and gully erosion and to sloughing.
- Roads and landings can be protected from erosion by constructing waterbars and by seeding cuts and fills.
- Laying out skid trails and roads on the contour will reduce erosion.
- Revegetating disturbed areas around landings, skid trails, roads, and construction sites as soon as possible will help to control soil erosion.
- Conventional methods of harvesting timber can be used.
- Seedling mortality can be reduced in the Croghan soil by planting seedlings in spring when soil moisture levels are highest and by using planting stock that is larger than usual or containerized. Reinforcement planting may be needed.
- Care should be taken in harvesting and thinning to reduce trees exposed to the prevailing winds.
- Plant competition delays natural regeneration but does not prevent the eventual development of a fully stocked, normal stand of trees.
- Competing vegetation can be controlled by properly preparing the site and by eliminating unwanted weeds, brush, or trees.

Recreation Management:

- If this unit is used for camping areas, picnic areas, and paths and trails, the main limitations are seasonal high water table and slope in some areas.
- Drainage will help reduce wetness problems.
- Erosion and sedimentation can be controlled and the beauty of the area enhanced by maintaining adequate plant cover. Plant cover can be maintained by limiting traffic.

Urban Development:

- Follow state or local regulations on septic system installation.
- If this map unit is used for septic tank absorption fields, the limitation of seasonal high water table can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- If Croghan soils are used for septic tank absorption fields, there is a possibility of groundwater contamination due to the poor filtering action of the substratum. Finertextured fill material below the bottom of the absorption field can help prevent this from occurring.
- Slope is a concern in installing septic tank absorption fields. Absorption lines should be installed on the contour.
- Wetness can be reduced by installing drainage tile around footings and backfilling with material that has good permeability.
- If the soils are used as a base for roads, a coarse grained subgrade to frost depth is needed to prevent frost action.
- Roadfill is needed to raise the roadbase above the seasonal high water table.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

Blueberry Management:

- Although this unit is mainly wooded, it is well suited to blueberry production on the Nicholville soils and very well suited on the Croghan soils.
- These areas can be cleared and, with proper management, brought into blueberry production.
- This unit has very few or no surface stones, and is well suited to flail mowing. Mechanical harvesting is moderately difficult due to slope.
- The seasonal high water table will limit the use of equipment in the spring and late fall.
- Irrigation and cultural practices such as weed control, insect and disease control, and fertility management will result in increased yields of blueberries.
- Irrigation water should be applied in amounts sufficient to wet the root zone but in amounts small enough to prevent the leaching of plant nutrients, insecticides, and herbicides.
- Water needs to be applied at a slow rate over a long period to insure that the root zone is properly wetted.
- Fertilization needs can be determined by leaf tissue analysis. Proper fertilization can result in greater top and rhizome growth and higher yields.
- The use of honeybees for pollination will increase the fruit set and result in higher yields.

Pg-Pits, gravel and sand

Setting

Landform: Outwash plains, delta askers, kame terraces, and moraines
Description of areas: Irregularly shaped open excavations that range from 6 to 50 acres in size
Position on landscape: Mainly at the perimeters of landforms but highly variable Parent material: Mainly glaciofluvial sand and gravel and some glacial till

Use and Management

Current uses: Open excavations from which soil and the underlying material have been removed.

Major Management Concerns

- Poor filter
- Hazard of seepage
- Cutbanks are not stable
- Droughtiness

General Management Considerations

Urban Development:

- Septic systems should not be located in these areas.
- If this map unit is used for septic tank absorption fields, there is a possibility of groundwater contamination due to the poor filtering action of the substratum. Finertextured fill material below the bottom of the absorption field can help prevent this from occurring.
- This map unit is an aquifer recharge area and because of the permeability of these soils, pollutants can move quickly through the soil and into the ground water. Contamination of the ground water is therefore possible if precautions are not taken. Restrictions on the types of activities that may occur, limitations on the density of housing, and special engineering designs for septic systems are possible precautionary measures.
- These areas are a probable source of gravel and sand.

RhB—Rawsonville-Hogback complex, 3 to 8 percent slopes

Setting

Landform: Ridges and knolls on coastal islands and peninsulas or in close proximity to a coastal setting.
Description of areas: Irregular in shape and from 6 to over 75 acres in size

Composition

Rawsonville and similar soils: 55 percent

Hogback and similar soils: 20 percent Inclusions: 25 percent

Rawsonville soil

Position on landscape: Side slopes and footslopes
Parent material: Glacial till
Slope range: 3 to 8 percent
Slope features: Convex or concave
Stones on surface: None

Typical Profile

Surface layer:
0 to 8 inches, very dark grayish brown fine sandy loam
Subsoil:
8 to 15 inches, reddish brown fine sandy loam
15 to 24 inches, strong brown fine sandy loam
24 to 30 inches, yellowish brown gravelly sandy loam
Substratum:
30 to 36 inches, brown gravelly sandy loam
Bedrock:
36 inches, schist

Soil Properties and Qualities

Depth class: Moderately deep
Drainage class: Well drained
Permeability: Moderate or moderately rapid
Available water capacity: Low
Depth to restrictive layer: 20 to 40 inches to bedrock
Hazard of flooding: None

Hogback soil

Position on landscape: Crests, shoulder slopes, and side slopes
Parent material: Glacial till
Slope range: 3 to 8 percent
Slope features: Convex
Stones on surface: None

Typical Profile

Surface layer:
0 to 6 inches, very dark grayish brown gravelly loam
Subsoil:
6 to 15 inches, yellowish red loam
Bedrock:
15 inches, granite

Soil Properties and Qualities

Depth class: Shallow
Drainage class: Somewhat excessively drained
Permeability: Moderately rapid
Available water capacity: Low
Depth to restrictive layer: 10 to 20 inches to bedrock
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Rawsonville and Hogback soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Rawsonville and Hogback soils.

Inclusions

- Abram soils are excessively drained very shallow glacial till. They are on the crests of knolls and ridges.
- Ricker soils are well drained very shallow organic soils. They are intermingled with Abram soils and rock outcrop on the crests of knolls.
- Tunbridge soils are well drained moderately deep soils on side slopes and footslopes. They have less organic carbon in their subsoil than Rawsonville soils.
- Lyman soils are somewhat excessively drained shallow soils on crests, shoulder slopes, and side slopes. They have less organic carbon in their subsoil than Hogback soils.
- Areas of rock outcrop are intermingled with Abram and Ricker soils on the crests of knolls.
- Naskeag soils are poorly drained moderately deep glacial till. They are in depressions between knolls.
- Dixfield soils are very deep moderately well drained dense glacial till. They are on side slopes and footslopes.
- Areas of soils that are greater than 40 inches to bedrock, well drained or moderately well drained, and lack the dense substratum. They are on side slopes, shoulder slopes, and footslopes.
- Slopes greater than 8 percent and less than 3 percent.
- Small areas that have stones on the surface.

Use and Management

Current uses: Hayland, pasture, wild blueberry production, and homesites.

Major Management Concerns

- Depth to bedrock
- Hazard of seepage
- Frost action on Rawsonville soils
- Restricted rooting depth

General Management Considerations

Urban Development:

- Follow state or local regulations on septic system installation.
- This map unit has severe limitations for septic tank absorption fields due to the depth to bedrock. Septic systems should be located on inclusions of deeper soils in this map unit if possible or fill material can be used to raise the level of the absorption field.
- Cuts needed to provide level building sites can expose bedrock.
- Dwellings with basements should be located on inclusions of deeper soils in this map unit if possible, or the bedrock should be removed, or the foundation set on bedrock and backfilled to the established grade.
- Excavation, grading, and ditching activities involved in the construction and maintenance of roads can expose bedrock.
- If the soil is used as a base for roads, a coarse grained subgrade to frost depth is needed to prevent frost action on the Rawsonville soils.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

Blueberry Management:

- This unit is well suited to blueberry production.
- This unit has very few or no surface stones, and is well suited to flail mowing and mechanical harvesting.
- Irrigation and cultural practices such as weed control, insect and disease control, and fertility management will result in increased yields of blueberries.
- Irrigation water should be applied in amounts sufficient to wet the root zone but in amounts small enough to prevent the leaching of plant nutrients, insecticides, and herbicides.
- Water needs to be applied at a slow rate over a long period to insure that the root zone is properly wetted.
- Fertilization needs can be determined by leaf tissue analysis. Proper fertilization can result in greater top and rhizome growth and higher yields.
- The use of honeybees for pollination will increase the fruit set and results in higher yields.

Hay and Pasture:

- If this unit is used for hay and pasture, the main limitation is droughtiness.
- The use of proper stocking rates, pasture rotation, and restricted grazing during wet periods helps to keep the pasture in good condition and to protect the soil from erosion.
- Proper grazing practices, weed control, lime, and fertilizer are needed for maximum quality of forage.

RhC—Rawsonville-Hogback complex, 8 to 15 percent slopes

Setting

Landform: Ridges on coastal islands and peninsulas, or in close proximity to a coastal setting
Description of areas: Irregular in shape and from 6 to over 75 acres in size

Composition

Rawsonville and similar soils: 50 percent
Hogback and similar soils: 25 percent
Inclusions: 25 percent

Rawsonville soil

Position on landscape: Side slopes and footslopes
Parent material: Glacial till Slope range: 8 to 15 percent
Slope features: Convex
Stones on surface: None

Typical Profile

Surface layer:
0 to 8 inches, dark grayish brown fine sandy loam

Subsoil:

8 to 15 inches, reddish brown fine sandy loam
15 to 24 inches, strong brown fine sandy loam
24 to 30 inches, yellowish brown gravelly sandy loam

Substratum:

30 to 36 inches, brown gravelly sandy loam
Bedrock:
36 inches, schist
Soil Properties and Qualities
Depth class: Moderately deep
Drainage class: Well drained
Permeability: Moderate or moderately rapid
Available water capacity: Low
Depth to restrictive layer: 20 to 40 inches to bedrock
Hazard of flooding: None

Hogback soil

Position on landscape: Crests, shoulder slopes, and side slopes
Parent material: Glacial till
Slope range: 8 to 15 percent
Slope features: Convex
Stones on surface: None

Typical Profile

Surface layer:

0 to 6 inches, very dark grayish brown gravelly loam
Subsoil:
6 to 15 inches, yellowish red loam
Bedrock:
15 inches, granite

Soil Properties and Qualities

Depth class: Shallow
Drainage class: Somewhat excessively drained
Permeability: Moderately rapid
Available water capacity: Low
Depth to restrictive layer: 10 to 20 inches to bedrock
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Rawsonville and Hogback soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Rawsonville and Hogback soils.

Inclusions

- Abram soils are excessively drained very shallow glacial till. They are on the crests of knolls.
- Ricker soils are well drained very shallow organic soils. They are intermingled with Abram soils and rock outcrop on the crests of knolls.
- Tunbridge soils are well drained and moderately deep on side slopes and footslopes. They have less organic carbon in their subsoil than Rawsonville soils.
- Lyman soils are somewhat excessively drained and shallow on crests, shoulder slopes, and side slopes. They have less organic carbon in their subsoil than Hogback soils.
- Areas of rock outcrop are intermingled with Abram and Ricker soils on the crests of knolls.
- Naskeag soils are poorly drained moderately deep glacial till. They are in depressions between knolls.
- Dixfield soils are very deep moderately well drained dense glacial till. They are on side slopes and footslopes.
- Marlow soils are very deep well drained dense glacial till. They are on side slopes and shoulder slopes.
- Areas of soils that are greater than 40 inches to bedrock, well drained or moderately well drained, and lack the dense substratum. They are on side slopes, shoulder slopes, and footslopes.
- Areas with slopes greater than 15 percent and less than 8 percent.
- Small areas that have stones on the surface are included.

Use and Management

Current uses: Hayland, pasture, wild blueberry production, and homesites

Major Management Concerns

- Depth to bedrock
- Restricted rooting depth
- Hazard of seepage
- Slope
- Frost action in the Rawsonville soils

General Management Considerations

Urban Development:

- Follow state or local regulations on septic system installation.
- Septic systems should be located on inclusions of deeper soils in this map unit if possible or fill material can be used to raise the level of the absorption field.
- Slope is a concern in installing septic tank absorption fields. • Absorption lines should be installed on the contour.
- Cuts needed to provide level building sites can expose bedrock.
- Dwellings with basements should be located on inclusions of deeper soils in this map unit if possible, or the bedrock should be removed, or the foundation set on bedrock and backfilled to the established grade.
- Excavation, grading, and ditching activities involved in the construction and maintenance of roads can expose bedrock.
- Access roads must be designed to provide proper grade and drains are needed to control surface runoff and keep soil losses to a minimum.
- If the soil is used as a base for roads, a coarse grained subgrade to frost depth is needed to prevent frost action on the Rawsonville soils.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

Blueberry Management:

- This unit is well suited to blueberry production.
- This unit has very few or no surface stones, and is well suited to flail mowing. Mechanical harvesting is moderately difficult due to slope.
- Irrigation and cultural practices such as weed control, insect and disease control, and fertility management will result in increased yields of blueberries.
- Irrigation water should be applied in amounts sufficient to wet the root zone but in amounts small enough to prevent the leaching of plant nutrients, insecticides, and herbicides.
- Water needs to be applied at a slow rate over a long period to insure that the root zone is properly wetted.
- Fertilization needs can be determined by leaf tissue analysis. Proper fertilization can result in greater top and rhizome growth and higher yields.
- The use of honeybees for pollination will increase the fruit set and results in higher yields.

Hay and Pasture:

- If this unit is used for hay and pasture, the main limitation is droughtiness.
- The use of proper stocking rates, pasture rotation, and restricted grazing during wet periods helps to keep the pasture in good condition and to protect the soil from erosion.
- Proper grazing practices, weed control, lime, and fertilizer are needed for maximum quality of forage.

RmC—Rawsonville-Hogback-Abram complex, 3 to 15 percent slopes, very stony

Setting
Landform: Hills, ridges, and till plains on coastal islands and peninsulas, or in close proximity to a coastal setting.
Description of areas: Irregular in shape and from 6 to over 75 acres in size

Composition
Rawsonville and similar soils: 35 percent Hogback and similar soils: 30 percent Abram and similar soils: 20 percent Inclusions: 15 percent

Rawsonville soil

Position on landscape: Side slopes and footslopes
Parent material: Glacial till
Slope range: 3 to 15 percent
Slope features: Convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, dark reddish brown sapric material
Subsurface layer:
2 to 4 inches, pinkish gray fine sandy loam

Subsoil:

4 to 8 inches, dark reddish brown fine sandy loam
8 to 15 inches, reddish brown fine sandy loam
15 to 24 inches, strong brown fine sandy loam
24 to 30 inches, yellowish brown gravelly sandy loam

Substratum:

30 to 36 inches: brown gravelly sandy loam
Bedrock:
36 inches, schist

Soil Properties and Qualities

Depth class: Moderately deep
Drainage class: Well drained
Permeability: Moderate or moderately rapid
Available water capacity: Low
Depth to restrictive layer: 20 to 40 inches to bedrock
Hazard of flooding: None

Hogback soil

Position on landscape: Crests, shoulder slopes, and upper side slopes
Parent material: Glacial till
Slope range: 3 to 15 percent
Slope features: Convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 1 inch, black sapric material
Subsurface layer:
1 to 2 inches, reddish gray fine sandy loam
Subsoil:
2 to 14 inches, dusky red fine sandy loam
Bedrock:
14 inches, granite

Soil Properties and Qualities

Depth class: Shallow
Drainage class: Somewhat excessively drained
Permeability: Moderately rapid
Available water capacity: Low
Depth to restrictive layer: 10 to 20 inches to bedrock
Hazard of flooding: None

Abram soil

Position on landscape: Crests
Parent material: Glacial till
Slope range: 3 to 15 percent
Slope features: Convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, black sapric material
Subsurface layer:
2 to 5 inches, brown sandy loam
Subsoil:
5 to 6 inches, reddish brown sandy loam

Bedrock:
6 inches, granite

Soil Properties and Qualities

Depth class: Very shallow
Drainage class: Excessively drained
Permeability: Moderately rapid
Available water capacity: Very low
Depth to restrictive layer: 1 to 10 inches to bedrock
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Rawsonville, Hogback, and Abram soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Rawsonville, Hogback, and Abram soils.

Inclusions

- Ricker soils are well drained very shallow organic soils. They are intermingled with Abram soils and rock outcrop on the crests of knolls.
- Tunbridge soils are well drained and moderately deep on side slopes and footslopes. They have less organic carbon in their subsoil than Rawsonville soils.
- Lyman soils are somewhat excessively drained and shallow soils on crests, shoulder slopes, and upper side slopes. They have less organic carbon in their subsoil than Hogback soils.
- Areas of rock outcrop are intermingled with Abram and Ricker soils on the crests of knolls.
- Naskeag soils are poorly drained moderately deep glacial till. They are in depressions between knolls.
- Dixfield soils are very deep moderately well drained firm glacial till. They are on side slopes and footslopes.
- Marlow soils are very deep well drained firm glacial till. They are on side slopes and shoulder slopes.
- Areas of soils that are greater than 40 inches to bedrock, well drained or moderately well drained, and lack the firm substratum. They are on side slopes, shoulder slopes, and footslopes.
- Areas with slopes greater than 15 percent or less than 3 percent.

Use and Management

Current uses: Pasture, wild blueberry production, and some home sites

Major Management Concerns

- Depth to bedrock
- Restricted rooting depth
- Hazard of seepage
- Slope
- Frost action in the Rawsonville soils
- Stones on the surface

General Management Considerations

Urban Development:

- Follow state or local regulations on septic system installation.
- Septic systems should be located on inclusions of deeper soils in this map unit if possible or fill material can be used to raise the level of the absorption field.
- Slope is a concern in installing septic tank absorption fields. Absorption lines should be installed on the contour.
- Cuts needed to provide level building sites can expose bedrock.
- Dwellings with basements should be located on inclusions of deeper soils in this map unit if possible, or the bedrock should be removed, or the foundation set on bedrock and backfilled to the established grade.
- Excavation, grading, and ditching activities involved in the construction and maintenance of roads can expose bedrock.
- If the soil is used as a base for roads, a coarse-grained subgrade to frost depth is needed to prevent frost action on the Rawsonville soils.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

Blueberry Management:

- This unit is well suited to blueberry production.
- This unit is not suited to flail mowing or mechanical harvesting because of surface stones.
- Irrigation and cultural practices such as weed control, insect and disease control, and fertility management will result in increased yields of blueberries.
- Irrigation water should be applied in amounts sufficient to wet the root zone but in amounts small enough to prevent the leaching of plant nutrients, insecticides, and herbicides.
- Water needs to be applied at a slow rate over a long period to insure that the root zone is properly wetted.
- Fertilization needs can be determined by leaf tissue analysis. Proper fertilization can result in greater top and rhizome growth and higher yields.
- The use of honeybees for pollination will increase the fruit set and results in higher yields.
Hay and Pasture:
- If this unit is used for hay and pasture, the main limitations are droughtiness, stones on the surface, and an occasional rock outcrop.
- Surface stones limit the use of equipment for harvesting hay.
- The use of proper stocking rates, pasture rotation, and restricted grazing during wet periods helps to keep the pasture in good condition and to protect the soil from erosion.
- Proper grazing practices, weed control, lime, and fertilizer are needed for maximum quality of forage.

RNC—Rawsonville-Lamoine-Hogback complex, 0 to 15 percent slopes, very stony

Setting
Landform: Ridges and knolls in close proximity to a coastal setting Description of areas: Irregular in shape and from 20 to over 75 acres in size

Composition

Rawsonville and similar soils: 35 percent
Lamoine and similar soils: 25 percent

Hogback and similar soils: 20 percent
Inclusions: 20 percent

Rawsonville soil

Position on landscape: Side slopes
Parent material: Glacial till
Slope range: 3 to 15 percent
Slope features: Convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, dark reddish brown sapric material
Subsurface layer:
2 to 4 inches, pinkish gray fine sandy loam
Subsoil:
4 to 8 inches, dark reddish brown fine sandy loam
8 to 15 inches, reddish brown fine sandy loam
15 to 24 inches, strong brown fine sandy loam
24 to 30 inches, yellowish brown gravelly sandy loam
Substratum:
30 to 36 inches, brown gravelly sandy loam
Bedrock:
36 inches, schist
Soil Properties and Qualities
Depth class: Moderately deep
Drainage class: Well drained
Permeability: Moderate or moderately rapid
Available water capacity: Low
Depth to restrictive layer: 20 to 40 inches to bedrock
Hazard of flooding: None

Lamoine soil

Position on landscape: On footslopes and toeslopes between bedrock-controlled ridges and in drainageways
Parent material: Glaciomarine deposits
Slope range: 0 to 5 percent
Slope features: Concave or nearly level
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 7 inches, dark brown, friable, silt loam
Subsoil:
7 to 10 inches, dark yellowish brown, mottled, friable, silt loam
10 to 16 inches, light olive brown, mottled, friable, silt loam
16 to 21 inches, olive, mottled, firm, silty clay loam
Substratum:
21 to 65 inches, olive, mottled, firm, silty clay
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Somewhat poorly drained

Permeability: Moderately slow or moderate in the surface, slow or moderately slow in the upper subsoil, and very slow or slow in the lower subsoil and substratum Available water capacity: Moderate
Depth to restrictive layer: 16 to 30 inches to dense substratum
Hazard of flooding: None

Hogback soil

Position on landscape: Crests and shoulder slopes
Parent material: Glacial till
Slope range: 3 to 15 percent
Slope features: Convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 1 inch, black sapric material
Subsurface layer:
1 to 2 inches, reddish gray fine sandy loam
Subsoil:
2 to 14 inches, dusky red fine sandy loam
Bedrock:
14 inches, granite

Soil Properties and Qualities

Depth class: Shallow
Drainage class: Somewhat excessively drained
Permeability: Moderately rapid
Available water capacity: Low
Depth to restrictive layer: 10 to 20 inches to bedrock
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Rawsonville, Lamoine, and Hogback soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Rawsonville, Lamoine, and Hogback soils.

Inclusions

- Scantic soils are poorly drained glaciomarine sediments. They are in depressions and in drainageways.
- Buxton soils are moderately well drained glaciomarine sediments. They are intermingled with the Lamoine soils and are in higher and more sloping positions.
- Abram soils are very shallow excessively drained glacial till. They are intermingled with the Hogback and Rawsonville soils.
- Tunbridge soils are moderately deep well drained soils on side slopes. They have less organic carbon in their subsoil than Rawsonville soils.
- Lyman soils are shallow somewhat excessively drained soils on crests and shoulder slopes. They have less organic carbon in their subsoil than Hogback soils.
- Ricker soils are very shallow well drained organic soils. They are intermingled with rock outcrop and Abram soils.
- Naskeag soils are moderately deep poorly drained glacial till. They are in depressions within areas of Hogback and Rawsonville soils.
- Areas of well drained and moderately well drained glacial till soils that have bedrock between 40 to 60 inches. They are on side slopes and footslopes of Hogback and Rawsonville soils.
- Areas of somewhat poorly drained and moderately well drained glaciomarine soils that have bedrock between 20 to 60 inches.
- Areas of rock outcrop on the crests of landforms.
- Areas with slopes greater than 15 percent.

Use and Management

Current uses: Woodland

Major Management Concerns

- Depth to bedrock in the Rawsonville and Hogback soils
- Hazard of seepage in the Rawsonville and Hogback soils
- Seasonal high water table in the Lamoine soils
- Very slow and slow permeability in the Lamoine soils
- Restricted rooting depth
- Slope in some areas

General Management Considerations

Woodland Management:

- The potential productivity of this unit for trees is high in the Rawsonville and Lamoine soils and moderate in the Hogback soils.
- This unit has potential for the production and management of Balsam fir for wreath brush and Christmas trees.
- These areas have good natural reproduction of spruce and fir. Proper thinning practices will reduce overcrowding and promote the growth of these species.
- Minimizing the risk of erosion is essential in harvesting timber.
- Laying out skid trails and roads on the contour will reduce erosion.
- Revegetating disturbed areas around landings, skid trails, roads, and construction sites as soon as possible helps to control soil erosion.
- Conventional methods of harvesting timber generally can be used but their use may be limited when the Lamoine soil is wet.
- Because of the seasonal high water table in the Lamoine soils, harvesting operations should be restricted to the driest part of the year or to when the soil is frozen and equipment is easiest to use and causes the least damage to the site.
- Road fill is needed to raise the roadbase above the seasonal high water table in the Lamoine soils.
- Seedling mortality can be reduced on the Hogback soils by planting seedlings in spring when soil moisture levels are highest and by using planting stock that is larger than usual or containerized. Reinforcement planting may be needed.
- Trees are subject to wind throw because of limited rooting depth.
- In the Lamoine soils the water table is high in the winter and spring and during some periods of heavy rainfall, the water table is perched at a shallow depth for a short time. Trees commonly are subject to wind throw because the soil is saturated during these periods and because root growth is limited by the seasonal high water table.
- Care should be taken in harvesting and thinning to reduce trees exposed to the prevailing winds.
- Harvesting by strip cutting will expose fewer trees to the prevailing wind and help to prevent wind throw.
- If the site is not adequately prepared, competition from undesirable plants can prevent or prolong natural or artificial reestablishment of trees.
- Competing vegetation can be controlled by properly preparing the site and by eliminating unwanted weeds, brush, or trees.

Recreation Management:

- If this unit is used for camping areas, picnic areas, and paths and trails, the main limitations are slope, depth to bedrock in the Hogback soils, and seasonal high water table and very slow and slow permeability in the Lamoine soils.
- Drainage will help reduce wetness problems in the Lamoine soils.
- Erosion and sedimentation can be controlled and the beauty of the area enhanced by maintaining adequate plant cover. Plant cover can be maintained by limiting traffic.

Urban Development:

- Follow state or local regulations on septic system installation.
- The Hogback and Rawsonville soils have severe limitations for septic tank absorption fields due to the depth to bedrock. Septic systems should be located on deeper soils in this map unit or fill material can be used to raise the level of the absorption field.
- If the Lamoine soils are used for septic tank absorption fields, the limitation of seasonal high water table can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- If the Lamoine soils are used for septic tank absorption fields, permeability limitations can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the dense substratum.
- Slope is a concern in installing septic tank absorption fields. Absorption lines should be installed on the contour.
- Cuts needed to provide level building sites can expose bedrock in the Rawsonville and Hogback soils.
- Rawsonville and Hogback soils have severe limitations for dwellings with basements due to the depth to bedrock. Dwellings with basements should be located on deeper soils in this map unit, or the bedrock should be removed, or the foundation set on bedrock and backfilled to the established grade.
- Wetness in the Lamoine soils can be reduced by installing drainage tile around footings and backfilling with material that has good permeability.
- Excavation, grading, and ditching activities involved in the construction and maintenance of roads can expose bedrock in the Rawsonville and Hogback soils.
- Roads should be designed to offset the limited ability of the Lamoine soils to support a load.
- Roadfill is needed to raise the roadbase above the seasonal high water table in the Lamoine soils.
- If the soils are used as a base for roads, a coarse-grained subgrade to frost depth is needed to prevent frost action.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

Sa-Scantic silt loam

Setting

Landform: Terraces, basins, and plains
Description of areas: Irregular or elongated in shape and from 6 to over 100 acres in size

Composition

Scantic and similar soils: 80 percent
Inclusions: 20 percent

Scantic soil

Position on landscape: In depressions and drainageways
Parent material: Glaciomarine deposits
Slope range: 0 to 3 percent
Slope features: Nearly level or concave
Stones on surface: None

Typical Profile

Surface layer:
0 to 4 inches, dark grayish brown, very friable, silt loam
4 to 9 inches, dark grayish brown, mottled, very friable, silt loam Subsurface layer: 9 to 11 inches, olive gray, mottled, friable, silt loam
Subsoil:
11 to 16 inches, olive gray, mottled, firm, silty clay loam
16 to 29 inches, olive gray, mottled, firm, silty clay

Substratum:

29 to 65 inches, olive gray, mottled, firm, clay
Soil Properties and Qualities
Depth Class: Very deep
Drainage class: Poorly drained
Permeability: Moderately slow or moderate in the surface and subsurface and very slow or slow in the subsoil and substratum
Available water capacity: High
Depth to restrictive layer: 25 to 50 inches to firm substratum
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Scantic soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Scantic soils.

Inclusions

- Lamoine soils are somewhat poorly drained glaciomarine deposits. They are on crests of slight convex rises in the landscape.
- Biddeford soils are very poorly drained glaciomarine deposits. They are in the lowest depressions and adjacent to drainageways.
- Wonsqueak soils are very poorly drained highly decomposed organic material over mineral material. They are in bogs and depressions.
- Areas with slopes greater than 3 percent are included.

Use and Management

Current uses: Hayland (fig. 8), pasture, or idle land.

Major Management Concerns

- Seasonal high water table
- Low strength
- Frost action
- Very slow or slow permeability

General Management Considerations

Urban Development:

- Follow state or local regulations on septic system installation.
- Septic systems should not be located in these areas.
- If this map unit is used for septic tank absorption fields, permeability limitations can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the firm substratum.
- If this map unit is used for septic tank absorption fields, the limitation of seasonal high water table can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- These areas should be avoided as sites for dwellings.
- Wetness can be reduced by installing drainage tile around footings and backfilling with material that has good permeability. Suitable outlets must be available.
- The limitation for roads is severe.
- Roads should be designed to offset the limited ability of this unit to support a load.
- Roadfill is needed to raise the roadbase above the seasonal high water table.
- If the soil is used as a base for roads, a coarse-grained subgrade to frost depth is needed to prevent frost action.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

Figure 8.-An area of Scantic silt loam on the nearly level land in the background and Lamoine silt loam, 0 to 6 percent slopes in the foreground adjacent to the Middle River in Machias, Maine. These areas can be highly productive hayland.

Blueberry Management:

- This unit is poorly suited to blueberry production due to seasonal high water table.

Hay and Pasture:

- If this unit is used for hay and pasture, the main limitation is the seasonal high water table.
- Grazing when the soil is wet results in compaction of the surface layer and poor tilth.
- The seasonal high water table limits the use of equipment in the spring and late fall.
- The use of proper stocking rates, pasture rotation, and restricted grazing during wet periods helps to keep the pasture in good condition and to protect the soil from erosion.
- Proper grazing practices, weed control, lime, and fertilizer are needed for maximum quality of forage.

SF—Scantic-Biddeford association, 0 to 3 percent slopes

Setting

Landform: Terraces, basins, and plains
Description of areas: Irregular in shape and from 20 to over 300 acres in size

Composition

Scantic and similar soils: 50 percent
Biddeford and similar soils: 30 percent
Inclusions: 20 percent

Scantic soil

Position on landscape: Slightly higher positions
Parent material: Glaciomarine deposits
Slope range: 0 to 3 percent
Slope features: Nearly level or concave
Stones on surface: None

Typical Profile

Surface layer:
0 to 4 inches, dark grayish brown, very friable, silt loam
4 to 9 inches, dark grayish brown, mottled, very friable, silt loam
Subsurface layer:
9 to 11 inches, olive gray, mottled, friable, silt loam
Subsoil:
11 to 16 inches, olive gray, mottled, firm, silty clay loam
16 to 29 inches, olive gray, mottled, firm, silty clay
Substratum:
29 to 65 inches, olive gray, mottled, firm, clay

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Poorly drained
Permeability: Moderately slow or moderate in the surface and subsurface and very
slow or slow in the subsoil and substratum
Available water capacity: High
Depth to restrictive layer: 25 to 50 inches to dense substratum
Hazard of flooding: None

Biddeford soil

Position on landscape: Depressions and drainageways
Parent material: Glaciomarine deposits
Slope range: 0 to 2 percent
Slope features: Concave and nearly level
Stones on surface: None

Typical Profile

Surface layer:
0 to 12 inches, black muck (sapric material)
Subsurface layer:
12 to 16 inches, gray, mottled, friable, silty clay loam
Subsoil:
16 to 24 inches, greenish gray, mottled, firm, silty clay
Substratum:
24 to 65 inches, greenish gray, mottled, firm, silty clay
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Very poorly drained
Permeability: Moderately slow or slow in the surface and subsurface and very slow or slow in the subsoil and substratum
Available water capacity: High
Depth to restrictive layer: 15 to 35 inches to dense substratum
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Scantic and Biddeford soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Scantic and Biddeford soils.

Inclusions

- Lamoine soils are somewhat poorly drained glaciomarine deposits. They are on the side slopes of convex rises in the landscape.
- Areas of Scantic and Biddeford soils that are adjacent to drainageways and flood occasionally.
- Bucksport and Wonsqueak soils are very poorly drained highly decomposed organic materials. They are intermingled with the Biddeford soils.
- Medomak soils are very poorly drained alluvial deposits. They are adjacent to drainageways that flood occasionally.

Use and Management

Current uses: Woodland

Major Management Concerns

- Seasonal high water table
- Ponding in the Biddeford soils
- Low strength
- Frost action
- Very slow and slow permeability
- Restricted rooting depth

General Management Considerations

Woodland Management:

- The potential productivity of this unit for trees is medium on the Scantic soils and low on the Biddeford soils.
- Minimizing the risk of erosion is essential in harvesting timber.
- Conventional methods of harvesting timber generally can be used but their use may be limited when the soil is wet.
- These soils may be compacted if heavy equipment is used when these soils are wet.
- Because of the seasonal high water table harvesting operations should be restricted to winter months when the soil is frozen and when equipment is easiest to use and causes the least damage to the site.
- Roadfill is needed to raise the roadbase above the seasonal high water table.
- Only trees that can tolerate seasonal wetness should be planted.
- Windthrow is a problem on these soils because the seasonal high water table causes trees to be shallow rooted.
- Care should be taken in harvesting and thinning to reduce trees exposed to the prevailing winds.
- Harvesting by stripcutting will expose fewer trees to the prevailing wind and help to prevent windthrow.
- Periodic salvaging of windthrown trees is advisable.
- If the site is not adequately prepared, competition from undesirable plants can prevent or prolong natural or artificial reestablishment of trees.
- Competing vegetation can be controlled by properly preparing the site and by eliminating unwanted weeds, brush, or trees.

Recreation Management:

- If this unit is used for camping areas, picnic areas, and paths and trails, the main limitations are the seasonal high water table, very slow and slow permeability, and ponding in the Biddeford soils.
- These wetland areas have the potential for providing important functions such as: controlling flood waters and erosion, improving water quality and availability, providing valuable habitat for wetland wildlife, and providing important recreational opportunities.

Urban Development:

- Follow state or local regulations on septic system installation.
- Septic systems should not be located in these areas.
- These areas should be avoided as sites for dwellings.
- Roads should be designed to offset the limited ability of this unit to support a load.
- Roadfill is needed to raise the roadbase above the seasonal high water table.
- If the soils are used as a base for roads, a coarse grained subgrade to frost depth is needed to prevent frost action.

SG-Sebago and Moosabec soils

Setting

Landform: Raised bog (fig. 9)
Description of areas: Oval or irregular in shape

Composition

Sebago and similar soils: 50 percent Moosabec and similar soils: 40 percent Inclusions: 10 percent

Figure 9.-In the background is a large kettle hole bog composed of Sebago and Moosabec soils. Surrounding the kettle are glaciofluvial deposits dominated by Colton gravelly sandy loam, 3 to 8 percent slopes.

Sebago soil

Position on landscape: On the perimeter and in lower positions
Parent material: Moderately decomposed organic material
Slope range: 0 to 1 percent
Slope features: Nearly level
Stones on surface: None

Typical Profile

Surface tier:
0 to 12 inches, dark reddish brown mucky peat (hemic material)
Subsurface tier:
12 to 21 inches, dark reddish brown mucky peat (hemic material)
21 to 29 inches, black mucky peat (hemic material)
29 to 36 inches, dark reddish brown mucky peat (hemic material)
Bottom tier:
36 to 42 inches, dark reddish brown mucky peat (hemic material)
42 to 60 inches, very dusky red muck (sapric material)
60 to 65 inches, very dusky red mucky peat (hemic material)

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Very poorly drained
Permeability: Moderately rapid
Available water capacity: Very high
Depth to restrictive layer: Greater than 60 inches Hazard of flooding: None

Moosabec soil

Position on landscape: Towards the center and slightly elevated areas of bogs
Parent material: Slightly decomposed organic material
Slope range: 0 to 1 percent
Slope features: Nearly level
Stones on surface: None

Typical Profile

Surface tier:
0 to 12 inches, very dusky red peat (fibric material)
12 to 24 inches, dark reddish brown peat (fibric material)
Subsurface tier:
24 to 48 inches, dark reddish brown peat (fibric material)
Bottom tier:
48 to 56 inches, dark reddish brown peat (fibric material)
56 to 58 inches, dark reddish brown mucky peat (hemic material)
58 to 65 inches, dark reddish brown peat (fibric material)

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Very poorly drained
Permeability: Rapid
Available water capacity: Very high
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None
Depth to water table: 0 to greater than 6.0 feet, apparent, November to July

Included Areas

Similar soils

Soils are included in this map unit which are like the Sebago and Moosabec soils in most properties, but differ in some respect, such as color, degree of decomposition, or amount of woody fragments. Interpretations for most common uses are reasonably similar to those for the Sebago and Moosabec soils.

Inclusions

- Bucksport soils are very poorly drained highly decomposed organic material. They are at the perimeter of bogs.
- Wonsqueak soils are very poorly drained highly decomposed organic material underlain by mineral material. They are at the perimeter of bogs.

Use and Management

Current uses: Mainly woodland and wildlife habitat. Some areas are harvested for agricultural peat.

Major Management Concerns

- Seasonal high water table
- Low strength
- Ponding in some areas
- Excess humus
- Poor filter
- Frost action
- Inadequate drainage outlets in some areas

General Management Considerations

Woodland Management:

- The potential productivity of this unit for trees is very low.
- Minimizing the risk of erosion is essential in harvesting timber.
- Because of the seasonal high water table, harvesting operations should be restricted to winter months when the soil is frozen and when equipment is easiest to use and causes the least damage to the site.
- Windthrow is severe on these soils because the seasonal high water table cause trees to be shallow rooted.
- Trees commonly are subject to windthrow during periods when the soil is excessively wet and winds are strong.
- In the management of these areas for commercial peat, special equipment must be used due to the low load supporting capacity. The water table must be lowered with deep drainage ditches and adequate outlets designed in order to use equipment on the bogs.

Recreation Management:

- If this unit is used for camping areas, picnic areas, and paths and trails, the main limitations are seasonal high water table and excess humus.
- These wetland areas have the potential for providing important functions such as: controlling flood waters and erosion, improving water quality and availability, providing valuable habitat for wetland wildlife, and providing important recreational opportunities.

Urban Development:

- Follow state or local regulations on septic system installation.
- Septic systems should not be located in these areas.
- These areas should be avoided as sites for dwellings.
- Roads should not be located in these areas.

ShB—Sheepscot fine sandy loam, 0 to 8 percent slopes

$$
\begin{aligned}
& \text { Setting } \\
& \text { Landform: Outwash plains, deltas, kame terraces, and moraines } \\
& \text { Description of areas: Irregular in shape and from } 6 \text { to over } 20 \text { acres in size } \\
& \text { Composition }
\end{aligned}
$$

Sheepscot and similar soils: 80 percent
Inclusions: 20 percent

Sheepscot soil

Position on landscape: Lower side slopes, footslopes, toeslopes, and depressions
Parent material: Glaciofluvial sands and gravels
Slope features: Concave, nearly level, or slightly convex
Stones on surface: None

Typical Profile

Surface layer:
0 to 4 inches, very dark brown sapric material
Subsurface layer:
4 to 7 inches, light gray fine sandy loam

Subsoil:

7 to 9 inches, dark reddish brown sandy loam
9 to 16 inches, brown gravelly sandy loam
16 to 23 inches, strong brown very gravelly loamy sand
23 to 29 inches, dark yellowish brown, mottled, very gravelly sand

Substratum:

29 to 65 inches, light olive brown, mottled, very gravelly sand

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Moderate or moderately rapid in the surface, subsurface, and upper
subsoil, and rapid or very rapid in the lower subsoil and substratum
Available water capacity: Low
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Sheepscot soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Sheepscot soils.

Inclusions

- Kinsman soils are poorly drained glaciofluvial sand. They are in depressions and drainageways.
- Small areas of soils that are somewhat poorly drained or poorly drained that are cemented in the subsoil. They are in depressions or on toeslopes.
- Masardis soils are somewhat excessively drained glaciofluvial sand and gravel with loamy surface caps greater than 10 inches thick. They are in higher positions and on the crests of small knolls or ridges.
- Colton soils are excessively drained glaciofluvial sand and gravel. They are in higher positions and on the crests of small knolls or ridges.
- Adams soils are excessively drained glaciofluvial sand. They are in higher positions and on convex knolls.
- Croghan soils are moderately well drained glaciofluvial sand. They are on footslopes at the perimeter of the unit.
- Nicholville soils are moderately well drained glaciofluvial and glaciolacustrine very fine sand and silt. They are on footslopes and toeslopes at the perimeter of the unit.
- Areas with slopes greater than 8 percent.

Use and Management

Current uses: Wild blueberry production, hayland, pasture, and homesites

Major Management Concerns

- Seasonal high water table
- Poor filter
- Hazard of seepage
- Cutbanks are not stable

General Management Considerations

Urban Development:

- Follow state or local regulations on septic system installation.
- If this map unit is used for septic tank absorption fields, the limitation of seasonal high water table can be overcome by increasing the size of the absorption field or
increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- If this map unit is used for septic tank absorption fields, there is a possibility of groundwater contamination due to the poor filtering action of the substratum. Finertextured fill material below the bottom of the absorption field can help prevent this from occurring.
- Wetness can be reduced by installing drainage tile around footings and backfilling with material that has good permeability.
- Roadfill is needed to raise the roadbase above the seasonal high water table.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.
- This map unit is an aquifer recharge area and because of the permeability of this soil, pollutants can move quickly through the soil and into the ground water. Contamination of the ground water is therefore possible if precautions are not taken. Restrictions on the types of activities that may occur, limitations on the density of housing, and special engineering designs for septic systems are possible precautionary measures.
- These areas are a probable source of gravel and sand.

Blueberry Management:

- This unit is well suited to blueberry production.
- This unit has very few or no surface stones, and is well suited to flail mowing and mechanical harvesting.
- The seasonal high water table will limit the use of equipment in the spring and late fall.
- Irrigation and cultural practices such as weed control, insect and disease control, and fertility management will result in increased yields of blueberries.
- Irrigation water should be applied in amounts sufficient to wet the root zone but in amounts small enough to prevent the leaching of plant nutrients, insecticides, and herbicides.
- Water needs to be applied at a slow rate over a long period to insure that the root zone is properly wetted.
- Fertilization needs can be determined by leaf tissue analysis. Proper fertilization can result in greater top and rhizome growth and higher yields.
- The use of honeybees for pollination will increase the fruit set and result in higher yields.

Hay and Pasture:

- If this unit is used for hay and pasture, the main limitations are seasonal high water table and droughtiness.
- Grazing when the soil is wet results in compaction of the surface layer, poor tilth, and excessive runoff.
- The seasonal high water table limits the use of equipment in the spring and late fall.
- The use of proper stocking rates, pasture rotation, and restricted grazing during wet periods helps to keep the pasture in good condition and to protect the soil from erosion.
- Proper grazing practices, weed control, lime, and fertilizer are needed for maximum quality of forage.

SJB-Sheepscot-Croghan-Kinsman complex, 0 to 8 percent slopes

Setting
Landform: Outwash deltas, plains, kame terraces, and old beach terraces Description of areas: Irregular in shape and from 20 to over 100 acres in size

Composition

Sheepscot and similar soils: 35 percent
Croghan and similar soils: 25 percent
Kinsman and similar soils: 25 percent
Inclusions: 15 percent

Sheepscot soil

Position on landscape: Head slopes and higher positions
Parent material: Glaciofluvial sands and gravels
Slope range: 0 to 8 percent
Slope features: Slightly convex
Stones on surface: None

Typical Profile

Surface layer:
0 to 4 inches, very dark brown sapric material
Subsurface layer:
4 to 7 inches, light gray fine sandy loam
Subsoil:
7 to 9 inches, dark reddish brown sandy loam
9 to 16 inches, brown gravelly sandy loam
16 to 23 inches, strong brown very gravelly loamy sand
23 to 29 inches, dark yellowish brown, mottled, very gravelly sand
Substratum:
29 to 65 inches, light olive brown, mottled, very gravelly sand

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Moderate or moderately rapid in the surface, subsurface, and upper
subsoil, and rapid in the lower subsoil and substratum
Available water capacity: Low
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None

Croghan soil

Position on landscape: Side slopes
Parent material: Glaciofluvial sand
Slope range: 0 to 8 percent
Slope features: Slightly convex or concave or nearly level
Stones on surface: None

Typical Profile

Surface layer:
0 to 1 inch, dark reddish brown sapric material

Subsurface layer:
1 to 3 inches, light gray loamy sand
Subsoil:
3 to 5 inches, dark reddish brown loamy sand
5 to 11 inches, brown loamy sand
11 to 18 inches, dark yellowish brown loamy sand
18 to 23 inches, light olive brown, mottled, sand
Substratum:
23 to 65 inches, grayish brown, mottled, sand
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Rapid in the surface and subsurface and very rapid in the subsoil and substratum
Available water capacity: Very low
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None

Kinsman soil

Position on landscape: Toeslopes and depressions
Parent material: Glaciofluvial sands
Slope range: 0 to 3 percent
Slope features: Concave or nearly level
Stones on surface: None

Typical Profile

Surface layer:
0 to 4 inches, black muck (sapric material)
Subsurface layer:
4 to 8 inches, light brownish gray sand
Subsoil:
8 to 12 inches, dark reddish brown sand
12 to 18 inches, dark reddish brown, mottled, sand
18 to 32 inches, dark brown, mottled, sand
32 to 42 inches, olive brown, mottled, sand
Substratum:
42 to 65 inches, olive, mottled, sand
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Poorly drained
Permeability: Rapid
Available water capacity: Low
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Sheepscot, Croghan, and Kinsman soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Sheepscot, Croghan, and Kinsman soils.

Inclusions

- Very poorly drained glaciofluvial sand are in depressions.
- Areas of Kinsman soils with silty clay loam or silty clay deeper than 50 inches. They are in areas adjacent to glaciomarine deposits.
- Bucksport, Wonsqueak, Sebago, and Moosabec soils are very poorly drained organic materials. They are in bogs.
- Colton soils are excessively drained and Masardis soils are somewhat excessively drained. They are glaciofluvial sand and gravel and are on small knolls and ridges.
- Adams soils are excessively drained glaciofluvial sand. They are on higher areas within the Croghan part of the unit.
- Nicholville soils are moderately well drained glaciofluvial and glaciolacustrine very fine sand and silt. They are on footslopes and toeslopes.
- Areas of soils similar to the Sheepscot soils that are poorly drained or somewhat poorly drained. They are in depressions.
- Areas with slopes greater than 8 percent are included.
- Areas with stones on the surface are included.

Use and Management

Current uses: Wooded

Major Management Concerns

- Seasonal high water table
- Cutbanks are not stable
- Slope in some areas
- Frost action in some areas
- Droughtiness
- Poor filter
- Hazard of seepage

General Management Considerations

Woodland Management:

- The potential productivity of this unit for trees is high on Sheepscot soils, very high on Croghan soils, and moderate on Kinsman soils.
- Sheepscot soils are a potential source of sand and gravel and Croghan and Kinsman soils are a potential source of sand.
- Minimizing the risk of erosion is essential in harvesting timber.
- Revegetating disturbed areas around landings, skid trails, roads, and construction sites as soon as possible will help to control soil erosion.
- Conventional methods of harvesting timber generally can be used but their use on the Kinsman soils may be limited when the soil is wet.
- Because of the seasonal high water table in the Kinsman soils, harvesting operations on this part should be restricted to the driest part of the year or to when the soil is frozen and equipment is easiest to use and causes the least damage to the site.
- Roadfill is needed on the Kinsman soils to raise the roadbase above the seasonal high water table.
- Seedling mortality can be reduced on the Sheepscot and Croghan soils by planting seedlings in spring when soil moisture levels are highest and by using planting stock that is larger than usual or containerized. Reinforcement planting may be needed.
- Only trees that can tolerate seasonal wetness should be planted on the Kinsman soils.
- Care should be taken in harvesting and thinning to reduce trees exposed to the prevailing winds.
- Plant competition delays natural regeneration but does not prevent the eventual development of a fully stocked, normal stand of trees.
- If the site is not adequately prepared, competition from undesirable plants can prevent or prolong natural or artificial reestablishment of trees.
- Competing vegetation can be controlled by properly preparing the site and by eliminating unwanted weeds, brush, or trees.

Recreation Management:

- If this unit is used for camping areas, picnic areas, and paths and trails, the main limitation is the seasonal high water table.
- Drainage will help reduce wetness problems.

Urban Development:

- Follow state or local regulations on septic system installation.
- Septic systems should not be located in areas of Kinsman soils.
- If this map unit is used for septic tank absorption fields, the limitation of seasonal high water table can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- If this map unit is used for septic tank absorption fields, there is a possibility of groundwater contamination due to the poor filtering action of the substratum. Finertextured fill material below the bottom of the absorption field can help prevent this from occurring.
- The Kinsman soils should be avoided as sites for dwellings.
- Wetness can be reduced by installing drainage tile around footings and backfilling with material that has good permeability.
- Roadfill is needed to raise the roadbase above the seasonal high water table.
- If the Croghan soils are used as a base for roads, a coarse grained subgrade to frost depth is needed to prevent frost action.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.
- This map unit is an aquifer recharge area and because of the permeability of these soils, pollutants can move quickly through the soil and into the ground water. Contamination of the ground water is therefore possible if precautions are not taken. Restrictions on the types of activities that may occur, limitations on the density of housing, and special engineering designs for septic systems are possible precautionary measures.
- These areas are a probable source of gravel and sand.

Blueberry Management:

- Although this unit is mainly wooded, it is well suited to blueberry production on the Sheepscot and Croghan soils and poorly suited on the Kinsman soils.
- These areas can be cleared and, with proper management, brought into blueberry production.
- The seasonal high water table will limit the use of equipment in the spring and late fall.
- This unit has very few or no surface stones, and is well suited to flail mowing and mechanical harvesting.
- Irrigation and cultural practices such as weed control, insect and disease control, and fertility management will result in increased yields of blueberries.
- Irrigation water should be applied in amounts sufficient to wet the root zone but in amounts small enough to prevent the leaching of plant nutrients, insecticides, and herbicides.
- Water needs to be applied at a slow rate over a long period to insure that the root zone is properly wetted.
- Fertilization needs can be determined by leaf tissue analysis. Proper fertilization can result in greater top and rhizome growth and higher yields.
- The use of honeybees for pollination will increase the fruit set and result in higher yields.

SkB—Skerry fine sandy loam, $\mathbf{3}$ to 12 percent slopes

Setting
Landform: Drumlins, low ridges, and till plains
Description of areas: Irregular in shape and from 3 to over 50 acres in size

Composition

Skerry and similar soils: 75 percent
Inclusions: 25 percent

Skerry soil

Position on landscape: Side slopes and footslopes
Parent material: Dense glacial till
Slope features: Convex
Stones on surface: None

Typical Profile

Surface layer:
0 to 7 inches, dark brown, very friable, fine sandy loam
Subsoil:
7 to 16 inches, dark yellowish brown, friable, gravelly fine sandy loam
16 to 22 inches, light olive brown, mottled, firm, gravelly fine sandy loam

Substratum:

22 to 65 inches, 60 percent olive, mottled, loose, gravelly loamy sand and 40 percent, olive, mottled, firm, gravelly sandy loam

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Moderate in the surface, subsurface, and subsoil, and slow or moderately slow in the substratum
Available water capacity: Low
Depth to restrictive layer: 15 to 30 inches to dense substratum
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Skerry soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Skerry soils.

Inclusions

- Colonel soils are somewhat poorly drained dense glacial till. They are in slight depressions, adjacent to drainageways, and on footslopes and toeslopes.
- Becket soils are well drained dense glacial till. They are in slightly higher positions on small knolls.
- Brayton soils are poorly drained dense glacial till. They are in depressions and adjacent to drainageways.
- Tunbridge soils are well drained and moderately deep and Lyman soils are somewhat excessively drained and shallow. They are glacial till and are intermingled together on small bedrock-controlled knolls.
- Areas with slopes greater than 12 percent and less than 3 percent are included.
- Small areas with stones on the surface are included.

Use and Management

Current uses: Hayland, pasture, homesites, and blueberry production
Major Management Concerns

- Seasonal high water table
- Restricted rooting depth
- Slow or moderately slow permeability
- Frost action

General Management Considerations

Urban Development:

- Follow state or local regulations on septic system installation.
- If this map unit is used for septic tank absorption fields, the limitation of seasonal high water table can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- If this map unit is used for septic tank absorption fields, permeability limitations can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the dense substratum.
- Wetness can be reduced by installing drainage tile around footings and backfilling with material that has good permeability.
- Excavation for building sites is difficult due to the dense substratum.
- If the soil is used as a base for roads, a coarse-grained subgrade to frost depth is needed to prevent frost action.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

Blueberry Management:

- This unit is well suited to blueberry production.
- This unit has very few or no surface stones, and is well suited to flail mowing and mechanical harvesting.
- The seasonal high water table will limit the use of equipment in the spring and late fall.
- Irrigation and cultural practices such as weed control, insect and disease control, and fertility management will result in increased yields of blueberries.
- Irrigation water should be applied in amounts sufficient to wet the root zone but in amounts small enough to prevent the leaching of plant nutrients, insecticides, and herbicides.
- Water needs to be applied at a slow rate over a long period to insure that the root zone is properly wetted.
- Fertilization needs can be determined by leaf tissue analysis. Proper fertilization can result in greater top and rhizome growth and higher yields.
- The use of honeybees for pollination will increase the fruit set and result in higher yields.

Hay and Pasture:

- If this unit is used for hay and pasture, the main limitation is the seasonal high water table.
- Grazing when the soil is wet results in compaction of the surface layer, poor tilth, and excessive runoff.
- The seasonal high water table limits the use of equipment in the spring and late fall.
- The use of proper stocking rates, pasture rotation, and restricted grazing during wet periods helps to keep the pasture in good condition and to protect the soil from erosion.
- Proper grazing practices, weed control, lime, and fertilizer are needed for maximum quality of forage.

SmB—Skerry fine sandy loam, 3 to 12 percent slopes, very stony

Setting
Landform: Drumlins, low ridges, and till plains
Description of areas: Irregular in shape and from 3 to over 50 acres in size

Composition

Skerry and similar soils: 75 percent
Inclusions: 25 percent

Skerry soil

Position on landscape: Side slopes and footslopes
Parent material: Dense glacial till
Slope features: Convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, black sapric material
Subsurface layer:
2 to 3 inches, grayish brown, very friable, fine sandy loam
Subsoil:
3 to 4 inches, dark reddish brown, very friable, fine sandy loam
4 to 8 inches, brown, very friable, fine sandy loam
8 to 18 inches, dark yellowish brown, friable, gravelly fine sandy loam
18 to 24 inches, light olive brown, mottled, firm, gravelly fine sandy loam

Substratum:

24 to 65 inches, 60 percent olive, mottled, loose, gravelly loamy sand and 40 percent, olive, mottled, firm, gravelly sandy loam

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Moderate in the surface, subsurface, and subsoil, and slow or moderately slow in the substratum
Available water capacity: Low
Depth to restrictive layer: 15 to 30 inches to dense substratum
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Skerry soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Skerry soils.

Inclusions

- Colonel soils are somewhat poorly drained dense glacial till. They are in slight depressions, adjacent to drainageways, and on footslopes and toeslopes.
- Becket soils are well drained dense glacial till. They are in slightly higher positions on small knolls.
- Brayton soils are poorly drained dense glacial till. They are in depressions and adjacent to drainageways.
- Tunbridge soils are well drained and moderately deep and Lyman soils are somewhat excessively drained and shallow. They are glacial till and are intermingled together on small bedrock-controlled knolls.
- Areas with short slopes greater than 12 percent and less than 3 percent are included.
- Areas with greater than 3 percent surface stones or boulders are included.

Use and Management

Current uses: Pasture, homesites, and blueberry production
Major Management Concerns

- Seasonal high water table
- Restricted rooting depth
- Slow or moderately slow permeability
- Frost action
- Stones on the surface

General Management Considerations

Urban Development:

- Follow state or local regulations on septic system installation.
- If this map unit is used for septic tank absorption fields, the limitation of seasonal high water table can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- If this map unit is used for septic tank absorption fields, permeability limitations can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the dense substratum.
- Wetness can be reduced by installing drainage tile around footings and backfilling with material that has good permeability.
- Excavation for building sites is difficult due to the dense substratum.
- If the soil is used as a base for roads, a coarse grained subgrade to frost depth is needed to prevent frost action.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

Blueberry Management:

- This unit is well suited to blueberry production.
- This unit is not suited to flail mowing or mechanical harvesting because of surface stones.
- The seasonal high water table will limit the use of equipment in the spring and late fall.
- Irrigation and cultural practices such as weed control, insect and disease control, and fertility management will result in increased yields of blueberries.
- Irrigation water should be applied in amounts sufficient to wet the root zone but in amounts small enough to prevent the leaching of plant nutrients, insecticides, and herbicides.
- Water needs to be applied at a slow rate over a long period to insure that the root zone is properly wetted.
- Fertilization needs can be determined by leaf tissue analysis. Proper fertilization can result in greater top and rhizome growth and higher yields.
- The use of honeybees for pollination will increase the fruit set and result in higher yields.

Hay and Pasture:

- If this unit is used for hay and pasture, the main limitations are the seasonal high water table and stones on the surface.
- Grazing when the soil is wet results in compaction of the surface layer, poor tilth, and excessive runoff.
- The seasonal high water table limits the use of equipment in the spring and late fall.
- Surface stones limit the use of equipment for harvesting hay.
- The use of proper stocking rates, pasture rotation, and restricted grazing during wet periods helps to keep the pasture in good condition and to protect the soil from erosion.
- Proper grazing practices, weed control, lime, and fertilizer are needed for maximum quality of forage.

SNC—Skerry-Becket association, 3 to 15 percent slopes, very stony

Setting

Landform: Hills, ridges, and drumlins
Description of areas: Irregular in shape and from 20 to over 200 acres in size

Composition

Skerry and similar inclusions: 45 percent
Becket and similar inclusions: 35 percent
Contrasting inclusions: 20 percent

Skerry soil

Position on landscape: Side slopes and footslopes
Parent material: Dense glacial till
Slope range: 3 to 15 percent
Slope features: Convex or slightly concave
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:

0 to 2 inches, black highly decomposed organic material
Subsurface layer:
2 to 3 inches, grayish brown very friable, fine sandy loam

Subsoil:
3 to 4 inches, dark reddish browns very friable, fine sandy loam
4 to 8 inches, brown, very friable, fine sandy loam
8 to 18 inches, dark yellowish brown, friable, gravelly fine sandy loam
18 to 24 inches, light olive brown, mottled, firm, gravelly fine sandy loam
Substratum:
24 to 65 inches, 60 percent olive, mottled, loose, gravelly loamy sand and 40 percent, olive, mottled, firm, gravelly sandy loam

Soil Properties and Qualities

Depth class:Very deep
Drainage class: Moderately well drained
Permeability: Moderate in the surface, subsurface, and subsoil, and slow or moderately slow in the substratum
Available water capacity: Low
Depth to restrictive layer: 15 to 30 inches
Hazard of flooding: None

Becket soil

Position on landscape: Crests, shoulder slopes and side slopes
Parent material: Dense glacial till
Slope range: 8 to 15 percent
Slope features: Convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, very dark grayish brown highly decomposed organic material
Subsurface layer:
2 to 5 inches, light brownish grays very friable' fine sandy loam
Subsoil:
5 to 8 inches, dark reddish browns friable, fine sandy loam
8 to 14 inches, yellowish brown friable, gravelly fine sandy loam
14 to 24 inches, light yellowish brown, friable, gravelly sandy loam
Substratum:
24 to 65 inches, 40 percent olive, firm, gravelly sandy loam and 60 percent grayish brown, loose, gravelly loamy sand

Soil Properties and Qualities
Depth class: Very deep
Drainage class: Well drained
Permeability: Moderate in the surfaces subsurface, and subsoil, and slow or moderately slow in the substratum
Available water capacity: Low
Depth to restrictive layer: 18 to 30 inches
Hazard of flooding: None

Included Areas

Similar inclusions

Soils are included in this map unit which are like the Skerry and Becket soils In most properties, but differ in some respects such as colors surface textures or consistence. Interpretations for most common uses are reasonably similar to those for the Skerry and Becket soils.

Contrasting inclusions

- Colonel soils are somewhat poorly drained dense glacial till. They are on toeslopes, in slight depressions, and adjacent to drainageways.
- Brayton soils are poorly drained dense glacial till. They are in depressions and adjacent to drainageways.
- Dixfield soils are moderately well drained dense glacial till that have less than 20 percent sand lenses in the substratum. They are intermingled with the Skerry soils on side slopes and footslopes.
- Marlow soils are well-drained dense glacial till that have less than 20 percent sand lenses in the substratum. They are intermingled with the Becket soils on crests, shoulder slopes, and side slopes.
- Tunbridge soils are moderately deep well-drained glacial till. They are on the crests and shoulder slopes of ridges.
- Hermon soils are somewhat excessively drained and Monadnock soils are well drained. They are glacial till that are coarser textured and have more rock fragments than the Becket and Skerry soils and lack the dense substratum. They are on upper side slopes and shoulder slopes.
- Areas of soils similar to the Skerry and Becket soils which lack the dense substratum are included.
- Areas with slopes greater than 15 percent are included.

Use and Management

Current uses: Woodland

Major Management Concerns

- Seasonal high water table in the Skerry soils
- Restricted rooting depth
- Slope in some areas
- Frost action
- Stones on the surface
- Slow or moderately slow permeability

General Management Considerations

Woodland Management:

- The potential productivity of this unit for trees is very high.
- This unit has potential for the production and management of Balsam Fir for wreath brush and Christmas trees.
- These areas have good natural reproduction of Spruce and Fir. Proper thinning practices will reduce overcrowding and promote the growth of these species.
- Minimizing the risk of erosion is essential in harvesting timber.
- Revegetating disturbed areas around landings, skid trails, roads, and construction sites as soon as possible will help to control soil erosion.
- Conventional methods of harvesting timber can be used.
- Stones on the surface can interfere with felling, yarding, and other operations involving the use of equipment.
- During some periods of heavy rainfall, the water table is perched at a shallow depth for a short time. Trees commonly are subject to windthrow because the soil is saturated during these periods and because root growth is limited by the dense substratum.
- Care should be taken in harvesting and thinning to reduce trees exposed to the prevailing winds.
- Harvesting by stripcutting will expose fewer trees to the prevailing wind and help to prevent windthrow.
- Plant competition delays natural regeneration but does not prevent the eventual development of a fully stocked normal stand of trees.
- Competing vegetation can be controlled by properly preparing the site and by eliminating unwanted weeds, brush, or trees.

Recreation Development:

- If this unit is used for camping areas, picnic areas and paths and trails, the main limitations are the seasonal high water table in the Skerry soils, slow and moderately slow permeability, slope in some areas, and stones on the surface.
- Drainage will help reduce wetness problems in the Skerry soils.
- Erosion and sedimentation can be controlled and the beauty of the area enhanced by maintaining adequate plant cover. Plant cover can be maintained by limiting traffic.

Urban Development:

- The limitation for septic tank absorption fields is severe.
- If the Skerry soils are used for septic tank absorption fields, the limitation of seasonal high water table can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- If this map unit is used for septic tank absorption fields, permeability limitations can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the dense substratum.
- Slope is a concern in installing septic tank absorption fields. Absorption lines should be installed on the contour.
- Installing drainage tile around footings and backfilling with material that has good permeability can reduce wetness.
- A seasonal high water table is perched above the dense substratum in the Becket soils for a short period of time in the early spring. Drainage should be provided for dwellings with basements.
- As the slope increases, building site development becomes more difficult.
- Excavation for building sites is difficult due to the dense substratum. The limitation for roads is severe on the Skerry soils and moderate on the Becket soils.
- If the soils are used as a base for roads, a coarse-grained subgrade to frost depth is needed to prevent frost action.
- Access roads must be designed to provide proper grade and drains are needed to control surface runoff and keep soil losses to a minimum. Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

SOB—Skerry-Colonel complex, 0 to 8 percent slopes, very stony

Setting
Landform: Knolls, ridges, and drumlins on upland till plains
Description of areas: Irregular In shape and from 20 to over 200 acres in size

Composition

Skerry and similar inclusions: 50 percent
Colonel and similar inclusions: 30 percent
Contrasting inclusions: 20 percent

Skerry soil

Position on landscape: Crests and side slopes
Parent material: Dense glacial till
Slope range: 3 to 8 percent
Slope features: Smooth and convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, black highly decomposed organic material
Subsurface layer:
2 to 3 inches, grayish browns very friable, fine sandy loam
Subsoil:
3 to 4 inches, dark reddish brown, very friable, fine sandy loam
4 to 8 inches, brown, very friable, fine sandy loam
8 to 18 inches, dark yellowish brown, friable, gravelly fine sandy loam
18 to 24 inches, light olive brown, mottled, firm, gravelly fine sandy loam
Substratum:
24 to 65 inches, 60 percent olive, mottled, loose, gravelly loamy sand and 40 percent, olives mottled, firm gravelly sandy loam

Soil Properties and Qualities

Depth class:Very deep
Drainage class: Moderately well drained
Permeability: Moderate in the surface, subsurface, and subsoil, and slow or moderately slow in the substratum
Available water capacity: Low
Depth to restrictive layer: 15 to 30 inches
Hazard of flooding: None

Colonel soil

Position on landscape: Toeslopes and slight depressions
Parent material: Dense glacial till
Slope range: 0 to 5 percent
Slope features: Slightly concave or nearly level
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 3 inches, black highly, decomposed organic material
Subsurface layer:
3 to 6 inches, gray very friable, gravelly fine sandy loam
Subsoil:
6 to 9 inches, dark reddish brown, very friable, gravelly fine sandy loam
9 to 13 inches, yellowish brown, friable, gravelly fine sandy loam
13 to 22 inches, yellowish browns mottled, friable, gravelly fine sandy loam
22 to 26 inches, light olive brown, mottled, friable, gravelly fine sandy loam

Substratum:

26 to 65 inches, olive, mottled, firm, gravelly fine sandy loam
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Somewhat poorly drained

Permeability: Moderate in the surface, subsurface, and subsoil, and slow or moderately slow in the substratum
Available water capacity: Moderate
Depth to restrictive layer: 15 to 30 inches
Hazard of flooding: None

Included Areas

Similar inclusions

Soils are included in this map unit which are like the Skerry and Colonel soils in most properties, but differ in some respects such as color, surface textures or consistence. Interpretations for most common uses are reasonably similar to those for the Skerry and Colonel soils.

Contrasting Inclusions

- Brayton soils are poorly drained dense glacial till. They are in depressions and along drainageways.
- Dixfield soils are moderately well drained dense glacial till that have less than 20 percent sand lenses in the substratum. They are intermingled with the Skerry soils.
- Becket soils are well-drained dense glacial till. They are on the crests of knolls and ridges and in areas with steeper slopes.
- Tunbridge soils are moderately deep well-drained glacial till. They are on the crests of bedrock-controlled knolls.
- Lamoine soils are somewhat poorly drained glaciomarine deposits. They are adjacent to drainageways in coastal areas.
- Poorly drained glacial till that lack the dense substratum are in depressions.
- Very poorly drained dense glacial till are in the lowest depressions and adjacent to drainageways.
- Areas with slopes greater than 8 percent are included.
- Areas with greater than 3 percent stones on the surface are included.

Use and Management

Current uses: Woodland

Major Management Concerns

- Seasonal high water table
- Frost Action
- Slow or moderately slow permeability
- Stones on the surface
- Restricted rooting depth

General Management Considerations

Woodland Management:

- The potential productivity of this unit for trees is very high on the Skerry soils and high on the Colonel soils.
- This unit has potential for the production and management of Balsam fir for wreath brush and Christmas trees.
- These areas have good natural reproduction of spruce and fir. Proper thinning practices will reduce overcrowding and promote the growth of these species.
- Minimizing the risk of erosion is essential in harvesting timber.
- Revegetating disturbed areas around landings, skid trails, roads, and construction sites as soon as possible will help to control soil erosion.
- Conventional methods of harvesting timber generally can be used but their use may be limited when the Colonel soil is wet.
- These soils maybe compacted if heavy equipment is used when these soils are wet.
- Stones on the surface can interfere with felling, yarding, and other operations involving the use of equipment.
- Because of the seasonal high water tables, harvesting operations on the Colonel soils should be restricted to the driest part of the year or when the soil is frozen and equipment is easiest to use and causes the least damage to the site.
- Roadfill is needed to raise the roadbase above the seasonal high water table in the Colonel soils.
- Trees commonly are subject to windthrow during periods when the soil is excessively wet, and winds are strong.
- Windthrow is a hazard on these toils because the seasonal high water table and dense substratum cause trees to be shallow rooted.
- Care should be taken in harvesting and thinning to reduce trees exposed to the prevailing winds.
- Harvesting by stripcutting will expose fewer trees to the prevailing wind and help to prevent windthrow.
- Periodic salvaging of windthrown trees is advisable.
- After harvesting, reforestation must be carefully managed to reduce competition from undesirable understory plants.
- If the site is not adequately prepared, competition from undesirable plants can prevent or prolong natural or artificial reestablishment of trees.
- Competing vegetation can be controlled by properly preparing the site and by eliminating unwanted weeds, brush or trees.

Recreation Management:

- If this unit is used for camping areas, picnic areas, paths, and trails the main limitations are the seasonal high water table and stones on the surface.
- Drainage will help reduce wetness problems.
- Erosion and sedimentation can be controlled, and the beauty of the area enhanced by maintaining adequate plant cover. Plant cover can be maintained by limiting traffic.

Urban Development:

- If this map unit is used for septic tank absorption fields, the limitation of seasonal high water can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the high water table.
- If this map unit is used for septic tank absorption fields, permeability limitations can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the dense substratum.
- Wetness can be reduced by installing drainage tile around footings and backfilling with material that has good permeability.
- Excavation for building sites is difficult due to the dense substratum.
- If the soils are used as a base for roads, a coarse grained subgrade to frost depth is needed to prevent frost action.
- Roadfill is needed to raise the roadbase above the seasonal high water table in the Colonel soils.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

SRC—Skerry-Colonel-Rawsonville complex, 0 to 15 percent slopes, very stony

Setting
Landform: Hills, ridges, drumlins, and till plains in close proximity to a coastal setting Description of areas: Irregular in shape and from 20 to over 400 acres in size

Composition

Skerry and similar inclusions: 35 percent
Colonel and similar inclusions: 25 percent
Rawsonville and similar inclusions: 20 percent
Contrasting inclusions: 20 percent

Skerry soil

Position on landscape: Side slopes and footslopes
Parent material: Dense glacial till
Slope range: 3 to 15 percent
Slope features: Convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, black highly decomposed organic material
Subsurface layer:
2 to 3 inches, grayish brown, very friable, fine sandy loam
Subsoil:
3 to 4 inches, dark reddish brown very friable, fine sandy loam
4 to 8 inches, browns very friable, fine sandy loam
8 to 18 inches, dark yellowish brown, friable, gravelly fine sandy loam
18 to 24 inches, light olive brown, mottled, firm, gravelly fine sandy loam
Substratum:
24 to 65 inches, 60 percent olive, mottled, loose, gravelly loamy sand and 40 percent;
olive, mottled, firm, gravelly sandy loam

Soil Properties and Qualities

Depth class:Very deep
Drainage class: Moderately well drained
Permeability: Moderate in the surface, subsurface, and subsoil, and slow or moderately slow in the substratum
Available water capacity: Low
Depth to restrictive layer: 15 to 30 inches
Hazard of flooding: None

Colonel soil

Position on landscape: Toeslopes and slight depressions
Parent material: Dense glacial till
Slope range: 0 to 8 percent
Slope features: Slightly convex, concave, or nearly level
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 3 inches, black highly decomposed organic material

Subsurface layers:
3 to 6 inches, gray, very friable, gravelly fine sandy loam
Subsoil:
6 to 9 inches, dark reddish brown, very friable, gravelly fine sandy loam
9 to 13 inches, yellowish brown, friable, gravelly fine sandy loam
13 to 22 inches, yellowish brown, mottled, friable, gravelly fine sandy loam
22 to 26 inches, light olive brown, mottled, friable, gravelly fine sandy loam
Substratum:
26 to 65 inches, olive, mottled, firm, gravelly fine sandy loam

Soil Properties and Qualities

Depth class:Very deep
Drainage class: Somewhat poorly drained
Permeability: Moderate in the surface, subsurface, and subsoil, and slow or moderately slow in the substratum
Available water capacity: Moderate
Depth to restrictive layer: 15 to 30 inches
Hazard of flooding: None

Rawsonville soil

Position on landscape: Crests, shoulder slopes, and side slopes
Parent material: Glacial till
Slope range: 3 to 15 percent
Slope features: Convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, dark reddish brown sapric material
Subsurface layer:
2 to 4 inches, pinkish gray fine sandy loam
Subsoil:
4 to 8 inches, dark reddish brown fine sandy loam
8 to 15 inches, reddish brown fine sandy loam
15 to 24 inches, strong brown fine sandy loam
24 to 30 inches, yellowish brown gravelly sandy loam
Substratum:
30 to 36 inches, brown gravelly sandy loam
Bedrock:
36 inches, schist
Soil Properties and Qualities
Depth class: Moderately deep
Drainage class: Well drained
Permeability: Moderate or moderately rapid
Available water capacity: Low
Depth to restrictive layer: 20 to 40 inches
Hazard of flooding: None

Included Areas

Similar inclusions

Soils are included in this map unit, which are like the Skerry, Colonel and Rawsonville soils in most properties but differ in some respect, such as color, surface
texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Skerry, Colonel, and Rawsonville soils.

Contrasting inclusions

- Becket soils are well-drained dense glacial till. They are on the crests and side slopes of knolls and ridges.
- Brayton soils are poorly drained dense glacial till. They are in depressions and adjacent to drainageways.
- Tunbridge soils are moderately deep well drained soils on crests, shoulder slopes, and side slopes. They have less organic carbon in their subsoil than Rawsonville soils.
- Soils similar to the Skerry and Colonel soils that lack the dense substratum and have bedrock between 40 to 60 inches are on side slopes and footslopes.
- Soils similar to Rawsonville soils that are moderately well drained and somewhat poorly drained are on footslopes and toeslopes.
- Dixfield soils are moderately well drained dense glacial till that have less than 20 percent sand lenses in the substratum. They are intermingled with the Skerry soils on side slopes and footslopes.
- Hogback soils are shallow somewhat excessively drained glacial till. They are intermingled with the Rawsonville soils on crests, shoulder slopes, and side slopes.
- Ricker soils are very shallow well-drained organic materials. They are intermingled with Rawsonville, Hogback and Abram soils and rock outcrop on the crests of knolls and ridges.
- Areas of rock outcrop on the crests of knolls and ridges are included.
- Lamoine soils are somewhat poorly drained and Scantic soils are poorly drained glaciomarine deposit. They are on toeslopes and depressions on the perimeter of the unit where adjacent to glaciomarine deposits.
- Areas with slopes greater than 15 percent are included.

Use and Management

Current uses: Woodland

Major Management Concerns

- Seasonal high water table in the Skerry and Colonel soils
- Depth to bedrock in the Rawsonville soils
- Restricted rooting depth
- Slope in some areas
- Frost action
- Stones on the surface
- Slow or moderately slow permeability in the Skerry and Colonel soils
- Hazard of seepage in the Rawsonville soils

General Management Considerations

Woodland Management:

- The potential productivity of this unit for trees is very high on the Skerry soils, and high on the Colonel and Rawsonville soils.
- This unit has potential for the production and management of Balsam Fir, for wreath brush and Christmas trees.
- These areas have good natural reproduction of spruce and fir. Proper thinning practices will reduce overcrowding and promote the growth of these species.
- Minimizing the risk of erosion is essential in harvesting timber.
- Revegetating disturbed areas around landings, skid trails, roads, and construction sites as soon as possible helps to control soil erosion.
- Conventional methods of harvesting timber generally can be used but their use may be limited when the Colonel soil is wet.
- The Colonel and Skerry soils may be compacted if heavy equipment is used when these soils are wet.
- Use of the seasonal high water table, harvesting operations on the Colonel soils should be restricted to the driest part of the year or to when the soil is frozen and equipment is easiest to use and causes the least damage to the site.
- Roadfill is needed to raise the roadbase above the seasonal high water table in the Colonel soils.
- Trees are subject to windthrow because of restricted rooting depth due to the dense substratum in the Skerry and Colonel soils and depth to bedrock In the Rawsonville soils.
- Trees commonly are subject to windthrow during periods when the soil is excessively wet and winds are strong.
- Care should be taken in harvesting and thinning to reduce trees exposed to the prevailing winds.
- Harvesting by stripcutting will expose fewer trees to the prevailing wind and help to prevent windthrow.
- Plant competition is moderate on the Skerry soils, severe on the Colonel soils, and slight on the Rawsonville soils.
- After harvesting, reforestation must-be carefully managed to reduce competition from undesirable understory plants.
- If the site is not adequately prepared, competition from undesirable plants can prevent or prolong natural or artificial reestablishment of trees.
- Competing vegetation can be controlled by properly preparing the site and by eliminating unwanted weeds, brush or trees.

Recreation Management:

- If this unit is used for camping areas, picnic areas, paths and trails, the main limitations are the seasonal high water table in the Skerry and Colonel soils slope in some areas, and stones on the surface.
- Drainage will help reduce wetness problems in the Skerry and Colonel soils.
- Erosion and sedimentation can be controlled and the beauty of the area enhanced by maintaining adequate plant cover. Plant cover can be maintained by limiting traffic.

Urban Development:

- If the Skerry and Colonel soils are used for septic tank absorption fields, the limitation of seasonal high water table can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- If the Skerry and Colonel soils are used for septic tank absorption fields, permeability limitations can be overcome by increasing the size of the absorption field or increasing the separation between- the bottom of the absorption field and the top of the dense substratum.
- Septic systems should be located on deeper soils in this map unit or fill material can be used to raise the level of the absorption field.
- Slope is a concern in installing septic tank absorption fields. Absorption lines should be installed on the contour.
- Wetness in the Skerry and Colonel soils can be reduced by installing drainage tile around footings and backfilling with material that has good permeability.
- Cuts needed to provide level-building sites could expose bedrock In the Rawsonville soils.
- Rawsonville soils have severe limitations for dwellings with basements due to the depth to bedrock. Dwellings with basements should be located on deeper soils in this map unit, or the bedrock should be removed or the foundation set on bedrock and backfilled to the established grade.
- Excavation for building sites is difficult due to the dense substratum in the Skerry and Colonel soils.
- If the soils are used as a base for roads, a coarse grained subgrade to frost depth is needed to prevent frost action.
- Roadfill is needed to raise the roadbase above the seasonal high water table in the Colonel soils.
- Excavation grading, and ditching activities involved in the construction and maintenance of roads can expose bedrock in the Rawsonville soils.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

STC—Skerry-Colonel-Tunbridge complex, 0 to 15 percent slopes, very stony

Setting

Landform: Hills, ridges, drumlins, and till plains
Description of areas: Irregular in shape and from 20 to over 400 acres in size

Composition

Skerry and similar inclusions: 35 percent
Colonel and similar inclusions: 25 percent
Tunbridge and similar inclusions: 20 percent
Contrasting inclusions: 20 percent

Skerry soil

Position on landscape: Side slopes and footslopes
Parent material: Dense glacial till
Slope range: 3 to 15 percent
Slope features: Convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, black highly decomposed organic material

Subsurface layer:

2 to 3 inches, grayish brown, very friable, fine sandy loam
Subsoil:
3 to 4 inches, dark reddish brown very friable, fine sandy loam
4 to 8 inches, browns very friable, fine sandy loam
8 to 18 inches, dark yellowish brown, friable, gravelly fine sandy loam
18 to 24 inches, light olive brown, mottled, firm, gravelly fine sandy loam
Substratum:
24 to 65 inches, 60 percent olive, mottled, loose, gravelly loamy sand; and 40 percent, olive, mottled, firm, gravelly sandy loam

Soil Properties and Qualities

Depth class:Very deep
Drainage class: Moderately well drained
Permeability: Moderate in the surface, subsurface, and subsoil, and slow or moderately slow in the substratum
Available water capacity: Low
Depth to restrictive layer: 15 to 30 inches
Hazard of flooding: None

Colonel soil

Position on landscape: Toeslopes and slight depressions
Parent material: Dense glacial till
Slope range: 0 to 8 percent
Slope features: Slightly convex, concave, or nearly level
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 3 inches, black highly decomposed organic material
Subsurface layers:
3 to 6 inches, gray, very friable, gravelly fine sandy loam
Subsoil:
6 to 9 inches, dark reddish brown, very friable, gravelly fine sandy loam
9 to 13 inches, yellowish brown, friable, gravelly fine sandy loam
13 to 22 inches, yellowish brown, mottled, friable, gravelly fine sandy loam
22 to 26 inches, light olive brown, mottled, friable, gravelly fine sandy loam

Substratum:

26 to 65 inches, olive, mottled, firm, gravelly fine sandy loam

Soil Properties and Qualities

Depth class:Very deep
Drainage class: Somewhat poorly drained
Permeability: Moderate in the surface, subsurface, and subsoil, and slow or moderately slow in the substratum
Available water capacity: Moderate
Depth to restrictive layer: 15 to 30 inches
Hazard of flooding: None

Tunbridge soil

Position on landscape: Crests, shoulder slopes, and side slopes
Parent material: Glacial till
Slope range: 3 to 15 percent
Slope features: Convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, dark brown highly decomposed organic material
Subsurface layer:
2 to 4 inches, grayish brown fine sandy loam
Subsoil:
4 to 5 inches, dark brown fine sandy loam
5 to 10 inches, brown fine sandy loam

10 to 17 inches, dark yellowish brown fine sandy loam
17 to 28 inches, light olive brown gravelly fine sandy loam

Bedrock:

28 inches, schist
Soil Properties and Qualities
Depth class: Moderately deep
Drainage class: Well drained
Permeability: Moderate or moderately rapid
Available water capacity: Low
Depth to restrictive layer: 20 to 40 inches
Hazard of flooding: None

Included Areas

Similar Inclusions

Soils are included in this map unit, which are like the Skerry, Colonel and Tunbridge soils in most properties but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Skerry, Colonel, and Tunbridge soils.

Contrasting Inclusions

- Becket soils are well-drained dense glacial till. They are on the crests and side slopes of knolls and ridges.
- Brayton soils are poorly drained dense glacial till. They are in depressions and adjacent to drainageways.
- Soils similar to the Skerry and Colonel soils that lack the dense substratum and have bedrock between 40 to 60 inches are on side slopes and footslopes.
- Soils similar to Tunbridge soils that are moderately well drained and somewhat poorly drained are on footslopes and toeslopes.
- Dixfield soils are moderately well drained dense glacial till that have less than 20 percent sand lenses in the substratum. They are intermingled with the Skerry soils on side slopes and footslopes.
- Lyman soils are shallow somewhat excessively drained glacial till. They are intermingled with the Tunbridge soils on crests, shoulder slopes, and side slopes.
- Abram soils are very shallow excessively drained glacial till. They are intermingled with the Tunbridge and Lyman soils on the crests of knolls and ridges.
- Ricker soils are very shallow well-drained organic materials. They are intermingled with Tunbridge, Lyman, and Abram soils and rock outcrop on the crests of knolls and ridges.
- Areas of rock outcrop on the crests of knolls and ridges are included.
- Creasey soils are shallow somewhat excessively drained glacial till that developed over sandstone bedrock, they are on the crests and side slopes of knolls-and ridges. Creasey soils are mainly in the towns of Perry and Robbinston.
- Lamoine soils are somewhat poorly drained and Scantic soils are poorly drained glaciomarine deposit. They are on toeslopes and depressions on the perimeter of the unit where adjacent to glaciomarine deposits.
- Areas with slopes greater than 15 percent are included.

Use and Management

Current uses: Woodland

Major Management Concerns

- Seasonal high water table in the Skerry and Colonel soils
- Depth to bedrock in the Tunbridge soils
- Restricted rooting depth
- Slope in some areas
- Frost action
- Stones on the surface
- Slow or moderately slow permeability in the Skerry and Colonel soils
- Hazard of seepage In the Tunbridge soils

General Management Considerations

Woodland Management:

- The potential productivity of this unit for trees is very high on the Skerry soils, and high on the Colonel and Tunbridge soils.
- This unit has potential for the production and management of Balsam Fir, for wreath brush and Christmas trees.
- These areas have good natural reproduction of spruce and fir. Proper thinning practices will reduce overcrowding and promote the growth of these species.
- Minimizing the risk of erosion is essential in harvesting timber.
- Revegetating disturbed areas around landings, skid trails, roads, and construction sites as soon as possible will help to control soil erosion.
- Conventional methods of harvesting timber generally can be used but their use may be limited when the Colonel soil is wet.
- The Colonel and Skerry soils may be compacted if heavy equipment is used when these soils are wet.
- Because of the seasonal high water table, harvesting operations on the Colonel soils should be restricted to the driest part of the year or to when the soil is frozen and equipment is easiest to use and causes the least damage to the site.
- Roadfill is needed to raise the roadbase above the seasonal high water table in the Colonel soils.
- Trees are subject to windthrow because of restricted rooting depth due to the dense substratum in the Skerry and Colonel soils and depth to bedrock In the Tunbridge soils.
- Trees commonly are subject to windthrow during periods when the soil is excessively wet and winds are strong.
- Care should be taken in harvesting and thinning to reduce trees exposed to the prevailing winds.
- Harvesting by stripcutting will expose fewer trees to the prevailing wind and help to prevent windthrow.
- After harvesting, reforestation must-be carefully managed to reduce competition from undesirable understory plants.
- If the site is not adequately prepared, competition from undesirable plants can prevent or prolong natural or artificial reestablishment of trees.
- Competing vegetation can be controlled by properly preparing the site and by eliminating unwanted weeds, brush or trees.

Recreation Management:

- If this unit is used for camping areas, picnic areas, paths and trails, the main limitations are the seasonal high water table in the Skerry and Colonel soils slope in some areas, and stones on the surface.
- Drainage will help reduce wetness problems in the Skerry and Colonel soils.
- Erosion and sedimentation can be controlled and the beauty of the area enhanced by maintaining adequate plant cover. Plant cover can be maintained by limiting traffic.

Urban Development:

- If the Skerry and Colonel soils are used for septic tank absorption fields, the limitation of seasonal high water table can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- If the Skerry and Colonel soils are used for septic tank absorption fields, permeability limitations can be overcome by increasing the size of the absorption field or increasing the separation between- the bottom of the absorption field and the top of the dense substratum.
- Septic systems should be located on deeper soils in this map unit or fill material can be used to raise the level of the absorption field.
- Slope is a concern in installing septic tank absorption fields. Absorption lines should be installed on the contour.
- Wetness in the Skerry and Colonel soils can be reduced by installing drainage tile around footings and backfilling with material that has good permeability.
- Cuts needed to provide level-building sites could expose bedrock in the Tunbridge soils.
- Tunbridge soils have severe limitations for dwellings with basements due to the depth to bedrock. Dwellings with basements should be located on deeper soils in this map unit, or the bedrock should be removed or the foundation set on bedrock and backfilled to the established grade.
- Excavation for building sites is difficult due to the dense substratum in the Skerry and Colonel soils.
- If the soils are used as a base for roads, a coarse grained subgrade to frost depth is needed to prevent frost action.
- Roadfill is needed to raise the roadbase above the seasonal high water table in the Colonel soils.
- Excavation grading, and ditching activities involved in the construction and maintenance of roads can expose bedrock in the Tunbridge soils.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

TaB—Telos silt loam, 3 to 8 percent slopes

Setting

Landform: Low ridges, drumlins, and till plains
Description of areas: Elongated or circular in shape and from 6 to 30 acres in size

Composition

Telos and similar soils: 80 percent
Inclusions: 20 percent
Telos soil
Position on landscape: Side slopes, footslopes, and toeslopes
Parent material: Dense glacial till
Slope features: Concave, slightly convex, and smooth
Stones on surface: None

Typical Profile

Surface layer:
0 to 7 inches, dark brown, very friable, silt loam
Subsoil:
7 to 8 inches, reddish brown, very friable, gravelly silt loam

8 to 11 inches, yellowish brown, mottled, very friable, gravelly silt loam 11 to 18 inches, light olive brown, mottled, firm, gravelly silt loam

Substratum:

18 to 65 inches, olive, mottled, firm, gravelly silt loam

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Somewhat poorly drained
Permeability: Moderate in the surface, subsurface, and subsoil, and very slow or slow in the substratum
Available water capacity: Moderate
Depth to restrictive layer: 13 to 21 inches to firm substratum
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Telos soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Telos soils.

Inclusions

- Chesuncook soils are moderately well drained dense glacial till. They are on the side slopes of convex knolls.
- Monarda soils are poorly drained dense glacial till. They are in depressions and adjacent to drainageways.
- Slopes greater than 8 percent and less than 3 percent.
- Areas with stones on the surface.

Use and Management

Current uses: Hayland, pasture, homesites, or it is idle land

Major Management Concerns

- Seasonal high water table
- Very slow or slow permeability
- Frost action
- Restricted rooting depth

General Management Considerations

Urban Development:

- Follow state or local regulations on septic system installation.
- If this map unit is used for septic tank absorption fields, the limitation of seasonal high water table can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- If this map unit is used for septic tank absorption fields, permeability limitations can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the firm substratum.
- Wetness can be reduced by installing drainage tile around footings and backfilling with material that has good permeability.
- Excavation for building sites is difficult due to the firm substratum.
- Roadfill is needed to raise the roadbase above the seasonal high water table.
- If the soil is used as a base for roads, a coarse-grained subgrade to frost depth is needed to prevent frost action.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

Blueberry Management:

- This unit is poorly suited to blueberry production due to seasonal high water table.

Hay and Pasture:

- If this unit is used for hay and pasture, the main limitation is seasonal high water table.
- Grazing when the soil is wet results in compaction of the surface layer, poor tilth, and excessive runoff.
- The seasonal high water table limits the use of equipment in the spring and late fall.
- The use of proper stocking rates, pasture rotation, and restricted grazing during wet periods helps to keep the pasture in good condition and to protect the soil from erosion.
- Proper grazing practices, weed control, lime, and fertilizer are needed for maximum quality of forage.

TCB-Telos-Chesuncook complex, 0 to 8 percent slopes, very stony

Setting
Landform: Drumlins, ridges, and till plains
Description of areas: Irregular in shape and from 20 acres to over 100 acres in size

Composition

Telos and similar soils: 55 percent Chesuncook and similar soils: 25 percent Inclusions: 20 percent

Telos soil

Position on landscape: Footslopes, toeslopes, and lower side slopes Parent material: Dense glacial till Slope range: 0 to 6 percent Slope features: Slightly convex, slightly concave, or nearly level Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, dark reddish brown sapric material
Subsurface layer:
2 to 3 inches, gray, very friable, silt loam
Subsoil:
3 to 6 inches, dark reddish brown, very friable, silt loam 6 to 10 inches, reddish brown, very friable, gravelly silt loam
10 to 13 inches, yellowish brown, mottled, very friable, gravelly silt loam
13 to 20 inches, light olive brown, mottled, firm, gravelly silt loam

Substratum:

20 to 65 inches, olive, mottled, firm, gravelly silt loam

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Somewhat poorly drained
Permeability: Moderate in the surface, subsurface, and subsoil, and very slow or slow in the substratum
Available water capacity: Moderate
Depth to restrictive layer: 11 to 21 inches to dense substratum
Hazard of flooding: None

Chesuncook soil

Position on landscape: Crests, shoulder slopes, and upper side slopes
Parent material: Dense glacial till
Slope range: 3 to 8 percent
Slope features: Slightly convex and smooth
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 3 inches, dark reddish brown sapric material
Subsurface layer:
3 to 5 inches, gray, very friable, silt loam
Subsoil:
5 to 7 inches, very dusky red, very friable, silt loam
7 to 10 inches, dark brown, very friable, silt loam
10 to 15 inches, dark yellowish brown, friable, gravelly silt loam
15 to 22 inches, yellowish brown, friable, gravelly silt loam
22 to 28 inches, olive brown, mottled, firm, gravelly silt loam

Substratum:

28 to 65 inches, olive, mottled, firm, gravelly silt loam

Soil Properties and Qualities

Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Moderate in the surface, subsurface, and subsoil, and very slow or slow in the substratum
Available water capacity: Moderate
Depth to restrictive layer: 15 to 28 inches to dense substratum
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Telos and Chesuncook soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Telos and Chesuncook soils.

Inclusions

- Monarda soils are poorly drained dense glacial till. They are in depressions and adjacent to drainageways.
- Colonel soils are somewhat poorly drained dense glacial till. They have less clay content than the Telos soils and are in similar landscape positions.
- Dixfield soils are moderately well drained dense glacial till. They have less clay content than the Chesuncook soils and are in similar landscape positions.
- Elliottsville soils are moderately deep well drained glacial till. They are on crests and shoulder slopes.
- Monson soils are shallow and somewhat excessively drained glacial till. They are on crests and intermingled with Elliottsville soils.
- Areas with slopes greater than 8 percent are included.

Use and Management

Current uses: Woodland

Major Management Concerns

- Seasonal high water table
- Slope in some areas
- Frost action
- Restricted rooting depth
- Stones on the surface
- Very slow or slow permeability

General Management Considerations

Woodland Management:

- The potential productivity of this unit for trees is high on Telos soils and very high on Chesuncook soils.
- This unit has potential for the production and management of Balsam fir for wreath brush and Christmas trees.
- These areas have good natural reproduction of spruce and fir. Proper thinning practices will reduce overcrowding and promote the growth of these species.
- Minimizing the risk of erosion is essential in harvesting timber.
- Roads and landings can be protected from erosion by constructing waterbars and by seeding cuts and fills.
- Revegetating disturbed areas around landings, skid trails, roads, and construction sites as soon as possible will help to control soil erosion.
- Conventional methods of harvesting timber generally can be used but their use may be limited when the Telos soil is wet.
- Stones on the surface can interfere with felling, yarding, and other operations involving the use of equipment.
- These soils may be compacted if heavy equipment is used when the soils are wet.
- Roadfill is needed to raise the roadbase above the seasonal high water table in the Telos soils.
- Trees commonly are subject to windthrow during periods when the soil is excessively wet and winds are strong.
- Windthrow is a hazard on these soils because the seasonal high water table and dense substratum cause trees to be shallow rooted.
- Care should be taken in harvesting and thinning to reduce trees exposed to the prevailing winds.
- Harvesting by stripcutting will expose fewer trees to the prevailing wind and help to prevent windthrow.
- After harvesting, reforestation must be carefully managed to reduce competition from undesirable understory plants.
- If the site is not adequately prepared, competition from undesirable plants can prevent or prolong natural or artificial reestablishment of trees.
- Competing vegetation can be controlled by properly preparing the site and by eliminating unwanted weeds, brush, or trees.

Recreation Management:

- If this unit is used for camping areas, picnic areas, and paths and trails, the main
limitations are seasonal high water table and very slow or slow permeability.
- Drainage should be provided in order to alleviate wetness problems.
- Erosion and sedimentation can be controlled and the beauty of the area enhanced by maintaining adequate plant cover. Plant cover can be maintained by limiting traffic.

Urban Development:

- Follow state or local regulations on septic system installation.
- If this map unit is used for septic tank absorption fields, the limitation of seasonal high water table can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- If this map unit is used for septic tank absorption fields, permeability limitations can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the dense substratum.
- Wetness can be reduced by installing drainage tile around footings and backfilling with material that has good permeability.
- Excavation for building sites is difficult due to the dense substratum.
- Roadfill is needed to raise the roadbase above the seasonal high water table.
- If the soil is used as a base for roads, a coarse-grained subgrade to frost depth is needed to prevent frost action.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

TEB-Telos-Elliottsville-Monarda complex, 0 to 8 percent slopes, very stony

Setting
Landform: Drumlins, ridges, till plains
Description of areas: Irregular in shape and from 20 to 100 acres in size

Composition
Telos and similar soils: 35 percent
Elliottsville and similar soils: 25 percent
Monarda and similar soils: 20 percent
Inclusions: 20 percent

Telos soil

Position on landscape: Side slopes, footslopes, and toeslopes
Parent material: Dense glacial till
Slope range: 0 to 8 percent
Slope features: Slightly convex or concave and smooth
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, dark reddish brown sapric material

Subsurface layer:
2 to 3 inches, gray, very friable, silt loam
Subsoil:
3 to 6 inches, dark reddish brown, very friable, silt loam
6 to 10 inches, reddish brown, very friable, gravelly silt loam
10 to 13 inches, yellowish brown, mottled, very friable, gravelly silt loam
13 to 20 inches, light olive brown, mottled, firm, gravelly silt loam
Substratum:
20 to 65 inches, olive, mottled, firm, gravelly silt loam
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Somewhat poorly drained
Permeability: Moderate in the surface, subsurface, and subsoil, and very slow or slow in the substratum
Available water capacity: Moderate
Depth to restrictive layer: 11 to 21 inches to dense substratum
Hazard of flooding: None

Elliottsville soil

Position on landscape: Crests and shoulder slopes
Parent material: Glacial till
Slope range: 3 to 8 percent
Slope features: Convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, dark brown sapric material
Subsurface layer:
2 to 4 inches, brown silt loam
Subsoil:
4 to 6 inches, dark reddish brown silt loam
6 to 10 inches, dark brown channery silt loam
10 to 14 inches, dark yellowish brown channery silt loam
14 to 19 inches, light olive brown channery silt loam
Substratum:
19 to 31 inches, olive brown channery silt loam
Bedrock:
31 inches, phyllite
Soil Properties and Qualities
Depth class: Moderately deep
Drainage class: Well drained
Permeability: Moderate
Available water capacity: Moderate
Depth to restrictive layer: 20 to 40 inches to bedrock
Hazard of flooding: None
Monarda soil
Position on landscape: Depressions, basins, and drainageways
Parent material: Dense glacial till
Slope range: 0 to 3 percent

Slope features: Concave or nearly level
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 1 inch, very dark gray muck (sapric material)
Subsurface layer:
1 to 6 inches, very dark grayish brown, mottled, very friable, silt loam
6 to 10 inches, light brownish gray, mottled, friable, gravelly silt loam
Subsoil:
10 to 18 inches, light yellowish brown, mottled, very friable, gravelly silt loam
18 to 20 inches, light olive brown, mottled, friable, gravelly silt loam
20 to 23 inches, olive brown, mottled, firm, gravelly silt loam
Substratum:
23 to 65 inches, olive, mottled, firm, gravelly silt loam
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Poorly drained
Permeability: Moderate or moderately rapid in the surface and subsurface, very slow to moderate in the subsoil, and very slow or slow in the substratum
Available water capacity: Moderate
Depth to restrictive layer: 12 to 30 inches to dense substratum
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Telos, Elliottsville, and Monarda soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Telos, Elliottsville, and Monarda soils.

Inclusions

- Areas of soils similar to the Elliottsville soils that are moderately well drained or somewhat poorly drained are included. They are on footslopes and toeslopes.
- Areas of soils similar to the Telos and Monarda soils that have bedrock between 20 to 60 inches are included. They are on side slopes and footslopes.
- Monson soils are shallow, somewhat excessively drained glacial till. They are intermingled with the Elliottsville soils on crests and shoulder slopes.
- Chesuncook soils are moderately well drained dense glacial till. They are intermingled with the Telos soils on slightly higher and more sloping positions.
- Shallow and moderately deep soils that have greater than 35 percent rock fragments are intermingled with the Elliottsville soils.
- Rock outcrop on the crests of small convex knolls are included.
- Areas with slopes greater than 8 percent are included.

Use and Management

Current uses: Woodland

Major Management Concerns

- Seasonal high water table in the Telos and Monarda soils
- Depth to bedrock in the Elliottsville soils
- Restricted rooting depth
- Stones on the surface
- Slope in some areas
- Frost action
- Very slow and slow permeability in the Telos and Monarda soils

General Management Considerations

Woodland Management:

- The potential productivity of this unit for trees is high on the Telos and Monarda soils and very high on the Eliottsville soils.
- This unit has potential for the production and management of Balsam fir for wreath brush and Christmas trees.
- These areas have good natural reproduction of spruce and fir. Proper thinning practices will reduce overcrowding and promote the growth of these species.
- Minimizing the risk of erosion is essential in harvesting timber.
- Proper design of road drainage systems and care in the placement of culverts help to control erosion. Spoil from excavations is subject to rill and gully erosion and to sloughing.
- Roads and landings can be protected from erosion by constructing waterbars and by seeding cuts and fills.
- Revegetating disturbed areas around landings, skid trails, roads, and construction sites as soon as possible will help to control soil erosion.
- Conventional methods of harvesting timber generally can be used but their use may be limited when the Telos and Monarda soils are wet.
- Because of the seasonal high water table, harvesting operations on the Telos and Monarda soils should be restricted to the driest part of the year or to when the soil is frozen and equipment is easiest to use and causes the least damage to the site.
- Stones on the surface can interfere with felling, yarding, and other operations involving the use of equipment.
- Roadfill is needed to raise the roadbase above the seasonal high water table.
- Trees are subject to windthrow because of restricted rooting depth due to the dense substratum in the Telos and Monarda soils and depth to bedrock in the Elliottsville soils.
- Trees commonly are subject to windthrow during periods when the soil is excessively wet and winds are strong.
- Care should be taken in harvesting and thinning to reduce trees exposed to the prevailing winds.
- Harvesting by stripcutting will expose fewer trees to the prevailing wind and help to prevent windthrow.
- Periodic salvaging of windthrown trees is advisable.
- After harvesting, reforestation must be carefully managed to reduce competition from undesirable understory plants.
- If the site is not adequately prepared, competition from undesirable plants can prevent or prolong natural or artificial reestablishment of trees.
- Competing vegetation can be controlled by properly preparing the site and by eliminating unwanted weeds, brush, or trees.

Recreation Management:

- If this unit is used for camping areas, picnic areas, and paths and trails, the main limitations are seasonal high water table on the Telos and Monarda soils and surface stones.
- Drainage should be provided in order to alleviate wetness problems in the Telos and Monarda soils.
- Erosion and sedimentation can be controlled and the beauty of the area enhanced by maintaining adequate plant cover. Plant cover can be maintained by limiting traffic.

Urban Development:

- Follow state or local regulations on septic system installation.
- If this map unit is used for septic tank absorption fields, the limitation of seasonal high water table in the Telos and Monarda soils can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- If this map unit is used for septic tank absorption fields, permeability limitations in the Telos and Monarda soils can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the dense substratum.
- The Elliottsville soils have severe limitations for septic tank absorption fields due to the depth to bedrock. Septic systems should be located on deeper soils in this map unit or fill material can be used to raise the level of the absorption field.
- Wetness in the Telos and Monarda soils can be reduced by installing drainage tile around footings and backfilling with material that has good permeability.
- Cuts needed to provide level building sites on the Elliottsville soils can expose bedrock.
- Elliottsville soils should be avoided as sites for dwellings with basements due to the depth to bedrock. Dwellings with basements should be located on the deeper soils in this map unit, or the bedrock should be removed, or the foundation set on bedrock and backfilled to the established grade.
- Excavation for building sites is difficult due to the dense substratum in the Telos and Monarda soils.
- Roadfill is needed to raise the roadbase above the seasonal high water table in the Telos and Monarda soils.
- If the soil is used as a base for roads, a coarse-grained subgrade to frost depth is needed to prevent frost action.
- Excavation, grading, and ditching activities involved in the construction and maintenance of roads can expose bedrock in the Elliottsville soils.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

TLC-Tunbridge-Lamoine-Lyman complex, 0 to 15 percent slopes, very stony

Setting
Landform: Ridges and knolls
Description of areas: Irregular in shape and from 20 to over 75 acres in size

Composition

Tunbridge and similar soils: 35 percent Lamoine and similar soils: 25 percent Lyman and similar soils: 20 percent Inclusions: 20 percent

Tunbridge soil

Position on landscape: Side slopes
Parent material: Glacial till

Slope range: 3 to 15 percent
Slope features: Convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, dark brown sapric material
Subsurface layer:
2 to 4 inches, grayish brown fine sandy loam
Subsoil:
4 to 5 inches, dark brown fine sandy loam
5 to 10 inches, brown fine sandy loam
10 to 17 inches, dark yellowish brown fine sandy loam
17 to 28 inches, light olive brown gravelly fine sandy loam

Bedrock:

28 inches, schist

Soil Properties and Qualities

Depth class: Moderately deep
Drainage class: Well drained
Permeability: Moderate or moderately rapid
Available water capacity: Low
Depth to restrictive layer: 20 to 40 inches to bedrock
Hazard of flooding: None

Lamoine soil

Position on landscape: On footslopes and toeslopes between bedrock-controlled ridges and in drainageways
Parent material: Glaciomarine deposits
Slope range: 0 to 5 percent
Slope features: Concave or nearly level
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 7 inches, dark brown, friable, silt loam
Subsoil:
7 to 10 inches, dark yellowish brown, mottled, friable, silt loam
10 to 16 inches, light olive brown, mottled, friable, silt loam
16 to 21 inches, olive, mottled, firm, silty clay loam
Substratum:
21 to 65 inches, olive, mottled, firm, silty clay
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Somewhat poorly drained
Permeability: Moderately slow or moderate in the surface, slow or moderately slow in
the upper subsoil, and very slow or slow in the lower subsoil and substratum
Available water capacity: Moderate
Depth to restrictive layer: 16 to 30 inches to dense substratum
Hazard of flooding: None

Lyman soil

Position on landscape: Crests and shoulder slopes

Parent material: Glacial till
Slope range: 3 to 15 percent
Slope features: Convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, dark reddish brown sapric material
Subsurface layer:
2 to 3 inches, brown fine sandy loam
Subsoil:
3 to 4 inches, dark reddish brown fine sandy loam
4 to 8 inches, dark yellowish brown gravelly fine sandy loam
8 to 12 inches, yellowish brown gravelly fine sandy loam
12 to 17 inches, olive brown gravelly fine sandy loam
Bedrock:
17 inches, schist

Soil Properties and Qualities

Depth class: Shallow
Drainage class: Somewhat excessively drained
Permeability: Moderately rapid
Available water capacity: Low
Depth to restrictive layer: 10 to 20 inches to bedrock
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Tunbridge, Lamoine, and Lyman soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Tunbridge, Lamoine, and Lyman soils.

Inclusions

- Scantic soils are poorly drained glaciomarine sediments. They are in depressions and in drainageways.
- Buxton soils are moderately well drained glaciomarine sediments. They are intermingled with the Lamoine soils and are in higher and more sloping positions.
- Abram soils are very shallow excessively drained glacial till. They are intermingled with the Lyman and Tunbridge soils.
- Ricker soils are very shallow well drained organic soils. They are intermingled with rock outcrop and Abram soils.
- Naskeag soils are moderately deep poorly drained glacial till. They are in depressions within areas of Lyman and Tunbridge soils.
- Areas of soils that are well drained and moderately well drained glacial till that have bedrock between 40 to 60 inches. They are on side slopes and footslopes of Lyman and Tunbridge soils.
- Areas of soils that are somewhat poorly drained and moderately well drained glaciomarine deposits and have bedrock between 20 to 60 inches.
- Areas of rock outcrop on the crests of landforms are included.
- Areas with slopes that are greater than 15 percent are included.

Use and Management

Current uses: Woodland

Major Management Concerns

- Depth to bedrock in the Tunbridge and Lyman soils
- Hazard of seepage in the Tunbridge and Lyman soils
- Seasonal high water table in the Lamoine soils
- Very slow and slow permeability in the Lamoine soils
- Restricted rooting depth
- Slope in some areas

General Management Considerations

Woodland Management:

- The potential productivity of this unit for trees is high in the Tunbridge and Lamoine soils and moderate in the Lyman soils.
- This unit has potential for the production and management of Balsam fir for wreath brush and Christmas trees.
- These areas have good natural reproduction of spruce and fir. Proper thinning practices will reduce overcrowding and promote the growth of these species.
- Minimizing the risk of erosion is essential in harvesting timber.
- Laying out skid trails and roads on the contour will reduce erosion.
- Revegetating disturbed areas around landings, skid trails, roads, and construction sites as soon as possible will help to control soil erosion.
- Conventional methods of harvesting timber generally can be used but their use may be limited when the Lamoine soil is wet.
- Because of the seasonal high water table in the Lamoine soils, harvesting operations should be restricted to the driest part of the year or to when the soil is frozen and equipment is easiest to use and causes the least damage to the site.
- Roadfill is needed to raise the roadbase above the seasonal high water table in the Lamoine soils.
- Seedling mortality can be reduced on the Lyman soils by planting seedlings in spring when soil moisture levels are highest and by using planting stock that is larger than usual or containerized. Reinforcement planting may be needed.
- Trees are subject to windthrow because of limited rooting depth.
- In the Lamoine soils the water table is high in the winter and spring and during some periods of heavy rainfall, the water table is perched at a shallow depth for a short time. Trees commonly are subject to windthrow because the soil is saturated during these periods and because root growth is limited by the seasonal high water table.
- Care should be taken in harvesting and thinning to reduce trees exposed to the prevailing winds.
- Harvesting by stripcutting will expose fewer trees to the prevailing wind and help to prevent windthrow.
- If the site is not adequately prepared, competition from undesirable plants can prevent or prolong natural or artificial reestablishment of trees.
- Competing vegetation can be controlled by properly preparing the site and by eliminating unwanted weeds, brush, or trees.

Recreation Management:

- If this unit is used for camping areas, picnic areas, and paths and trails, the main limitations are slope, depth to bedrock in the Lyman soils, and seasonal high water table and very slow and slow permeability in the Lamoine soils.
- Drainage will help reduce wetness problems in the Lamoine soils.
- Erosion and sedimentation can be controlled and the beauty of the area enhanced by maintaining adequate plant cover. Plant cover can be maintained by limiting traffic.

Urban Development:

- Follow state or local regulations on septic system installation.
- Septic systems should be located on deeper soils in this map unit or fill material can be used to raise the level of the absorption field.
- If the Lamoine soils are used for septic tank absorption fields, the limitation of seasonal high water table can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the seasonal high water table.
- If the Lamoine soils are used for septic tank absorption fields, permeability limitations can be overcome by increasing the size of the absorption field or increasing the separation between the bottom of the absorption field and the top of the dense substratum.
- Slope is a concern in installing septic tank absorption fields. Absorption lines should be installed on the contour.
- Cuts needed to provide level building sites can expose bedrock in the Tunbridge and Lyman soils.
- Tunbridge and Lyman soils have severe limitations for dwellings with basements due to the depth to bedrock. Dwellings with basements should be located on deeper soils in this map unit, or the bedrock should be removed, or the foundation set on bedrock and backfilled to the established grade.
- Wetness in the Lamoine soils can be reduced by installing drainage tile around footings and backfilling with material that has good permeability.
- Excavation, grading, and ditching activities involved in the construction and maintenance of roads can expose bedrock in the Tunbridge and Lyman soils.
- Roads should be designed to offset the limited ability of the Lamoine soils to support a load.
- Roadfill is needed to raise the roadbase above the seasonal high water table in the Lamoine soils.
- If the soils are used as a base for roads, a coarse-grained subgrade to frost depth is needed to prevent frost action.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

TuB-Tunbridge-Lyman complex, 3 to 8 percent slopes

Setting
Landform: Ridges and knolls
Description of areas: Irregular in shape and from 6 to over 75 acres in size

Composition
Tunbridge and similar soils: 55 percent Lyman and similar soils: 20 percent Inclusions: 25 percent

Tunbridge soil

Position on landscape: Side slopes and footslopes
Parent material: Glacial till
Slope range: 3 to 8 percent
Slope features: Convex or concave
Stones on surface: None

Typical Profile

Surface layer:
0 to 6 inches, dark yellowish brown fine sandy loam
Subsoil:
6 to 8 inches, brown fine sandy loam
8 to 15 inches, dark yellowish brown fine sandy loam
15 to 26 inches, light olive brown gravelly fine sandy loam
Bedrock:
26 inches, schist
Soil Properties and Qualities
Depth class: Moderately deep
Drainage class: Well drained
Permeability: Moderate or moderately rapid
Available water capacity: Low
Depth to restrictive layer: 20 to 40 inches to bedrock
Hazard of flooding: None

Lyman soil

Position on landscape: Crests, shoulder slopes, and side slopes
Parent material: Glacial till
Slope range: 3 to 8 percent
Slope features: Convex
Stones on surface: None

Typical Profile

Surface layer:
0 to 6 inches, very dark grayish brown fine sandy loam
Subsoil:
6 to 10 inches, yellowish brown gravelly fine sandy loam
10 to 15 inches, olive brown gravelly fine sandy loam
Bedrock:
15 inches, schist

Soil Properties and Qualities

Depth class: Shallow
Drainage class: Somewhat excessively drained
Permeability: Moderately rapid
Available water capacity: Low
Depth to restrictive layer: 10 to 20 inches to bedrock
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Tunbridge and Lyman soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Tunbridge and Lyman soils.

Inclusions

- Abram soils are excessively drained very shallow glacial till. They are on the crests of knolls and ridges.
- Ricker soils are well drained very shallow organic soils. They are intermingled with Abram soils and rock outcrop on the crests of knolls.
- Areas of rock outcrop are intermingled with Abram and Ricker soils on the crests of knolls.
- Naskeag soils are poorly drained moderately deep glacial till. They are in depressions between knolls.
- Creasey soils are somewhat excessively drained shallow glacial till underlain by sandstone conglomerate bedrock. These soils are predominantly in the towns of Perry and Robbinston.
- Dixfield and Skerry soils are very deep moderately well drained dense glacial till. They are on side slopes and footslopes.
- Marlow and Becket soils are very deep well drained dense glacial till. They are on side slopes.
- Areas of soils that are greater than 40 inches to bedrock, well drained or moderately well drained, and lack the dense substratum are included. They are on side slopes, shoulder slopes, and footslopes.
- Areas with slopes greater than 8 percent and less than 3 percent are included.
- Small areas that have stones on the surface are included.

Use and Management

Current uses: Hayland, pasture, wild blueberry production, and homesites.

Major Management Concerns

- Depth to bedrock
- Hazard of seepage
- Frost action on Tunbridge soils
- Restricted rooting depth

General Management Considerations

Urban Development:

- Follow state or local regulations on septic system installation.
- Septic systems should be located on inclusions of deeper soils in this map unit if possible or fill material can be used to raise the level of the absorption field.
- Cuts needed to provide level building sites can expose bedrock.
- Dwellings with basements should be located on inclusions of deeper soils in this map unit if possible, or the bedrock should be removed, or the foundation set on bedrock and backfilled to the established grade.
- Excavation, grading, and ditching activities involved in the construction and maintenance of roads can expose bedrock.
- If the soil is used as a base for roads, a coarse-grained subgrade to frost depth is needed to prevent frost action on the Tunbridge soils.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

Blueberry Management:

- This unit is well suited to blueberry production.
- This unit has very few or no surface stones, and is well suited to flail mowing and mechanical harvesting.
- Irrigation and cultural practices such as weed control, insect and disease control, and fertility management will result in increased yields of blueberries.
- Irrigation water should be applied in amounts sufficient to wet the root zone but in amounts small enough to prevent the leaching of plant nutrients, insecticides, and herbicides.
- Water needs to be applied at a slow rate over a long period to insure that the root zone is properly wetted.
- Fertilization needs can be determined by leaf tissue analysis. Proper fertilization can result in greater top and rhizome growth and higher yields.
- The use of honeybees for pollination will increase the fruit set and result in higher yields.
Hay and Pasture:
- If this unit is used for hay and pasture, the main limitation is droughtiness.
- The use of proper stocking rates, pasture rotation, and restricted grazing during wet periods helps to keep the pasture in good condition and to protect the soil from erosion.
- Proper grazing practices, weed control, lime, and fertilizer are needed for maximum quality of forage.

TuC—Tunbridge-Lyman complex, 8 to 15 percent slopes

Setting

Landform: Ridges

Description of areas: Irregular in shape and from 6 to over 75 acres in size

Composition

Tunbridge and similar soils: 50 percent
Lyman and similar soils: 25 percent
Inclusions: 25 percent

Tunbridge soil

Position on landscape: Side slopes and footslopes
Parent material: Glacial till
Slope range: 8 to 15 percent
Slope features: Convex
Stones on surface: None

Typical Profile

Surface layer:
0 to 6 inches, dark yellowish brown fine sandy loam
Subsoil:
6 to 8 inches, brown fine sandy loam
8 to 15 inches, dark yellowish brown fine sandy loam
15 to 26 inches, light olive brown gravelly fine sandy loam

Bedrock:

26 inches, schist

Soil Properties and Qualities

Depth class: Moderately deep
Drainage class: Well drained
Permeability: Moderate or moderately rapid
Available water capacity: Low
Depth to restrictive layer: 20 to 40 inches to bedrock
Hazard of flooding: None

Lyman soil

Position on landscape: Crests, shoulder slopes, and side slopes

Parent material: Glacial till
Slope range: 8 to 15 percent
Slope features: Convex
Stones on surface: None

Typical Profile

Surface layer:
0 to 6 inches, very dark grayish brown fine sandy loam
Subsoil:
6 to 10 inches, yellowish brown gravelly fine sandy loam
10 to 15 inches, olive brown gravelly fine sandy loam

Bedrock:

15 inches, schist

Soil Properties and Qualities

Depth class: Shallow
Drainage class: Somewhat excessively drained
Permeability: Moderately rapid
Available water capacity: Low
Depth to restrictive layer: 10 to 20 inches to bedrock
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Tunbridge and Lyman soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Tunbridge and Lyman soils.

Inclusions

- Abram soils are excessively drained very shallow glacial till. They are on the crests of knolls.
- Ricker soils are well drained very shallow organic soils. They are intermingled with Abram soils and rock outcrop on the crests of knolls.
- Areas of rock outcrop are intermingled with Abram and Ricker soils on the crests of knolls.
- Naskeag soils are poorly drained moderately deep glacial till. They are in depressions between knolls.
- Creasey soils are somewhat excessively drained shallow glacial till underlain by sandstone conglomerate bedrock. These soils are predominantly in the towns of Perry and Robbinston.
- Dixfield and Skerry soils are very deep moderately well drained dense glacial till. They are on side slopes and footslopes.
- Marlow and Becket soils are very deep well drained dense glacial till. They are on side slopes and shoulder slopes.
- Areas of soils that are greater than 40 inches to bedrock, well drained or moderately well drained, and lack the dense substratum. They are on side slopes, shoulder slopes, and footslopes.
- Areas with slopes greater than 15 percent and less than 8 percent are included.
- Small areas that have stones on the surface are included.

Use and Management

Current uses: Hayland, pasture, wild blueberry production, and homesites

Major Management Concerns

- Depth to bedrock
- Restricted rooting depth
- Hazard of seepage
- Slope
- Frost action in the Tunbridge soils

General Management Considerations

Urban Development:

- Follow state or local regulations on septic system installation.
- Septic systems should be located on inclusions of deeper soils in this map unit if possible or fill material can be used to raise the level of the absorption field.
- Slope is a concern in installing septic tank absorption fields. Absorption lines should be installed on the contour.
- Cuts needed to provide level building sites can expose bedrock.
- Dwellings with basements should be located on inclusions of deeper soils in this map unit if possible, or the bedrock should be removed, or the foundation set on bedrock and backfilled to the established grade.
- Excavation, grading, and ditching activities involved in the construction and maintenance of roads can expose bedrock.
- Access roads must be designed to provide proper grade and drains are needed to control surface runoff and keep soil losses to a minimum.
- If the soil is used as a base for roads, a coarse grained subgrade to frost depth is needed to prevent frost action on the Tunbridge soils.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

Blueberry Management:

- This unit is well suited to blueberry production.
- This unit has very few or no surface stones, and is well suited to flail mowing.
- Mechanical harvesting is moderately difficult due to slope.
- Irrigation and cultural practices such as weed control, insect and disease control, and fertility management will result in increased yields of blueberries.
- Irrigation water should be applied in amounts sufficient to wet the root zone but in amounts small enough to prevent the leaching of plant nutrients, insecticides, and herbicides.
- Water needs to be applied at a slow rate over a long period to insure that the root zone is properly wetted.
- Fertilization needs can be determined by leaf tissue analysis. Proper fertilization can result in greater top and rhizome growth and higher yields.
- The use of honeybees for pollination will increase the fruit set and result in higher yields.
Hay and Pasture:
- If this unit is used for hay and pasture, the main limitation is droughtiness.
- The use of proper stocking rates, pasture rotation, and restricted grazing during wet periods helps to keep the pasture in good condition and to protect the soil from erosion.
- Proper grazing practices, weed control, lime, and fertilizer are needed for maximum quality of forage.

TyC-Tunbridge-Lyman-Abram complex, 3 to 15 percent slopes, very stony

Setting
Landform: Hills, ridges, and till plains
Description of areas: Irregular in shape and from 6 to over 75 acres in size

Composition

Tunbridge and similar soils: 35 percent
Lyman and similar soils: 30 percent
Abram and similar soils: 20 percent
Inclusions: 15 percent

Tunbridge soil

Position on landscape: Side slopes and footslopes
Parent material: Glacial till
Slope range: 3 to 15 percent
Slope features: Convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, dark brown sapric material
Subsurface layer:
2 to 4 inches, grayish brown fine sandy loam
Subsoil:
4 to 5 inches, dark brown fine sandy loam
5 to 10 inches, brown fine sandy loam
10 to 17 inches, dark yellowish brown fine sandy loam
17 to 28 inches, light olive brown gravelly fine sandy loam
Bedrock:
28 inches, schist

Soil Properties and Qualities

Depth class: Moderately deep
Drainage class: Well drained
Permeability: Moderate or moderately rapid
Available water capacity: Low
Depth to restrictive layer: 20 to 40 inches to bedrock
Hazard of flooding: None

Lyman soil

Position on landscape: Crests, shoulder slopes, and upper side slopes
Parent material: Glacial till
Slope range: 3 to 15 percent
Slope features: Convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, dark reddish brown sapric material

Subsurface layer:
2 to 3 inches, brown fine sandy loam
Subsoil:
3 to 4 inches, dark reddish brown fine sandy loam
4 to 8 inches, dark yellowish brown gravelly fine sandy loam
8 to 12 inches, yellowish brown gravelly fine sandy loam
12 to 17 inches, olive brown gravelly fine sandy loam
Bedrock:
17 inches, schist

Soil Properties and Qualities

Depth class: Shallow
Drainage class: Somewhat excessively drained
Permeability: Moderately rapid
Available water capacity: Low
Depth to restrictive layer: 10 to 20 inches to bedrock
Hazard of flooding: None

Abram soil

Position on landscape: Crests
Parent material: Glacial till
Slope range: 3 to 15 percent
Slope features: Convex
Stones on surface: 0.1 to 3 percent

Typical Profile

Surface layer:
0 to 2 inches, black sapric material
Subsurface layer:
2 to 5 inches, brown sandy loam
Subsoil:
5 to 6 inches, reddish brown sandy loam
Bedrock:
6 inches, granite

Soil Properties and Qualities

Depth class: Very shallow
Drainage class: Excessively drained
Permeability: Moderately rapid
Available water capacity: Very low
Depth to restrictive layer: 1 to 10 inches to bedrock
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Tunbridge, Lyman, and Abram soils in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Tunbridge, Lyman, and Abram soils.

Inclusions

- Ricker soils are well drained very shallow organic soils. They are intermingled with Abram soils and rock outcrop on the crests of knolls.
- Areas of rock outcrop are intermingled with Abram and Ricker soils on the crests of knolls.
- Naskeag soils are poorly drained moderately deep glacial till. They are in depressions between knolls.
- Creasey soils are somewhat excessively drained shallow glacial till underlain by sandstone conglomerate bedrock. These soils are predominantly in the towns of Perry and Robbinston.
- Dixfield and Skerry soils are very deep moderately well drained firm glacial till. They are on side slopes and footslopes.
- Marlow and Becket soils are very deep well drained firm glacial till. They are on side slopes and shoulder slopes.
- Areas of soils that are greater than 40 inches to bedrock, well drained or moderately well drained, and lack the firm substratum. They are on side slopes, shoulder slopes, and footslopes.
- Slopes greater than 15 percent or less than 3 percent.

Use and Management

Current uses: Pasture, wild blueberry production, and some homesites

Major Management Concerns

- Depth to bedrock
- Restricted rooting depth
- Hazard of seepage
- Slope
- Frost action in the Tunbridge soils
- Stones on the surface

General Management Considerations

Urban Development:

- Follow state or local regulations on septic system installation.
- Septic systems should be located on inclusions of deeper soils in this map unit if possible or fill material can be used to raise the level of the absorption field.
- Slope is a concern in installing septic tank absorption fields. Absorption lines should be installed on the contour.
- Cuts needed to provide level building sites can expose bedrock.
- Dwellings with basements should be located on inclusions of deeper soils in this map unit if possible, or the bedrock should be removed, or the foundation set on bedrock and backfilled to the established grade.
- Excavation, grading, and ditching activities involved in the construction and maintenance of roads can expose bedrock.
- If the soil is used as a base for roads, a coarse-grained subgrade to frost depth is needed to prevent frost action on the Tunbridge soils.
- Excavation for roads and buildings increases the hazard of erosion. Structures to divert runoff help prevent erosion.
- Preserving the existing plant cover during construction helps to control erosion.
- Topsoil can be stockpiled and used to reclaim areas disturbed during construction.
- Revegetating disturbed areas around construction sites as soon as possible helps to control soil erosion.

Blueberry Management:

- This unit is well suited to blueberry production.
- This unit is not suited to flail mowing or mechanical harvesting because of surface stones.
- Irrigation and cultural practices such as weed control, insect and disease control, and fertility management will result in increased yields of blueberries.
- Irrigation water should be applied in amounts sufficient to wet the root zone but in amounts small enough to prevent the leaching of plant nutrients, insecticides, and herbicides.
- Water needs to be applied at a slow rate over a long period to insure that the root zone is properly wetted.
- Fertilization needs can be determined by leaf tissue analysis. Proper fertilization can result in greater top and rhizome growth and higher yields.
- The use of honeybees for pollination will increase the fruit set and result in higher yields.

Hay and Pasture:

- If this unit is used for hay and pasture, the main limitations are droughtiness, stones on the surface, and an occasional rock outcrop.
- Surface stones limit the use of equipment for harvesting hay.
- The use of proper stocking rates, pasture rotation, and restricted grazing during wet periods helps to keep the pasture in good condition and to protect the soil from erosion.
- Proper grazing practices, weed control, lime, and fertilizer are needed for maximum quality of forage.

Ud-Udorthents-Urban land complex

Setting

Landform: Urban, commercial, and industrial areas. The natural landform is highly variable
Description of areas: These areas are irregular in shape and conform to the limits of urban, commercial, and industrial boundaries.

Composition

Udorthents and similar soils: 50 percent Urban land and similar soils: 30 percent Inclusions: 20 percent

Udorthents

Position on landscape: Between areas that are covered by roads, buildings, and parking lots.
Parent material: Highly variable fill material
Slope range: 0 to 35 percent
Slope features: Nearly level to steep
Stones on surface: None

Typical Profile

A typical pedon is not given due to the highly variable nature of the fill material.

Soil Properties and Qualities

Depth class: Moderately deep to very deep
Drainage class: Moderately well drained to excessively drained
Permeability: Slow to very rapid
Available water capacity: Moderate
Depth to restrictive layer: 20 inches to greater than 65 inches
Hazard of flooding: None

Urban land

Position on landscape: The areas covered by buildings, roads, and parking lots Slope range: 0 to 35 percent

Slope features: Nearly level to steep
Stones on surface: None
Hazard of flooding: None

Included Areas

Similar soils

Soils are included in this map unit which are like the Udorthents in most properties, but differ in some respect, such as color, surface texture, or consistence. Interpretations for most common uses are reasonably similar to those for the Udorthents.

Inclusions

- Lamoine soils are somewhat poorly drained glaciomarine deposits. They are in concave or slightly convex areas.
- Buxton soils are moderately well drained glaciomarine deposits. They are convex knolls.
- Scantic soils are poorly drained glaciomarine deposits. They are in depressions and adjacent to drainageways.
- Tunbridge soils are well drained moderately deep glacial till. They are intermingled with the Lyman soils on convex knolls.
- Lyman soils are somewhat excessively drained shallow glacial till. They are intermingled with the Tunbridge soils on convex knolls.

Use and Management

Current uses: Urban commercial and business centers, homesites, airports, landfills, and paper mill complexes

Major Management Concerns

The major management concerns of these areas are highly variable due to the urban nature of these areas.

General Management Considerations

Urban Development:

- The suitability of these areas for homesite development is highly variable due to the variable nature of the fill material.
- Follow state or local regulations on septic system installation.

Blueberry Management:

- This unit is poorly suited to blueberry production.

Hay and Pasture:

- This unit is very poorly suited to hay and pasture.

WF-Wonsqueak and Bucksport soils, frequently flooded

Setting
Landform: Bogs and swamps adjacent to drainageways
Description of areas: Irregular in shape and from 20 to over 300 acres in size

Composition

Wonsqueak and similar soils: 50 percent
Bucksport and similar soils: 25 percent
Inclusions: 25 percent

Wonsqueak soil

Position on landscape: Throughout bogs and swamps
Parent material: Highly decomposed organic material underlain by mineral material Slope range: 0 to 2 percent
Slope features: Nearly level
Stones on surface: None

Typical Profile

Surface tier:
0 to 12 inches, black muck (sapric material)
Subsurface tier:
12 to 30 inches, black muck (sapric material)
Substratum:
30 to 65 inches, greenish gray silty clay loam
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Very poorly drained
Permeability: Moderately slow to moderately rapid in organic material, and moderately slow or moderate in underlying mineral soil
Available water capacity: Very high
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: Frequent, long duration, March to October

Bucksport soil

Position on landscape: Throughout bogs and swamps
Parent material: Highly decomposed organic material
Slope range: 0 to 1 percent
Slope features: Nearly level
Stones on surface: None

Typical Profile

Surface tier:
0 to 18 inches, black muck (sapric material)
Subsurface tier:
18 to 40 inches, dark reddish brown muck (sapric material)
Bottom tier:
40 to 65 inches, very dusky red muck (sapric material)
Soil Properties and Qualities
Depth class: Very deep
Drainage class: Very poorly drained
Permeability: Moderately slow to moderately rapid
Available water capacity: Very high
Depth to restrictive layer: Greater than 60 inches
Hazard of flooding: Frequent, long duration, March to October
Included Areas

Similar soils

Soils are included in this map unit which are like the Wonsqueak and Bucksport soils in most properties, but differ in some respect, such as color, degree of decomposition, or amount of woody fragments. Interpretations for most common uses are reasonably similar to those for the Wonsqueak and Bucksport soils.

Inclusions

- Medomak soils are very poorly drained alluvial sediments. They are adjacent to major drainageways.
- Biddeford soils are very poorly drained glaciomarine deposits. They are at the perimeter of the bogs.
- Scantic soils are poorly drained glaciomarine deposits. They are at the perimeter of the bogs.
- Sebago soils are very poorly drained organic soils that are moderately decomposed. They are near the middle of the bogs.
- Kinsman soils are poorly drained glaciofluvial sands. They are at the perimeter in areas surrounded by glaciofluvial deposits.

Use and Management

Current uses: Woodland and wildlife habitat

Major Management Concerns

- Flooding
- Seasonal high water table
- Low strength
- Excess humus
- Poor filter
- Frost action

General Management Considerations

Woodland Management:

- These areas are generally not used for woodland management due to the proximity to rivers and streams and the possibility of flooding. These areas should be avoided when planning logging roads. If these areas can't be avoided, roads and bridges should be located above the expected flood level and designed to compensate for the instability of the soils.
- Because of the seasonal high water table harvesting operations should be restricted to winter months when the soil is frozen and when equipment is easiest to use and causes the least damage to the site.
- In the management of these areas for commercial peat, special equipment must be used due to the low load supporting capacity. The water table must be lowered with deep drainage ditches and adequate outlets designed in order to use equipment on the bogs.

Recreation Management:

- These wetland areas have the potential for providing important functions such as: controlling flood waters and erosion, improving water quality and availability, providing valuable habitat for wetland wildlife, and providing important recreational opportunities.
- If this unit is used for camping areas, picnic areas, and paths and trails, the main limitations are flooding, seasonal high water table, and excess humus.

Urban Development:

- Follow state or local regulations on septic system installation.
- Septic systems should not be located in these areas.
- Dwellings should not be located in the floodplain.
- Roads should not be located in these areas.

Prime Farmland

Prime farmland is one of several kinds of important farmland defined by the U.S. Department of Agriculture. It is of major importance in meeting the Nation's short- and long-range needs for food and fiber. Because the supply of high-quality farmland is limited, the U.S. Department of Agriculture recognizes that responsible levels of government, as well as individuals, should encourage and facilitate the wise use of our Nation's prime farmland.

Prime farmland, as defined by the U.S. Department of Agriculture, is land that has the best combination of physical and chemical characteristics for producing food, feed, forage, fiber, and oilseed crops and is available for these uses. It could be cultivated land, pastureland, forestland, or other land, but it is not urban or built-up land or water areas. The soil qualities, growing season, and moisture supply are those needed for the soil to economically produce sustained high yields of crops when proper management, including water management, and acceptable farming methods are applied. In general, prime farmland has an adequate and dependable supply of moisture from precipitation or irrigation, a favorable temperature and growing season, acceptable acidity or alkalinity, an acceptable salt and sodium content, and few or no rocks. It is permeable to water and air. It is not excessively erodible or saturated with water for long periods, and it either is not frequently flooded during the growing season or is protected from flooding. Slope ranges mainly from 0 to 6 percent. More detailed information about the criteria for prime farmland is available at the local office of the Natural Resources Conservation Service.

About 20,082 acres in the survey area, or nearly 1.8 percent of the total acreage, meets the soil requirements for prime farmland. The areas are scattered throughout the survey area. Much of this prime farmland is used for hay and pasture or other cultivated crops but the majority is in woodland.

A recent trend in land use in some parts of the survey area has been the loss of some prime farmland to industrial and urban uses. The loss of prime farmland to other uses puts pressure on marginal lands, which generally are more erodible, droughty, and less productive and cannot be easily cultivated.

Prime and other important farmlands are listed in table 5. This list does not constitute a recommendation for a particular land use. On some soils included in the list, measures that overcome a hazard or limitation, such as flooding, wetness, and droughtiness, are needed. Onsite evaluation is needed to determine whether or not the hazard or limitation has been overcome by corrective measures. The extent of each listed map unit is shown in table 4. The location is shown on the detailed soil maps. The soil qualities that affect use and management are described under the heading "Detailed Soil Map Units."

Use and Management of the Soils

This soil survey is an inventory and evaluation of the soils in the survey area. It can be used to adjust land uses to the limitations and potentials of natural resources and the environment. Also, it can help to prevent soil-related failures in land uses.

In preparing a soil survey, soil scientists, conservationists, engineers, and others collect extensive field data about the nature and behavioral characteristics of the soils. They collect data on erosion, droughtiness, flooding, and other factors that affect various soil uses and management. Field experience and collected data on soil properties and performance are used as a basis in predicting soil behavior.

Information in this section can be used to plan the use and management of soils for crops and pasture; as forestland; as sites for buildings, sanitary facilities, highways and other transportation systems, and parks and other recreational facilities; for agricultural waste management; and as wildlife habitat. It can be used to identify the potentials and limitations of each soil for specific land uses and to help prevent construction failures caused by unfavorable soil properties.

Planners and others using soil survey information can evaluate the effect of specific land uses on productivity and on the environment in all or part of the survey area. The survey can help planners to maintain or create a land use pattern in harmony with the natural soil.

Contractors can use this survey to locate sources of sand and gravel, roadfill, and topsoil. They can use it to identify areas where bedrock, wetness, or very firm soil layers can cause difficulty in excavation.

Health officials, highway officials, engineers, and others may also find this survey useful. The survey can help them plan the safe disposal of wastes and locate sites for pavements, sidewalks, campgrounds, playgrounds, lawns, and trees and shrubs.

Interpretive Ratings

The interpretive tables in this survey rate the soils in the survey area for various uses. Many of the tables identify the limitations that affect specified uses and indicate the severity of those limitations. The ratings in these tables are both verbal and numerical.

Rating Class Terms

Rating classes are expressed in the tables in terms that indicate the extent to which the soils are limited by all of the soil features that affect a specified use or in terms that indicate the suitability of the soils for the use. Thus, the tables may show limitation classes or suitability classes. Terms for the limitation classes are not limited, somewhat limited, and very limited. The suitability ratings are expressed as well suited, moderately suited, poorly suited, and unsuited or as good, fair, and poor.

Numerical Ratings

Numerical ratings in the tables indicate the relative severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.00 to 1.00 . They indicate gradations between the point at which a soil feature has the greatest negative impact on the use and the point at which the soil feature is not a limitation. The limitations
appear in order from the most limiting to the least limiting. Thus, if more than one limitation is identified, the most severe limitation is listed first and the least severe one is listed last.

Blueberry Culture in Washington County

David E. Yarborough, University of Maine Cooperative Extension Blueberry Specialist, helped to prepare this section.

The wild blueberry is one of a few crops native to North America. Blueberry growth was first encouraged by the Native Americans by periodically burning over fields. In the early 1800s, the European settlers gathered berries as a public privilege on the blueberry barrens of Washington County. Blueberries were canned and shipped to the Union troops during the Civil War. After the war, public access was limited and production was improved by more frequent pruning. Management intensity and production has increased over the years.

Maine is the largest producer of wild blueberries in the world, second only to Michigan in total blueberry production. Blueberries are harvested from 60,000 acres every other year in Maine. Currently, 99 percent of the crop is frozen and five percent of those berries are canned after the harvest is complete. Less than one percent of the blueberry crop is sold fresh. Blueberry production has continued to increase over the years, from an average of 19.4 million pounds in 1976-1980 to 34.1 million pounds in 1981-1985 to the current average of 45.9 million pounds from 1986-1991. This is an increase in production of over 230 percent.

Washington County has the largest production of blueberries in the state with 66 percent of the acreage and 43 percent of the farms, according to United States Department of Agriculture Census of Agriculture. Two of the four freezing facilities in the county are the largest in the state. Currently, the state-wide average production is 2,000 pounds per acre. However, for fields under intensive management with good field cover, yields in excess of 7,000 pounds per acre have been obtained.

Pest Management

Insects

A system of monitoring the blueberry maggot and an action threshold has been developed through an integrated pest management (IPM) program, resulting in a decrease in frequency of sprays and an increase in their efficacy. Periodic outbreaks of blueberry thrips and blueberry flea beetle still cause sporadic damage. A new pest, the red stripped fire worm, has been identified. Increases in the blueberry spanworm have resulted in considerable economic damage, so continued sweeping of the fields for these pests is important.

Diseases

The major blueberry diseases include mummy berry and blossom blight. Cool, wet weather provides the necessary conditions for infection and spread of these diseases. Mowed fields may have a higher incidence of mummy berry than burned fields, so increased use of fungicides may be necessary if mowing continues to be the preferred pruning practice.

Weeds

Suppression of competing weeds with hexazinone and the use of glyphosate with selective applications is common practice. Research has indicated that certain weeds, especially the bunchberry, are increasing under current management practices. Research on the management of bunchberry and other species is continuing.

Integrated Blueberry Management

This program stresses the scouting of fields to identify the pest and determine when it will reach economically damaging levels. Pesticide effectiveness may be increased while decreasing the overall costs to the grower. Fertility management is also included so that only the amount of fertilizer needed will be applied. This management concept insures that only the pesticides and fertilizers that are needed are applied, resulting in an economically and environmentally sound management program.

Cultural Practices

Pruning

Until recently, commercial blueberry fields have been pruned by fire with straw or oil burners. Repeatedly burning fields for a number of years has resulted in a decline in production associated with the destruction of the organic pad and exposure of the rhizomes. Mechanical mowing will produce equivalent yields without depleting the organic pad. Mowing is less costly than using oil or straw and has been widely adopted by blueberry growers. Burning does, however, provide some advantages by partially removing competing growth of other species and by reducing certain insects and diseases that occur in the leaf litter. Favorable weather conditions could lead to periodic outbreaks of these pests in mowed fields, necessitating periodic burning to reduce their populations.

Irrigation

Irrigation will result in an increase in the number and weight of berries, if moisture is limiting. Irrigation provided in the nonbearing year increases bud formation, which could increase yield in the bearing year. Currently, irrigation is used commercially by a few growers during the bearing year, but the feasibility of irrigating nonbearing fields is being further evaluated.

Pollination

Blueberries require insect pollination, and the use of honeybees will increase the fruit set and seed number resulting in higher yields. Current recommendations are for two to four hives per acre depending on the field size and location.

Fertilization

Fertilization recommendations have been based traditionally on observing stem height and leaf spotting and applying nitrogen from urea. The response to nitrogen fertilizer has not been consistently positive. Most studies reporting significant increases in yield due to added nitrogen were conducted in fields that had no chemical weed control. More recently, researchers have found that blueberries may not respond to fertilizer applications perhaps due to more effective chemical weed control. By removing weed competition for nutrients, many fields appear to be receiving adequate levels of nutrients provided by mineralization of soil organic matter. Growers are being urged to replace the traditional approach of fertilizing with urea every burn cycle with sampling leaf tissue to determine if fertilizer is needed. Maine standards of satisfactory levels of nutrients in leaf tissue have been developed. Recent surveys of Maine blueberry fields indicated nitrogen was adequate in leaf tissue samples but phosphorus levels were low. Poor correlations between leaf nutrient concentrations and organic/surface soil samples suggest leaf samples give a better indication of fertilizer needs than soil samples. Planted lowbush blueberries have responded well to fertilization, resulting in more successful establishment, greater top and rhizome growth, and higher, early yields.

Propagation

Plants for establishing new blueberry fields have been produced from softwood cuttings of select clones and from seed obtained by pollinating flowers of an
outstanding clone with pollen from an equally good clone. Micropropagation techniques have been developed for the wild blueberry. Plants are now commercially available. Tissue culture propagated plants exhibit the spreading growth habit of seedlings along with the uniform productivity characteristics of rooted cuttings. Mulching has been extremely beneficial for increasing survival of planted lowbush blueberry and encouraging their lateral spread through rhizome growth. Using highyielding clones to fill in existing fields will make the current management practices more efficient and result in higher yields at a lower cost per pound.

Crops and Pasture

David W. Garcelon, District Conservationist, Natural Resources Conservation Service, assisted in writing this section.

General management needed for crops and pasture is suggested in this section. The crops or pasture plants best suited to the soils, including some not commonly grown in the survey area, are identified. The estimated yields of the main crops and hay and pasture plants are listed for each soil.

Planners of management systems for individual fields or farms should consider the detailed information given in the description of each soil under "Detailed Soil Map Units". Specific information can be obtained from the local office of the Natural Resources Conservation Service or the University of Maine Cooperative Extension.

The major agricultural crop in Washington County is the wild blueberry. Hay and pasture is the second main agricultural land use. Additional cropland uses include small acreages of apples, cranberries, potatoes, and other vegetables and small fruits.

The seasonal high water table is a land management consideration of many soils used for farming activities in the survey area. The seasonal high water table in most soils is the result of their position on the landscape. The soils are mainly in the lower positions on the landscape and the amount of water in the soils is increased by the surface runoff from higher areas. Some gently sloping soils have a seasonal high water table because runoff is slow and infiltration is greater. Soils where permeability in the subsoil and substratum is very slow, or moderate, or where the substratum is firm, can also have a seasonal high water table for a short time in spring because permeability in the substratum is restricted.

Soils that have a seasonal high water table, such as Lamoine and Colonel soils, tend to dry and warm slowly in spring and thus delay planting. Scantic, Biddeford and Brayton soils have a high water table for most of the year and are very poorly suited to crop production including blueberries. Scantic and Brayton soils are poorly drained and Biddeford soils are very poorly drained.

Cropland erosion can be a potential hazard on soils that have slopes of more than 3 percent. Loss of the surface soil is especially damaging on soils that have a clayey subsoil or substratum, bedrock near the surface, and restrictive layers beneath the subsoil.

Contour farming, strip cropping, crop rotation, and cover crops help to control soil erosion. Using a cropping system that keeps a plant cover on the soil for extended periods also helps reduce erosion. On sloping soils, using the soils for pasture and hay or including legumes in the crop rotation help control erosion, add nitrogen to the soil, and improve soil tilth for the following crop. Reduced tillage practices such as notill seeding and chisel plowing are also effective in controlling erosion on sloping soils.

Fertility is naturally low in the upland soils. Most of these soils are also naturally extremely acid to strongly acid. While these acid soils are suitable for blueberries, many of the soils in the survey area are used for hay, pasture and other crops. Many soils have never been limed or no lime has been applied for many years. Substantial applications of lime are needed to offset the acidity before these soils can be used for
legumes and other crops requiring higher pH soil. Also, in most of these soils the levels of available phosphorus and potassium are naturally low.

The organic matter in soil is an important source of nitrogen for crops. It also helps to maintain soil tilth, to increase the rate of water intake, to control erosion, and to prevent surface crusting. On most soils used for crops the surface layer is loam, silt loam, or fine sandy loam, and originally the organic matter content was adequate. After years of continuous cropping on many of these soils, the organic matter content in the surface layer is low and the soil structure generally is weak. Intense rainfall causes the formation of a surface crust which reduces infiltration and increases runoff. Adding crop residue and manure helps improve soil tilth, reduce crust formation and maintain the organic matter content of the surface layer.

Field crops suited to many of the soils in the survey area are the commonly grown row crops, such as silage corn, potatoes and squash. The total acreage of annually tilled soil is small and occurs on soils without stones or boulders on the surface. Timothy and clover are the common crops used for hay, hay silage and green feed. Alfalfa, orchard grass, brome grass, millet, and oats are grown for hay, hay silage and pasture. Specialty crops grown in the survey area include vegetables, blueberries, raspberries, cranberries and tree fruits.

Yields per Acre

The average yields per acre that can be expected of the principal crops under a high level of management are shown in table 6. In any given year, yields may be higher or lower than those indicated in the table because of variations in rainfall and other climatic factors. The land capability classification of map units in the survey area also is shown in the table.

The yields are based mainly on the experience and records of farmers, conservationists, and extension agents. Available yield data from nearby counties and results of field trials and demonstrations also are considered.

The management needed to obtain the indicated yields of the various crops depends on the kind of soil and the crop. Management can include drainage, erosion control, and protection from flooding; the proper planting and seeding rates; suitable high-yielding crop varieties; appropriate and timely tillage; control of weeds, plant diseases, and harmful insects; favorable soil reaction and optimum levels of nitrogen, phosphorus, potassium, and trace elements for each crop; effective use of crop residue, barnyard manure, and green manure crops; and harvesting that ensures the smallest possible loss.

The estimated yields reflect the productive capacity of each soil for each of the principal crops. Yields are likely to increase as new production technology is developed. The productivity of a given soil compared with that of other soils, however, is not likely to change.

Crops other than those shown in table 6 are grown in the survey area, but estimated yields are not listed because the acreage of such crops is small. The local office of the Natural Resources Conservation Service or of the University of Maine Cooperative Extension can provide information about the management and productivity of the soils for those crops.

Land Capability Classification

Land capability classification shows, in a general way, the suitability of soils for most kinds of field crops. Crops that require special management are excluded. The soils are grouped according to their limitations for field crops, the risk of damage if they are used for crops, and the way they respond to management. The criteria used in grouping the soils do not include major and generally expensive landforming that would change slope, depth, or other characteristics of the soils, nor do they include possible but unlikely major reclamation projects. Capability classification is not a
substitute for interpretations designed to show suitability and limitations of groups of soils for rangeland, for forestland, or for engineering purposes.

In the capability system, soils are generally grouped at three levels-capability class, subclass, and unit.

Capability classes, the broadest groups, are designated by the numbers 1 through 8. The numbers indicate progressively greater limitations and narrower choices for practical use. The classes are defined as follows:

Class 1 soils have slight limitations that restrict their use.
Class 2 soils have moderate limitations that restrict the choice of plants or that require moderate conservation practices.

Class 3 soils have severe limitations that restrict the choice of plants or that require special conservation practices, or both.

Class 4 soils have very severe limitations that restrict the choice of plants or that require very careful management, or both.

Class 5 soils are subject to little or no erosion but have other limitations, impractical to remove, that restrict their use mainly to pasture, rangeland, forestland, or wildlife habitat.

Class 6 soils have severe limitations that make them generally unsuitable for cultivation and that restrict their use mainly to pasture, rangeland, forestland, or wildlife habitat.

Class 7 soils have very severe limitations that make them unsuitable for cultivation and that restrict their use mainly to grazing, forestland, or wildlife habitat.

Class 8 soils and miscellaneous areas have limitations that preclude commercial plant production and that restrict their use to recreational purposes, wildlife habitat, watershed, or esthetic purposes.

Capability subclasses are soil groups within one class. They are designated by adding a small letter, e, w, s, or c, to the class numeral, for example, $2 e$. The letter e shows that the main hazard is the risk of erosion unless close-growing plant cover is maintained; w shows that water in or on the soil interferes with plant growth or cultivation (in some soils the wetness can be partly corrected by artificial drainage); s shows that the soil is limited mainly because it is shallow, droughty, or stony; and c, used in only some parts of the United States, shows that the chief limitation is climate that is very cold or very dry.

In class 1 there are no subclasses because the soils of this class have few limitations. Class 5 contains only the subclasses indicated by w, s, or c because the soils in class 5 are subject to little or no erosion. They have other limitations that restrict their use to pasture, rangeland, forestland, wildlife habitat, or recreation.

Capability units are soil groups within a subclass. The soils in a capability unit are enough alike to be suited to the same crops and pasture plants, to require similar management, and to have similar productivity. Capability units are generally designated by adding an Arabic numeral to the subclass symbol, for example, 2e-4 and $3 \mathrm{e}-6$. These units are not given in this soil survey.

The capability classification of map units in this survey area is given in the yields table.

Woodland Management and Productivity

James Spielman, Forester, Natural Resources Conservation Service, helped to prepare this section.
Over 91 percent of the land area of Washington County, or approximately 1.5 million acres is forested. Much of this forestland is capable of producing commercial forest products and is available for use as timberland. Of the total timberland, approximately 55 percent is in the spruce-balsam fir type, 22 percent is northern hardwood, 13 percent is aspen-birch, 7 percent is white pine, 2 percent is red maple, and 1 percent is pine-oak.

In 1982, 38 percent of the timberland in the county was stocked with saw timbersized stands, 42 percent with pole-sized stands, and 20 percent with sapling and seedling-sized stands.

Ninety-seven percent of the timberland in Washington County is privately owned. Slightly more than 60 percent of this private timberland is owned by forest industry. Private individuals own most of the remaining 40 percent.

The economy of Washington County is highly dependent upon its forest resources. Historically, strong demands have been placed on the forests for lumber, fiber, water, energy, fish and wildlife, recreation, and scenery. The pressures on the forests of Washington County have never been greater than they are today.

Many opportunities exist to use forest management to increase the production of water, wildlife, recreation, timber, and esthetic benefits.

Opportunities exist, on a variety of soils, for management to produce white pine, red, white, and black spruce, and balsam fir saw timber. On the deeper, betterdrained soils, the potential exists to grow sugar maple, white ash, and yellow and white birch saw timber. However, much of the timberland along the coast, which includes a majority of the private non-industrial forestland in the county, is better suited for recreational use, and managed to improve forest health, maintain water quality and improve wildlife habitat.

The tables in this section can help forest owners or managers plan the use of soils for wood crops. They show the potential productivity of the soils for wood crops and rate the soils according to the limitations that affect various aspects of forest management.

Forest Productivity

In table 7, the potential productivity of merchantable or common trees on a soil is expressed as a site index and as a volume number. The site index is the average height, in feet, that dominant and codominant trees of a given species attain in a specified number of years. The site index applies to fully stocked, even-aged, unmanaged stands. Commonly grown trees are those that forest managers generally favor in intermediate or improvement cuttings. They are selected on the basis of growth rate, quality, value, and marketability. More detailed information regarding site index is available in the "National Forestry Manual," which is available in local offices of the Natural Resources Conservation Service or on the Internet.

The volume of wood fiber, a number, is the yield likely to be produced by the most important tree species. This number, expressed as cubic feet per acre per year and calculated at the age of culmination of the mean annual increment (CMAI), indicates the amount of fiber produced in a fully stocked, even-aged, unmanaged stand.

This number indicates the potential productivity of the soils for an indicator tree species. The indicator tree species for Washington County is eastern white pine. Using eastern white pine, volume of wood fiber numbers less than 79 indicate very low productivity; 79 to 92 , low; 93 to 104, medium; 105 to 122, high; 123 to147, very high; greater than 147, extremely high.

Trees to manage are those that are preferred for planting, seeding, or natural regeneration and those that remain in the stand after thinning or partial harvest.

Forest Management

In tables 8 through 10, interpretive ratings are given for various aspects of forest management. The ratings are both verbal and numerical.

Some rating class terms indicate the degree to which the soils are suited to a specified forest management practice. Well suited indicates that the soil has features that are favorable for the specified practice and has no limitations. Good performance can be expected, and little or no maintenance is needed. Moderately suited indicates that the soil has features that are moderately favorable for the specified practice. One
or more soil properties are less than desirable, and fair performance can be expected. Some maintenance is needed. Poorly suited indicates that the soil has one or more properties that are unfavorable for the specified practice. Overcoming the unfavorable properties requires special design, extra maintenance, and costly alteration. Unsuited indicates that the expected performance of the soil is unacceptable for the specified practice or that extreme measures are needed to overcome the undesirable soil properties.

Numerical ratings in the tables indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.01 to 1.00 . They indicate gradations between the point at which a soil feature has the greatest negative impact on the specified forest management practice (1.00) and the point at which the soil feature is not a limitation (0.00).

Rating class terms for seedling mortality are expressed as low, moderate, and high. Where these terms are used, the numerical ratings indicate gradations between the point at which the potential for seedling mortality is highest (1.00) and the point at which the potential is lowest (0.00).

The paragraphs that follow indicate the soil properties considered in rating the soils for forest management practices. More detailed information about the criteria used in the ratings is available in the "National Forestry Manual," which is available in local offices of the Natural Resources Conservation Service or on the Internet (http:// nsscnt.nssc.nrcs.usda.gov/nfm/).

For limitations affecting construction of haul roads and log landings, the ratings are based on slope, flooding, permafrost, plasticity index, the hazard of soil slippage, content of sand, the Unified classification, rock fragments on or below the surface, depth to a restrictive layer that is indurated, depth to a water table, and ponding. The limitations are described as slight, moderate, or severe. A rating of slight indicates that no significant limitations affect construction activities, moderate indicates that one or more limitations can cause some difficulty in construction, and severe indicates that one or more limitations can make construction very difficult or very costly.

The ratings of suitability for log landings are based on slope, rock fragments on the surface, plasticity index, content of sand, the Unified classification, depth to a water table, ponding, flooding, and the hazard of soil slippage. The soils are described as well suited, moderately suited, or poorly suited to use as log landings.

Ratings in the column soil rutting hazard are based on depth to a water table, rock fragments on or below the surface, the Unified classification, depth to a restrictive layer, and slope. Ruts form as a result of the operation of forest equipment. The hazard is described as slight, moderate, or severe. A rating of slight indicates that the soil is subject to little or no rutting, moderate indicates that rutting is likely, and severe indicates that ruts form readily.

Ratings in the column hazard of off-road or off-trail erosion are based on slope and on soil erodibility factor K. The soil loss is caused by sheet or rill erosion in off-road or off-trail areas where 50 to 75 percent of the surface has been exposed by logging, grazing, mining, or other kinds of disturbance. The hazard is described as slight, moderate, severe, or very severe. A rating of slight indicates that erosion is unlikely under ordinary climatic conditions; moderate indicates that some erosion is likely and that erosion-control measures may be needed; severe indicates that erosion is very likely and that erosion-control measures, including revegetation of bare areas, are advised; and very severe indicates that significant erosion is expected, loss of soil productivity and off-site damage are likely, and erosion-control measures are costly and generally impractical.

Ratings in the column hazard of erosion on roads and trails are based on the soil erodibility factor K, slope, and content of rock fragments. The ratings apply to unsurfaced roads and trails. The hazard is described as slight, moderate, or severe. A
rating of slight indicates that little or no erosion is likely; moderate indicates that some erosion is likely, that the roads or trails may require occasional maintenance; and that simple erosion-control measures are needed; and severe indicates that significant erosion is expected, that the roads or trails require frequent maintenance, and that costly erosion-control measures are needed.

Ratings in the column suitability for roads (natural surface) are based on slope, rock fragments on the surface, plasticity index, content of sand, the Unified classification, depth to a water table, ponding, flooding, and the hazard of soil slippage. The ratings indicate the suitability for using the natural surface of the soil for roads. The soils are described as well suited, moderately suited, or poorly suited to this use.

Ratings in the columns suitability for hand planting and suitability for mechanical planting are based on slope, depth to a restrictive layer, content of sand, plasticity index, rock fragments on or below the surface, depth to a water table, and ponding. The soils are described as well suited, moderately suited, poorly suited, or unsuited to these methods of planting. It is assumed that necessary site preparation is completed before seedlings are planted.

Ratings in the column suitability for use of harvesting equipment are based on slope, rock fragments on the surface, plasticity index, content of sand, the Unified classification, depth to a water table, and ponding. The soils are described as well suited, moderately suited, or poorly suited to this use.

Recreation

Nate Pennel, Washington County Soil and Water Conservation District, helped to prepare this section.
Washington County abounds with outdoor recreational opportunities and provides excellent hunting, camping, wildlife viewing, and photography opportunities. The rivers, streams, glacial lakes, and ponds provide excellent fishing, canoeing, boating and swimming. Brook trout, smallmouth bass, largemouth bass, white and yellow perch, chain pickerel, landlocked salmon, lake trout, and other species provide year round fishing opportunities.

The estuaries and bays provide saltwater fishing as well as lobsters, clams, scallops, whale watching, bird watching, duck and goose hunting, sailing, and historic sites. There are many lighthouses to visit, islands to explore, and bald eagles to photograph and enjoy.

There are many public and private campgrounds, golf courses, hiking trails, snowmobile and ATV trails. Moosehorn and Petit Manan National Wildlife Refuges are open for recreation year round. Cobscook Bay State Park, Roque Bluffs State Park, Quoddy Head State Park and several state of Maine owned and community owned public lots are managed for recreation and offer a wide range of experiences.

Hiking the Ice Age Trail or a Native American trail, looking for fossils along the coast or river corridors, or enjoying the eskers, drumlins, deltas, and moraines of the wild blueberry barrens provides a wealth of healthy recreational opportunities for all ages.

The soils of the survey area are rated in tables 11 and 12 according to limitations that affect their suitability for recreation. The ratings are both verbal and numerical. Rating class terms indicate the extent to which the soils are limited by all of the soil features that affect the recreational uses. Not limited indicates that the soil has features that are very favorable for the specified use. Good performance and very low maintenance can be expected. Somewhat limited indicates that the soil has features that are moderately favorable for the specified use. The limitations can be overcome or minimized by special planning, design, or installation. Fair performance and moderate maintenance can be expected. Very limited indicates that the soil has one or more features that are unfavorable for the specified use. The limitations generally
cannot be overcome without major soil reclamation, special design, or expensive installation procedures. Poor performance and high maintenance can be expected.

Numerical ratings in the tables indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.01 to 1.00. They indicate gradations between the point at which a soil feature has the greatest negative impact on the use (1.00) and the point at which the soil feature is not a limitation (0.00).

The ratings in the tables are based on restrictive soil features, such as wetness, slope, and texture of the surface layer. Susceptibility to flooding is considered. Not considered in the ratings, but important in evaluating a site, are the location and accessibility of the area, the size and shape of the area and its scenic quality, vegetation, access to water, potential water impoundment sites, and access to public sewer lines. The capacity of the soil to absorb septic tank effluent and the ability of the soil to support vegetation also are important. Soils that are subject to flooding are limited for recreational uses by the duration and intensity of flooding and the season when flooding occurs. In planning recreational facilities, onsite assessment of the height, duration, intensity, and frequency of flooding is essential.

The information in tables 11 and 12 can be supplemented by other information in this survey, for example, interpretations for building site development, construction materials, sanitary facilities, and water management.

Camp areas require site preparation, such as shaping and leveling the tent and parking areas, stabilizing roads and intensively used areas, and installing sanitary facilities and utility lines. Camp areas are subject to heavy foot traffic and some vehicular traffic. The ratings are based on the soil properties that affect the ease of developing camp areas and the performance of the areas after development. Slope, stoniness, and depth to bedrock or a cemented pan are the main concerns affecting the development of camp areas. The soil properties that affect the performance of the areas after development are those that influence trafficability and promote the growth of vegetation, especially in heavily used areas. For good trafficability, the surface of camp areas should absorb rainfall readily, remain firm under heavy foot traffic, and not be dusty when dry. The soil properties that influence trafficability are texture of the surface layer, depth to a water table, ponding, flooding, permeability, and large stones. The soil properties that affect the growth of plants are depth to bedrock or a cemented pan, permeability, and toxic substances in the soil.

Picnic areas are subject to heavy foot traffic. Most vehicular traffic is confined to access roads and parking areas. The ratings are based on the soil properties that affect the ease of developing picnic areas and that influence trafficability and the growth of vegetation after development. Slope and stoniness are the main concerns affecting the development of picnic areas. For good trafficability, the surface of picnic areas should absorb rainfall readily, remain firm under heavy foot traffic, and not be dusty when dry. The soil properties that influence trafficability are texture of the surface layer, depth to a water table, ponding, flooding, permeability, and large stones. The soil properties that affect the growth of plants are depth to bedrock or a cemented pan, permeability, and toxic substances in the soil.

Playgrounds require soils that are nearly level, are free of stones, and can withstand intensive foot traffic. The ratings are based on the soil properties that affect the ease of developing playgrounds and that influence trafficability and the growth of vegetation after development. Slope and stoniness are the main concerns affecting the development of playgrounds. For good trafficability, the surface of the playgrounds should absorb rainfall readily, remain firm under heavy foot traffic, and not be dusty when dry. The soil properties that influence trafficability are texture of the surface layer, depth to a water table, ponding, flooding, permeability, and large stones. The soil properties that affect the growth of plants are depth to bedrock or a cemented pan, permeability, and toxic substances in the soil.

Paths and trails for hiking and horseback riding should require little or no slope modification through cutting and filling. The ratings are based on the soil properties that affect trafficability and erodibility. These properties are stoniness, depth to a water table, ponding, flooding, slope, and texture of the surface layer.

Off-road motorcycle trails require little or no site preparation. They are not covered with surfacing material or vegetation. Considerable compaction of the soil material is likely. The ratings are based on the soil properties that influence erodibility, trafficability, dustiness, and the ease of revegetation. These properties are stoniness, slope, depth to a water table, ponding, flooding, and texture of the surface layer.

Golf fairways are subject to heavy foot traffic and some light vehicular traffic. Cutting or filling may be required. Irrigation is not considered in the ratings. The ratings are based on the soil properties that affect plant growth and trafficability after vegetation is established. The properties that affect plant growth are reaction; depth to a water table; ponding; depth to bedrock or a cemented pan; the available water capacity in the upper 40 inches; the content of salts, sodium, or calcium carbonate; and sulfidic materials. The properties that affect trafficability are flooding, depth to a water table, ponding, slope, stoniness, and the amount of sand, clay, or organic matter in the surface layer. The suitability of the soil for traps, tees, roughs, and greens is not considered in the ratings.

Wildlife Habitat

Robert J. Wengrzynek, Biologist, Natural Resources Conservation Service (retired), helped to prepare this section.

The kind and abundance of wildlife depend largely on the quality, amount, and distribution of habitat elements which provide food, shelter, and water. If any elements are missing, inadequate, or inaccessible, some wildlife species may become scarce or absent. The diversity and quality of habitat elements are closely related to land use, to the resulting kinds and patterns of vegetation, and to the distribution of wetlands, streams, and ponds. These, in turn, generally are related to the kinds and productivity of the soils, which have influenced land and water use patterns; and the nutrition value of browse, forage, fruits, and seeds.

Although vegetation and land use patterns are important influences on the kind, distribution, and abundance of wildlife, soils are at least equally important. Vegetation, such as browse, fruits, and forage, produced on fertile, higher pH soils is richer in protein, nutrients and trace elements than that grown on poorer soils. Nutrition affects survival, reproduction, and other physiological processes of wildlife in the same way as it affects domestic livestock and humans.

Land use patterns and soil fertility can also affect the quality of water in streams and lakes. Washington County has an abundance of relatively clean water due to the interior county land use patterns. However, changes in water quality are occurring as pressures increase on forests and increased construction of road systems.

Soil nutrients are well known to affect the size and health of deer. Together with moisture they can make browse more palatable and nutritious.

The reproductive success of some birds is related to the minerals in the soil. The weight and size of bones in animals and the quality of fur on furbearers is also related to diet, soil minerals, and soil fertility.

The soil type and nutrient level of soils and agricultural land use patterns are related. These factors combined are the main reasons why some wildlife species are usually more abundant in areas of productive agriculture.

The pattern of land use in Washington County is less diverse than other areas of Maine. The climate is moderate. The mixture of hardwood and softwood forest types and topographic features provide fair to very good habitat for wildlife, particularly woodland species, such as grouse, woodcock, and deer.

Abundant wetland areas, along with blueberry land, cropland, hay land, and pasture, provide little variety of habitat elements for wildlife. Generally, forestland ownership and management patterns do not vary enough to provide relatively diverse woodland habitat in the northern and eastern coastal areas. Significant decreases in agricultural land in the century have greatly reduced habitat quality for deer and other species. However, some furbearers such as fisher and marten have increased populations due to habitat change.

Washington County has many acres of peat bogs providing habitat for numerous rare, threatened, and endangered species of plants and animals.

Deer are only fairly abundant in the southern part of the county, with lower populations in the north due to lack of habitat diversity and more severe winter conditions. Moose and bear are fairly common in the western part of the county but relatively uncommon close to the coast.

Soils affect the type, amount, and quality of vegetation that is available to wildlife as food and cover. They also affect the construction of water impoundments for wetlands and ponds. Wildlife habitat can be created or improved by maintaining the existing plant cover, or by promoting the natural establishment of desirable plants, or by planting vegetation that is suitable for habitat and adapted to the climate.

In table 13, the soils in the survey area are rated according to their potential for providing habitat for various kinds of wildlife. This information can be useful in selecting soils that are suitable for creating, improving, or maintaining specific elements of wildlife habitat, and in determining the degree of management needed. Knowledge of habitat and soil relationships can be used in planning farms, rural residences, parks, wildlife refuges, nature study areas, and land management developments for wildlife.

The potential of the soil is rated good, fair, poor, or very poor. A rating of good indicates that the element or kind of habitat is easily established, improved, or maintained. Few or no limitations affect management, and satisfactory results can be expected. A rating of fair indicates that the element or kind of habitat can be established, improved, or maintained in most places. Moderately intensive management is required for satisfactory results. A rating of poor indicates that limitations are severe for the designated element or kind of habitat. Habitat can be created, improved, or maintained in most places, but management is difficult and must be intensive. A rating of very poor indicates that restrictions for the element or kind of habitat are very severe and that unsatisfactory results can be expected. Creating, improving, or maintaining habitat may be impractical or impossible.

The elements of wildlife habitat are described in the following paragraphs.
Grain and seed crops are domestic grains and seed-producing herbaceous plants. Soil properties and features that affect the growth of grain and seed crops are depth of the rooting zone, texture of the surface layer, available water capacity, wetness, slope, surface stoniness, and flood hazard. Soil temperature and soil moisture are also considerations. Examples of grain and seed crops are corn, oats, rye, wheat sorghum, and sunflower.

Grasses and legumes are domestic perennial grasses and herbaceous legumes. Soil properties and features that affect the growth of grasses and legumes are depth of the rooting zone, texture of the surface layer, available water capacity, wetness, surface stoniness, flood hazard, and slope. Soil temperature and soil moisture are also considerations. Examples of grasses and legumes are reed canary grass, ryegrass, red top, vetch, bluegrass, switchgrass, timothy, trefoil, fescue, bromegrass, clovers, and alfalfa.

Wild herbaceous plants are native or naturally established grasses and forbs, including weeds. Soil properties and features that affect the growth of these plants are depth of the rooting zone, texture of the surface layer, available water capacity, wetness, surface stoniness, and flood hazard. Soil temperature and soil moisture are
also considerations. Examples of wild herbaceous plants are meadow rue, thistle, mustard, goldenrod, asters, hawkweed, wild strawberries and milkweed.

Hardwood trees and woody understory produce nuts or other fruit, buds, catkins, twigs, bark and foliage. Soil properties and features that affect the growth of hardwood trees and shrubs are depth of the rooting zone, available water capacity, and wetness. Examples of these plants are oak, aspen, cherry, maple, ash, beech, birch, alder, willow, apple, hawthorn, dogwood, blackberry, sumac, and blueberry. Examples of fruit-producing shrubs that are suitable for planting on soils rated good are Russian-olive, autumn-olive, dogwood, blueberry, viburnums, raspberry, elderberry, crabapple, and roses.

Coniferous plants furnish browse and seeds. Soil properties and features that affect the growth of coniferous trees, shrubs, and ground cover are depth of the rooting zone, available water capacity, and wetness. Examples of coniferous plants are white and red pine, spruces, balsam fir, yew, cedar, and hemlock.

Wetland plants and annual and perennial wild herbaceous plants grow on moist and wet sites. Submerged or floating aquatic plants are excluded. Soil properties and features affecting wetland plants are texture of the surface layer, wetness, reaction, salinity, slope, and surface stoniness. Examples of wetland plants are smartweed, burreed, wildrice, cat tails, cordgrass, rushes, and sedges.

Shallow water areas have an average depth of less than 5 feet. Some are naturally wet areas. Others are created by dams, levees, or other water-control structures. Soil properties and features affecting shallow water areas are depth to bedrock, wetness, surface stoniness, slope, and permeability. Examples of shallow water areas are marshes, swamps, ponds and streams. Washington County also has an abundance of bogs dominated by sphagnum moss.

The habitat for various kinds of wildlife is described in the following paragraphs.
Habitat for open land wildlife consists of blueberry land, cropland, hay land, pasture, wet meadows, and areas that are overgrown with grasses, herbs, and shrubs. These areas produce grain and seed crops, grasses and legumes, and wild herbaceous plants. The wildlife attracted to these areas includes bobolink, marsh hawks, kestrels, meadowlark, sparrow, wrens, meadow vole, woodchuck, red fox, woodcock and deer. These open fields are especially attractive to geese along the coast during migration.

Habitat for woodland wildlife consists of areas of deciduous plants or coniferous plants or both and associated grasses, legumes, and wild herbaceous plants. Wildlife attracted to these areas includes ruffed grouse, woodcock, woodpeckers, squirrels, coyote, red fox, raccoon, bear, moose, and deer.

Habitat for wetland wildlife consists of open, marshy or swampy shallow water areas. Some of the wildlife attracted to such areas are moose, ducks, geese, rails, shore birds, muskrat, mink, otter, and beaver.

Engineering

This section provides information for planning land uses related to urban development and to water management. Soils are rated for various uses, and the most limiting features are identified. Ratings are given for building site development, sanitary facilities, construction materials, and water management. The ratings are based on observed performance of the soils and on the data in the tables described under the heading "Soil Properties."

Information in this section is intended for land use planning, for evaluating land use alternatives, and for planning site investigations prior to design and construction. The information, however, has limitations. For example, estimates and other data generally apply only to that part of the soil between the surface and a depth of 5 to 7 feet. Because of the map scale, small areas of different soils may be included within the mapped areas of a specific soil.

The information is not site specific and does not eliminate the need for onsite investigation of the soils or for testing and analysis by personnel experienced in the design and construction of engineering works.

Government ordinances and regulations that restrict certain land uses or impose specific design criteria were not considered in preparing the information in this section. Local ordinances and regulations should be considered in planning, in site selection, and in design.

Soil properties, site features, and observed performance were considered in determining the ratings in this section. During the fieldwork for this soil survey, determinations were made about particle-size distribution, liquid limit, plasticity index, soil reaction, depth to bedrock, hardness of bedrock within 5 to 7 feet of the surface, soil wetness, depth to a water table, ponding, slope, likelihood of flooding, natural soil structure aggregation, and soil density. Data were collected about kinds of clay minerals, mineralogy of the sand and silt fractions, and the kinds of adsorbed cations. Estimates were made for erodibility, permeability, corrosivity, shrink-swell potential, available water capacity, and other behavioral characteristics affecting engineering uses.

This information can be used to evaluate the potential of areas for residential, commercial, industrial, and recreational uses; make preliminary estimates of construction conditions; evaluate alternative routes for roads, streets, highways, pipelines, and underground cables; evaluate alternative sites for sanitary landfills, septic tank absorption fields, and sewage lagoons; plan detailed onsite investigations of soils and geology; locate potential sources of gravel, sand, earthfill, and topsoil; plan drainage systems, irrigation systems, ponds, terraces, and other structures for soil and water conservation; and predict performance of proposed small structures and pavements by comparing the performance of existing similar structures on the same or similar soils.

The information in the tables, along with the soil maps, the soil descriptions, and other data provided in this survey, can be used to make additional interpretations.

Some of the terms used in this soil survey have a special meaning in soil science and are defined in the Glossary.

Construction Materials

Tables 14 and 15 give information about the soils as potential sources of gravel, sand, topsoil, reclamation material, and roadfill. Normal compaction, minor processing, and other standard construction practices are assumed.

Sand and gravel are natural aggregates suitable for commercial use with a minimum of processing. They are used in many kinds of construction. Specifications for each use vary widely. In table 15, only the likelihood of finding material in suitable quantity is evaluated. The suitability of the material for specific purposes is not evaluated, nor are factors that affect excavation of the material. The properties used to evaluate the soil as a source of sand or gravel are gradation of grain sizes (as indicated by the Unified classification of the soil), the thickness of suitable material, and the content of rock fragments. If the bottom layer of the soil contains sand or gravel, the soil is considered a likely source regardless of thickness. The assumption is that the sand or gravel layer below the depth of observation exceeds the minimum thickness.

The soils are rated good, fair, or poor as potential sources of sand and gravel. A rating of good or fair means that the source material is likely to be in or below the soil. The bottom layer and the thickest layer of the soils are assigned numerical ratings. These ratings indicate the likelihood that the layer is a source of sand or gravel. The number 0.00 indicates that the layer is a poor source. The number 1.00 indicates that the layer is a good source. A number between 0.00 and 1.00 indicates the degree to which the layer is a likely source.

The soils are rated good, fair, or poor as potential sources of topsoil, reclamation material, and roadfill. The features that limit the soils as sources of these materials are specified in the tables. The numerical ratings given after the specified features indicate the degree to which the features limit the soils as sources of topsoil, reclamation material, or roadfill. The lower the number, the greater the limitation.

Topsoil is used to cover an area so that vegetation can be established and maintained. The upper 40 inches of a soil is evaluated for use as topsoil. Also evaluated is the reclamation potential of the borrow area. The ratings are based on the soil properties that affect plant growth; the ease of excavating, loading, and spreading the material; and reclamation of the borrow area. Toxic substances, soil reaction, and the properties that are inferred from soil texture, such as available water capacity and fertility, affect plant growth. The ease of excavating, loading, and spreading is affected by rock fragments, slope, depth to a water table, soil texture, and thickness of suitable material. Reclamation of the borrow area is affected by slope, depth to a water table, rock fragments, depth to bedrock or a cemented pan, and toxic material.

The surface layer of most soils is generally preferred for topsoil because of its organic matter content. Organic matter greatly increases the absorption and retention of moisture and nutrients for plant growth.

Reclamation material is used in areas that have been drastically disturbed by surface mining or similar activities. When these areas are reclaimed, layers of soil material or unconsolidated geological material, or both, are replaced in a vertical sequence. The reconstructed soil favors plant growth. The ratings in the table do not apply to quarries and other mined areas that require an offsite source of reconstruction material. The ratings are based on the soil properties that affect erosion and stability of the surface and the productive potential of the reconstructed soil. These properties include the content of sodium, salts, and calcium carbonate; reaction; available water capacity; erodibility; texture; content of rock fragments; and content of organic matter and other features that affect fertility.

Roadfill is soil material that is excavated in one place and used in road embankments in another place. In this table, the soils are rated as a source of roadfill for low embankments, generally less than 6 feet high and less exacting in design than higher embankments.

The ratings are for the whole soil, from the surface to a depth of about 5 feet. It is assumed that soil layers will be mixed when the soil material is excavated and spread.

The ratings are based on the amount of suitable material and on soil properties that affect the ease of excavation and the performance of the material after it is in place. The thickness of the suitable material is a major consideration. The ease of excavation is affected by large stones, depth to a water table, and slope. How well the soil performs in place after it has been compacted and drained is determined by its strength (as inferred from the AASHTO classification of the soil) and linear extensibility (shrink-swell potential).

Building Site Development

Soil properties influence the development of building sites, including the selection of the site, the design of the structure, construction, performance after construction, and maintenance. Tables 16 and 17 show the degree and kind of soil limitations that affect dwellings with and without basements, small commercial buildings, local roads and streets, shallow excavations, and lawns and landscaping.

The ratings in the tables are both verbal and numerical. Rating class terms indicate the extent to which the soils are limited by all of the soil features that affect building site development. Not limited indicates that the soil has features that are very favorable for the specified use. Good performance and very low maintenance can be
expected. Somewhat limited indicates that the soil has features that are moderately favorable for the specified use. The limitations can be overcome or minimized by special planning, design, or installation. Fair performance and moderate maintenance can be expected. Very limited indicates that the soil has one or more features that are unfavorable for the specified use. The limitations generally cannot be overcome without major soil reclamation, special design, or expensive installation procedures. Poor performance and high maintenance can be expected.

Numerical ratings in the tables indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.01 to 1.00 . They indicate gradations between the point at which a soil feature has the greatest negative impact on the use (1.00) and the point at which the soil feature is not a limitation (0.00).

Dwellings are single-family houses of three stories or less. For dwellings without basements, the foundation is assumed to consist of spread footings of reinforced concrete built on undisturbed soil at a depth of 2 feet or at the depth of maximum frost penetration, whichever is deeper. For dwellings with basements, the foundation is assumed to consist of spread footings of reinforced concrete built on undisturbed soil at a depth of about 7 feet. The ratings for dwellings are based on the soil properties that affect the capacity of the soil to support a load without movement and on the properties that affect excavation and construction costs. The properties that affect the load-supporting capacity include depth to a water table, ponding, flooding, subsidence, linear extensibility (shrink-swell potential), and compressibility. Compressibility is inferred from the Unified classification. The properties that affect the ease and amount of excavation include depth to a water table, ponding, flooding, slope, depth to bedrock or a cemented pan, hardness of bedrock or a cemented pan, and the amount and size of rock fragments.

Small commercial buildings are structures that are less than three stories high and do not have basements. The foundation is assumed to consist of spread footings of reinforced concrete built on undisturbed soil at a depth of 2 feet or at the depth of maximum frost penetration, whichever is deeper. The ratings are based on the soil properties that affect the capacity of the soil to support a load without movement and on the properties that affect excavation and construction costs. The properties that affect the load-supporting capacity include depth to a water table, ponding, flooding, subsidence, linear extensibility (shrink-swell potential), and compressibility (which is inferred from the Unified classification). The properties that affect the ease and amount of excavation include flooding, depth to a water table, ponding, slope, depth to bedrock or a cemented pan, hardness of bedrock or a cemented pan, and the amount and size of rock fragments.

Local roads and streets have an all-weather surface and carry automobile and light truck traffic all year. They have a subgrade of cut or fill soil material; a base of gravel, crushed rock, or soil material stabilized by lime or cement; and a surface of flexible material (asphalt), rigid material (concrete), or gravel with a binder. The ratings are based on the soil properties that affect the ease of excavation and grading and the traffic-supporting capacity. The properties that affect the ease of excavation and grading are depth to bedrock or a cemented pan, hardness of bedrock or a cemented pan, depth to a water table, ponding, flooding, the amount of large stones, and slope. The properties that affect the traffic-supporting capacity are soil strength (as inferred from the AASHTO group index number), subsidence, linear extensibility (shrink-swell potential), the potential for frost action, depth to a water table, and ponding.

Shallow excavations are trenches or holes dug to a maximum depth of 5 or 6 feet for graves, utility lines, open ditches, or other purposes. The ratings are based on the soil properties that influence the ease of digging and the resistance to sloughing. Depth to bedrock or a cemented pan, hardness of bedrock or a cemented pan, the amount of large stones, and dense layers influence the ease of digging, filling, and compacting. Depth to the seasonal high water table, flooding, and ponding may
restrict the period when excavations can be made. Slope influences the ease of using machinery. Soil texture, depth to the water table, and linear extensibility (shrink-swell potential) influence the resistance to sloughing.

Lawns and landscaping require soils on which turf and ornamental trees and shrubs can be established and maintained. Irrigation is not considered in the ratings. The ratings are based on the soil properties that affect plant growth and trafficability after vegetation is established. The properties that affect plant growth are reaction; depth to a water table; ponding; depth to bedrock or a cemented pan; the available water capacity in the upper 40 inches; the content of salts, sodium, or calcium carbonate; and sulfidic materials. The properties that affect trafficability are flooding, depth to a water table, ponding, slope, stoniness, and the amount of sand, clay, or organic matter in the surface layer.

Sanitary Facilities

Tables 18 and 19 show the degree and kind of soil limitations that affect septic tank absorption fields, sewage lagoons, sanitary landfills, and daily cover for landfill. The ratings are both verbal and numerical. Rating class terms indicate the extent to which the soils are limited by all of the soil features that affect these uses. Not limited indicates that the soil has features that are very favorable for the specified use. Good performance and very low maintenance can be expected. Somewhat limited indicates that the soil has features that are moderately favorable for the specified use. The limitations can be overcome or minimized by special planning, design, or installation. Fair performance and moderate maintenance can be expected. Very limited indicates that the soil has one or more features that are unfavorable for the specified use. The limitations generally cannot be overcome without major soil reclamation, special design, or expensive installation procedures. Poor performance and high maintenance can be expected.

Numerical ratings in the tables indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.01 to 1.00 . They indicate gradations between the point at which a soil feature has the greatest negative impact on the use (1.00) and the point at which the soil feature is not a limitation (0.00).

Septic tank absorption fields are areas in which effluent from a septic tank is distributed into the soil through subsurface tiles or perforated pipe. Only that part of the soil between depths of 24 and 60 inches is evaluated. The ratings are based on the soil properties that affect absorption of the effluent, construction and maintenance of the system, and public health. Permeability, depth to a water table, ponding, depth to bedrock or a cemented pan, and flooding affect absorption of the effluent. Stones and boulders, ice, and bedrock or a cemented pan interfere with installation. Subsidence interferes with installation and maintenance. Excessive slope may cause lateral seepage and surfacing of the effluent in downslope areas.

Some soils are underlain by loose sand and gravel or fractured bedrock at a depth of less than 4 feet below the distribution lines. In these soils the absorption field may not adequately filter the effluent, particularly when the system is new. As a result, the ground water may become contaminated.

Sewage lagoons are shallow ponds constructed to hold sewage while aerobic bacteria decompose the solid and liquid wastes. Lagoons should have a nearly level floor surrounded by cut slopes or embankments of compacted soil. Nearly impervious soil material for the lagoon floor and sides is required to minimize seepage and contamination of ground water.

Considered in the ratings are slope, permeability, depth to a water table, ponding, depth to bedrock or a cemented pan, flooding, large stones, and content of organic matter.

Soil permeability is a critical property affecting the suitability for sewage lagoons. Most porous soils eventually become sealed when they are used as sites for sewage
lagoons. Until sealing occurs, however, the hazard of pollution is severe. Soils that have a permeability rate of more than 2 inches per hour are too porous for the proper functioning of sewage lagoons. In these soils, seepage of the effluent can result in contamination of the ground water. Ground-water contamination is also a hazard if fractured bedrock is within a depth of 40 inches, if the water table is high enough to raise the level of sewage in the lagoon, or if floodwater overtops the lagoon.

A high content of organic matter is detrimental to proper functioning of the lagoon because it inhibits aerobic activity. Slope, bedrock, and cemented pans can cause construction problems, and large stones can hinder compaction of the lagoon floor. If the lagoon is to be uniformly deep throughout, the slope must be gentle enough and the soil material must be thick enough over bedrock or a cemented pan to make land smoothing practical.

A trench sanitary landfill is an area where solid waste is placed in successive layers in an excavated trench. The waste is spread, compacted, and covered daily with a thin layer of soil excavated at the site. When the trench is full, a final cover of soil material at least 2 feet thick is placed over the landfill. The ratings in the table are based on the soil properties that affect the risk of pollution, the ease of excavation, trafficability, and revegetation. These properties include permeability, depth to bedrock or a cemented pan, depth to a water table, ponding, slope, flooding, texture, stones and boulders, highly organic layers, soil reaction, and content of salts and sodium. Unless otherwise stated, the ratings apply only to that part of the soil within a depth of about 6 feet. For deeper trenches, onsite investigation may be needed.

Hard, nonrippable bedrock, creviced bedrock, or highly permeable strata in or directly below the proposed trench bottom can affect the ease of excavation and the hazard of ground-water pollution. Slope affects construction of the trenches and the movement of surface water around the landfill. It also affects the construction and performance of roads in areas of the landfill.

Soil texture and consistence affect the ease with which the trench is dug and the ease with which the soil can be used as daily or final cover. They determine the workability of the soil when dry and when wet. Soils that are plastic and sticky when wet are difficult to excavate, grade, or compact and are difficult to place as a uniformly thick cover over a layer of refuse.

The soil material used as the final cover for a trench landfill should be suitable for plants. It should not have excess sodium or salts and should not be too acid. The surface layer generally has the best workability, the highest content of organic matter, and the best potential for plants. Material from the surface layer should be stockpiled for use as the final cover.

In an area sanitary landfill, solid waste is placed in successive layers on the surface of the soil. The waste is spread, compacted, and covered daily with a thin layer of soil from a source away from the site. A final cover of soil material at least 2 feet thick is placed over the completed landfill. The ratings in the table are based on the soil properties that affect trafficability and the risk of pollution. These properties include flooding, permeability, depth to a water table, ponding, slope, and depth to bedrock or a cemented pan.

Flooding is a serious problem because it can result in pollution in areas downstream from the landfill. If permeability is too rapid or if fractured bedrock, a fractured cemented pan, or the water table is close to the surface, the leachate can contaminate the water supply. Slope is a consideration because of the extra grading required to maintain roads in the steeper areas of the landfill. Also, leachate may flow along the surface of the soils in the steeper areas and cause difficult seepage problems.

Daily cover for landfill is the soil material that is used to cover compacted solid waste in an area sanitary landfill. The soil material is obtained offsite, transported to the landfill, and spread over the waste. The ratings in the table also apply to the final
cover for a landfill. They are based on the soil properties that affect workability, the ease of digging, and the ease of moving and spreading the material over the refuse daily during wet and dry periods. These properties include soil texture, depth to a water table, ponding, rock fragments, slope, depth to bedrock or a cemented pan, reaction, and content of salts, sodium, or lime.

Loamy or silty soils that are free of large stones and excess gravel are the best cover for a landfill. Clayey soils may be sticky and difficult to spread; sandy soils are subject to wind erosion.

Slope affects the ease of excavation and of moving the cover material. Also, it can influence runoff, erosion, and reclamation of the borrow area.

After soil material has been removed, the soil material remaining in the borrow area must be thick enough over bedrock, a cemented pan, or the water table to permit revegetation. The soil material used as the final cover for a landfill should be suitable for plants. It should not have excess sodium, salts, or lime and should not be too acid.

Water Management

Table 20 gives information on the soil properties and site features that affect water management. The degree and kind of soil limitations are given for pond reservoir areas; embankments, dikes, and levees; and aquifer-fed excavated ponds. The ratings are both verbal and numerical. Rating class terms indicate the extent to which the soils are limited by all of the soil features that affect these uses. Not limited indicates that the soil has features that are very favorable for the specified use. Good performance and very low maintenance can be expected. Somewhat limited indicates that the soil has features that are moderately favorable for the specified use. The limitations can be overcome or minimized by special planning, design, or installation. Fair performance and moderate maintenance can be expected. Very limited indicates that the soil has one or more features that are unfavorable for the specified use. The limitations generally cannot be overcome without major soil reclamation, special design, or expensive installation procedures. Poor performance and high maintenance can be expected.

Numerical ratings in the tables indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.01 to 1.00. They indicate gradations between the point at which a soil feature has the greatest negative impact on the use (1.00) and the point at which the soil feature is not a limitation (0.00).

Pond reservoir areas hold water behind a dam or embankment. Soils best suited to this use have low seepage potential in the upper 60 inches. The seepage potential is determined by the permeability of the soil and the depth to fractured bedrock or other permeable material. Excessive slope can affect the storage capacity of the reservoir area.

Embankments, dikes, and levees are raised structures of soil material, generally less than 20 feet high, constructed to impound water or to protect land against overflow. Embankments that have zoned construction (core and shell) are not considered. In this table, the soils are rated as a source of material for embankment fill. The ratings apply to the soil material below the surface layer to a depth of about 5 feet. It is assumed that soil layers will be uniformly mixed and compacted during construction.

The ratings do not indicate the ability of the natural soil to support an embankment. Soil properties to a depth even greater than the height of the embankment can affect performance
and safety of the embankment. Generally, deeper onsite investigation is needed to determine these properties.

Soil material in embankments must be resistant to seepage, piping, and erosion and have favorable compaction characteristics. Unfavorable features include less than

5 feet of suitable material and a high content of stones or boulders, organic matter, or salts or sodium. A high water table affects the amount of usable material. It also affects trafficability.

Aquifer-fed excavated ponds are pits or dugouts that extend to a ground-water aquifer or to a depth below a permanent water table. Excluded are ponds that are fed only by surface runoff and embankment ponds that impound water 3 feet or more above the original surface. Excavated ponds are affected by depth to a permanent water table, permeability of the aquifer, and quality of the water as inferred from the salinity of the soil. Depth to bedrock and the content of large stones affect the ease of excavation.

Soil Properties

Data relating to soil properties are collected during the course of the soil survey.
Soil properties are ascertained by field examination of the soils and by laboratory index testing of some benchmark soils. Established standard procedures are followed. During the survey, many shallow borings are made and examined to identify and classify the soils and to delineate them on the soil maps. Samples are taken from some typical profiles and tested in the laboratory to determine particle-size distribution, plasticity, and compaction characteristics.

Estimates of soil properties are based on field examinations, on laboratory tests of samples from the survey area, and on laboratory tests of samples of similar soils in nearby areas. Tests verify field observations, verify properties that cannot be estimated accurately by field observation, and help to characterize key soils.

The estimates of soil properties are shown in tables. They include engineering index properties, physical and chemical properties, and pertinent soil and water features.

Engineering Index Properties

Table 21 gives the engineering classifications and the range of index properties for the layers of each soil in the survey area.

Depth to the upper and lower boundaries of each layer is indicated.
Texture is given in the standard terms used by the U.S. Department of Agriculture. These terms are defined according to percentages of sand, silt, and clay in the fraction of the soil that is less than 2 millimeters in diameter. "Loam," for example, is soil that is 7 to 27 percent clay, 28 to 50 percent silt, and less than 52 percent sand. If the content of particles coarser than sand is 15 percent or more, an appropriate modifier is added, for example, "gravelly." Textural terms are defined in the Glossary.

Classification of the soils is determined according to the Unified soil classification system (ASTM, 2001) and the system adopted by the American Association of State Highway and Transportation Officials (AASHTO, 2000).

The Unified system classifies soils according to properties that affect their use as construction material. Soils are classified according to particle-size distribution of the fraction less than 3 inches in diameter and according to plasticity index, liquid limit, and organic matter content. Sandy and gravelly soils are identified as GW, GP, GM, GC, SW, SP, SM, and SC; silty and clayey soils as ML, CL, OL, MH, CH, and OH; and highly organic soils as PT. Soils exhibiting engineering properties of two groups can have a dual classification, for example, CL-ML.

The AASHTO system classifies soils according to those properties that affect roadway construction and maintenance. In this system, the fraction of a mineral soil that is less than 3 inches in diameter is classified in one of seven groups from A-1 through A-7 on the basis of particle-size distribution, liquid limit, and plasticity index. Soils in group A-1 are coarse grained and low in content of fines (silt and clay). At the other extreme, soils in group A-7 are fine grained. Highly organic soils are classified in group A-8 on the basis of visual inspection.

Rock fragments larger than 10 inches in diameter and 3 to 10 inches in diameter are indicated as a percentage of the total soil on a dry-weight basis. The percentages
are estimates determined mainly by converting volume percentage in the field to weight percentage.

Percentage (of soil particles) passing designated sieves is the percentage of the soil fraction less than 3 inches in diameter based on an ovendry weight. The sieves, numbers 4, 10, 40, and 200 (USA Standard Series), have openings of 4.76, 2.00, 0.420 , and 0.074 millimeters, respectively. Estimates are based on laboratory tests of soils sampled in the survey area and in nearby areas and on estimates made in the field.

Liquid limit and plasticity index (Atterberg limits) indicate the plasticity characteristics of a soil. The estimates are based on test data from the survey area or from nearby areas and on field examination.

The estimates of particle-size distribution, liquid limit, and plasticity index are generally rounded to the nearest 5 percent. Thus, if the ranges of gradation and Atterberg limits extend a marginal amount (1 or 2 percentage points) across classification boundaries, the classification in the marginal zone is generally omitted in the table.

Physical Properties

Table 22 shows estimates of some physical characteristics and features that affect soil behavior. These estimates are given for the layers of each soil in the survey area. The estimates are based on field observations and on test data for these and similar soils.

Depth to the upper and lower boundaries of each layer is indicated.
Particle size is the effective diameter of a soil particle as measured by
sedimentation, sieving, or micrometric methods. Particle sizes are expressed as classes with specific effective diameter class limits. The broad classes are sand, silt, and clay, ranging from the larger to the smaller.

Sand as a soil separate consists of mineral soil particles that are 0.05 millimeter to 2 millimeters in diameter. In table 22, the estimated sand content of each soil layer is given as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

Silt as a soil separate consists of mineral soil particles that are 0.002 to 0.05 millimeter in diameter. In table 22, the estimated silt content of each soil layer is given as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

Clay as a soil separate consists of mineral soil particles that are less than 0.002 millimeter in diameter. In table 22, the estimated clay content of each soil layer is given as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

The content of sand, silt, and clay affects the physical behavior of a soil. Particle size is important for engineering and agronomic interpretations, for determination of soil hydrologic qualities, and for soil classification.

The amount and kind of clay affect the fertility and physical condition of the soil and the ability of the soil to adsorb cations and to retain moisture. They influence shrinkswell potential, permeability, plasticity, the ease of soil dispersion, and other soil properties. The amount and kind of clay in a soil also affect tillage and earthmoving operations.

Moist bulk density is the weight of soil (ovendry) per unit volume. Volume is measured when the soil is at field moisture capacity, that is, the moisture content at $1 / 3$ or $1 / 10-$ bar (33 kPa or 10 kPa) moisture tension. Weight is determined after the soil is dried at 105 degrees C. In the table, the estimated moist bulk density of each soil horizon is expressed in grams per cubic centimeter of soil material that is less than 2 millimeters in diameter. Bulk density data are used to compute shrink-swell potential,
available water capacity, total pore space, and other soil properties. The moist bulk density of a soil indicates the pore space available for water and roots. Depending on soil texture, a bulk density of more than 1.4 can restrict water storage and root penetration. Moist bulk density is influenced by texture, kind of clay, content of organic matter, and soil structure.

Permeability ($K_{\text {sat }}$) refers to the ability of a soil to transmit water or air. The term "permeability," as used in soil surveys, indicates saturated hydraulic conductivity ($\mathrm{K}_{\text {sat }}$). The estimates in the table indicate the rate of water movement, in inches per hour, when the soil is saturated. They are based on soil characteristics observed in the field, particularly structure, porosity, and texture. Permeability is considered in the design of soil drainage systems and septic tank absorption fields.

Available water capacity refers to the quantity of water that the soil is capable of storing for use by plants. The capacity for water storage is given in inches of water per inch of soil for each soil layer. The capacity varies, depending on soil properties that affect retention of water. The most important properties are the content of organic matter, soil texture, bulk density, and soil structure. Available water capacity is an important factor in the choice of plants or crops to be grown and in the design and management of irrigation systems. Available water capacity is not an estimate of the quantity of water actually available to plants at any given time.

Linear extensibility refers to the change in length of an unconfined clod as moisture content is decreased from a moist to a dry state. It is an expression of the volume change between the water content of the clod at $1 / 3$ - or $1 / 10$-bar tension (33 kPa or 10 kPa tension) and oven dryness. The volume change is reported in the table as percent change for the whole soil. Volume change is influenced by the amount and type of clay minerals in the soil.

Linear extensibility is used to determine the shrink-swell potential of soils. The shrink-swell potential is low if the soil has a linear extensibility of less than 3 percent; moderate if 3 to 6 percent; high if 6 to 9 percent; and very high if more than 9 percent. If the linear extensibility is more than 3 , shrinking and swelling can cause damage to buildings, roads, and other structures and to plant roots. Special design commonly is needed.

Organic matter is the plant and animal residue in the soil at various stages of decomposition. In table 22, the estimated content of organic matter is expressed as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

The content of organic matter in a soil can be maintained by returning crop residue to the soil. Organic matter has a positive effect on available water capacity, water infiltration, soil organism activity, and tilth. It is a source of nitrogen and other nutrients for crops and soil organisms.

Erosion factors are shown in table 22 as the K factor (Kw and Kf) and the T factor. Erosion factor K indicates the susceptibility of a soil to sheet and rill erosion by water. Factor K is one of several factors used in the Universal Soil Loss Equation (USLE) and the Revised Universal Soil Loss Equation (RUSLE) to predict the average annual rate of soil loss by sheet and rill erosion in tons per acre per year. The estimates are based primarily on percentage of silt, sand, and organic matter and on soil structure and permeability. Values of K range from 0.02 to 0.69 . Other factors being equal, the higher the value, the more susceptible the soil is to sheet and rill erosion by water.

Erosion factor Kw indicates the erodibility of the whole soil. The estimates are modified by the presence of rock fragments.

Erosion factor $K f$ indicates the erodibility of the fine-earth fraction, or the material less than 2 millimeters in size.

Erosion factor T is an estimate of the maximum average annual rate of soil erosion by wind or water that can occur without affecting crop productivity over a sustained period. The rate is in tons per acre per year.

Wind erodibility groups are made up of soils that have similar properties affecting their susceptibility to wind erosion in cultivated areas. The soils assigned to group 1 are the most susceptible to wind erosion, and those assigned to group 8 are the least susceptible. The groups are as follows:

1. Coarse sands, sands, fine sands, and very fine sands.
2. Loamy coarse sands, loamy sands, loamy fine sands, loamy very fine sands, ash material, and sapric soil material.
3. Coarse sandy loams, sandy loams, fine sandy loams, and very fine sandy loams.

4L. Calcareous loams, silt loams, clay loams, and silty clay loams.
4. Clays, silty clays, noncalcareous clay loams, and silty clay loams that are more than 35 percent clay.
5. Noncalcareous loams and silt loams that are less than 20 percent clay and sandy clay loams, sandy clays, and hemic soil material.
6. Noncalcareous loams and silt loams that are more than 20 percent clay and noncalcareous clay loams that are less than 35 percent clay.
7. Silts, noncalcareous silty clay loams that are less than 35 percent clay, and fibric soil material.
8. Soils that are not subject to wind erosion because of rock fragments on the surface or because of surface wetness.

Wind erodibility index is a numerical value indicating the susceptibility of soil to wind erosion, or the tons per acre per year that can be expected to be lost to wind erosion. There is a close correlation between wind erosion and the texture of the surface layer, the size and durability of surface clods, rock fragments, organic matter, and a calcareous reaction. Soil moisture and frozen soil layers also influence wind erosion.

Chemical Properties

Table 23 shows estimates of some chemical characteristics and features that affect soil behavior. These estimates are given for the layers of each soil in the survey area. The estimates are based on field observations and on test data for these and similar soils.

Depth to the upper and lower boundaries of each layer is indicated.
Cation-exchange capacity is the total amount of extractable bases that can be held by the soil, expressed in terms of milliequivalents per 100 grams of soil at neutrality (pH 7.0) or at some other stated pH value. Soils having a low cation-exchange capacity hold fewer cations and may require more frequent applications of fertilizer than soils having a high cation-exchange capacity. The ability to retain cations reduces the hazard of ground-water pollution.

Effective cation-exchange capacity refers to the sum of extractable bases plus aluminum expressed in terms of milliequivalents per 100 grams of soil. It is determined for soils that have pH of less than 5.5.

Soil reaction is a measure of acidity or alkalinity. The pH of each soil horizon is based on many field tests. For many soils, values have been verified by laboratory analyses. Soil reaction is important in selecting crops and other plants, in evaluating soil amendments for fertility and stabilization, and in determining the risk of corrosion.

Calcium carbonate equivalent is the percent of carbonates, by weight, in the fraction of the soil less than 2 millimeters in size. The availability of plant nutrients is influenced by the amount of carbonates in the soil. Incorporating nitrogen fertilizer into calcareous soils helps to prevent nitrite accumulation and ammonium-N volatilization.

Gypsum is expressed as a percent, by weight, of hydrated calcium sulfates in the fraction of the soil less than 20 millimeters in size. Gypsum is partially soluble in
water. Soils that have a high content of gypsum may collapse if the gypsum is removed by percolating water.

Salinity is a measure of soluble salts in the soil at saturation. It is expressed as the electrical conductivity of the saturation extract, in millimhos per centimeter at 25 degrees C. Estimates are based on field and laboratory measurements at representative sites of nonirrigated soils. The salinity of irrigated soils is affected by the quality of the irrigation water and by the frequency of water application. Hence, the salinity of soils in individual fields can differ greatly from the value given in the table. Salinity affects the suitability of a soil for crop production, the stability of soil if used as construction material, and the potential of the soil to corrode metal and concrete.

Sodium adsorption ratio (SAR) is a measure of the amount of sodium (Na) relative to calcium (Ca) and magnesium (Mg) in the water extract from saturated soil paste. It is the ratio of the Na concentration divided by the square root of one-half of the $\mathrm{Ca}+$ Mg concentration. Soils that have SAR values of 13 or more may be characterized by an increased dispersion of organic matter and clay particles, reduced permeability and aeration, and a general degradation of soil structure.

Water Features

Table 24 gives estimates of various water features. The estimates are used in land use planning that involves engineering considerations.

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The four hydrologic soil groups are:
Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group ($A / D, B / D$, or C / D), the first letter is for drained areas and the second is for undrained areas.

The months in the table indicate the portion of the year in which the feature is most likely to be a concern.

Water table refers to a saturated zone in the soil. Table 24 indicates, by month, depth to the top (upper limit) and base (lower limit) of the saturated zone in most years. Estimates of the upper and lower limits are based mainly on observations of the water table at selected sites and on evidence of a saturated zone, namely grayish colors or mottles (redoximorphic features) in the soil. A saturated zone that lasts for less than a month is not considered a water table.

Ponding is standing water in a closed depression. Unless a drainage system is installed, the water is removed only by percolation, transpiration, or evaporation. Table 24 indicates surface water depth and the duration and frequency of ponding. Duration is expressed as very brief if less than 2 days, brief if 2 to 7 days, long if 7 to 30 days, and very long if more than 30 days. Frequency is expressed as none, rare, occasional, and frequent. None means that ponding is not probable; rare that it is unlikely but possible under unusual weather conditions (the chance of ponding is nearly 0 percent to 5 percent in any year); occasional that it occurs, on the average, once or less in 2 years (the chance of ponding is 5 to 50 percent in any year); and frequent that it occurs, on the average, more than once in 2 years (the chance of ponding is more than 50 percent in any year).

Flooding is the temporary inundation of an area caused by overflowing streams, by runoff from adjacent slopes, or by tides. Water standing for short periods after rainfall or snowmelt is not considered flooding, and water standing in swamps and marshes is considered ponding rather than flooding.

Duration and frequency are estimated. Duration is expressed as extremely brief if 0.1 hour to 4 hours, very brief if 4 hours to 2 days, brief if 2 to 7 days, long if 7 to 30 days, and very long if more than 30 days. Frequency is expressed as none, very rare, rare, occasional, frequent, and very frequent. None means that flooding is not probable; very rare that it is very unlikely but possible under extremely unusual weather conditions (the chance of flooding is less than 1 percent in any year); rare that it is unlikely but possible under unusual weather conditions (the chance of flooding is 1 to 5 percent in any year); occasional that it occurs infrequently under normal weather conditions (the chance of flooding is 5 to 50 percent in any year); frequent that it is likely to occur often under normal weather conditions (the chance of flooding is more than 50 percent in any year but is less than 50 percent in all months in any year); and very frequent that it is likely to occur very often under normal weather conditions (the chance of flooding is more than 50 percent in all months of any year).

The information is based on evidence in the soil profile, namely thin strata of gravel, sand, silt, or clay deposited by floodwater; irregular decrease in organic matter content with increasing depth; and little or no horizon development.

Also considered are local information about the extent and levels of flooding and the relation of each soil on the landscape to historic floods. Information on the extent of flooding based on soil data is less specific than that provided by detailed engineering surveys that delineate flood-prone areas at specific flood frequency levels.

Soil Features

Table 25 gives estimates of various soil features. The estimates are used in land use planning that involves engineering considerations.

A restrictive layer is a nearly continuous layer that has one or more physical, chemical, or thermal properties that significantly impede the movement of water and air through the soil or that restrict roots or otherwise provide an unfavorable root environment. Examples are bedrock, cemented layers, dense layers, and frozen layers. The table indicates the hardness and thickness of the restrictive layer, both of which significantly affect the ease of excavation. Depth to top is the vertical distance from the soil surface to the upper boundary of the restrictive layer.

Subsidence is the settlement of organic soils or of saturated mineral soils of very low density. Subsidence generally results from either desiccation and shrinkage or oxidation of organic material, or both, following drainage. Subsidence takes place gradually, usually over a period of several years. The table shows the expected initial
subsidence, which usually is a result of drainage, and total subsidence, which results from a combination of factors.

Potential for frost action is the likelihood of upward or lateral expansion of the soil caused by the formation of segregated ice lenses (frost heave) and the subsequent collapse of the soil and loss of strength on thawing. Frost action occurs when moisture moves into the freezing zone of the soil. Temperature, texture, density, permeability, content of organic matter, and depth to the water table are the most important factors considered in evaluating the potential for frost action. It is assumed that the soil is not insulated by vegetation or snow and is not artificially drained. Silty and highly structured, clayey soils that have a high water table in winter are the most susceptible to frost action. Well drained, very gravelly, or very sandy soils are the least susceptible. Frost heave and low soil strength during thawing cause damage to pavements and other rigid structures.

Risk of corrosion pertains to potential soil-induced electrochemical or chemical action that corrodes or weakens uncoated steel or concrete. The rate of corrosion of uncoated steel is related to such factors as soil moisture, particle-size distribution, acidity, and electrical conductivity of the soil. The rate of corrosion of concrete is based mainly on the sulfate and sodium content, texture, moisture content, and acidity of the soil. Special site examination and design may be needed if the combination of factors results in a severe hazard of corrosion. The steel or concrete in installations that intersect soil boundaries or soil layers is more susceptible to corrosion than the steel or concrete in installations that are entirely within one kind of soil or within one soil layer.

For uncoated steel, the risk of corrosion, expressed as low, moderate, or high, is based on soil drainage class, total acidity, electrical resistivity near field capacity, and electrical conductivity of the saturation extract.

For concrete, the risk of corrosion also is expressed as low, moderate, or high. It is based on soil texture, acidity, and amount of sulfates in the saturation extract.

Hydric Soils

In this section, hydric soils are defined and described. Table 26 gives the hydric rating for all map unit components for the survey area.

The three essential characteristics of wetlands are hydrophytic vegetation, hydric soils, and wetland hydrology (Cowardin and others, 1979; U.S. Army Corps of Engineers, 1987; National Research Council, 1995; Tiner, 1985). Criteria for each of the characteristics must be met for areas to be identified as wetlands. Undrained hydric soils that have natural vegetation should support a dominant population of ecological wetland plant species. Hydric soils that have been converted to other uses should be capable of being restored to wetlands.

Hydric soils are defined by the National Technical Committee for Hydric Soils (NTCHS) as soils that formed under conditions of saturation, flooding, or ponding long enough during the growing season to develop anaerobic conditions in the upper part (Federal Register, 1994). These soils are either saturated or inundated long enough during the growing season to support the growth and reproduction of hydrophytic vegetation.

The NTCHS definition identifies general soil properties that are associated with wetness. In order to determine whether a specific soil is a hydric soil or nonhydric soil, however, more specific information, such as information about the depth and duration of the water table, is needed. Thus, criteria that identify those estimated soil properties unique to hydric soils have been established (Federal Register, 1995). These criteria are used to identify a phase of a soil series that normally is associated with wetlands. The criteria used are selected estimated soil properties that are
described in "Soil Taxonomy" (USDA, 1999) and "Keys to Soil Taxonomy" (USDA, 1998) and in the "Soil Survey Manual" (USDA, 1993).

If soils are wet enough for a long enough period to be considered hydric, they should exhibit certain properties that can be easily observed in the field. These visible properties are indicators of hydric soils. The indicators used to make onsite determinations of hydric soils in this survey area are specified in "Field Indicators of Hydric Soils in the United States" (Hurt and others, 1998).

Hydric soils are identified by examining and describing the soil to a depth of about 20 inches. This depth may be greater if determination of an appropriate indicator so requires. It is always recommended that soils be excavated and described to the depth necessary for an understanding of the redoximorphic processes. Then, using the completed soil descriptions, soil scientists can compare the soil features required by each indicator and specify which indicators have been matched with the conditions observed in the soil. The soil can be identified as a hydric soil if at least one of the approved indicators is present.

The following map units meet the definition of hydric soils and, in addition, have at least one of the hydric soil indicators. This list can help in planning land uses; however, onsite investigation is recommended to determine the hydric soils on a specific site (National Research Council, 1995; Hurt and others, 1998).

Map units that are made up of hydric soils may have small areas, or inclusions, of nonhydric soils in the higher positions on the landform, and map units made up of nonhydric soils may have inclusions of hydric soils in the lower positions on the landform. Onsite investigation is recommended to determine whether hydric soils occur and the location of the included hydric soils.

Classification of the Soils

The system of soil classification used by the National Cooperative Soil Survey has six categories (Soil Survey Staff, 1998 and 1999). Beginning with the broadest, these categories are the order, suborder, great group, subgroup, family, and series. Classification is based on soil properties observed in the field or inferred from those observations or from laboratory measurements. Table 27 shows the classification of the soils in the survey area. The categories are defined in the following paragraphs.

ORDER. Twelve soil orders are recognized. The differences among orders reflect the dominant soil-forming processes and the degree of soil formation. Each order is identified by a word ending in sol. An example is Spodosol.

SUBORDER. Each order is divided into suborders primarily on the basis of properties that influence soil genesis and are important to plant growth or properties that reflect the most important variables within the orders. The last syllable in the name of a suborder indicates the order. An example is Orthod (Orth, meaning common, plus od, from Spodosol).

GREAT GROUP. Each suborder is divided into great groups on the basis of close similarities in kind, arrangement, and degree of development of pedogenic horizons; soil moisture and temperature regimes; type of saturation; and base status. Each great group is identified by the name of a suborder and by a prefix that indicates a property of the soil. An example is Haplorthod (Hapl, meaning minimal horizonation, plus orthod, the suborder of the Spodosols).

SUBGROUP. Each great group has a typic subgroup. Other subgroups are intergrades or extragrades. The typic subgroup is the central concept of the great group; it is not necessarily the most extensive. Intergrades are transitions to other orders, suborders, or great groups. Extragrades have some properties that are not representative of the great group but do not indicate transitions to any other taxonomic class. Each subgroup is identified by one or more adjectives preceding the name of the great group. The adjective Aquic identifies the subgroup that has aquic conditions. An example is Aquic Haplorthods.

FAMILY. Families are established within a subgroup on the basis of physical and chemical properties and other characteristics that affect management. Generally, the properties are those of horizons below plow depth where there is much biological activity. Among the properties and characteristics considered are particle-size class, mineralogy class, cation-exchange activity class, soil temperature regime, soil depth, and reaction class. A family name consists of the name of a subgroup preceded by terms that indicate soil properties. An example is coarse-loamy, mixed, frigid Aquic Haplorthods.

SERIES. The series consists of soils within a family that have horizons similar in color, texture, structure, reaction, consistence, mineral and chemical composition, and arrangement in the profile. An example is the Skerry series.

Soil Series and Their Morphology

In this section, each soil series recognized in the survey area is described. Characteristics of the soil and the material in which it formed are identified for each series. A pedon, a small three-dimensional area of soil that is typical of the series in
the survey area is described. The detailed description of each soil horizon follows standards in the "Soil Survey Manual" (Soil Survey Division Staff, 1993). Many of the technical terms used in the descriptions are defined in "Soil Taxonomy" (Soil Survey Staff, 1999) and in "Keys to Soil Taxonomy" (Soil Survey Staff, 1998). Unless otherwise indicated, colors in the descriptions are for moist soil. Following the pedon description is the range of important characteristics of the soils in the series.

The map units of each soil series are described in the section "Detailed Soil Map Units".

The relationship of each series to landscape position, parent material, and drainage is shown in table 28.

Abram series

The Abram series consists of very shallow, excessively drained soils. These soils formed in a thin mantle of glacial till on the crests and side slopes of mountains, hills, ridges, and knolls. Slopes range from 3 to 80 percent.

The Abram soils are commonly adjacent to Colton, Creasey, Hermon, Lyman, Naskeag, Ricker, and Tunbridge soils and areas of rock outcrop.

Colton soils are excessively drained very deep glaciofluvial deposits. Creasey soils are somewhat excessively drained shallow glacial till. They developed over sandstone and conglomerate bedrock. Hermon soils are somewhat excessively drained very deep glacial till. Hermon and Colton soils have a sandy-skeletal particle-size control section. Lyman soils are somewhat excessively drained shallow glacial till. Naskeag soils are poorly drained moderately deep glacial till. Ricker soils are well drained and very shallow. They developed from organic soil materials. Tunbridge soils are well drained moderately deep glacial till.

Typical pedon of Abram sandy loam in a wooded area of Naskeag-Abram-Ricker complex, 0 to 15 percent slopes, very stony; in the town of Jonesboro, about 2.2 miles northwest of the junction of U.S. Route 1 and 1 A and about 1.8 miles north of the Chandler River bridge on U.S. Route 1; USGS Whitneyville topographic quadrangle; lat. 44 degrees 40 minutes 52 seconds N. and long. 67 degrees 35 minutes 36 seconds W., NAD 83:

Oa—0 to 2 inches; black (5YR 2.5/1) sapric material; weak fine granular structure; very friable; common very fine, fine, medium, and coarse roots; extremely acid; abrupt wavy boundary.
E-2 to 5 inches; brown (7.5YR 5/2) sandy loam; weak fine granular structure; very friable; common medium and fine roots; 5 percent gravel; extremely acid; abrupt smooth boundary.
Bh—5 to 6 inches; reddish brown (5YR 4/4) sandy loam; weak fine granular structure; very friable; common medium and fine roots; 5 percent gravel; very strongly acid; abrupt smooth boundary.
R-6 inches; granite.
The solum thickness and depth to bedrock ranges from 1 to 10 inches. Rock fragments comprise 5 to 35 percent of the mineral soil and are mainly gravel. Reaction is extremely acid to strongly acid throughout.

The E horizon has hue of 5 YR to $10 Y R$, value of 4 to 7 , and chroma of 1 or 2 . It is loam, very fine sandy loam, fine sandy loam, or sandy loam.

The B horizon has hue of $5 Y R$ to $10 Y R$ and value and chroma of 3 to 6 . It is loam, very fine sandy loam, fine sandy loam, or sandy loam.

The bedrock is mainly granite, gneiss, phyllite, or schist and to a lesser extent sandstone and sandstone conglomerate when associated with Creasey soils in the Perry and Robbinston area.

Adams series

The Adams series consists of very deep, somewhat excessively drained soils. These soils formed in glaciofluvial sand on outwash plains, deltas, terraces, and eskers. Slopes range from 0 to 70 percent. The Adams soils are commonly adjacent to Colton, Croghan, Kinsman, Masardis, Nicholville, and Sheepscot soils. All of these soils are very deep. Colton soils are excessively drained. Croghan soils are moderately well drained. Kinsman soils are poorly drained. Masardis soils have a sandy-skeletal substratum. Nicholville soils are moderately well drained and have a coarse-silty particle-size control section. Sheepscot soils are moderately well drained. Colton, Masardis, and Sheepscot soils have a sandy-skeletal particle-size control section.

Typical pedon of Adams loamy sand in an area of Adams loamy sand, 3 to 8 percent slopes; in a blueberry field, in the town of Columbia, 2.7 miles southeast of the outlet of Schoodic Lake and 4.75 miles northeast of the junction of Maine Route 193 and the Cherryfield Ridge Road; USGS Epping topographic quadrangle; lat. 44 degrees 40 minutes 04 seconds N . and long. 67 degrees 52 minutes 25 seconds W., NAD 83:
Oa-0 to 1 inch; dark reddish brown (5YR 2.5/2) sapric material; weak fine granular structure; very friable; many very fine, fine, medium, and coarse roots; strongly acid; abrupt wavy boundary.
E-1 to 4 inches; brown (7.5YR 5/2) loamy sand; weak fine granular structure; friable; common very fine, fine, and medium and many coarse roots; 5 percent grave;; strongly acid; abrupt wavy boundary.
$\mathrm{Bh}-4$ to 7 inches; dark reddish brown (5YR 3/3) loamy sand; weak fine granular structure; very friable; common very fine, fine, medium, and coarse roots; 5 percent gravel; strongly acid; gradual wavy boundary.
Bs1-7 to 12 inches; brown (7.5YR 4/4) sand; single grain; loose; common very fine, fine, and medium and few coarse roots; 5 percent gravel; moderately acid; clear wavy boundary.
Bs2-12 to 16 inches; dark yellowish brown (10YR 4/6) sand; single grain; loose; common very fine and fine and few medium and coarse roots; 5 percent gravel; moderately acid; clear wavy boundary.
BC-16 to 22 inches; yellowish brown (10YR 5/4) sand; single grain; loose; few fine, medium, and coarse roots; 5 percent gravel; moderately acid; gradual wavy boundary.
C1-22 to 56 inches; light olive brown (2.5Y 5/4) sand; single grain; loose; 5 percent gravel; moderately acid; clear wavy boundary.
C2—56 to 65 inches; olive (5Y 5/4) sand; single grain; loose; 5 percent gravel; slightly acid.

The solum thickness ranges from 16 to 30 inches. Depth to bedrock is more than 60 inches. Rock fragments in the mineral soil comprise 0 to 5 percent above a depth of 20 inches and 0 to 20 percent below a depth of 20 inches. They are mainly gravel. Reaction in unlimed areas is extremely acid to moderately acid in the surface layer, very strongly acid to moderately acid in the subsoil, and very strongly acid to slightly acid in the substratum.

The E horizon has hue of 5 YR to 10 YR , value of 5 to 7 , and chroma of 1 or 2 . The Ap horizon, if it occurs, has hue of 10 YR , value of 2 to 5 , and chroma of 2 to 4 . They are loamy fine sand, loamy sand, fine sand, or sand.

The Bh horizon has hue of 2.5 YR to 7.5 YR , value of 2 or 3 , and chroma of 2 to 4 . The Bhs horizon, if it occurs, has hue of 2.5 YR to 7.5 YR , value of 2 or 3 , and chroma of 1 to 3 . The Bs horizon has hue of 5YR to 10YR, value of 4 to 6 , and chroma of 3 to 6 . They are loamy fine sand, loamy sand, fine sand, or sand. Ortstein consistence is less than 30 percent.

The BC horizon has hue of 10YR to 2.5 Y , value of 4 to 6 , and chroma of 2 to 6 . It is fine sand to coarse sand. Ortstein consistence is less than 20 percent.

The C horizon has hue of 10 YR to 5 Y , value of 4 to 7 , and chroma of 2 to 6 . It is fine sand to coarse sand.

Becket series

The Becket series consists of very deep, well drained soils. These soils formed in dense glacial till on the crests and side slopes of drumlins and ridges. Slope ranges from 8 to 30 percent.

Becket soils are commonly adjacent to Colonel, Lyman, Skerry, and Tunbridge soils. Colonel soils are somewhat poorly drained and very deep. Lyman soils are somewhat excessively drained and shallow to bedrock. Skerry soils are moderately well drained and very deep. Tunbridge soils are well drained and moderately deep to bedrock.

Typical pedon of Becket fine sandy loam in a wooded area of Skerry-Becket association, 3 to 15 percent slopes, very stony; in the town of Wesley, 0.4 mile north of the junction of the Wesley and Northfield town line and Maine Route 192, and 50 feet east on woods road adjacent to borrow pit; USGS Round Lake topographic quadrangle; lat. 44 degrees 52 minutes 36 seconds N . and long. 67 degrees 37 minutes 10 seconds W., NAD 83:

Oa-0 to 2 inches; very dark grayish brown (10YR $3 / 2$) sapric material; weak very fine granular structure; very friable; many very fine, fine, medium, and coarse roots; very strongly acid; abrupt smooth boundary.
E-2 to 5 inches; light brownish gray (10YR 6/2) fine sandy loam; weak very fine granular structure; very friable; many very fine, fine, and medium and common coarse roots; 10 percent gravel; very strongly acid; abrupt broken boundary.
Bh-5 to 8 inches; dark reddish brown (5YR 3/3) fine sandy loam; weak fine granular structure; friable; many very fine, fine, and medium and common coarse roots; 10 percent gravel; strongly acid; clear wavy boundary.
Bs-8 to 14 inches; yellowish brown (10YR 5/6) gravelly fine sandy loam; weak fine granular structure; friable; many very fine and fine, common medium, and few coarse roots; 15 percent gravel; moderately acid; gradual wavy boundary.
BC-14 to 24 inches; light yellowish brown (2.5Y 6/4) gravelly sandy loam; weak fine granular structure; friable; many very fine and fine and common medium roots; 25 percent gravel; moderately acid; clear wavy boundary.
Cd-24 to 65 inches; 60 percent olive ($5 \mathrm{Y} 4 / 3$) gravelly sandy loam and 40 percent grayish brown ($2.5 \mathrm{Y} 5 / 2$) gravelly loamy sand, composite texture of gravelly sandy loam; moderate thick platy structure; firm; single grain segregated loose loamy sand lenses are $1 / 8$ to 1 inch thick; 30 percent gravel; moderately acid.

The solum thickness ranges from 18 to 30 inches. Depth to bedrock is more than 60 inches. Rock fragments in the mineral soil comprise 5 to 30 percent of the solum and 5 to 35 percent of the substratum. They are mainly gravel. Reaction in unlimed areas is extremely acid to slightly acid in the solum and very strongly acid to neutral in the substratum.

The E horizon has hue of 5 YR to 10 YR , value of 5 to 7 , and chroma of 1 or 2 . It is fine sandy loam or sandy loam.

The Ap horizon, if it occurs, has hue of 7.5YR or 10YR, value of 3 or 4 , and chroma of 2 to 4 . It is fine sandy loam or sandy loam.

The Bh horizon, or Bhs horizon if it occurs, has hue of 5YR or 7.5 YR , value of 2.5 to 4 , and chroma of 2 or 3 . The Bs horizon has hue of 5 YR to 10YR, value of 3 to 5 , and chroma of 3 to 6 . They are fine sandy loam or sandy loam.

The BC horizon has hue of 10 YR or 2.5 Y , and value and chroma of 4 to 6 . It is fine sandy loam or sandy loam.

The Cd horizon has hue of 2.5 Y or 5 Y , value of 4 to 6 , and chroma of 2 to 4 . It is fine sandy loam or sandy loam in the loamy structural plates and loamy fine sand or loamy sand in the sandy structural plates. The segregated sand lenses are oriented horizontally between the structural plates and comprise 20 to 80 percent of the horizon. They range in thickness from $1 / 8$ to 3 inches. Structure is weak or moderate, thin to thick platy, or the horizon is massive or single grain in lenses. Consistence is firm or very firm and loose in the sand lenses.

Biddeford series

The Biddeford series consists of very deep, very poorly drained soils. These soils formed in glaciomarine deposits. They are in depressions on terraces and plains and in drainageways. Slopes range from 0 to 2 percent.

Biddeford soils are commonly adjacent to Lamoine, Scantic, and Wonsqueak soils. All these soils are very deep. Lamoine soils are somewhat poorly drained. Scantic soils are poorly drained. Wonsqueak soils are very poorly drained and have a thicker surface of highly decomposed organic material.

Typical pedon of Biddeford muck in a wooded area of Scantic-Biddeford association, 0 to 3 percent slopes; in the town of Dennysville, 0.8 mile northwest of the junction of the Smith Ridge Road and U.S. Route 1 and 100 feet west of the Smith Ridge Road; USGS Pembroke topographic quadrangle; lat. 44 degrees 55 minutes 31 seconds N. and long. 67 degrees 14 minutes 13 seconds W., NAD 83:

Oa-0 to 12 inches; black (10YR 2/1) muck (sapric material); weak fine granular structure; friable; many very fine and fine and common medium and coarse roots; very strongly acid; abrupt smooth boundary.
Eg-12 to 16 inches; gray (5Y 5/1) silty clay loam; moderate fine granular structure; friable, slightly sticky, slightly plastic; few fine roots; common medium prominent strong brown (7.5YR 5/8) masses of iron accumulation in the matrix and lining pores; strongly acid; clear wavy boundary.
Bg-16 to 24 inches; greenish gray (5GY 5/1) silty clay; moderate medium blocky structure; firm, sticky, plastic; few fine roots; common medium prominent yellowish brown (10YR 5/6) masses of iron accumulation in the matrix and lining pores; strongly acid; clear wavy boundary.
Cg-24 to 65 inches; greenish gray (5G 5/1) silty clay; massive; firm, sticky, plastic; few fine prominent yellowish brown (10YR $5 / 6$) masses of iron accumulation in the matrix and lining pores; slightly acid.

The solum thickness ranges from 15 to 35 inches. The depth to bedrock is more than 60 inches. The combined thickness of the Oa horizon, and the Oe or Oi horizons if they occur, ranges from 8 to 16 inches. Reaction is very strongly acid to slightly acid in the surface, strongly acid to neutral in the subsurface, strongly acid to slightly alkaline in the B horizon, and slightly acid to slightly alkaline in the C horizon.

The Oa horizon, and Oe and Oi horizons if they occur, have hue of 5YR to 10YR, value of 2 to 3 , and chroma of 1 or 2 .

The Eg horizon is neutral or has hue of $5 \mathrm{Y}, 5 \mathrm{BG}$, or 5 GY , value of 3 to 6 , and chroma of 0 to 2 . It is clay loam, silty clay, silty clay loam, or silt loam.

The Bg horizon, and BCg horizon if it occurs, are neutral or have hue of 5 Y or 5 GY , value of 4 to 6 , and chroma of 0 to 2 . They are clay, silty clay, or silty clay loam.

The Cg horizon is neutral of has hue of $5 \mathrm{Y}, 5 \mathrm{BG}, 5 \mathrm{GY}, 5 \mathrm{G}$, or 5 B , value of 4 or 5 , and chroma of 0 to 2 . It is clay, silty clay, or silty clay loam.

Brayton series

The Brayton series consists of very deep, poorly drained soils. These soils formed in dense glacial till on the toe slopes and in depressions of drumlins and till plains. Slopes range from 0 to 5 percent.

Brayton soils are commonly adjacent to Bucksport, Colonel, Dixfield, Skerry, and Wonsqueak soils. All these soils are very deep. Bucksport and Wonsqueak soils are very poorly drained and developed in highly decomposed organic materials. Colonel soils are somewhat poorly drained. Dixfield and Skerry soils are moderately well drained.

Typical pedon of Brayton fine sandy loam in a wooded area of Brayton-Colonel association, 0 to 8 percent slopes, very stony; in the town of Beddington, 1.6 miles south on Maine Route 193 from its junction with the Hancock County line and 400 feet southwest of Maine Route 193; USGS Lead Mountain topographic quadrangle; lat. 44 degrees 48 minutes 13 seconds N . and long. 68 degrees 03 minutes 12 seconds W., NAD 83:

Oa-0 to 2 inches; black (10YR 2/1) muck (sapric material); weak very fine granular structure; very friable; many very fine and fine and common medium roots; extremely acid; clear wavy boundary.
A-2 to 7 inches; very dark grayish brown (10YR $3 / 2$) fine sandy loam, light gray (10YR 7/1) dry; weak fine granular structure; friable; few very fine and common fine roots; common medium distinct grayish brown (2.5Y $5 / 2$) irregularly shaped iron depletions throughout; few fine faint dark brown (7.5YR $3 / 2$) irregularly shaped masses of iron accumulation throughout; 5 percent gravel; extremely acid; clear wavy boundary.
Bg-7 to 13 inches; grayish brown (2.5Y 5/2) fine sandy loam; moderate fine granular structure; friable; few very fine and common fine roots; common medium faint light brownish gray ($2.5 \mathrm{Y} 6 / 2$) irregularly shaped iron depletions throughout; common medium faint dark brown (10YR 4/3) irregularly shaped masses of iron accumulation throughout; 5 percent gravel; strongly acid; gradual wavy boundary.
BC-13 to 22 inches; olive brown ($2.5 \mathrm{Y} 4 / 3$) fine sandy loam; moderate medium subangular blocky structure; firm; few very fine and common fine roots; many fine faint grayish brown ($2.5 \mathrm{Y} 5 / 2$) irregularly shaped iron depletions throughout; few fine faint dark brown (10YR 4/3) irregularly shaped masses of iron accumulation throughout; 5 percent gravel; moderately acid; abrupt smooth boundary.
Cd-22 to 65 inches; olive ($5 \mathrm{Y} 5 / 3$) fine sandy loam; strong coarse prismatic structure parting to strong thick platy; firm; many medium and coarse prominent dark reddish brown (5YR $3 / 3$) irregularly shaped masses of iron accumulation throughout; few fine faint light olive gray ($5 \mathrm{Y} 6 / 2$) irregularly shaped iron depletions throughout; 10 percent gravel; moderately acid.

The solum thickness ranges from 10 to 25 inches. The depth to bedrock is more than 60 inches. Rock fragments comprise 5 to 35 percent of the mineral soil. They are mainly gravel. Reaction is extremely acid to moderately acid in the surface, strongly acid to slightly acid in the subsoil, and moderately acid to neutral in the substratum.

The A horizon has hue of 10 YR or 2.5 Y and value and chroma of 2 to 4 . The Eg horizon, if it occurs, has hue of 10 YR to 5 Y , value of 5 or 6 , and chroma of 1 or 2 . They are silt loam, loam, very fine sandy loam, or fine sandy loam.

The B horizon has hue of 10 YR to 5 Y , value of 4 to 6 , and chroma of 2 to 4 . It is silt loam, loam, very fine sandy loam, fine sandy loam, or sandy loam.

The BC horizon has hue of 2.5 Y or 5 Y , value of 4 to 6 , and chroma of 2 to 4 . It is silt loam, loam, very fine sandy loam, fine sandy loam, or sandy loam.

The Cd horizon has hue of 2.5 Y or 5 Y , value of 3 to 6 , and chroma of 2 to 4 . It is loam, very fine sandy loam, fine sandy loam, or sandy loam. Consistence is firm or very firm.

Bucksport series

The Bucksport series consists of very deep, very poorly drained soils. These soils formed in highly decomposed organic materials more than 51 inches thick. They are in bogs in depressions in glacial till, glaciofluvial deposits, and glaciomarine deposits. Slopes range from 0 to 1 percent.

The Bucksport soils are commonly adjacent to Sebago, Moosabec, and Wonsqueak soils. All these soils are very deep and very poorly drained. Sebago soils are dominantly hemic soil materials. Moosabec soils are dominantly fibric soil materials. Wonsqueak soils are dominantly sapric soil materials underlain by loamy mineral material.

Typical pedon of Bucksport muck in a bog in an area of Bucksport and Wonsqueak soils; in the town of Marshfield, 1.4 miles north on the Hadley Lake Road from the junction with U.S. Route 1 in Machias and 200 feet east into Runaway Pond Heath; USGS Machias topographic quadrangle; lat. 44 degrees 44 minutes 31 seconds N. and long. 67 degrees 26 minutes 23 seconds W., NAD 83:
Oa1-0 to 18 inches; black (5YR 2.5/1) on broken face and rubbed, muck (sapric material); 50 percent fiber, 10 percent rubbed; massive; slightly sticky; common very fine and fine and few medium roots; dark yellowish brown (10YR 4/4) sodium pyrophosphate color; extremely acid in 0.01 M calcium chloride; gradual wavy boundary.
Oa2-18 to 40 inches; dark reddish brown (5YR 2.5/2) on broken face and rubbed, muck (sapric material); 30 percent fiber, 5 percent rubbed; massive; nonsticky; dark yellowish brown (10YR 4/4) sodium pyrophosphate color; extremely acid in 0.01 M calcium chloride; abrupt wavy boundary.

Oa3-40 to 65 inches; very dusky red (2.5YR 2.5/2) on broken face and rubbed, muck (sapric material); 60 percent fiber, 5 percent rubbed; massive; nonsticky; dark yellowish brown (10YR 3/4) sodium pyrophosphate color; very strongly acid in 0.01 M calcium chloride.
The thickness of the organic material is more than 51 inches and ranges to over 12 feet. The depth to bedrock is more than 60 inches. Woody coarse fragments comprise 0 to 20 percent of the soil. Reaction is extremely acid to strongly acid in the surface tier, extremely acid to moderately acid in the subsurface tier, and very strongly acid to slightly acid in the bottom tier.

The surface tier is neutral or has hue of 2.5 YR to 10 YR , value of 2 to 4 , and chroma of 0 to 2 . It is typically sapric material but in some pedons it is hemic or fibric material.

The subsurface and bottom tiers have hue of 2.5 YR to 10 YR , value of 2 to 4 , and chroma of 1 to 3 . They are typically sapric material but in some pedons there may be thin layers of fibric material with a total thickness of less than 5 inches or thin layers of hemic material with a total thickness of less than 10 inches.

Buxton series

The Buxton series consists of very deep, moderately well drained soils. These soils formed in glaciomarine deposits on plains and terraces of coastal lowlands and river valleys. Slopes range from 5 to 15 percent.

The Buxton soils are commonly adjacent to Biddeford, Colonel, Creasey, Lamoine, Lyman, Scantic, and Tunbridge soils. Biddeford soils are very deep and very poorly drained. Colonel soils are very deep, somewhat poorly drained glacial tills. They have a coarse-loamy particle-size control section. Creasey soils are somewhat excessively drained shallow glacial tills. They have a loamy particle-size control section. They are mainly in the towns of Robbinston and Perry. Lamoine soils are very deep and
somewhat poorly drained. Lyman soils are somewhat excessively drained shallow glacial tills. They have a loamy particle-size control section. Scantic soils are very deep and poorly drained. Tunbridge soils are well drained moderately deep glacial tills. They have a coarse-loamy particle-size control section.

Typical pedon of Buxton silt loam, in a hayfield, in an area of Buxton silt loam, 8 to 15 percent slopes; in the town of Milbridge, 1.9 miles north on U.S. Route 1 from the junction of U.S. Route 1A and U.S. Route 1 in Milbridge and 0.2 mile southeast of the Milbridge/Cherryfield townline marker on U.S. Route 1; USGS Cherryfield topographic quadrangle; lat. 44 degrees 33 minutes 33 seconds N. and long. 67 degrees 54 minutes 27 seconds W., NAD 83:

Ap-0 to 9 inches; dark brown (10YR 4/3) silt loam, very pale brown (10YR 7/3) dry; moderate medium granular structure; very friable; many very fine, fine, and medium and few coarse roots; strongly acid; abrupt wavy boundary.
Bw1-9 to 13 inches; dark yellowish brown (10YR 4/4) silt loam; weak fine granular structure; friable; common very fine and fine and few medium roots; strongly acid; clear wavy boundary.
Bw2-13 to 17 inches; olive brown (2.5Y 4/3) silty clay loam; moderate medium subangular blocky structure; friable; common very fine and fine and few medium roots; strongly acid; gradual wavy boundary.
$B C-17$ to 22 inches; olive (5Y $5 / 3$) silty clay; moderate medium angular blocky structure; firm; few fine roots; common medium faint light brownish gray (2.5Y 6/2) irregularly shaped iron depletions in the matrix and along root channels; common medium and coarse faint olive brown (2.5Y 4/4) accumulations in the matrix and along root channels; few fine prominent dark reddish brown (5YR 3/2) masses of iron and manganese accumulations on the faces of peds; slightly acid; gradual wavy boundary.
C-22 to 65 inches; olive (5Y 4/3) silty clay; strong medium and coarse angular blocky structure; firm; common fine and medium distinct gray ($5 \mathrm{Y} 5 / 1$) irregularly shaped iron depletions throughout; common fine prominent dark yellowish brown (10YR 4/6) and brown (7.5YR 4/4) masses of iron accumulation throughout; common medium and coarse prominent dark reddish brown (5YR 3/2) masses of iron and manganese accumulations on the faces of peds; neutral.

The solum thickness ranges from 18 to 35 inches. The depth to bedrock is more than 60 inches. Rock fragments comprise less than 5 percent of the mineral soil. Reaction, in unlimed areas, is very strongly acid to slightly acid in the surface, strongly acid to neutral in the subsoil, and moderately acid to neutral in the substratum.

The Ap horizon, or the A horizon if it occurs, has hue of 7.5 YR to 2.5 Y , value of 2 to 5 , and chroma of 2 to 4 . It is silty clay loam or silt loam.

The Bw horizon has hue of 10YR or 2.5 Y , value of 3 to 6 , and chroma of 2 to 6 . It is silty clay, silty clay loam, or silt loam.

The BC horizon has hue of 2.5 Y or 5 Y , value of 4 to 6 , and chroma of 2 to 4 . It is silty clay, silty clay loam, or silt loam. Consistence is firm or very firm.

The C horizon has hue of 2.5 Y or 5 Y , value of 4 to 6 , and chroma of 2 to 6 . It is clay, silty clay, or silty clay loam. Consistence is firm or very firm.

Chesuncook series

The Chesuncook series consists of very deep, moderately well drained soils. These soils formed in dense glacial till on the side slopes of drumlins and ridges.
Slope ranges from 3 to 15 percent.
Chesuncook soils are commonly adjacent to Elliottsville, Monarda, Monson, and Telos soils. Elliottsville soils are moderately deep and well drained. Monarda soils are
very deep and poorly drained. Monson soils are shallow and somewhat excessively drained. Telos soils are very deep and somewhat poorly drained.

Typical pedon of Chesuncook silt loam in a wooded area of Chesuncook-Telos association, 3 to 15 percent slopes, very stony; in the town of Princeton, 1.1 miles north on the Greenland Point Road and 50 feet southwest of the road; USGS Princeton topographic quadrangle; lat. 45 degrees 12 minutes 21 seconds N . and long. 67 degrees 36 minutes 43 seconds W., NAD 83:
Oa-0 to 3 inches; dark reddish brown (5YR 2.5/2) sapric material; weak fine granular structure; very friable; many very fine, fine, medium, and coarse roots; very strongly acid; abrupt wavy boundary.
$\mathrm{E}-3$ to 5 inches; gray ($5 \mathrm{YR} 6 / 1$) silt loam; weak fine granular structure; very friable; many very fine, fine, medium, and coarse roots; 5 percent gravel and 5 percent cobbles; very strongly acid; abrupt broken boundary.
Bhs-5 to 7 inches; very dusky red (2.5YR 2.5/2) silt loam; weak fine granular structure; very friable; many very fine and fine and common medium and coarse roots; 10 percent gravel; very strongly acid; clear wavy boundary.
Bs1-7 to 10 inches; brown (7.5YR 4/4) silt loam; weak fine and medium granular structure; very friable; common very fine, many fine, and few medium roots; 10 percent gravel; strongly acid; clear wavy boundary.
Bs2-10 to 15 inches; dark yellowish brown (10YR 4/4) gravelly silt loam; weak fine granular structure; friable; common very fine and fine roots; 15 percent gravel; strongly acid; clear wavy boundary.
Bs3-15 to 22 inches; yellowish brown (10YR 5/4) gravelly silt loam; weak medium subangular blocky structure; friable; common very fine and fine roots; 15 percent gravel; strongly acid; clear wavy boundary.
BC-22 to 28 inches; olive brown (2.5Y 4/4) gravelly silt loam; weak medium platy structure; firm; common medium and coarse distinct light brownish gray (2.5Y $6 / 2$) irregularly shaped iron depletions throughout; common fine and medium distinct yellowish brown (10YR 5/6) masses of iron accumulation throughout; 20 percent gravel; strongly acid; clear smooth boundary.
Cd-28 to 65 inches; olive (5Y 4/4) gravelly silt loam; moderate very coarse prismatic structure parting to moderate medium and thick platy; firm; common medium and coarse distinct light brownish gray ($2.5 \mathrm{Y} 6 / 2$) irregularly shaped iron depletions throughout; common fine and medium distinct yellowish brown (10YR 5/4) masses of iron accumulation throughout; 25 percent gravel; moderately acid.

The solum thickness ranges from 15 to 28 inches. The depth to bedrock is more than 60 inches. Rock fragments in the mineral soil comprise 5 to 20 percent of the surface, subsurface, and upper subsoil; 10 to 25 percent of the lower subsoil; and 10 to 30 percent of the substratum. They are mainly gravel. Reaction, in unlimed areas, is extremely acid to moderately acid in the solum and very strongly acid to slightly acid in the substratum.

The A or Ap horizons, if they occur, have hue of 10YR and value and chroma of 3 or 4 . They are silt loam, loam, very fine sandy loam, or fine sandy loam.

The E horizon has hue of 5 YR to 10 YR , value of 6 or 7 , and chroma of 1 or 2 . It is silt loam, loam, very fine sandy loam, or fine sandy loam.

The Bhs horizon has hue of 2.5 YR or 5 YR and value and chroma of 2 or 3 . The Bh horizon, if it occurs, has hue of 2.5 YR to 7.5 YR , value of 2 to 5 , and chroma of 2 to 6 . The Bs horizon has hue of 5 YR to 10YR, value of 4 or 5 , and chroma of 4 to 6 . They are silt loam, loam, very fine sandy loam, or fine sandy loam.

The BC horizon has hue of 2.5 Y or 5 Y , value of 4 to 6 , and chroma of 2 to 4 . It is silt loam, loam, very fine sandy loam, or fine sandy loam.

The Cd horizon has hue of 2.5 Y or 5 Y , value of 3 to 5 , and chroma of 2 to 4 . It is silt loam or loam. Consistence is firm or very firm.

Colonel series

The Colonel series consists of very deep, somewhat poorly drained soils. These soils formed in dense glacial till on foot slopes and toe slopes of ridges and drumlins, on till plains, and on low ridges and knolls within glaciomarine plains and terraces. Slopes range from 0 to 8 percent.

Colonel soils are commonly adjacent to Brayton, Dixfield, Lamoine, Lyman, Scantic, Skerry, and Tunbridge soils. Brayton soils are poorly drained and very deep. Dixfield and Skerry soils are moderately well drained and very deep. They are dense glacial tills. Lamoine soils are somewhat poorly drained and very deep. Lyman soils are somewhat excessively drained shallow glacial tills. Scantic soils are poorly drained and very deep. They have a fine particle-size control section. Tunbridge soils are well drained moderately deep glacial tills.

Typical pedon of Colonel gravelly fine sandy loam in a wooded area of BraytonColonel association, 0 to 8 percent slopes, very stony; in the town of Marshfield, 1.1 miles southeast of the outlet of Lily Lake and 0.75 mile northeast of the east end of Marks Lake; USGS Hadley Lake topographic quadrangle; lat. 44 degrees 45 minutes 53 seconds N . and long. 67 degrees 28 minutes 45 seconds W., NAD 83:
Oa-0 to 3 inches; black (5YR 2.5/1) sapric material; weak fine granular structure; very friable; common very fine, fine, medium, and coarse roots; extremely acid; abrupt irregular boundary.
E-3 to 6 inches; gray (10YR 6/1) gravelly fine sandy loam; weak fine granular structure; very friable; common very fine and fine and few medium roots; 15 percent gravel; very strongly acid; abrupt broken boundary.
Bh-6 to 9 inches; dark reddish brown (5YR 3/3) gravelly fine sandy loam; weak fine granular structure; very friable; common very fine and fine and few medium roots; 15 percent gravel; very strongly acid; abrupt wavy boundary
Bs1-9 to 13 inches; yellowish brown (10YR 5/6) gravelly fine sandy loam; weak fine granular structure; friable; few very fine and fine roots; 15 percent gravel; strongly acid; clear wavy boundary.
Bs2-13 to 22 inches; yellowish brown (10YR 5/4) gravelly fine sandy loam; weak fine subangular blocky structure; friable; few very fine and fine roots; few fine distinct gray (10YR 6/1) irregularly shaped iron depletions throughout; few fine and medium faint brown (7.5YR 4/4) masses of iron accumulation throughout; 15 percent gravel; strongly acid; clear wavy boundary.
BC-22 to 26 inches; light olive brown (2.5Y 5/4) gravelly fine sandy loam; moderate fine and medium subangular blocky structure; friable; many fine and medium distinct yellowish red (5YR 4/6) masses of iron accumulation throughout; many fine and medium prominent gray (10YR 6/1) irregularly shaped iron depletions throughout; 15 percent gravel; strongly acid; gradual wavy boundary.
Cd-26 to 65 inches; olive ($5 \mathrm{Y} 5 / 3$) gravelly fine sandy loam; strong medium and thick platy structure; firm; common fine and medium faint olive gray ($5 \mathrm{Y} 5 / 2$) irregularly shaped iron depletions throughout; common medium distinct dark yellowish brown (10YR 4/4) masses of iron accumulation throughout; 15 percent gravel; moderately acid.
The solum thickness ranges from 15 to 30 inches. The depth to bedrock is more than 60 inches. Rock fragments comprise 5 to 30 percent of the mineral soil. They are mainly gravel. Reaction, in unlimed areas, is extremely acid to slightly acid in the solum and very strongly acid to slightly acid in the substratum.

The E horizon has hue of 5 YR to $10 Y R$, value of 5 or 6 , and chroma of 1 or 2 . The A or Ap horizons, if they occur, have hue of 7.5 YR or 10YR, value of 2 to 3 , and chroma of 2 or 3 . They are loam, fine sandy loam, or sandy loam.

The Bh horizon has hue of 2.5 YR to 7.5 YR , value of 2.5 to 5 , and chroma of 2 to 6 . The Bhs horizon, if it occurs, has hue of 2.5YR or 5YR and value of 2.5 or 3 and chroma of 2 to 3 . The Bs horizon has hue of 5 YR to 10YR, value of 4 or 5 , and chroma of 4 to 6 . They are loam, fine sandy loam, or sandy loam.

The BC horizon has hue of 2.5 Y or 5 Y , value of 4 or 6 , and chroma of 2 to 6 . It is loam, fine sandy loam, or sandy loam.

The C horizon has hue of 2.5 Y or 5 Y , value of 4 or 5 , and chroma of 2 to 4 . It is loam, fine sandy loam, or sandy loam. Consistence is firm or very firm.

Colton series

The Colton series consists of very deep excessively drained soils. These soils formed in glaciofluvial deposits on outwash plains, deltas, kettles, kames, kame terraces, and eskers. Slopes range from 0 to 70 percent.

The Colton soils are commonly adjacent to Adams, Croghan, Hermon, Kinsman, Masardis, Monadnock, Sheepscot, Wonsqueak, Bucksport, Sebago, and Moosabec soils. Adams soils are very deep and excessively drained. They have a sandy particle-size control section. Croghan soils are very deep, moderately well drained, and have a sandy particle-size control section. Hermon soils are very deep, somewhat excessively drained glacial tills. Kinsman soils are very deep, poorly drained, and have a sandy particle-size control section. Masardis soils are very deep and somewhat excessively drained. Monadnock soils are very deep, well drained glacial tills. Hermon and Monadnock soils have a coarse-loamy over sandy or sandyskeletal particle-size control section. Sheepscot soils are very deep and moderately well drained. Wonsqueak, Bucksport, Sebago, and Moosabec soils are very deep, very poorly drained, and developed from organic materials.

Typical pedon of Colton gravelly sandy loam in an area of Colton gravelly sandy loam, 3 to 8 percent slopes; in a gravel pit in a blueberry field, in the town of Columbia Falls, 1.2 miles west of Jonesboro Station and 3 miles northeast of the village of Columbia Falls; USGS Columbia Falls topographic quadrangle; lat. 44 degrees 40 minutes 18 seconds N . and long. 67 degrees 40 minutes 18 seconds W., NAD 83:
Oa-0 to 2 inches; very dark grayish brown (10YR 3/2) sapric material; weak fine granular structure; very friable; many very fine, fine, medium, and coarse roots; 10 percent gravel; very strongly acid; abrupt wavy boundary.
E-2 to 3 inches; brown (7.5YR 5/2) gravelly sandy loam; weak fine granular structure; friable; common very fine, fine, medium, and coarse roots; 10 percent gravel and 5 percent cobbles; very strongly acid; abrupt broken boundary.
Bhs- 3 to 6 inches; dark brown (7.5YR 3/2) gravelly sandy loam; weak fine granular structure; friable; common very fine, fine, and medium and few coarse roots; 15 percent gravel; strongly acid; gradual wavy boundary.
Bs1-6 to 13 inches; brown (7.5YR 4/4) gravelly loamy sand; weak fine granular structure; friable; common very fine and fine, many medium, and few coarse roots; 20 percent gravel; strongly acid; gradual wavy boundary.
Bs2-13 to 17 inches; dark yellowish brown (10YR 4/4) gravelly loamy sand; moderate fine granular structure; friable; few very fine, fine, and medium roots; 30 percent gravel; strongly acid; clear wavy boundary.
BC-17 to 26 inches; dark yellowish brown (10YR 4/4) very gravelly sand; single grain; loose; few very fine and fine roots; 35 percent gravel and 10 percent cobbles; strongly acid; clear wavy boundary.
C-26 to 65 inches; olive brown (2.5Y 4/4) extremely gravelly sand; single grain; loose; 40 percent gravel, 20 percent cobbles, and 10 percent stones; moderately acid.

The solum thickness ranges from 18 to 35 inches. The depth to bedrock is more than 60 inches. Rock fragments in the mineral soil comprise 10 to 55 percent of the surface, 15 to 55 percent of the subsoil and 35 to 70 percent of the substratum. They are mainly gravel and cobbles. Reaction, in unlimed areas, ranges from extremely acid to moderately acid in the surface and subsoil and very strongly acid to slightly acid in the substratum.

The O horizon has hue of 5 YR to 10 YR , value of 2 or 3 , and chroma of 1 or 2 .
The E horizon has hue of 5 YR to 10 YR , value of 4 to 7 , and chroma of 1 or 2 . The Ap horizon, if it occurs, has hue of 7.5 YR or 10 YR , value of 3 to 5 , and chroma of 2 to 4. They are fine sandy loam, sandy loam, loamy sand, or loamy coarse sand.

The Bhs horizon has hue of 2.5 YR to 7.5 YR , value of 2.5 or 3 , and chroma of 2 or 3. The Bh horizon, if it occurs, has hue of 2.5 YR to 10 YR , and value and chroma of 2 or 3 . They are fine sandy loam, sandy loam, loamy sand, or loamy coarse sand.

The Bs horizon has hue of 5YR to 10YR, and value and chroma of 3 to 6 . It is mainly loamy fine sand to coarse sand, but some pedons have thin layers that range to fine sandy loam.

The BC horizon has hue of 10YR or 2.5 Y , value of 4 to 6 , and chroma of 3 to 6 . It is loamy fine sand to coarse sand.

The C horizon has hue of 10 YR to 5 Y , value of 4 to 6 , and chroma of 2 to 6 . It is stratified loamy sand to coarse sand.

Creasey series

The Creasey series consists of shallow somewhat excessively drained soils. These soils formed in glacial till derived mainly from reddish brown sandstone and conglomerate. These soils are on the crests and side slopes of bedrock-controlled hills and ridges and are primarily in the towns of Perry and Robbinston. Slopes range from 0 to 15 percent.

The Creasey soils are commonly adjacent to Abram, Buxton, Lamoine, Lyman, Naskeag, Scantic, and Tunbridge soils. Abram soils are very shallow and excessively drained. Buxton soils are very deep and moderately well drained. Lamoine soils are very deep and somewhat poorly drained. Lyman soils are shallow and are somewhat excessively drained. Naskeag soils are moderately deep, poorly drained, and have a sandy particle-size control section. Scantic soils are very deep and poorly drained. Buxton, Lamoine, and Scantic soils are glaciomarine deposits and have a fine particle-size control section. Tunbridge soils are moderately deep and well drained. Abram, Lyman, and Tunbridge soils formed in till derived mainly from granite, gneiss, schist, and phyllite.

Typical pedon of Creasey gravelly silt loam in an area of Creasey gravelly silt loam, 8 to 15 percent slopes; in a hayfield in the town of Perry, 0.7 mile northwest from railroad on South Meadow Road and 0.6 mile north on farm road in field; USGS Eastport topographic quadrangle; lat. 44 degrees 59 minutes 10 seconds N . and long. 67 degrees 06 minutes 41 seconds W., NAD 83:
Ap-0 to 8 inches; dark reddish brown (5YR 3/4) gravelly silt loam, reddish brown (5 YR $5 / 3$) dry; moderate fine granular structure; friable; many very fine, fine, medium, and coarse roots; 22 percent gravel; strongly acid; abrupt smooth boundary.
Bs1-8 to 13 inches; yellowish red (5YR 4/6) gravelly silt loam; moderate fine granular structure; friable; common very fine, fine, and medium roots; 35 percent gravel; very strongly acid; abrupt wavy boundary.
Bs2-13 to 17 inches; reddish brown (5YR 4/4) gravelly silt loam; weak fine granular structure; friable; common very fine and fine roots; 32 percent gravel; very strongly acid; abrupt wavy boundary.

R-17 inches; dark reddish brown (2.5YR 3/4) sandstone.
The solum thickness and depth to bedrock ranges from 10 to 20 inches. Rock fragments comprise 10 to 35 percent of the mineral soil. Reaction, in unlimed areas, is very strongly acid to moderately acid throughout.

The Ap horizon has hue of 5YR or 7.5YR, and value and chroma of 3 or 4 . Most undisturbed areas have thin O horizons that overlie an E horizon. The E horizon, if it occurs, has hue of 2.5 YR to 7.5 YR , value or 4 to 6 , and chroma of 1 or 2 . They are silt loam, loam, fine sandy loam, or sandy loam.

The Bh horizon, if it occurs, has hue of 2.5YR to 7.5 YR , value of 3 or 4 , and chroma of 2 to 4 . The Bhs horizon, if it occurs, has hue of 2.5 YR to 7.5 YR , and value and chroma of 3 or less. The Bs horizon has hue of 2.5YR to 7.5 YR , value of 3 to 5 , and chroma of 3 to 8 . They are silt loam, loam, fine sandy loam, sandy loam, or coarse sandy loam.

The BC horizon, if it occurs, has hue of 2.5 YR to 7.5 YR , value of 3 to 5 , and chroma of 4 to 6 . It is silt loam, loam, fine sandy loam, sandy loam, or coarse sandy loam.

The bedrock is sandstone or sandstone conglomerate.

Croghan series

The Croghan series consists of very deep, moderately well drained soils. These soils formed in glaciofluvial sands on outwash deltas, plains, kame terraces, and old beaches. Slopes range from 0 to 8 percent.

Croghan soils are commonly adjacent to Adams, Colton, Kinsman, Masardis, Nicholville, and Sheepscot soils. Adams soils are very deep and somewhat excessively drained. Colton soils are very deep and excessively drained. Kinsman soils are very deep and poorly drained. Masardis soils are very deep and somewhat excessively drained. Nicholville soils are very deep, moderately well drained, and have a coarse-silty particle-size control section. Sheepscot soils are very deep and moderately well drained. Colton, Masardis, and Sheepscot soils have a sandyskeletal particle-size control section.

Typical pedon of Croghan loamy sand, in a wooded area of Sheepscot-CroghanKinsman complex, 0 to 8 percent slopes; in the town of Deblois, 0.3 mile south of the Beddington and Deblois town line on Maine Route 193, and 1.1 miles west on the field road, and 30 feet south of the road; USGS Lead Mountain topographic quadrangle; lat. 44 degrees 45 minutes 45 seconds N . and long. 68 degrees 02 minutes 53 seconds W., NAD 83:

Oa-0 to 1 inch; dark reddish brown (5YR 2.5/2) sapric material; weak very fine granular structure; very friable; many very fine and fine and common medium and coarse roots; extremely acid; clear wavy boundary.
E-1 to 3 inches; light gray (5YR 6/1) loamy sand; weak very fine granular structure; very friable; many very fine and fine and common medium and coarse roots; very strongly acid; abrupt irregular boundary.
Bh-3 to 5 inches; dark reddish brown (5 YR $3 / 3$) loamy sand; weak fine and medium granular structure; very friable; many very fine and fine and common medium roots; strongly acid; clear wavy boundary.
Bs1-5 to 11 inches; brown (7.5YR 4/4) loamy sand; weak fine and medium granular structure; friable; common fine and very fine roots; moderately acid; clear wavy boundary.
Bs2-11 to 18 inches; dark yellowish brown (10YR 4/6) loamy sand; weak fine and medium granular structure; friable; few fine and very fine roots; moderately acid; clear wavy boundary.

BC-18 to 23 inches; light olive brown (2.5Y 5/4) sand; single grain; loose; common fine and medium distinct yellowish brown (10YR $5 / 6$) irregularly shaped masses of iron accumulation throughout; few fine prominent strong brown (7.5YR 5/6) rounded masses of iron accumulation throughout; many medium distinct grayish brown (2.5Y 5/2) irregularly shaped iron depletions throughout; 5 percent gravel; moderately acid; gradual wavy boundary.
C-23 to 65 inches; grayish brown ($2.5 \mathrm{Y} 5 / 2$) sand; single grain; loose; few fine prominent strong brown (7.5YR 5/6) irregularly shaped masses of iron accumulation throughout; few fine and medium faint light brownish gray ($2.5 \mathrm{Y} 6 / 2$) irregularly shaped iron depletions throughout; 5 percent gravel; moderately acid.

The solum thickness ranges from 20 to 35 inches. The depth to bedrock is more than 60 inches. Rock fragments in the mineral soil range from 0 to 5 percent in the upper part of the solum and from 0 to 15 percent in the lower part of the solum and substratum. They are mainly gravel. Reaction is extremely acid to moderately acid in the surface and very strongly acid to moderately acid in the subsoil and substratum.

The E horizon has hue of 5 YR to 10 YR , value of 5 to 7 , and chroma of 1 or 2 . The Ap horizon, if it occurs, has hue of 7.5 YR or 10YR, value of 3 to 5 , and chroma of 2 or 3. They are loamy fine sand, loamy sand, or sand.

The Bh horizon has hue of 2.5YR to 7.5 YR , value of 2.5 or 3 , and chroma of 2 to 4 . The Bhs horizon, if it occurs, has hue of 2.5YR to 7.5 YR , value of 2.5 or 3 , and chroma of 2 or 3 . The Bs horizon has hue of 2.5 YR to 10YR, and value and chroma of 4 to 6 . They are loamy fine sand, loamy sand, or sand.

The BC horizon has hue of 10YR or 2.5Y, value of 4 to 6 , and chroma of 3 to 6 . It is loamy fine sand, loamy sand, or sand.

The C horizon has hue of 10 YR to 5 Y , value of 4 to 6 , and chroma of 2 to 6 . It is loamy sand to coarse sand.

Danforth series

The Danforth series consists of very deep well drained soils. These soils formed in glacial till on the crests and side slopes of hills, ridges, knolls, and till plains. Slopes range from 3 to 15 percent.

The Danforth soils are commonly adjacent to Chesuncook, Elliottsville, Monarda, Monson, and Telos soils. Chesuncook soils are very deep and moderately well drained. Elliottsville soils are moderately deep and well drained. Monarda soils are very deep and poorly drained. Monson soils are shallow and somewhat excessively drained. Telos soils are very deep and somewhat poorly drained. Chesuncook, Elliottsville, Telos, and Monarda soils have a coarse-loamy particle-size control section and Monson soils have a loamy particle-size control section.

Typical pedon of Danforth very fine sandy loam in a wooded area of DanforthElliottsville complex, 3 to 15 percent slopes, very stony; in the town of Baileyville, 2.0 miles south of the five corner intersection in northwest Baileyville along old railroad bed, and 100 feet west of road along woods road; USGS Woodland topographic quadrangle; lat. 45 degrees 12 minutes 58 seconds N . and long. 67 degrees 28 minutes 14 seconds W., NAD 83 :
Oa-0 to 2 inches; very dusky red (2.5YR 2.5/2) sapric material; weak fine and medium granular structure; very friable; many very fine, fine, and medium and few coarse roots; extremely acid; abrupt wavy boundary.
E-2 to 3 inches; gray (5YR 6/1) very fine sandy loam; weak fine granular structure; very friable; many very fine, fine, and medium and few coarse roots; 5 percent gravel; extremely acid; abrupt wavy boundary.

Bh-3 to 8 inches; dark brown (7.5YR 4/4) very fine sandy loam; weak fine granular structure; friable; many very fine, fine, and medium and few coarse roots; 10 percent gravel; very strongly acid; clear wavy boundary.
Bs1-8 to 14 inches; dark yellowish brown (10YR 4/4) very gravelly fine sandy loam; weak fine granular structure; friable; many very fine and fine, common medium, and few coarse roots; 25 percent gravel and 10 percent cobbles; very strongly acid; clear wavy boundary.
Bs2-14 to 22 inches; yellowish brown (10YR 5/4) very gravelly sandy loam; weak fine granular structure; friable; common very fine and fine and few medium roots; 25 percent gravel and 10 percent cobbles; very strongly acid; clear wavy boundary.
BC-22 to 27 inches; olive brown (2.5Y 4/4) very gravelly sandy loam; weak fine and medium granular structure; friable; few very fine roots; 40 percent gravel and 10 percent cobbles; strongly acid; clear wavy boundary.
C-27 to 65 inches; olive (5Y 4/3) very gravelly sandy loam; massive; loose; 40 percent gravel and 10 percent cobbles; strongly acid.
The solum thickness ranges from 16 to 30 inches. The depth to bedrock is more than 60 inches. Rock fragments comprise 5 to 55 percent of the upper 10 inches of the mineral soil and 15 to 65 percent below 10 inches. Reaction is extremely acid to strongly acid in the solum and very strongly acid to moderately acid in the substratum.

The E horizon has hue of 5 YR to 10 YR , value of 6 or 7 , and chroma of 1 or 2 . It is silt loam, loam, or very fine sandy loam.

The Bh horizon has hue of 2.5YR to 7.5 YR and value and chroma of 3 or 4 . The Bhs horizon, if it occurs, has hue of 2.5YR or 5YR and value and chroma of 2 or 3 . The Bs horizon has hue of 5 YR to 10YR, value of 4 or 5 , and chroma of 4 to 6 . They are silt loam, loam, very fine sandy loam, fine sandy loam, or sandy loam.

The BC horizon has hue of 2.5 Y or 5 Y and value and chroma of 4 to 6 . It is fine sandy loam or sandy loam.

The C horizon has hue of 2.5 Y or 5 Y , value of 4 or 5 , and chroma of 2 or 3 . It is fine sandy loam, sandy loam, coarse sandy loam, or loamy sand.

Dixfield series

The Dixfield series consists of very deep, moderately well drained soils. These soils formed in dense glacial till on the side slopes and foot slopes of upland drumlins and ridges. Slopes range from 3 to 15 percent.

Dixfield soils are adjacent to Brayton, Colonel, Marlow, and Tunbridge soils. Brayton soils are very deep and poorly drained. Colonel soils are very deep and somewhat poorly drained. Marlow soils are very deep and well drained. Tunbridge soils are moderately deep and well drained.

Typical pedon of Dixfield fine sandy loam, in a wooded area of Dixfield-Colonel complex, 0 to 8 percent slopes, very stony; in Number 14 Plantation, 1.4 miles north on Maine Route 191 from its junction with Maine Route 86 and 500 feet west of Maine Route 191; USGS Lake Cathance topographic quadrangle; lat. 44 degrees 53 minutes 23 seconds N. and long. 67 degrees 25 minutes 08 seconds W., NAD 83:
Oa-0 to 3 inches; dark brown ($7.5 \mathrm{YR} 3 / 2$) sapric material; weak fine granular structure; very friable; many very fine, fine, and medium, and common coarse roots; very strongly acid; abrupt wavy boundary.
E-3 to 6 inches; grayish brown (10YR 5/2) fine sandy loam; weak fine granular structure; friable; many very fine, fine, and medium and common coarse roots; 5 percent gravel; very strongly acid; abrupt irregular boundary.

Bh—6 to 8 inches; dark reddish brown (2.5YR 3/4) fine sandy loam; weak fine granular structure; friable; many very fine, fine, and medium and common coarse roots; 5 percent gravel; very strongly acid; clear wavy boundary.
Bs1-8 to 15 inches; brown (7.5YR 4/4) gravelly fine sandy loam; moderate very fine and fine granular structure; friable; common very fine, fine, medium, and coarse roots; 15 percent gravel; very strongly acid; gradual wavy boundary.
Bs2—15 to 20 inches; dark yellowish brown (10YR 4/4) gravelly fine sandy loam; weak fine granular structure; friable; common very fine and fine and few medium roots; 15 percent gravel; strongly acid; gradual wavy boundary.
BC—20 to 31 inches; olive brown (2.5Y 4/3) gravelly fine sandy loam; weak thin and medium platy structure; friable; few very fine and fine roots; common medium and coarse prominent dark yellowish brown (10YR 4/6) irregularly shaped masses of iron accumulation throughout; common fine faint grayish brown (2.5Y 5/2) irregularly shaped iron depletions throughout; 15 percent gravel; slightly acid; gradual wavy boundary.
Cd-31 to 65 inches; light olive brown (2.5Y 5/3) gravelly fine sandy loam; moderate medium platy structure; firm; common medium faint olive gray ($5 \mathrm{Y} 5 / 2$) irregularly shaped iron depletions throughout; common medium prominent dark yellowish brown (10YR 4/6) irregularly shaped masses of iron accumulation throughout; 15 percent gravel; slightly acid.

The solum thickness ranges from 18 to 36 inches. The depth to bedrock is more than 60 inches. Rock fragments comprise 5 to 30 percent of the mineral soil. They are mainly gravel. Reaction ranges from extremely acid to slightly acid in the surface and subsurface and from very strongly acid to slightly acid in the subsoil and substratum.

The E horizon has hue of 5 YR to 10 YR , value of 4 to 6 , and chroma of 1 or 2 . The Ap horizon, if it occurs, has hue of 7.5 YR or 10 YR and value and chroma of 2 to 4 . They are loam, fine sandy loam, or sandy loam.

The Bh horizon has hue of 2.5 YR to 7.5 YR , value of 2.5 to 4 , and chroma of 2 to 6 . The Bhs horizon, if it occurs, has hue of 2.5 YR or 5 YR , value of 2.5 or 3 , and chroma of 2 or 3 . The Bs horizon has hue of 7.5 YR or 10 YR , value of 4 or 5 , and chroma of 4 to 6. They are loam, fine sandy loam, or sandy loam.

The BC horizon has hue of 2.5 Y or 5 Y , value of 4 to 6 , and chroma of 3 to 6 . It is loam, fine sandy loam, or sandy loam.

The Cd horizon has hue of 2.5 Y or 5 Y , value of 3 to 6 , and chroma of 2 to 4 . It is loam, fine sandy loam, or sandy loam. Consistence is firm or very firm.

Elliottsville series

The Elliottsville series consists of moderately deep, well drained soils. These soils formed in glacial till on upland hills and ridges in the northern part of the survey area. Slopes range from 3 to 15 percent.

The Elliottsville soils are commonly adjacent to Abram, Chesuncook, Danforth, Monarda, Monson, and Telos soils. Abram soils are very shallow and excessively drained. Chesuncook soils are very deep and moderately well drained. Danforth soils are very deep, well drained, and have a loamy-skeletal particle-size control section. Monarda soils are very deep and poorly drained. Monson soils are shallow and somewhat excessively drained. Telos soils are very deep and somewhat poorly drained.

Typical pedon of Elliottsville silt loam in a wooded area of Elliottsville-Monson complex, 3 to 15 percent slopes, very stony; in the town of Princeton, 2.5 miles south on the South Princeton Rd. from its junction with U.S. Route 1, 0.2 mile east on woods road, and 50 feet south of woods road; USGS Princeton topographic
quadrangle; lat. 45 degrees 10 minutes 18 seconds N . and long. 67 degrees 30 minutes 31 seconds W., NAD 83:

Oa-0 to 2 inches; dark brown (7.5YR 3/2) sapric material; weak fine granular structure; very friable; many very fine, fine, medium, and coarse roots; very strongly acid; abrupt wavy boundary.
E-2 to 4 inches; brown (7.5YR 5/2) silt loam; weak fine granular structure; very friable; many very fine, fine, medium, and coarse roots; 10 percent channers; very strongly acid; abrupt wavy boundary.
Bh—4 to 6 inches; dark reddish brown (5YR 3/4) silt loam; weak fine granular structure; very friable; many very fine, fine, medium, and coarse roots; 10 percent channers; very strongly acid; clear wavy boundary.
Bs1-6 to 10 inches; dark brown (7.5YR 4/4) channery silt loam; moderate fine and medium granular structure; friable; many very fine and fine and common medium and coarse roots; 20 percent channers; very strongly acid; clear wavy boundary.
Bs2-10 to 14 inches; dark yellowish brown (10YR 4/6) channery silt loam; moderate fine and medium granular structure; friable; common very fine and fine and few medium and coarse roots; 20 percent channers; very strongly acid; gradual wavy boundary.
BC-14 to 19 inches; light olive brown (2.5Y 5/4) channery silt loam; moderate fine and medium subangular blocky structure; friable; few very fine and fine roots; 25 percent channers; very strongly acid; gradual wavy boundary.
C-19 to 31 inches; olive brown (2.5Y 4/4) channery silt loam; weak thin or medium platy structure; firm; few very fine and fine roots; 30 percent channers; strongly acid.
R-31 inches; phyllite bedrock.
The solum thickness ranges from 14 to 29 inches. The depth to bedrock ranges from 20 to 40 inches. Rock fragments comprise 5 to 35 percent of the mineral soil. Reaction is extremely acid to strongly acid in the solum and very strongly acid to moderately acid in the substratum.

The E horizon has hue of 7.5 YR or 10 YR , value of 4 to 6 , and chroma of 2 or 3 . The Ap horizon, if it occurs, has hue of 10YR, and value and chroma of 3 or 4 . They are silt loam, loam, or very fine sandy loam.

The Bh horizon has hue of 2.5 YR or 5 YR , and value and chroma of 3 or 4 . The Bhs horizon, if it occurs, has hue of 2.5 YR to 10YR, and value and chroma of 2 to 3 . The Bs horizon has hue of 5 YR to $10 Y R$, value of 4 or 5 , and chroma of 4 to 6 . They are silt loam, loam, or very fine sandy loam.

The BC horizon has hue of 2.5 Y or 5 Y , value of 5 or 6 , and chroma of 4 to 6 . It is silt loam, loam, or very fine sandy loam.

The C horizon has hue of 2.5 Y or 5 Y , value of 4 to 6 , and chroma of 2 to 4 . It is silt loam, loam, or very fine sandy loam.

The bedrock is mostly phyllite and schist.

Gouldsboro series

The Gouldsboro series consists of very deep, very poorly drained soils. These soils formed in silty marine sediments in tidal marshes subject to daily tidal flooding.
Slopes are 0 to 1 percent.
The Gouldsboro soils are commonly adjacent to Biddeford, Buxton, Lamoine, and Scantic soils. Biddeford soils are very deep and very poorly drained. Buxton soils are very deep and moderately well drained. Lamoine soils are very deep and somewhat poorly drained. Scantic soils are very deep and poorly drained. All of these soils developed from glaciomarine deposits. They are in higher topographic positions and above the tidal influence of the ocean.

Typical pedon of Gouldsboro silt loam; in a tidal marsh, in the town of Harrington, 0.5 mile northeast of Nash Point on the western shore of the Harrington River; USGS Harrington topographic quadrangle; lat. 44 degrees 36 minutes 06 seconds N . and long. 67 degrees 47 minutes 17 seconds W., NAD 83:
A—0 to 6 inches; grayish brown (10YR 5/2) silt loam, light brownish gray (10YR 6/2) dry; massive; slightly sticky, slightly plastic; many very fine and fine and few medium roots; strongly acid; gradual wavy boundary.
Cg1-6 to 16 inches; very dark grayish brown ($2.5 \mathrm{Y} 3 / 2$) silt loam; massive; slightly sticky, slightly plastic; slightly acid; clear wavy boundary.
Cg2-16 to 19 inches; dark gray (5Y 4/1) silt loam; massive; sticky, plastic; neutral; abrupt wavy boundary.
Cg3-19 to 27 inches; very dark grayish brown ($2.5 \mathrm{Y} 3 / 2$) silt loam; massive; slightly sticky, slightly plastic; slightly acid; clear wavy boundary.
Cg4-27 to 55 inches; dark gray (5Y 4/1) silt loam; massive; sticky, plastic; neutral; clear wavy boundary.
Cg5-55 to 65 inches; gray (5Y 5/1) silt loam; massive; sticky, plastic; mildly alkaline.
The depth to bedrock is more than 60 inches. Reaction is strongly acid to slightly
acid in the surface and moderately acid to moderately alkaline in the substratum.
Some pedons have layers of organic material less than 16 inches thick.
The A horizon has hue of 10 YR to 5 Y , value of 2 to 6 and chroma of 1 to 3 . It is silty clay loam, silt loam, or mucky silt loam.

The C horizon is neutral or has hue of 2.5 Y to 5 BG , value of 3 to 5 and chroma of 0 to 3 . It is silty clay loam, silt loam, or mucky silt loam.

Hermon series

The Hermon series consists of very deep, somewhat excessively drained soils. These soils formed in glacial till on hills, ridges, knolls, and moraines. Slopes range from 3 to 45 percent.

The Hermon soils are commonly adjacent to Abram, Becket, Colton, Monadnock, Masardis, Sheepscot, and Skerry soils. Abram soils are very shallow and excessively drained. Becket soils are very deep and well drained. Colton soils are very deep and excessively drained. Masardis soils are very deep and somewhat excessively drained. Monadnock soils are very deep, well drained, and have a coarse-loamy over sandy or sandy-skeletal particle-size control section. Sheepscot soils are very deep and moderately well drained. Colton, Masardis, and Sheepscot soils formed in glaciofluvial deposits. Skerry soils are very deep and moderately well drained. Becket and Skerry soils have a coarse-loamy particle-size control section.

Typical pedon of Hermon sandy loam in an area of Hermon-Monadnock-Skerry complex, 3 to 15 percent slopes, very bouldery; in the town of Jonesboro, 0.4 mile northwest of the junction of U.S. Route 1A and U.S. Route 1 on the edge of the power line; USGS Whitneyville topographic quadrangle; lat. 44 degrees 40 minutes 35 seconds N. and long. 67 degrees 33 minutes 12 seconds W NAD 83 (fig. 10):
Oa-0 to 2 inches; black (5YR 2.5/1) sapric material; weak fine granular structure; very friable; many very fine, fine, medium, and coarse roots; extremely acid; abrupt wavy boundary.
E-2 to 6 inches; reddish gray (5YR 5/2) sandy loam; weak fine granular structure; friable; many very fine, fine, medium, and coarse roots; 5 percent gravel; extremely acid; abrupt broken boundary.

Bh-6 to 8 inches; dark reddish brown (5YR 3/3) sandy loam; weak fine granular structure; very friable; many very fine and fine and common medium and coarse roots; 5 percent gravel; extremely acid; abrupt broken boundary.

Figure 10.-A soil profile of Hermon sandy loam from a wooded area of Hermon-Monadnock complex, 8 to 15 percent slopes, very bouldery.

Bs1—8 to 10 inches; brown (7.5YR 4/4) gravelly sandy loam; moderate fine granular structure; friable; common very fine and fine and few medium and coarse roots; 15 percent gravel; strongly acid; clear wavy boundary.

Bs2-10 to 18 inches; dark yellowish brown (10YR 4/4) very gravelly loamy sand; single grain; loose; few very fine and fine roots; 30 percent gravel, 10 percent cobbles; very strongly acid; gradual wavy boundary.

C1-18 to 32 inches; light olive brown (2.5Y5/4) extremely gravelly coarse sand; single grain; loose; few very fine and fine roots; 55 percent gravel, 10 percent cobbles; strongly acid; clear wavy boundary.
C2—32 to 65 inches; olive (5Y 4/3) very gravelly sand; single grain; loose; 35 percent gravel, 5 percent cobbles; strongly acid.

The solum thickness ranges from 14 to 32 inches. The depth to bedrock is more than 60 inches. Rock fragments comprise 5 to 50 percent of the upper 10 inches of the mineral soil and from 15 to 70 percent below 10 inches. Reaction, in unlimed areas, is extremely acid to strongly acid in the surface and subsurface, extremely acid to moderately acid in the subsoil, and strongly acid or moderately acid in the substratum.

The E horizon has hue of 5 YR to 10 YR , value of 5 to 7 , and chroma of 1 or 2 . The Ap horizon, if it occurs, has hue of 10 YR , value of 3 or 4 , and chroma of 2 or 3 . They are fine sandy loam or sandy loam.

The Bh horizon has hue of 2.5 YR to 7.5 YR , value of 2.5 to 5 , and chroma of 2 to 6 . The Bhs horizon, if it occurs, has hue of 2.5YR to 7.5 YR , value of 2.5 or 3 , and chroma of 2 or 3 . They are fine sandy loam, sandy loam, or coarse sandy loam. The Bs horizon has hue of 5 YR to 10 YR , and value and chroma of 4 to 6 . It is fine sandy loam, sandy loam, coarse sandy loam, loamy sand, loamy coarse sand, sand, or coarse sand. Some B horizons have discontinuous cementation.

The BC horizon, if it occurs, has hue of 10YR or 2.5 Y , value of 4 to 6 , and chroma of 3 to 6 . It is sandy loam, coarse sandy loam, loamy sand, loamy coarse sand, sand, or coarse sand. Some BC horizons have discontinuous cementation.

The C horizon has hue of 2.5 Y or 5 Y , value of 4 to 6 , and chroma of 2 to 4 . It is loamy sand, loamy coarse sand, sand, or coarse sand.

Hogback series

The Hogback series consists of shallow somewhat excessively drained soils. These soils formed in glacial till on the crests and side slopes of hills, ridges, and knolls within 2 miles of the maritime coastline. Slopes range from 3 to 60 percent.

The Hogback soils are commonly adjacent to Abram, Lamoine, Marlow, Naskeag, Ricker, and Rawsonville soils and areas of rock outcrop. Abram soils are very shallow and excessively drained. Marlow soils are very deep and well drained. Lamoine soils are very deep, somewhat poorly drained, and have a fine particle-size control section. Naskeag soils are moderately deep, poorly drained, and have a sandy particle-size control section. Ricker soils are very shallow, well drained organic soils. Rawsonville soils are moderately deep and well drained.

Typical pedon of Hogback fine sandy loam in a wooded area of Naskeag-Rawsonville-Hogback complex, 0 to 8 percent slopes, very stony; in the town of Harrington on Ripley Neck, 400 feet east of town road where it meets the first camp road to west; USGS Harrington topographic quadrangle; lat. 44 degrees 32 minutes 36 seconds N. and long. 67 degrees 47 minutes 54 seconds W., NAD 83 :
Oa-0 to 1 inch; black (5YR 2.5/1) sapric material; weak very fine granular structure; very friable; many very fine, fine and medium roots; very strongly acid; abrupt smooth boundary.
E-1 to 2 inches; reddish gray (5YR 5/2) fine sandy loam; weak very fine granular structure; very friable; many very fine, fine and medium roots; 5 percent gravel; very strongly acid; abrupt wavy boundary.
Bhs-2 to 14 inches; dusky red (2.5YR 3/2) fine sandy loam; weak very fine granular structure; very friable; common very fine, fine and medium, and few coarse roots; 5 percent gravel; very strongly acid; abrupt wavy boundary.
R-14 inches; granite.
The solum thickness and depth to bedrock range from 10 to 20 inches. Rock fragments comprise 5 to 30 percent of the mineral soil. They are mainly gravel. Reaction in unlimed areas is extremely acid to strongly acid throughout.

The E horizon has hue of 5 YR to 10 YR , value of 4 to 6 , and chroma of 1 or 2 . It is mainly loam, very fine sandy loam, fine sandy loam or sandy loam.

The A horizon, if it occurs, has hue of 5YR to 10YR, value of $2,2.5$ or 3 , and chroma of 1 or 2. It is mainly loam, very fine sandy loam, fine sandy loam, or sandy loam.

The Bhs horizon has hue of 2.5YR or 5YR, with value and chroma of 3 or less. It is mainly loam, very fine sandy loam, fine sandy loam, sandy loam or coarse sandy loam. It is moderately or weakly smeary.

The Bs horizon, where present, has hue of 5 YR or 7.5 YR , value of 3 to 5 , and chroma of 4 to 6 . It is mainly loam, very fine sandy loam, fine sandy loam, sandy loam or coarse sandy loam. It is moderately or weakly smeary.

The bedrock is granite, schist, gneiss or phyllite.

Kinsman series

The Kinsman series consists of very deep poorly drained soils. These soils formed in glaciofluvial deposits in slightly concave areas on stream terraces, kame terraces, outwash plains, outwash deltas, old beach terraces, and depressions at the base of glaciated upland hills. Slopes range from 0 to 3 percent.

The Kinsman soils are commonly adjacent to Adams, Croghan, Nicholville, Sheepscot, and Wonsqueak soils. Adams soils are very deep and excessively drained. Croghan soils are very deep and moderately well drained. Nicholville soils are very deep, moderately well drained, and have a coarse-silty particle-size control section. Sheepscot soils are very deep, moderately well drained, and have a sandyskeletal particle-size control section. Wonsqueak soils are very deep and very poorly drained. They formed in highly decomposed organic material over loamy mineral material.

Typical pedon of Kinsman sand in a wooded area of Kinsman-Wonsqueak association, 0 to 3 percent slopes; in the town of Jonesport, 1.6 miles east on the Kelly Point Road from its junction with Maine Route 187 at the head of Sawyer Cove and 50 feet east of the road; USGS Jonesport topographic quadrangle; lat. 44 degrees 32 minutes 21 seconds N . and long. 67 degrees 33 minutes 59 seconds W.,NAD 83:

Oa-0 to 4 inches; black (5YR 2.5/1) muck (sapric material); weak fine granular structure; very friable; many very fine, fine, medium, and coarse roots; very strongly acid; abrupt smooth boundary.
E-4 to 8 inches; light brownish gray (10YR 6/2) sand; moderate fine and medium granular structure; very friable; many very fine, fine, and medium and common coarse roots; very strongly acid; abrupt wavy boundary.
$\mathrm{Bh}-8$ to 12 inches; dark reddish brown (5YR 2.5/2) sand; moderate fine and medium granular structure; friable, less than 40 percent ortstein consistence; common very fine and fine and few medium and coarse roots; very strongly acid; clear wavy boundary.
Bhs-12 to 18 inches; dark reddish brown (5YR $3 / 3$) sand; massive; friable, less than 40 percent ortstein consistence; few very fine, fine, and medium roots; few medium prominent dark grayish brown (2.5Y 4/2) irregularly shaped iron depletions throughout; 5 percent gravel; very strongly acid; clear wavy boundary.
Bs-18 to 32 inches; brown (7.5YR 4/4) sand; massive; friable, less than 40 percent ortstein consistence; few fine and medium roots; common medium prominent grayish brown ($2.5 \mathrm{Y} 5 / 2$) irregularly shaped iron depletions throughout; 5 percent gravel; strongly acid; gradual wavy boundary.
BC-32 to 42 inches; olive brown (2.5Y 4/4) sand; massive; loose; common fine and medium distinct grayish brown (2.5Y $5 / 2$) irregularly shaped iron depletions throughout; 10 percent gravel; very strongly acid; gradual wavy boundary.
C-42 to 65 inches; olive ($5 \mathrm{Y} 5 / 3$) gravelly sand; single grain; loose; common fine and medium faint olive gray (5 Y $5 / 2$) irregularly shaped iron depletions throughout; 25 percent gravel; very strongly acid.

The solum thickness ranges from 18 to 42 inches. The depth to bedrock is more than 60 inches. Rock fragments in the mineral soil comprise 0 to 15 percent of the solum and 5 to 35 percent of the substratum. They are mainly gravel. Reaction is
extremely to moderately acid in the solum and very strongly to moderately acid in the substratum.

The E horizon has hue of 5 YR to 10 YR , value of 4 to 6 , and chroma of 1 to 3 . It is loamy fine sand, loamy sand, or sand.

The Bh horizon has hue of 2.5 YR or 5 YR , value of 2.5 or 3 , and chroma of 1 or 2 . The Bhs horizon has hue of 5YR or 7.5YR, value of 2.5 or 3 , and chroma of 1 to 3 . The Bs horizon has hue of 5YR to 10YR and value and chroma of 4 to 6 . They are loamy fine sand, loamy sand, fine sand, or sand. Ortstein consistence is less than 40 percent.

The BC horizon has hue of $10 Y R$ or 2.5 Y , value of 4 to 6 , and chroma of 3 to 6 . It is loamy fine sand, loamy sand, fine sand, or sand. Ortstein consistence is less than 40 percent.

The C horizon has hue of $10 Y R$ to $5 Y$, value of 4 to 6 and chroma of 2 to 4 . It is loamy sand, sand, or coarse sand.

Lamoine series

The Lamoine series consists of very deep, somewhat poorly drained soils. These soils formed in glaciomarine deposits on plains and terraces of coastal lowlands and river valleys. Slopes range from 0 to 8 percent.

The Lamoine soils are commonly adjacent to Biddeford, Buxton, Colonel, Creasey, Lyman, Tunbridge, and Scantic soils. Biddeford soils are very deep and very poorly drained. Buxton soils are very deep and moderately well drained. Colonel soils are very deep somewhat poorly drained glacial tills and have a coarse-loamy particle-size control section. Creasey soils are shallow, somewhat excessively drained glacial tills and have a loamy particle-size control section. They are mainly in the towns of Robbinston and Perry. Lyman soils are shallow somewhat excessively drained glacial tills and have a loamy particle-size control section. Tunbridge soils are moderately deep well drained glacial tills and have a coarse-loamy particle-size control section. Scantic soils are very deep and poorly drained.

Typical pedon of Lamoine silt loam in a hay field of Lamoine silt loam, 0 to 6 percent slopes; in the town of Machias, 0.4 mile east on U.S. Route 1 from its junction with the Hadley Lake Road and 200 feet south of the road; USGS Machias topographic quadrangle; lat. 44 degrees 43 minutes 21 seconds N. and long. 67 degrees 26 minutes 17 seconds W., NAD 83.

Ap-0 to 7 inches; brown (10YR 4/3) silt loam, light brownish gray (10YR 6/2) dry; moderate fine and medium granular structure; friable; common very fine and fine roots; moderately acid; clear wavy boundary.
Bw-7 to 10 inches; dark yellowish brown (10YR 4/4) silt loam; moderate medium granular structure; friable; common very fine and fine and few medium roots; common fine distinct light brownish gray (2.5Y 6/2) irregularly shaped iron depletions in the matrix and along root channels; common fine distinct yellowish brown (10YR 5/6) masses of iron accumulation in the matrix and along root channels; moderately acid; clear wavy boundary.
$\mathrm{Bg}-10$ to 16 inches; light olive brown (2.5Y 5/4) silt loam; moderate medium subangular blocky structure; friable; common very fine and fine and few medium roots; light brownish gray (2.5Y 6/2) faces of peds; common fine and medium distinct dark yellowish brown (10YR 4/6) masses of iron accumulation in the matrix and along root channels; common fine distinct olive gray ($5 \mathrm{Y} 5 / 2$) irregularly shaped iron depletions along root channels; strongly acid; gradual wavy boundary.
BCg-16 to 21 inches; olive (5Y 5/3) silty clay loam; moderate medium platy structure; firm; few very fine and fine roots; gray (5Y 5/1) faces of peds; common
fine and medium faint light olive brown (2.5Y 5/4) masses of iron accumulation in the matrix and along root channels; common fine faint olive gray ($5 \mathrm{Y} 5 / 2$) irregularly shaped iron depletions along root channels; few medium distinct very dark gray ($5 \mathrm{Y} 3 / 1$) oxide coats; strongly acid; gradual wavy boundary.
Cg-21 to 65 inches; olive ($5 \mathrm{Y} 4 / 3$) silty clay; strong coarse prismatic structure parting to moderate medium platy; firm; olive gray ($5 \mathrm{Y} 4 / 2$) faces of peds; common distinct gray ($5 \mathrm{Y} 6 / 1$) iron depletions on prism faces; common fine and medium prominent yellowish brown (10YR $5 / 6$) masses of iron accumulation along prism faces and in the matrix; common medium distinct very dark gray (5 Y $3 / 1$) oxide coats; moderately acid.
The solum thickness ranges from 16 to 30 inches. The depth to bedrock is more than 60 inches. Rock fragments comprise less than 5 percent of the mineral soil. Reaction, in unlimed areas, is very strongly acid to slightly acid in the surface, strongly acid to neutral in the subsoil, and moderately acid to neutral in the substratum.

The Ap horizon, or A horizon if it occurs, has hue of 10YR or 2.5 Y , and value and chroma of 2 to 4 . They are silty clay loam or silt loam.

The B horizon has hue of 10 YR to 5 Y , value of 3 to 6 , and chroma of 2 to 6 . It is silty clay, silty clay loam, or silt loam.

The BC horizon has hue of 2.5 Y or 5 Y , value of 4 to 6 , and chroma of 1 to 4 . It is silty clay, silty clay loam, or silt loam. Consistence is firm or very firm.

The C horizon has hue of 2.5 Y or 5 Y , value of 3 to 6 , and chroma of 1 to 4 . It is clay, silty clay, or silty clay loam. Consistence is firm or very firm.

Lyman series

The Lyman series consists of shallow somewhat excessively drained soils. These soils formed in glacial till on the crests and side slopes of hills, ridges, and knolls. Slopes range from 3 to 60 percent.

The Lyman soils are commonly adjacent to Abram, Becket, Lamoine, Marlow, Naskeag, Ricker, and Tunbridge soils and areas of rock outcrop. Abram soils are very shallow and excessively drained. Becket and Marlow soils are very deep and well drained. Lamoine soils are very deep, somewhat poorly drained, and have a fine particle-size control section. Naskeag soils are moderately deep, poorly drained, and have a sandy particle-size control section. Ricker soils are very shallow, well drained organic soils. Tunbridge soils are moderately deep and well drained.

Typical pedon of Lyman fine sandy loam in a wooded area of Lyman-TunbridgeAbram complex, 3 to 15 percent slopes, very stony; in the town of Northfield, 0.25 mile north of the confluence of New Stream and Joe Meadow Brook; USGS Peaked Mountain Pond topographic quadrangle; lat. 44 degrees 51 minutes 52 seconds N . and long. 67 degrees 37 minutes 17 seconds W., NAD 83:
Oa-0 to 2 inches; dark reddish brown (5YR 2.5/2) sapric material; weak fine granular structure; very friable; many very fine, fine, medium, and coarse roots; very strongly acid; abrupt wavy boundary.
E-2 to 3 inches; brown (7.5YR 5/2) fine sandy loam; weak very fine granular structure; very friable; many very fine, fine, medium, and coarse roots; 10 percent gravel; very strongly acid; abrupt smooth boundary.
$\mathrm{Bh}-3$ to 4 inches; dark reddish brown (5YR $3 / 3$) fine sandy loam; weak very fine granular structure; very friable; many very fine, fine, and medium and common coarse roots; 10 percent gravel; strongly acid; clear wavy boundary.
Bs1-4 to 8 inches; dark yellowish brown (10YR 4/6) gravelly fine sandy loam; weak fine granular structure; very friable; many very fine, fine, and medium and common coarse roots; 15 percent gravel; strongly acid; clear wavy boundary.

Bs2—8 to 12 inches; yellowish brown (10YR 5/6) gravelly fine sandy loam; weak fine granular structure; friable; many very fine and fine, common medium, and few coarse roots; 20 percent gravel; moderately acid; gradual wavy boundary.
BC-12 to 17 inches; light olive brown (2.5Y 5/4) gravelly fine sandy loam; weak fine granular structure; very friable; common very fine and fine and few medium and coarse roots; 20 percent gravel; moderately acid; abrupt wavy boundary.
R-17 inches; schist.
The solum thickness and depth to bedrock range from 10 to 20 inches. Rock fragments comprise 5 to 30 percent of the mineral soil. They are mainly gravel. Reaction in unlimed areas is extremely acid to moderately acid throughout.

The E horizon has hue of 5 YR to 10 YR , value of 4 to 6 , and chroma of 1 or 2 . The Ap horizon, if it occurs, has hue of 10YR, value of 2 or 3 , and chroma of 2 . They are mainly loam, very fine sandy loam, fine sandy loam, or sandy loam.

The Bh horizon has hue of 5 YR to 10 YR and value and chroma of 2 or 3 . The Bhs horizon, if it occurs, has hue of 2.5YR to 7.5 YR , and value and chroma of 2 or 3 . The Bs horizon has hue of 5 YR to 10 YR , value of 3 to 5 , and chroma of 3 to 6 . They are mainly loam, very fine sandy loam, fine sandy loam, or sandy loam.

The BC horizon has hue of 10YR or 2.5 Y , value of 3 to 5 , and chroma of 3 or 4 . It is mainly loam, very fine sandy loam, fine sandy loam, or sandy loam.

The bedrock is mostly granite, schist, phyllite, or gneiss.

Marlow series

The Marlow series consists of very deep, well drained soils. These soils formed in dense glacial till on upland drumlins and ridges. Slopes range from 8 to 30 percent.

Marlow soils are commonly adjacent to Colonel, Dixfield, Lyman, and Tunbridge soils. Colonel soils are very deep and somewhat poorly drained. Dixfield soils are very deep and moderately well drained. Lyman soils are shallow and somewhat excessively drained. Tunbridge soils are moderately deep and well drained.

Typical pedon of Marlow fine sandy loam, in a wooded area of Dixfield-Marlow association, 3 to 15 percent slopes, very stony; in Number 14 Plantation, 0.25 mile east of the outlet of Little Cathance Lake; USGS Porcupine Mountain topographic quadrangle; lat. 44 degrees 56 minutes 37 seconds N. and long. 67 degrees 21 minutes 12 seconds W., NAD 83:

Oa-0 to 1 inch; dark reddish brown (5YR 3/2) sapric material; weak fine granular structure; very friable; many very fine and fine and common medium and coarse roots; strongly acid; abrupt wavy boundary.
E-1 to 3 inches; brown (7.5YR 5/2) fine sandy loam; weak fine granular structure; very friable; many very fine and fine and common medium and coarse roots; 10 percent gravel; strongly acid; clear wavy boundary.
Bh-3 to 5 inches; dark brown (7.5YR 3/2) fine sandy loam; moderate fine granular structure; friable; many very fine and fine and common medium and coarse roots; 10 percent gravel; strongly acid; clear wavy boundary.
Bs1-5 to 10 inches; brown (7.5YR 4/4) fine sandy loam; weak fine granular structure; friable; common very fine, fine, medium, and coarse roots; 10 percent gravel; strongly acid; gradual wavy boundary.
Bs2-10 to 17 inches; dark yellowish brown (10YR 4/4) fine sandy loam; weak fine granular structure; friable; common very fine, fine, and medium and few coarse roots; 10 percent gravel; strongly acid; gradual wavy boundary.
BC-17 to 23 inches; light olive brown (2.5Y5/4) fine sandy loam; weak medium platy structure parting to moderate fine granular; friable; common very fine and fine, and few medium roots; 10 percent gravel; strongly acid; clear wavy boundary.

Cd-23 to 65 inches; olive brown (2.5Y 4/4) fine sandy loam; moderate thick platy structure; firm; 10 percent gravel; strongly acid.

The solum thickness ranges from 20 to 38 inches. The depth to bedrock is more than 60 inches. Rock fragments comprise 5 to 30 percent of the mineral soil. Reaction ranges from extremely acid to moderately acid throughout the soil.

The E horizon has hue of 7.5 YR to 10 YR , value of 5 to 7 and chroma of 1 or 2 . The Ap horizon, if it occurs, has hue of 7.5 YR or 10YR, value of 3 or 4 , and chroma of 2 to 4. They are loam or fine sandy loam.

The Bh horizon has hue of 5 YR to 10 YR , value of 2 to 4 , and chroma of 2 or 3 . The Bhs horizon, if it occurs, has hue of 5 YR to 10 YR , and value and chroma of 2 to 3 . The Bs horizon has hue of 5 YR to 10 YR , value of 3 to 5 , and chroma of 3 to 6 . They are loam, fine sandy loam, or sandy loam.

The BC horizon has hue of 2.5 Y or 5 Y , value of 3 to 6 , and chroma of 3 or 4 . It is loam, fine sandy loam, or sandy loam.

The Cd horizon has hue of 2.5 Y or 5 Y , value of 3 to 5 , and chroma of 2 to 4 . It is loam, fine sandy loam, or sandy loam. Consistence is firm or very firm.

Masardis series

The Masardis series consists of very deep, somewhat excessively drained soils. These soils formed in glaciofluvial deposits on outwash plains, deltas, kames, kame terraces, kettles, and eskers. Slopes range from 0 to 70 percent.

The Masardis soils are commonly adjacent to Adams, Bucksport, Hermon, Monadnock, Sheepscot, and Wonsqueak soils. Adams soils are very deep, somewhat excessively drained, and have a sandy particle-size control section. Bucksport and Wonsqueak soils are very deep, very poorly drained, and developed in organic materials. Hermon soils are very deep, somewhat excessively drained, and have a sandy-skeletal particle-size control section. Monadnock soils are very deep, well drained, and have a coarse-loamy over sandy or sandy-skeletal particle-size control section. Sheepscot soils are very deep and moderately well drained.

Typical pedon of Masardis fine sandy loam in an area of Masardis fine sandy loam, 0 to 3 percent slopes (fig. 11); in a blueberry field, in Township 19 M.D., 0.7 mile east of the north end of Montegail Pond and 0.8 mile west of the south end of Grassy Pond; USGS Montegail Pond topographic quadrangle; lat. 44 degrees 45 minutes 50 seconds N. and long. 67 degrees 45 minutes 29 seconds W., NAD 83 :

Oa-0 to 1 inch; dark reddish brown (5YR 2.5/2) sapric material; weak fine granular structure; very friable; many very fine, fine, medium, and coarse roots; very strongly acid; abrupt smooth boundary.
E-1 to 2 inches; reddish gray (5 YR 5/2) fine sandy loam; weak fine granular structure; very friable; many very fine, fine, medium, and coarse roots; 5 percent gravel; strongly acid; abrupt broken boundary.
Bh-2 to 4 inches; dark reddish brown (5 YR $3 / 3$) fine sandy loam; weak fine granular structure; very friable; many very fine, fine, and medium and common coarse roots; 5 percent gravel; strongly acid; clear wavy boundary.
Bs1-4 to 9 inches; brown (7.5YR 4/4) fine sandy loam; weak fine granular structure; friable; many very fine, fine, and medium and few coarse roots; 10 percent gravel; strongly acid; gradual wavy boundary.
Bs2-9 to 12 inches; dark yellowish brown (10YR 4/4) gravelly fine sandy loam; weak fine granular structure; friable; many very fine and fine and common medium and coarse roots; 15 percent gravel; strongly acid; gradual wavy boundary.
BC-12 to 16 inches; olive brown (2.5Y 4/4) very gravelly sandy loam; weak fine granular structure; friable; common very fine and fine and few medium roots; 35 percent gravel; moderately acid; gradual wavy boundary.

Figure 11.-A profile of the Masardis soil from a unit of Masardis fine sandy loam, 3 to 8 percent slopes.

C—16 to 65 inches; olive brown (2.5Y 4/3) very gravelly sand; single grain; loose; 45 percent gravel; moderately acid.

The solum thickness ranges from 15 to 25 inches. The depth to bedrock is more than 60 inches. Rock fragments in the mineral soil comprise 5 to 40 percent of the upper part of the solum and from 35 to 65 percent of the lower part of the solum and the substratum. Some pedons have discontinuous cementation in the B and C horizons. Reaction ranges from extremely acid to moderately acid in the solum and very strongly acid to moderately acid in the substratum.

The E horizon has hue of 5 YR to 10 YR , value of 5 to 7 , and chroma of 1 or 2 . The Ap horizon, if it occurs, has hue of 7.5 YR or 10 YR , value of 3 to 5 , and chroma of 2 to 4. They are silt loam, very fine sandy loam, fine sandy loam, or sandy loam.

The Bh horizon has hue of 2.5 YR to 7.5 YR , value of 2.5 to 4 , and chroma of 2 to 4 . The Bhs horizon, if it occurs, has hue of 2.5 YR or 5 YR , value of 3 , and chroma of 2 or 3. The Bs horizon has hue of 5YR to 10YR, and value and chroma of 4 to 6 . They are very fine sandy loam, fine sandy loam, sandy loam, or coarse sandy loam.

The BC horizon has hue of 10YR or 2.5 Y , value of 4 to 6 , and chroma of 3 to 6 . It is fine sandy loam, sandy loam, coarse sandy loam, or loamy sand.

The C horizon has hue of 2.5 Y or 5 Y , value of 3 to 5 , and chroma of 2 to 4 . It is loamy coarse sand, sand, or coarse sand.

Medomak series

The Medomak series consists of very deep, very poorly drained soils. These soils formed in alluvial sediments on flood plains. Slopes range from 0 to 2 percent.

The Medomak soils are commonly adjacent to Biddeford, Bucksport, Scantic, and Wonsqueak soils. Biddeford soils are very deep, very poorly drained, and have a fine particle-size control section. Bucksport and Wonsqueak soils are very deep, very poorly drained, and developed in organic materials. Scantic soils are very deep, poorly drained, and have a fine particle-size control section.

Typical pedon of Medomak silt loam in a wooded area of Medomak and Wonsqueak soils, frequently flooded; in the town of Columbia, 0.5 mile southwest of Saco Falls on the Pleasant River and 0.7 mile northwest of Coffin Brook Pond; USGS Epping topographic quadrangle; lat. 44 degrees 41 minutes 40 seconds N . and long. 67 degrees 47 minutes 48 seconds W., NAD 83:
Oa-0 to 3 inches; black (10YR 2/1) muck (sapric material); weak fine granular structure; very friable; many very fine, fine, medium, and coarse roots; extremely acid; clear smooth boundary.
A-3 to 15 inches; very dark grayish brown (10YR 3/2) silt loam, grayish brown (10YR $5 / 2$) dry; weak fine granular structure; very friable, non-sticky, non-plastic; common very fine, fine, medium, and coarse roots; common fine and medium distinct dark brown (7.5YR 3/4) thread-shaped masses of iron accumulation along root channels; common fine prominent grayish brown (2.5Y 5/2) irregularly shaped iron depletions throughout; extremely acid; gradual wavy boundary.
Cg1-15 to 30 inches; dark grayish brown (2.5Y 4/2) silt loam; massive; friable, slightly sticky, slightly plastic; few very fine and fine roots; common fine and medium prominent strong brown (7.5YR 4/6) thread-shaped masses of iron accumulation along root channels; common fine faint grayish brown (2.5Y 5/2) irregularly shaped iron depletions throughout; very strongly acid; clear wavy boundary.
Cg2—30 to 38 inches; very dark grayish brown (10YR 3/2) silt loam; massive; friable, slightly sticky, slightly plastic; common fine and medium prominent dark yellowish brown (10YR 4/6) thread-shaped masses of iron accumulation along root channels; few fine faint dark grayish brown (2.5Y 4/2) irregularly shaped iron depletions throughout; strongly acid; gradual wavy boundary.
Cg3—38 to 58 inches; very dark grayish brown (2.5Y 3/2) silt loam; massive; friable, slightly sticky, slightly plastic; common fine and medium faint grayish brown (2.5Y $5 / 2$) irregularly shaped iron depletions throughout; moderately acid; gradual wavy boundary.
Cg4-58 to 65 inches; dark gray (5Y 4/1) very fine sandy loam; massive; friable, slightly sticky, slightly plastic; common fine and medium faint olive gray (5Y 5/2) irregularly shaped iron depletions throughout; moderately acid.
The depth to bedrock is more than 60 inches. Rock fragments comprise 0 to 5 percent of the mineral soil. Reaction ranges from extremely acid to slightly acid in the upper part of the soil and from extremely acid to neutral in the very lowest part of the soil.

The A horizon is neutral or has hue of 7.5 YR to 2.5 Y , value of 2 to 3 , and chroma of 1 to 2 . It is silt loam or very fine sandy loam.

The Cg horizon is neutral or has hue of 10YR to 5 GY , value of 3 to 6 , and chroma of 0 to 2 . It is silt loam, very fine sandy loam, or loamy very fine sand.

Monadnock series

The Monadnock series consists of very deep well drained soils. These soils formed in glacial till on the crests and side slopes of moraines, hills, knolls, and ridges. Slopes range from 3 to 45 percent.

Monadnock soils are commonly adjacent to Becket, Colton, Hermon, and Skerry soils. Becket soils are very deep, well drained, and have a coarse-loamy particle-size control section. Colton soils are very deep, excessively drained and have a sandyskeletal particle-size control section. Colton soils developed in glaciofluvial deposits. Hermon soils are very deep, somewhat excessively drained, and have a sandy skeletal particle-size control section. Skerry soils are very deep, moderately well drained, and have a coarse-loamy particle-size control section.

Typical pedon of Monadnock fine sandy loam, in an area of Hermon-MonadnockSkerry complex, 3 to 15 percent slopes, very bouldery; in the town of Jonesboro, 0.4 mile northeast of the junction of U.S. Route 1A and U.S. Route 1 on the south edge of the power line; USGS Whitneyville topographic quadrangle; lat. 44 degrees 40 minutes 32 seconds N . and long. 67 degrees 32 minutes 30 seconds W., NAD 83:
Oa-0 to 2 inches; black (5YR 2.5/1) sapric material; weak very fine granular structure; very friable; many very fine, fine, medium, and coarse roots; extremely acid; abrupt wavy boundary.
E-2 to 5 inches; gray (5 YR 6/1) fine sandy loam; weak fine granular structure; very friable; many very fine, fine, medium, and coarse roots; 5 percent gravel; extremely acid; abrupt broken boundary.
$\mathrm{Bh}-5$ to 8 inches; dark reddish brown ($5 \mathrm{YR} 3 / 3$) fine sandy loam; weak fine granular structure; very friable; many very fine and fine and common medium and coarse roots; 5 percent gravel; very strongly acid; clear wavy boundary.
Bs1-8 to 12 inches; yellowish red (5YR 4/6) fine sandy loam; weak fine granular structure; very friable; many very fine, fine, and medium and few coarse roots; 10 percent gravel; very strongly acid; clear wavy boundary.
Bs2-12 to 16 inches; yellowish brown (10YR 5/6) fine sandy loam; weak fine granular structure; friable; common very fine and fine roots; 10 percent gravel; strongly acid; clear wavy boundary.
BC-16 to 22 inches; yellowish brown (10YR 5/4) gravelly loamy sand; massive; loose; common very fine and fine roots; 20 percent gravel and 5 percent cobbles; very strongly acid; clear wavy boundary.
2C1-22 to 27 inches; light olive brown (2.5Y 5/4) very gravelly loamy coarse sand; single grain; loose; 35 percent gravel and 10 percent cobbles; very strongly acid; gradual wavy boundary.
2C2-27 to 65 inches; olive (5Y 5/4) very gravelly loamy coarse sand; single grain; loose; 45 percent gravel and 10 percent cobbles; very strongly acid.

The solum thickness ranges from 15 to 30 inches. The depth to bedrock is more than 60 inches. Rock fragments in the mineral soil comprise 0 to 30 percent of the solum and 15 to 60 percent of the substratum. They are mainly gravel. Reaction in unlimed areas is extremely acid to moderately acid throughout.

The E horizon has hue of 5 YR to 10 YR , value of 5 to 7 , and chroma of 1 or 2 . The Ap horizon, if it occurs, has hue of 10YR, and value and chroma of 2 to 4 . They are loam, very fine sandy loam, fine sandy loam, or sandy loam.

The Bh horizon has hue of 2.5YR to 7.5 YR , value of 2.5 to 4 , and chroma of 2 to 4 . The Bhs horizon, if it occurs, has hue of 2.5 YR to 7.5 YR , and value and chroma of 2 or 3 . The Bs horizon has hue of 5 YR to 10YR, value of 3 to 5 , and chroma of 3 to 6 . They are loam, very fine sandy loam, or fine sandy loam

The BC horizon has hue of 10 YR or 2.5 Y , value of 4 to 6 , and chroma of 3 to 6 . It is fine sandy loam, sandy loam, loamy fine sand, or loamy sand.

The C horizon has hue of 2.5 Y or 5 Y , value of 4 to 6 , and chroma of 2 to 4 . It is loamy sand, loamy fine sand, or loamy coarse sand.

Monarda series

The Monarda series consists of very deep, poorly drained soils. These soils formed in dense glacial till in depressions on till plains and on toe slopes and foot slopes of low ridges and drumlins. They are mainly in the northern part of the survey area. Slopes range from 0 to 7 percent.

The Monarda soils are commonly adjacent to Chesuncook, Elliottsville, Telos, and Wonsqueak soils. Chesuncook soils are very deep and moderately well drained. Elliottsville soils are moderately deep and well drained. Telos soils are very deep and somewhat poorly drained. Wonsqueak soils are very deep, very poorly drained, and formed in highly decomposed organic material underlain by loamy mineral material.

Typical pedon of Monarda silt loam in a wooded area of Monarda-Telos association, 0 to 8 percent slopes, very stony; in the town of Princeton, 0.8 mile south on U.S. Route 1 from the junction of U.S. Route 1 and the South Princeton Road, and 100 feet southwest of U.S. Route 1; USGS Princeton topographic quadrangle; lat. 45 degrees 11 minutes 57 seconds N. and long. 67 degrees 30 minutes 58 seconds W., NAD 83:
Oa-0 to 1 inch; very dark gray (10YR 3/1) muck (sapric material); weak fine granular structure; very friable; many very fine, fine, medium, and coarse roots; very strongly acid; clear wavy boundary.
A-1 to 6 inches; very dark grayish brown (10YR 3/2) silt loam, light brownish gray (10YR 6/2) dry; weak fine granular structure; very friable; many very fine, fine, medium, and coarse roots; common fine faint dark grayish brown (10YR 4/2) irregularly shaped iron depletions throughout; 10 percent gravel; very strongly acid; abrupt wavy boundary.
Eg-6 to 10 inches; light brownish gray (2.5Y 6/2) gravelly silt loam; weak fine subangular blocky structure; friable; common very fine and fine and few medium roots; common medium faint olive gray ($5 \mathrm{Y} 5 / 2$) irregularly shaped iron depletions throughout; common medium prominent yellowish brown (10YR 5/6) irregularly shaped masses of iron accumulation in the matrix and along root channels; 20 percent gravel and 5 percent cobbles; strongly acid; clear smooth boundary.
Bg1-10 to 18 inches; light yellowish brown (2.5Y 6/3) gravelly silt loam; weak fine and medium granular structure; friable; few very fine and fine roots; light brownish gray ($2.5 \mathrm{Y} 6 / 2$) faces of peds; many medium prominent yellowish brown (10YR $5 / 6$) irregularly shaped masses of iron accumulation in the matrix and along root channels; common medium faint light olive gray ($5 \mathrm{Y} 6 / 2$) irregularly shaped iron depletions throughout; 15 percent gravel and 5 percent cobbles; strongly acid; clear smooth boundary.
Bg2—18 to 20 inches; light olive brown (2.5Y 5/3) gravelly silt loam; moderate fine and medium subangular blocky structure; friable; slightly sticky, slightly plastic; light brownish gray ($2.5 \mathrm{Y} 6 / 2$) faces of peds; common fine faint dark yellowish brown (10YR 4/4) irregularly shaped masses of iron accumulation throughout; common fine faint light olive gray (5Y 6/2) irregularly shaped iron depletions throughout; 15 percent gravel and 5 percent cobbles; strongly acid; clear smooth boundary.
BC—20 to 23 inches; olive brown (2.5Y 4/4) gravelly silt loam; massive; firm; slightly sticky, nonplastic; few fine distinct yellowish brown (10YR 5/6) irregularly shaped masses of iron accumulation throughout; common medium prominent reddish brown (5YR 4/4) irregularly shaped masses of iron accumulation throughout; 10 percent gravel and 5 percent cobbles; strongly acid; clear smooth boundary.

Cd-23 to 65 inches; olive (5Y 4/3) gravelly silt loam; strong coarse prismatic structure parting to weak thick platy; firm; slightly sticky, slightly plastic; common fine and medium distinct light brownish gray (2.5Y 6/2) irregularly shaped iron depletions throughout; common medium prominent yellowish brown (10YR 5/6) irregularly shaped masses of iron accumulation throughout; 10 percent gravel and 5 percent cobbles; moderately acid.
The solum thickness ranges from 12 to 30 inches. The depth to bedrock is more than 60 inches. Rock fragments in the mineral soil comprise 5 to 70 percent of the surface and subsurface, and 5 to 35 percent of the subsoil and substratum. Reaction ranges from extremely acid to moderately acid in the surface and subsurface, very strongly acid to moderately acid in the subsoil, and strongly acid to neutral in the substratum.

The A horizon has hue of 10 YR or 2.5 Y , value of 3 or 4 , and chroma of 2 or 3 . The Eg horizon has hue of 10 YR to 5 Y , value of 5 to 7 , and chroma of 1 or 2 . They are silt loam, loam, very fine sandy loam, or fine sandy loam.

The B horizon has hue of 10 YR to 5 Y , value of 4 to 6 , and chroma of 2 to 4 . It is silt loam, loam, or very fine sandy loam.

The BC horizon has hue of 2.5 Y or 5 Y , value of 4 or 5 , and chroma of 2 to 4 . It is silt loam, loam, or very fine sandy loam.

The Cd horizon has hue of 2.5 Y or 5 Y , value of 4 to 6 , and chroma of 1 to 4 . It is silt loam, loam, or very fine sandy loam. It is firm or very firm.

Monson series

The Monson series consists of shallow, somewhat excessively drained soils. These soils formed in glacial till on the crests and shoulder slopes of knolls, hills, and ridges on upland till plains. They are mainly in the northern part of the survey area. Slopes range from 3 to 15 percent.

The Monson soils are commonly adjacent to Abram, Chesuncook, Elliottsville, and Telos soils and areas of rock outcrop. Abram soils are very shallow and excessively drained. Chesuncook soils are very deep and moderately well drained. Elliottsville soils are moderately deep and well drained. Telos soils are very deep and somewhat poorly drained.

Typical pedon of Monson channery silt loam in a wooded area of ElliottsvilleMonson complex, 3 to 15 percent slopes, very stony; in the town of Princeton, 2.5 miles south on the South Princeton Road from its junction with U.S. Route 1, 0.25 mile east on woods road, and 30 feet north of woods road; USGS Princeton topographic quadrangle; lat. 45 degrees 10 minutes 20 seconds N. and long. 67 degrees 30 minutes 28 seconds W., NAD 83:

Oa-0 to 2 inches; black (5YR 2.5/1) sapric material; weak fine granular structure; very friable; many very fine and fine and common medium and coarse roots; extremely acid; abrupt wavy boundary.
E-2 to 3 inches; pinkish gray (7.5YR 6/2) channery silt loam; weak fine granular structure; very friable; many very fine and fine and common medium and coarse roots; 15 percent channers; strongly acid; abrupt wavy boundary.
Bh-3 to 4 inches; dark reddish brown (5YR 3/4) channery silt loam; weak fine granular structure; very friable; many very fine and fine and common medium and coarse roots; 15 percent channers; strongly acid; abrupt wavy boundary.
Bs1-4 to 7 inches; brown (7.5YR 4/4) channery loam; weak fine granular structure; very friable; common very fine, fine, and medium and few coarse roots; 20 percent channers; strongly acid; clear wavy boundary.

Bs2—7 to 11 inches; strong brown (7.5YR 5/6) channery loam; weak fine granular structure; very friable; common very fine, fine, and medium and few coarse roots; 25 percent channers; strongly acid; clear wavy boundary.
BC-11 to 15 inches; light olive brown (2.5Y 5/4) channery loam; weak fine granular structure; friable; few fine and common medium roots; 20 percent channers; strongly acid; abrupt wavy boundary.
R-15 inches; phyllite.
The solum thickness and depth to bedrock is 10 to 20 inches. Rock fragments comprise 5 to 35 percent of the mineral soil. They are mainly channers. Reaction is extremely acid to moderately acid throughout.

The E horizon has hue of 5 YR to 10 YR , value of 5 to 7 , and chroma of 1 or 2 . It is silt loam, loam, or very fine sandy loam.

The Bh horizon has hue of 2.5YR to 7.5 YR , value of 2.5 to 4 , and chroma of 2 to 4 . The Bhs horizon, if it occurs, has hue of 2.5 YR to 7.5 YR , and value and chroma of 2 or 3. The Bs horizon has hue of 5YR to 10YR, and value and chroma of 4 to 6 . They are silt loam, loam, or very fine sandy loam.

The BC horizon has hue of 2.5 Y or 5 Y , value of 5 or 6 , and chroma or 3 or 4 . It is silt loam, loam, or very fine sandy loam.

The bedrock is mostly phyllite and schist.

Moosabec series

The Moosabec series consists of very deep, very poorly drained soils. These soils formed in slightly decomposed organic materials from Sphagnum moss on the more elevated areas of raised bogs. Slopes range from 0 to 1 percent.

The Moosabec soils are commonly adjacent to Bucksport, Sebago, and Wonsqueak soils. All these soils are very deep and very poorly drained. These soils are mainly on the perimeter of raised bogs. Bucksport soils are dominantly sapric soil materials. Sebago soils are dominantly hemic soil materials. Wonsqueak soils are dominantly sapric soil materials underlain by loamy mineral material.

Typical pedon of Moosabec peat in an open raised bog of Sebago and Moosabec soils; in the town of Jonesport, 500 feet west of the entrance to the Greenwood Cemetery on Maine Route 187; USGS Jonesport topographic quadrangle; lat. 44 degrees 33 minutes 05 seconds N. and long. 67 degrees 34 minutes 48 seconds W., NAD 83:

Oi1-0 to 12 inches; very dusky red (2.5YR 2.5/2) broken face peat (fibric material), dark brown (7.5YR 3/4) rubbed, and yellowish brown (10YR 5/6) pressed; 95 percent fiber, 80 percent rubbed; massive; nonplastic; nonsticky; white (10YR 8/2) sodium pyrophosphate color; ultra acid in 0.01 M calcium chloride; abrupt smooth boundary.
Oi2-12 to 56 inches; dark reddish brown (5YR 3/4) broken face peat (fibric material), dark yellowish brown (10YR 4/4) rubbed, and brownish yellow (10YR 6/6) pressed; 100 percent fiber, 95 percent rubbed; massive; nonplastic; nonsticky; white ($10 \mathrm{YR} 8 / 2$) sodium pyrophosphate color; ultra acid in 0.01 M calcium chloride; abrupt smooth boundary.
Oe-56 to 58 inches; dark reddish brown (5YR 2.5/2) broken face and rubbed mucky peat (hemic material), and dark reddish brown (5YR 3/2) pressed; 70 percent fiber, 40 percent rubbed; massive; nonplastic; nonsticky; very pale brown (10YR $7 / 3$) sodium pyrophosphate color; ultra acid in 0.01 M calcium chloride; abrupt smooth boundary.
O'i-58 to 65 inches; dark reddish brown (5 YR $3 / 3$) broken face peat (fibric material), dark yellowish brown (10YR 4/4) rubbed, and yellowish brown (10YR 5/6) pressed; 100 percent fiber, 95 percent rubbed; massive; nonplastic; nonsticky;
white (10YR 8/1) sodium pyrophosphate color; extremely acid in 0.01 M calcium chloride.

The thickness of the organic material is greater than 63 inches and ranges to over 20 feet. The depth to bedrock is more than 60 inches. Woody coarse fragments comprise 0 to 20 percent of the surface tier and 0 to 10 percent of the subsurface tier and bottom tier. Reaction (in 0.01 M calcium chloride) is extremely acid or ultra acid throughout.

The surface, subsurface, and bottom tiers have hue of 2.5YR to 10YR, value of 2 to 6 , and chroma of 2 to 4 . The soil is mainly fibric material derived from Sphagnum mosses. There may be thin layers of sapric material, primarily in the surface tier, that have an aggregate thickness of less than 5 inches. There may be thin layers of hemic material, primarily in the bottom tier, that have an aggregate thickness of less than 10 inches.

Naskeag series

The Naskeag series consists of moderately deep, poorly drained soils. These soils formed in glacial till in depressions on bedrock-controlled ridges. Slopes range from 0 to 8 percent.

The Naskeag soils are commonly adjacent to Abram, Lyman, Ricker, and Tunbridge soils, and areas of rock outcrop. Abram soils are very shallow and excessively drained. Lyman soils are shallow and somewhat excessively drained. Ricker soils are very shallow and well drained. Tunbridge soils are moderately deep and well drained.

Typical pedon of Naskeag sandy loam in a wooded area of Naskeag-Abram-Ricker complex, 0 to 15 percent slopes, very stony; in the town of Jonesboro, 2.5 miles on the Look Point Road from its junction with U.S. Route $1,0.7$ mile west to the end of the gravel road, and on the north bank of the turnaround; USGS Whitneyville topographic quadrangle; lat. 44 degrees 37 minutes 52 seconds N . and long. 67 degrees 34 minutes 11 seconds W., NAD 83:
Oa-0 to 3 inches; black (10YR 2/1) muck (sapric material); weak fine granular structure; very friable; many very fine, fine, medium, and coarse roots; extremely acid; abrupt wavy boundary.
E1-3 to 8 inches; grayish brown (10YR 5/2) sandy loam; weak fine granular structure; friable; many very fine and fine and common medium and coarse roots; few fine distinct brown (7.5YR 4/4) irregularly shaped masses of iron accumulation throughout; common fine and medium distinct pinkish gray (5YR $6 / 2$) irregularly shaped iron depletions throughout; 10 percent gravel; extremely acid; clear wavy boundary.
E2-8 to 11 inches; dark grayish brown (10YR 4/2) gravelly fine sandy loam; weak fine granular structure; friable; common very fine and fine and few medium and coarse roots; few fine and medium distinct pinkish gray (7.5YR 6/2) irregularly shaped iron depletions throughout; few fine distinct brown (7.5YR 4/4) irregularly shaped masses of iron accumulation throughout; 15 percent gravel; extremely acid; abrupt wavy boundary.
Bhs1-11 to 18 inches; very dusky red (2.5YR 2.5/2) loamy sand; massive; loose and weakly cemented in 40 percent of the horizon; few very fine, fine, and medium roots; 10 percent gravel; very strongly acid; gradual wavy boundary.
Bhs2-18 to 22 inches; dark reddish brown (5YR 3/2) gravelly loamy sand; massive; loose and weakly cemented in 40 percent of the horizon; 15 percent gravel; very strongly acid; clear wavy boundary.
Bs-22 to 32 inches; dark yellowish brown (10YR 4/4) gravelly loamy sand; massive; loose and weakly cemented in 30 percent of the horizon; common medium and
coarse distinct dark brown (7.5YR 3/2) irregularly shaped masses of iron accumulation throughout; few fine distinct grayish brown ($2.5 \mathrm{Y} 5 / 2$) irregularly shaped iron depletions throughout; 15 percent gravel; strongly acid; clear wavy boundary.
BC-32 to 38 inches; yellowish brown (10YR 5/4) gravelly loamy sand; massive; loose; common fine and medium distinct light brownish gray ($2.5 \mathrm{Y} 6 / 2$) irregularly shaped iron depletions throughout; common fine faint light olive brown (2.5Y 5/4) irregularly shaped masses of iron accumulation throughout; 15 percent gravel; very strongly acid; abrupt wavy boundary.
R-38 inches; granite.
The solum thickness and depth to bedrock ranges from 20 to 40 inches. Rock fragments comprise 5 to 30 percent of the mineral soil. Reaction ranges from extremely acid to strongly acid in the surface and subsurface, and is very strongly acid or strongly acid in the subsoil.

The E horizon has hue of 5 YR to 10 YR , value of 4 to 6 , and chroma of 1 or 2 . It is fine sandy loam, sandy loam, or loamy sand.

The Bhs horizon has hue of 2.5 YR to 7.5 YR , value of 2.5 or 3 , and chroma of 2 or 3. The Bh horizon, if it occurs, has hue of 2.5 YR to 7.5 YR , value of 2.5 to 4 , and chroma of 2 to 4 . The Bs horizon has hue of 5 YR to 10 YR , value of 3 to 5 , and chroma of 3 to 6 . They are loamy sand. Consistence is loose or weakly cemented in less than 50 percent of the horizon.

The BC horizon has hue of 7.5 YR to 2.5 Y , value of 3 to 6 , and chroma of 3 or 4 . It is loamy sand or sand. Consistence is loose or weakly cemented in less than 50 percent of the horizon.

The bedrock is mostly granite, schist, phyllite, or gneiss.

Nicholville series

The Nicholville series consists of very deep, moderately well drained soils. These soils formed in glaciolacustrine or glaciofluvial deposits on plains and terraces and along drainageways. Slopes range from 0 to 15 percent.

Nicholville soils are commonly adjacent to Adams, Buxton, Colton, Croghan, Lamoine, and Masardis soils. Adams soils are very deep and excessively drained. Buxton soils are very deep and moderately well drained. Colton soils are very deep and excessively drained. Croghan soils are very deep and moderately well drained. Adams and Croghan soils have a sandy particle-size control section. Lamoine soils are very deep and somewhat poorly drained. Buxton and Lamoine soils have a fine particle-size control section. Masardis soils are very deep and somewhat excessively drained. Colton and Masardis soils have a sandy-skeletal particle-size control section.

Typical pedon of Nicholville very fine sandy loam in a wooded area of NicholvilleCroghan complex, 0 to 5 percent slopes; in T25 M.D., 1.5 miles northwest of the junction of T25 M.D., T19 M.D., and Northfield; USGS Peaked Mountain Pond topographic quadrangle; lat. 44 degrees 49 minutes 24 seconds N . and long. 67 degrees 44 minutes 02 seconds W., NAD 83:
Oa-0 to 2 inches; very dusky red (2.5YR 2.5/2) sapric material; weak fine granular structure; very friable; many very fine, fine, medium, and coarse roots; extremely acid; abrupt smooth boundary.
$\mathrm{E}-2$ to 3 inches; brown (7.5YR 5/2) very fine sandy loam; weak fine granular structure; very friable; many very fine, fine, medium, and coarse roots; very strongly acid; abrupt broken boundary.
Bhs-3 to 4 inches; dusky red ($2.5 \mathrm{YR} 3 / 2$) very fine sandy loam; weak very fine granular structure; very friable; many very fine, fine, and medium and common coarse roots; very strongly acid; abrupt broken boundary.

Bs1—4 to 8 inches; brown (7.5YR 4/4) very fine sandy loam; weak fine granular structure; very friable; many very fine and fine and common medium and coarse roots; strongly acid; clear wavy boundary.
Bs2-8 to 17 inches; yellowish brown (10YR 5/4) very fine sandy loam; weak fine granular structure; friable; many very fine and fine, common medium, and few coarse roots; strongly acid; clear wavy boundary.
BC—17 to 30 inches; light olive brown (2.5Y 5/4) loamy very fine sand; moderate medium platy structure parting to moderate medium subangular blocky; friable; common very fine and fine roots; common fine and medium distinct olive gray (5 Y $5 / 2$) irregularly shaped iron depletions throughout; common medium and coarse faint dark yellowish brown (10YR 4/4) masses of iron accumulation in the matrix and along root channels; moderately acid; gradual wavy boundary.
C-30 to 65 inches; olive brown (2.5Y 4/4) loamy very fine sand; massive; firm; many medium and coarse prominent gray (5Y5/1) irregularly shaped iron depletions throughout; many medium and coarse distinct dark yellowish brown (10YR 4/6) masses of iron accumulation throughout; moderately acid.

The solum thickness ranges from 15 to 30 inches. The depth to bedrock is more than 60 inches. Rock fragments comprise 0 to 10 percent of the mineral soil. Reaction, in unlimed areas, is extremely acid to moderately acid in the surface and subsurface, very strongly acid to moderately acid in the subsoil, and very strongly acid to slightly acid in the substratum.

The E horizon has hue of 5 YR to $10 Y R$, value of 5 to 7 , and chroma of 1 or 2 . The A or Ap horizon, if it occurs, has hue of 7.5 YR or 10 YR , value of 3 or 4 , and chroma of 2 or 3 . They are silt loam or very fine sandy loam.

The Bhs horizon has hue of 2.5 YR to 7.5 YR , value of 2.5 or 3 , and chroma of 2 or 3. The Bh horizon, if it occurs, has hue of 2.5 YR to 7.5 YR , value of 3 or 4 , and chroma of 2 to 4 . The Bs horizon has hue of 5 YR to 10 YR , value of 4 or 5 , and chroma of 4 to 6 . They are silt loam, very fine sandy loam, or loamy very fine sand.

The BC horizon has hue of 2.5 Y or 10 YR , value of 4 or 5 , and chroma of 3 or 4 . It is silt loam, very fine sandy loam, loamy very fine sand, or very fine sand.

The C horizon has hue of 2.5 Y or 5 Y , value of 4 or 5 , and chroma of 2 to 4 . It is silt loam, very fine sandy loam, loamy very fine sand, loamy sand, or very fine sand.

Rawsonville series

The Rawsonville series consists of moderately deep, well drained soils. These soils formed in glacial till on hills, ridges, and knolls within 2 miles of the maritime coastline. Slopes range from 3 to 30 percent.

The Rawsonville soils are commonly adjacent to Abram, Colonel, Dixfield, Lamoine, Hogback, Marlow, Naskeag, Ricker and Scantic soils. Abram soils are very shallow and excessively drained. Marlow soils are very deep and well drained. Colonel soils are very deep and somewhat poorly drained. Dixfield soils are very deep and moderately well drained. Lamoine soils are very deep and somewhat poorly drained. Hogback soils are shallow and somewhat excessively drained. Naskeag soils are moderately deep and poorly drained. Ricker soils are very shallow, well drained organic soils. Scantic soils are very deep and poorly drained. Lamoine and Scantic soils have a fine particle-size control section.

Typical pedon of Rawsonville fine sandy loam in a wooded area of Lamoine-Scantic-Rawsonville complex, 0 to 8 percent slopes, very stony; in the town of Machias, 1,500 feet northeast of the East Kennebec Road where it crosses a drainage way 0.5 mile from the Roque Bluffs Road; USGS Machias topographic quadrangle; lat. 44 degrees 41 minutes 10 seconds N. and long. 67 degrees 27 minutes 11 seconds W., NAD 83:

Oa-0 to 2 inches; dark reddish brown (5YR 2.5/2) sapric material; weak fine granular structure; very friable; many very fine, fine, medium and coarse roots; very strongly acid; abrupt smooth boundary.
E-2 to 4 inches; pinkish gray (7.5 YR 6/2) fine sandy loam; weak very fine granular structure; very friable; many very fine, fine, and medium and common coarse roots; 5 percent gravel; very strongly acid; abrupt broken boundary.
Bhs-4 to 8 inches; dark reddish brown (5YR 3/2) fine sandy loam; weak fine granular structure; very friable; many very fine and fine, common medium and few coarse roots; 5 percent gravel; very strongly acid; abrupt wavy boundary.
Bs1-8 to 15 inches; reddish brown (5YR 4/4) fine sandy loam; weak fine granular structure; friable; many very fine and fine, common medium, and few coarse roots; 10 percent gravel; very strongly acid; clear wavy boundary.
Bs2-15 to 24 inches; strong brown (7.5YR 4/6) fine sandy loam; weak fine granular structure; friable; common very fine, fine and medium, and few coarse roots; 15 percent gravel; very strongly acid; gradual wavy boundary.
BC-24 to 30 inches; yellowish brown (10YR 5/4) gravelly sandy loam; weak fine granular structure; friable; common very fine and fine roots; 20 percent gravel and 5 percent cobbles; strongly acid; gradual wavy boundary.
C-30 to 36 inches; brown (10YR 4/3) gravelly sandy loam; massive; firm; few very fine and fine roots; 25 percent gravel and 5 percent cobbles; strongly acid; abrupt smooth boundary.
R-36 inches; schist.
The solum thickness ranges from 18 to 30 inches. The depth to bedrock ranges from 20 to 40 inches. Rock fragments comprise 5 to 35 percent of the mineral soil. They are mainly gravel. Reaction, in unlimed areas, ranges from extremely acid to strongly acid in the solum and very strongly acid to strongly acid in the substratum.

The E horizon has hue of 5 YR to 10 YR , value of 4 to 6 , and chroma of 1 or 2 . It is mainly loam, very fine sandy loam, fine sandy loam or sandy loam.

The A horizon, if it occurs, has hue of 5YR to 10YR, value of $2,2.5$ or 3 , and chroma of 1 or 2 . It is mainly loam, very fine sandy loam, fine sandy loam, or loam.

The Bhs horizon has hue of 2.5YR or 5YR, with value and chroma of 3 or less. The Bs horizon has hue of 5 YR or 7.5 YR , value of 4 to 6 and chroma of 4 to 8 . They are loam, very fine sandy loam, fine sandy loam or sandy loam, and moderately or weakly smeary.

The BC horizon, if it occurs, has hue of 10YR or 2.5 Y , value of 3 to 5 , and chroma of 3 to 4 . It is very fine sandy loam, fine sandy loam or sandy loam.

The C horizon, if it occurs, has hue of 10 YR to 5 Y , value of 4 to 6 , and chroma of 3 to 4 . It is very fine sandy loam, fine sandy loam or sandy loam.

The bedrock is mostly granite, schist, gneiss or phyllite.

Ricker series

The Ricker series consists of very shallow, well drained soils. These soils formed in thin organic deposits underlain in most places by a very thin mineral horizon over bedrock. These soils are on bedrock-controlled hills, mountains, ridges, and knolls. Slopes range from 3 to 80 percent.

The Ricker soils are commonly adjacent to Abram, Lyman, Naskeag, and Tunbridge soils, and areas of rock outcrop. Abram soils are very shallow, excessively drained, and have a loamy particle-size control section. Lyman soils are shallow, somewhat excessively drained, and have a loamy particle-size control section. Naskeag soils are moderately deep, poorly drained, and have a sandy particle-size control section. Tunbridge soils are moderately deep, well drained, and have a coarse-loamy particle-size control section.

Figure 12.-A soil profile of Ricker mucky peat.

Typical pedon of Ricker mucky peat in a wooded area of Naskeag-Abram-Ricker complex, 0 to 15 percent slopes, very stony (fig. 12); in the town of Jonesboro, 2.5 miles on the Look Point Road from its junction with U.S. Route 1, 0.3 mile west on gravel road, and 30 feet south of the road; USGS Whitneyville topographic quadrangle; lat. 44 degrees 37 minutes 43 seconds N . and long. 67 degrees 33 minutes 48 seconds W., NAD 83 :

Oi-0 to 1 inch; dark reddish brown (5YR 3/2) broken face peat (fibric material); about 90 percent fiber, 80 percent rubbed; massive; loose; many very fine, fine, medium, and coarse roots; extremely acid; clear wavy boundary.
Oe-1 to 4 inches; dark reddish brown (5YR 2.5/2) broken, crushed, and rubbed mucky peat (hemic material); about 80 percent fiber, 40 percent rubbed; massive; friable; many very fine, fine, medium, and coarse roots; extremely acid; clear wavy boundary.
Oa-4 to 5 inches; black ($\mathrm{N} 2 / 0$) broken, crushed, and rubbed muck (sapric material); 20 percent fiber, 5 percent rubbed; massive; friable; many very fine and fine and common medium and coarse roots; extremely acid; abrupt wavy boundary.
E-5 to 7 inches; brown (7.5YR 5/2) gravelly sandy loam; massive; friable; many very fine and fine, common medium, and few coarse roots; 25 percent gravel; extremely acid; abrupt wavy boundary.
R-7 inches; granite.

The depth to bedrock ranges from 1 to 10 inches. Rock fragments comprise 0 to 40 percent of the mineral soil. Reaction is extremely acid in the organic layers and extremely acid or very strongly acid in the mineral layers.

The Oi horizon has hue of 2.5 YR to 10 YR , value of 2 to 4 , and chroma of 1 to 4 . It is slightly decomposed organic material.

The Oe horizon is neutral or has hue of 2.5 YR to 10 YR , value of 2 or 3 , and chroma of 0 to 4 . It is moderately decomposed organic material.

The Oa horizon is neutral or has hue of 2.5 YR to 10 YR , value of 2 to 5 , and chroma of 0 to 2 . It is highly decomposed organic material.

The E horizon has hue of 5 YR to 10 YR , value of 5 to 7 , and chroma of 1 or 2 . The Bh or Bhs horizons, if they occur, have hue of 5 YR to 10 YR , value of 2 to 3 , and chroma of 2 or 3 . They are silt loam, loam, very fine sandy loam, fine sandy loam, sandy loam, loamy fine sand, loamy sand, sand, or coarse sand.

The bedrock is mostly granite, schist, phyllite, or gneiss.

Scantic series

The Scantic series consists of very deep, poorly drained soils. These soils formed in glaciomarine deposits on coastal plains and terraces and along river valleys. Slopes range from 0 to 3 percent.

The Scantic soils are commonly adjacent to Biddeford, Buxton, Colonel, Creasey, Lamoine, Lyman, and Tunbridge soils. Biddeford soils are very deep and very poorly drained. Buxton soils are very deep and moderately well drained. Colonel soils are very deep, somewhat poorly drained, and have a coarse-loamy particle-size control section. Creasey soils are shallow, somewhat excessively drained, and have a loamy particle-size control section. They are mainly in the towns of Robbinston and Perry. Lamoine soils are very deep and somewhat poorly drained. Lyman soils are shallow, somewhat excessively drained, and have a loamy particle-size control section. Tunbridge soils are moderately deep, well drained, and have a coarse-loamy particlesize control section

Typical pedon of Scantic silt loam, in an overgrown field of Lamoine-Scantic complex, 0 to 5 percent slopes; in the town of Whitneyville, 0.25 mile south of railroad track on U.S. Route 1A, and 200 feet northwest of the road; USGS Whitneyville topographic quadrangle; lat. 44 degrees 42 minutes 34 seconds N. and long. 67 degrees 31 minutes 29 seconds W., NAD 83.
Ap1—0 to 4 inches; dark grayish brown (1OYR 4/2) silt loam, light brownish gray (10YR 6/2) dry; weak very fine granular structure; very friable; many very fine, fine, medium, and coarse roots; moderately acid; abrupt smooth boundary.
Ap2—4 to 9 inches; dark grayish brown (2.5Y 4/2) silt loam, light brownish gray (2.5Y $6 / 2$) dry; moderate very fine granular structure; very friable; common very fine, fine, medium, and coarse roots; common medium faint olive gray (5Y 5/2) irregularly shaped iron depletions throughout; moderately acid; abrupt wavy boundary.
Eg-9 to 11 inches; olive gray (5Y5/2) silt loam; weak medium platy structure parting to weak very fine subangular blocky ; friable; common very fine, fine, medium, and coarse roots; common medium prominent light olive brown (2.5Y 5/6) masses of iron accumulation in the matrix and along root channels; moderately acid; abrupt smooth boundary.
Bg1—11 to 16 inches; olive gray (5Y 5/2) silty clay loam; moderate thin platy structure; firm; common very fine, fine, and medium and few coarse roots; common medium prominent yellowish brown (1OYR 5/6) masses of iron accumulation in the matrix and along pores; many coarse distinct olive brown (2.5Y 4/4) masses of iron accumulation in the matrix and along pores; common
medium faint gray (5Y 6/1) irregularly shaped iron depletions in the matrix; light olive gray ($5 \mathrm{Y} 6 / 2$) silt coatings on walls of earthworm channels and on 50 percent of faces of peds; few medium faint dark gray ($5 \mathrm{Y} 4 / 1$) oxide coats on faces of peds; slightly acid; clear wavy boundary.
Bg2-16 to 22 inches; olive gray (5 Y $5 / 2$) silty clay; weak medium platy structure parting to moderate very fine subangular blocky; firm; few very fine and fine roots; few pores; common medium faint gray ($5 \mathrm{Y} 6 / 1$) irregularly shaped iron depletions in the matrix; common medium distinct light olive brown (2.5Y 5/4) masses of iron accumulation in the matrix and along pores; light olive gray ($5 \mathrm{Y} 6 / 2$) silt coatings on walls of earthworm channels and on 50 percent of faces of peds; few fine prominent dark reddish brown (5YR 2/2) oxide coats on faces of peds; slightly acid; gradual wavy boundary.
Bg3—22 to 29 inches; olive gray (5Y 4/2) silty clay; moderate very fine and fine subangular blocky structure; firm; few pores; common medium prominent light olive brown (2.5Y 5/6) masses of iron accumulation in the matrix and along pores; common medium faint olive gray (5Y5/2) irregularly shaped iron depletions in the matrix; gray (5Y6/1) silt coatings on 50 percent of faces of peds and pores; common medium prominent dark reddish brown (5YR 2/2) oxide coats on 10 percent of faces of peds; slightly acid; clear wavy boundary.
$\mathrm{Cg}-29$ to 65 inches; olive gray (5Y 4/2) clay; weak thick platy structure; firm; few medium prominent light olive brown ($2.5 \mathrm{Y} 5 / 6$) masses of iron accumulation in the matrix; few fine faint gray ($5 \mathrm{Y} 5 / 1$) irregularly shaped iron depletions in the matrix; gray ($5 \mathrm{Y} 6 / 1$) silt coatings on 50 percent of faces of peds; many medium prominent dark reddish brown (5YR 2/2) oxide coats on 30 percent of faces of peds; slightly acid.

The solum thickness ranges from 25 to 50 inches. The depth to bedrock is more than 60 inches. The soil is commonly free of rock fragments but a few pedons contain up to 3 percent gravel. Reaction, in unlimed areas, ranges from very strongly acid to slightly acid in the surface and subsurface, strongly acid to neutral in the upper subsoil, and from moderately acid to neutral in the lower subsoil and substratum.

The Ap horizon has hue of 10 YR to 5 Y , value of 3 to 5 , and chroma of 1 or 2 . The A horizon, if it occurs, has hue of 10 YR , value of 3 , and chroma of 1 or 2. The Eg horizon has hue of 2.5 Y or 5 Y , value of 4 or 5 , and chroma of 1 or 2 . They are silty clay loam, silt loam, or loam.

The Bg horizon has hue of 2.5 Y or 5 Y , value of 4 to 6 , and chroma of 1 or 2 . It is silty clay, silty clay loam, or silt loam.

The BCg horizon, if it occurs, has hue of 2.5 Y or 5 Y , value of 4 to 6 , and chroma of 1 or 2 . It is clay, silty clay, or silty clay loam.

The Cg horizon is neutral or has hue of 2.5 Y or 5 Y , value of 4 to 6 , and chroma of 0 to 2. It is clay, silty clay, or silty clay loam. Consistence is firm or very firm.

Sebago series

The Sebago series consists of very deep, very poorly drained soils. These soils formed in herbaceous and woody organic deposits in bogs and swamps. Slopes are less than 1 percent.

The Sebago soils are commonly adjacent to Bucksport, Moosabec, and Wonsqueak soils. All of these soils formed in organic soil materials. Bucksport soils are very deep and very poorly drained. They formed in highly decomposed sapric material. Moosabec soils are very deep and very poorly drained. They formed in slightly decomposed fibric material from Sphagnum moss. Wonsqueak soils are very deep and very poorly drained. They formed in highly decomposed sapric material over loamy mineral material.

Figure 13.-A soil profile of Sebago mucky peat in an area of Sebago and Moosabec soils.

Typical pedon of Sebago mucky peat in a bog of Sebago and Moosabec soils (fig. 13); in the town of Roque Bluffs, 0.9 mile north on the Roque Bluffs Road from the north end of the bridge over Englishman River, and 300 feet west of the road; USGS Roque Bluffs topographic quadrangle; lat. 44 degrees 37 minutes 20 seconds N. and long. 67 degrees 28 minutes 50 seconds W NAD 83:

Oe1-0 to 21 inches; dark reddish brown (5YR 2.5/2) broken face mucky peat (hemic material), dark brown (7.5YR 3/2) rubbed, brown (7.5YR 5/4) pressed; 95 percent fiber, 30 percent rubbed; massive; nonsticky; very pale brown (10YR 7/3) sodium pyrophosphate color; extremely acid in 0.01 M calcium chloride; abrupt smooth boundary.
Oe2-21 to 29 inches; black (5YR 2.5/1) broken face, rubbed, and pressed mucky peat (hemic material); 75 percent fiber, 40 percent rubbed; massive; nonsticky; light brownish gray (10YR 6/2) sodium pyrophosphate color; extremely acid in 0.01 M calcium chloride; abrupt smooth boundary.

Oe3-29 to 42 inches; dark reddish brown (5YR 2.5/2) broken face mucky peat (hemic material), dark reddish brown (5YR 3/2) rubbed and pressed; 75 percent fiber, 25 percent rubbed; massive; nonsticky; very pale brown (10YR 7/3) sodium pyrophosphate color; extremely acid in 0.01 M calcium chloride; abrupt smooth boundary.
Oi-42 to 60 inches; very dusky red (2.5YR 2.5/2) broken face peat (fibric material), dark yellowish brown (10YR 4/4) rubbed, yellowish brown (10YR 5/4) pressed; 95
percent fiber, 80 percent rubbed; massive; nonsticky; white (10YR 8/1) sodium pyrophosphate color; extremely acid in 0.01 M calcium chloride; abrupt smooth boundary.
Oe4-60 to 65 inches; very dusky red (2.5YR 2.5/2) mucky peat (hemic material), reddish brown (5YR 4/4) rubbed and pressed; 80 percent fiber, 50 percent rubbed; massive; nonsticky; very pale brown (10YR 8/4) sodium pyrophosphate color; extremely acid in 0.01 M calcium chloride.
The thickness of the organic materials is more than 51 inches. The depth to bedrock is more than 60 inches. Woody coarse fragments comprise 0 to 15 percent of the soil. Reaction is extremely acid throughout.

The surface tier has hue of 2.5 YR to 10 YR , value of 2 to 3 , and chroma of 1 or 2 .
The subsurface and bottom tiers have hue of 2.5 YR to 10 YR , value of 2 to 4 , and chroma of 1 to 4 . The subsurface tier is mainly hemic materials, but more than 10 inches of the subsurface and bottom tiers consists of fibric materials.

Sheepscot series

The Sheepscot series consists of very deep, moderately well drained soils. These soils formed in glaciofluvial deposits on outwash deltas, plains, terraces, and at the base of glaciated upland ridges. Slopes range from 0 to 8 percent.

The Sheepscot soils are commonly adjacent to Adams, Colton, Croghan, Hermon, Kinsman, Masardis, and Monadnock soils. Adams soils are very deep, excessively drained, and have a sandy particle-size control section. Colton soils are very deep and excessively drained. Croghan soils are very deep, moderately well drained, and have a sandy particle-size control section. Hermon soils are very deep and somewhat excessively drained. Kinsman soils are very deep, poorly drained, and have a sandy particle-size control section. Masardis soils are very deep and somewhat excessively drained. Monadnock soils are very deep, well drained, and have a coarse-loamy over sandy or sandy-skeletal particle-size control section.

Typical pedon of Sheepscot fine sandy loam in a wooded area of Sheepscot-Croghan-Kinsman complex, 0 to 8 percent slopes; in the town of Steuben, 1.2 miles south on the Dyer Neck Road from its junction with the north end of Dyer Harbor, and 50 feet east of the road; USGS Petit Manan topographic quadrangle; lat. 44 degrees 27 minutes 54 seconds N. and long. 67 degrees 56 minutes 14 seconds W., NAD 83:

Oa-0 to 4 inches; very dark brown (10YR $2 / 2$) sapric material; weak fine granular structure; very friable; many very fine, fine, and medium and common coarse roots; strongly acid; abrupt wavy boundary.
E-4 to 7 inches; light gray (5YR 6/1) fine sandy loam; weak fine granular structure; very friable; many very fine, fine, and medium and common coarse roots; 5 percent gravel; strongly acid; abrupt irregular boundary.
$\mathrm{Bh}-7$ to 9 inches; dark reddish brown (5YR 3/3) sandy loam; weak fine granular structure; very friable; common very fine, fine, medium, and coarse roots; 10 percent gravel; strongly acid; abrupt broken boundary.
Bs1-9 to 16 inches; brown (7.5YR 4/4) gravelly sandy loam; weak fine granular structure; friable; common very fine, fine, and medium and few coarse roots; 25 percent gravel and 5 percent cobbles; strongly acid; gradual wavy boundary.
Bs2-16 to 23 inches; strong brown (7.5YR 4/6) very gravelly loamy sand; single grain; loose; common very fine and fine and few medium and coarse roots; 35 percent gravel and 5 percent cobbles; moderately acid; gradual wavy boundary.
BC-23 to 29 inches; dark yellowish brown (10YR 4/4) very gravelly sand; single grain; loose; common very fine and fine and few medium roots; common medium distinct light brownish gray ($2.5 \mathrm{Y} 6 / 2$) irregularly shaped iron depletions
throughout; common fine and medium faint brown (7.5YR 4/4) masses of iron accumulation throughout; 35 percent gravel and 5 percent cobbles; moderately acid; gradual wavy boundary.
C-29 to 65 inches; light olive brown ($2.5 \mathrm{Y} 5 / 3$) very gravelly sand; single grain; loose; few fine and medium roots; common fine prominent dark yellowish brown (10YR 4/6) masses of iron accumulation throughout; common fine and medium faint grayish brown (2.5Y 5/2) irregularly shaped iron depletions throughout; 35 percent gravel and 10 percent cobbles; moderately acid.
The solum thickness ranges from 14 to 36 inches. The depth to bedrock is more than 60 inches. Rock fragments in the mineral soil range from 5 to 50 percent in the surface and upper part of the subsoil and from 35 to 75 percent in the lower part of the subsoil and the substratum. Reaction ranges from extremely acid to slightly acid in the surface and subsoil and from very strongly acid to slightly acid in the substratum.

The E horizon has hue of 5 YR to 10 YR , value of 5 to 7 , and chroma of 1 or 2 . The Ap horizon, if it occurs, has hue of 10YR, value of 3 or 4 , and chroma of 2 to 4 . The A horizon, if it occurs, has hue of 7.5 YR or 10YR, value of 2 to 4 , and chroma of 1 or 2 . They are very fine sandy loam, fine sandy loam, or sandy loam.

The Bh horizon has hue of 2.5 YR to 7.5 YR , value of 3 or 4 , and chroma of 2 to 4 . The Bhs horizon, if it occurs, has hue of 2.5YR to 7.5 YR , value of 3 , and chroma of 2 or 3 . The Bs horizon has hue of 5 YR to 10 YR , value of 4 or 5 , and chroma of 4 to 6 . They are fine sandy loam to coarse sandy loam within a depth of 10 inches from the mineral soil surface, fine sandy loam to coarse sand from 10 to 17 inches, and loamy sand to coarse sand below 17 inches.

The BC horizon has hue of 10YR or 2.5 Y , value of 4 to 6 , and chroma of 3 to 6 . It is loamy sand, loamy coarse sand, sand, or coarse sand.

The C horizon has hue of 2.5 Y or 5 Y , value of 4 to 6 , and chroma of 2 to 6 . It is loamy sand, loamy coarse sand, sand, or coarse sand.

Skerry series

The Skerry series consists of very deep, moderately well drained soils. These soils formed in dense glacial till on drumlins, knolls, and ridges in glaciated uplands. Slopes range from 3 to 15 percent.

Skerry soils are commonly adjacent to Becket, Brayton, Colonel, Hermon, Monadnock, and Tunbridge soils. Becket soils are well drained. Brayton soils are poorly drained. Colonel soils are somewhat poorly drained. Hermon soils are somewhat excessively drained and have a sandy-skeletal particle-size control section. Monadnock soils are well drained and have a coarse-loamy over sandy or sandy-skeletal particle-size control section. Tunbridge soils are moderately deep and well drained.

Typical pedon of Skerry fine sandy loam, in a wooded area of Skerry-Becket association, 3 to 15 percent slopes, very stony; in the town of Wesley, 0.4 mile north of the junction of the Wesley and Northfield town line and Maine Route 192, and 300 feet east on woods road; USGS Round Lake topographic quadrangle; lat. 44 degrees 52 minutes 36 seconds N. and long. 67 degrees 37 minutes 05 seconds W., NAD 83:
Oa-0 to 2 inches; black (10YR 2/1) sapric material; weak very fine granular structure; very friable; many very fine, fine, medium, and coarse roots; very strongly acid; clear wavy boundary.
E-2 to 3 inches; grayish brown (10YR 5/2) fine sandy loam; weak very fine granular structure; very friable; common very fine and fine and many medium and coarse roots; 5 percent gravel; very strongly acid; abrupt broken boundary.

Bhs-3 to 4 inches; dark reddish brown (5YR 3/3) fine sandy loam; weak very fine granular structure; very friable; common very fine, fine, and medium and many coarse roots; 5 percent gravel; very strongly acid; abrupt wavy boundary.
Bs1-4 to 8 inches; brown (7.5YR 4/4) fine sandy loam; weak fine granular structure; very friable; many very fine, fine, and medium and common coarse roots; 10 percent gravel; strongly acid; clear wavy boundary.
Bs2-8 to 18 inches; dark yellowish brown (10YR 4/6) gravelly fine sandy loam; weak fine granular structure; friable; many very fine, fine, and medium and common coarse roots; 15 percent gravel; strongly acid; gradual wavy boundary.
BC-18 to 24 inches; light olive brown (2.5Y 5/4) gravelly fine sandy loam; weak medium platy structure; firm; common very fine and fine and few medium and coarse roots; many medium and coarse distinct yellowish brown (10YR 5/6) masses of iron accumulation in the matrix and along root channels; few fine and medium distinct grayish brown ($2.5 \mathrm{Y} 5 / 2$) irregularly shaped iron depletions throughout; 20 percent gravel; very strongly acid; gradual wavy boundary.
Cd-24 to 65 inches; 60 percent olive (5 Y $5 / 3$) gravelly loamy sand and 40 percent olive ($5 \mathrm{Y} 5 / 4$) gravelly sandy loam, composite texture is gravelly loamy fine sand; moderate thin and medium platy structure; firm; single grain loose segregated loamy sand lenses are $1 / 2$ to 2 inches thick; few fine and medium faint light olive brown (2.5Y 5/4) masses of iron accumulation throughout; common fine and medium faint light olive gray ($5 \mathrm{Y} 6 / 2$) irregularly shaped iron depletions throughout; 30 percent gravel; very strongly acid.

The solum thickness ranges from 15 to 30 inches. The depth to bedrock is more than 60 inches. Rock fragments in the mineral soil range from 5 to 30 percent in the solum and from 5 to 40 percent in the substratum. Reaction, in unlimed areas, ranges from very strongly acid to slightly acid in the solum and from very strongly acid to neutral in the substratum.

The O horizon has hue of 7.5 YR or 10YR, value of 2 to 4 , and chroma of 1 to 4 .
The E horizon has hue of 5 YR to 10 YR , value of 4 to 6 and chroma of 1 or 2 . The Ap horizon, if it occurs, has hue of 10 YR , value of 3 to 4 , and chroma of 2 to 4 . They are fine sandy loam or sandy loam.

The Bhs horizon has hue of 2.5 YR to 7.5 YR , value of 2.5 or 3 , and chroma of 2 or 3. The Bh horizon, if it occurs, has hue of 2.5 YR to 7.5 YR , value of 2.5 or 3 , and chroma of 2 to 4 . The Bs horizon has hue of 5 YR to 10YR, value of 2 to 6 , and chroma of 3 to 6 . They are fine sandy loam or sandy loam.

The BC horizon has hue of 10YR or 2.5 Y , and value and chroma of 3 to 6 . It is fine sandy loam or sandy loam.

The Cd horizon has hue of 2.5 Y or 5 Y , value 4 to 6 , and chroma of 2 to 4 . It is fine sandy loam or sandy loam in the loamy structural plates and loamy fine sand or loamy sand in the lenses. The sand lenses are oriented horizontally between the loamy structural plates and comprise 20 to 80 percent of the horizon. Consistence is firm or very firm in the loamy plates and loose in the sand lenses.

Telos series

The Telos series consists of very deep somewhat poorly drained soils. These soils formed in dense glacial till on the foot slopes and toe slopes of drumlins and ridges. They are mainly in the northern part of the survey area. Slopes range from 0 to 8 percent.

Telos soils are commonly adjacent to Chesuncook, Elliottsville, Monarda, and Monson soils. Chesuncook soils are very deep and moderately well drained.
Elliottsville soils are moderately deep and well drained. Monarda soils are very deep and poorly drained. Monson soils are shallow and somewhat excessively drained.

Typical pedon of Telos silt loam, in a wooded area of Telos-Chesuncook complex, 0 to 8 percent slopes, very stony; in the town of Princeton, 0.8 mile north on the Greenland Point Road from the West Princeton Road and 100 feet east of the road; USGS Princeton topographic quadrangle; lat. 45 degrees 12 minutes 26 seconds N . and long. 67 degrees 36 minutes 27 seconds W., NAD 83 :
Oa-0 to 2 inches; dark reddish brown (5YR 2.5/2) sapric material; weak fine granular structure; very friable; many very fine, fine, medium, and coarse roots; extremely acid; abrupt smooth boundary.
E-2 to 3 inches; gray (5 YR 6/1) silt loam; weak fine granular structure; very friable; many very fine, fine, and medium and common coarse roots; 10 percent gravel; very strongly acid; abrupt wavy boundary.
Bhs-3 to 6 inches; dark reddish brown (5YR 3/2) silt loam; weak very fine and fine granular structure; very friable; many very fine, fine, and medium and common coarse roots; 10 percent gravel; very strongly acid; clear wavy boundary.
Bs1-6 to 10 inches; reddish brown (5YR 4/4) gravelly silt loam; weak very fine and fine granular structure; very friable; many very fine and fine and common medium roots; 15 percent gravel; strongly acid; clear wavy boundary.
Bs2-10 to 13 inches; yellowish brown (10YR 5/6) gravelly silt loam; weak fine granular structure; very friable; common very fine, fine, and medium and few coarse roots; common medium and coarse prominent light brownish gray (2.5Y $6 / 2$) irregularly shaped iron depletions throughout; common fine and medium distinct yellowish brown (10YR 5/4) masses of iron accumulation in the matrix and along root channels; 20 percent gravel; strongly acid; clear wavy boundary.
BC-13 to 20 inches; light olive brown ($2.5 \mathrm{Y} 4 / 4$) gravelly silt loam; weak medium platy structure; firm; few very fine and fine roots; common medium distinct light olive gray ($5 \mathrm{Y} 6 / 2$) irregularly shaped iron depletions throughout; common medium distinct yellowish brown (10YR 5/6) masses of iron accumulation in the matrix and along root channels; 20 percent gravel; strongly acid; clear wavy boundary.
Cd-20 to 65 inches; olive (5Y 5/4) gravelly silt loam; strong very coarse prismatic structure parting to moderate medium platy; firm; common fine and medium distinct light brownish gray ($2.5 \mathrm{Y} 6 / 2$) irregularly shaped iron depletions throughout; common fine and medium faint yellowish brown (10YR 5/4) masses of iron accumulation throughout; 25 percent gravel; moderately acid.
The solum thickness ranges from 13 to 21 inches. The depth to bedrock is more than 60 inches. Rock fragments in the mineral soil comprise 5 to 35 percent of the surface and 5 to 25 percent of the subsoil and substratum. Reaction, in unlimed areas, is extremely acid to moderately acid in the solum and strongly acid to slightly acid in the substratum.

The E horizon has hue of 5 YR to 10 YR , value of 6 or 7 , and chroma of 1 or 2 . The Ap horizon, if it occurs, has hue of 10YR, and value and chroma of 3 or 4 . They are silt loam, loam, very fine sandy loam, or fine sandy loam.

The Bhs horizon has hue of 2.5 YR or 5 YR , value of 2.5 or 3 , and chroma of 2 or 3. The Bh horizon, if it occurs, has hue of 2.5 YR to 7.5 YR , value of 2.5 to 4 , and chroma of 2 to 4 . The Bs horizon has hue of 5 YR to 10YR, value of 4 or 5 , and chroma of 4 to 6. They are silt loam, loam, very fine sandy loam, or fine sandy loam.

The BC horizon has hue of 2.5 Y or 5 Y , value of 4 to 6 , and chroma of 3 or 4 . It is silt loam, loam, very fine sandy loam, or fine sandy loam.

The Cd horizon has hue of 2.5 Y or 5 Y , value of 4 or 5 , and chroma of 3 or 4 . It is silt loam or loam. Consistence is firm or very firm.

Tunbridge series

The Tunbridge series consists of moderately deep well drained soils. These soils formed in glacial till on coastal and upland hills, ridges, and knolls. Slopes range from 3 to 30 percent.

The Tunbridge soils are commonly adjacent to Abram, Becket, Colonel, Dixfield, Lamoine, Lyman, Marlow, Naskeag, Scantic, and Skerry soils. Abram soils are very shallow and excessively drained. Becket and Marlow soils are very deep and well drained. Colonel soils are very deep and somewhat
poorly drained. Dixfield and Skerry soils are very deep and moderately well drained. Lamoine soils are very deep and somewhat poorly drained. Lyman soils are shallow and somewhat excessively drained. Naskeag soils are moderately deep and poorly drained. Scantic soils are very deep and poorly drained. Lamoine and Scantic soils have a fine particle-size control section.

Typical pedon of Tunbridge fine sandy loam in a wooded area of Lyman-TunbridgeAbram complex, 3 to 15 percent slopes, very stony; in the town of Northfield, 0.4 mile east on the Bog Lake Road from it's junction with Maine Route 192, and 150 feet south of the road; USGS Bog Lake topographic quadrangle; lat. 44 degrees 49 minutes 51 seconds N. and long. 67 degrees 33 minutes 46 seconds W., NAD 83:

Oa-0 to 2 inches; dark brown (7.5YR 3/2) sapric material; weak fine granular structure; very friable; many very fine, fine, medium, and coarse roots; very strongly acid; abrupt smooth boundary.
E-2 to 4 inches; grayish brown (10YR 5/2) fine sandy loam; weak fine granular structure; very friable; many very fine, fine, and medium and common coarse roots; 5 percent gravel; very strongly acid; abrupt wavy boundary.
Bhs-4 to 5 inches; dark brown (7.5YR 3/2) fine sandy loam; weak fine granular structure; very friable; many very fine, fine, and medium and common coarse roots; 5 percent gravel; strongly acid; abrupt broken boundary.
Bs1-5 to 10 inches; brown (7.5YR 4/4) fine sandy loam; weak fine granular structure; friable; many very fine and fine and common medium and coarse roots; 10 percent gravel; strongly acid; clear wavy boundary.
Bs2—10 to 17 inches; dark yellowish brown (10YR 4/6) fine sandy loam; weak fine and medium granular structure; friable; common very fine and fine and few medium and coarse roots; 10 percent gravel; strongly acid; gradual wavy boundary.
BC—17 to 28 inches; light olive brown (2.5Y 5/4) gravelly fine sandy loam; moderate medium granular structure; friable; common very fine and fine roots; 15 percent gravel; moderately acid; abrupt smooth boundary.
R-28 inches; schist.
The solum thickness ranges from 14 to 38 inches. The depth to bedrock ranges from 20 to 40 inches. Rock fragments comprise 5 to 35 percent of the mineral soil. Reaction, in unlimed areas, ranges from extremely acid to moderately acid in the solum, and strongly acid to slightly acid in the substratum.

The E horizon has hue of 5 YR to 10 YR , value of 4 to 6 , and chroma of 1 or 2 . The Ap horizon, if it occurs, has hue of 7.5 YR or 10YR, and value and chroma of 3 or 4. They are loam, very fine sandy loam, fine sandy loam, or sandy loam.

The Bhs horizon has hue of 5YR to 10YR, value of 2.5 or 3 , and chroma of 2 or 3 . The Bh horizon, if it occurs, has hue of 5 YR to 10 YR , and value and chroma of 2 to 4. The Bs horizon has hue of 5YR to 10YR, and value and chroma of 4 to 6 . They are loam, very fine sandy loam, fine sandy loam, or sandy loam.

The BC horizon has hue of 10YR or 2.5 Y , value of 3 to 5 , and chroma of 3 to 6 . It is loam, very fine sandy loam, fine sandy loam, or sandy loam.

The C horizon, if it occurs, has hue of 2.5 Y or 5 Y , value of 4 to 6 , and chroma of 2 to 6 . It is loam, very fine sandy loam, fine sandy loam, or sandy loam.

The bedrock is mostly granite, schist, phyllite, or gneiss.

Udorthents

Udorthents consist of moderately deep to very deep, moderately well drained to excessively drained fill areas overlying bedrock or soil. The nature of the fill material is highly variable but is mainly compacted silt loam, fine sandy loam, loamy sand, sand, gravel, or some mixture of these materials. Udorthents are mainly in the urban areas of towns and cities, and around airports, landfills, and mill areas. Slopes range from 0 to 35 percent.

Udorthents are commonly adjacent to, or overlie, soils that are moderately well drained to poorly drained, but can include soils that are well drained or excessively drained.

Because of the variability of Udorthents, a typical pedon is not given. They range from 20 inches to over 60 inches thick, but are mainly 30 to 60 inches thick. The depth to bedrock is more than 20 inches. Rock fragments range from 5 to 65 percent of the mineral soil. Reaction is very strongly acid to neutral.

The surface layer to a depth of about 10 inches may be topsoil or a mixture of topsoil and gravelly fill. The thickness, color, texture, and rock fragment content are highly variable.

The underlying layers are mainly neutral or have hue of 7.5 YR to 5 Y , value of 3 to 6 , and chroma of 0 to 6 . These layers are commonly discontinuous. They are mainly silt loam, fine sandy loam, sandy loam, loamy sand, or sand.

The original soil material underlying the fill is mainly glacial till or glaciomarine deposits. Some areas may have exposed bedrock. The original soil material ranges from sand to silty clay and is mainly moderately well drained to poorly drained.

Wonsqueak series

The Wonsqueak series consists of very deep, very poorly drained soils. These soils formed in highly decomposed organic material underlain by loamy mineral material. They are in bogs in depressions in glacial till, glaciofluvial deposits, and glaciomarine deposits and on flood plains. Slopes range from 0 to 2 percent. Flooding frequency ranges from none to frequent.

The Wonsqueak soils are commonly adjacent to Bucksport, Sebago, and Moosabec soils. All these soils are very deep and very poorly drained. Bucksport soils are dominantly sapric soil materials. Sebago soils are dominantly hemic soil materials. Moosabec soils are dominantly fibric soil materials.

Typical pedon of Wonsqueak muck in a wooded bog of Bucksport and Wonsqueak soils; in the town of East Machias, 0.8 mile west on gravel road from it's junction with Maine Route 191 where it intersects the town line of East Machias and T18 ED BPP, and 40 feet north of the road; USGS Hadley Lake topographic quadrangle; lat. 44 degrees 50 minutes 01 seconds N . and long. 67 degrees 26 minutes 12 seconds W., NAD 83:
Oa1-0 to 8 inches; black (10YR 2/1) broken face and rubbed muck (sapric material); about 35 percent fiber, 10 percent rubbed; massive; nonsticky; nonplastic; common very fine and fine and few medium and coarse roots; light yellowish brown (10YR 6/4) sodium pyrophosphate color; extremely acid in 0.01 M calcium chloride; gradual wavy boundary.
Oa2-8 to 30 inches; black (5YR 2.5/1) broken face and rubbed muck (sapric material); about 15 percent fiber, 5 percent rubbed; massive; slightly sticky;
nonplastic; few fine and medium roots; brown (10YR 5/3) sodium pyrophosphate color; very strongly acid in 0.01 M calcium chloride; abrupt smooth boundary.
Cg-30 to 65 inches; greenish gray (5G 5/1) silty clay loam; massive; sticky, plastic; strongly acid.
The thickness of the organic soil material and the depth to mineral material ranges from 16 to 51 inches. The depth to bedrock is more than 60 inches. Woody coarse fragments range from 0 to 20 percent in the organic material. Rock fragments range from 0 to 20 percent in the mineral material. They are mainly gravel. Reaction of the organic material is extremely acid to slightly acid, but is very strongly acid to slightly acid in at least some part of the organic soil material. Reaction of the mineral material is strongly acid to neutral.

The surface tier is neutral or has hue of 2.5 YR to 10 YR , value of 2 to 3 , and chroma of 0 to 2 . It is mainly sapric material, but may be hemic or fibric material.

The subsurface and bottom tiers are neutral or have hue of 2.5YR to 10YR, value of 2 to 4 , and chroma of 0 to 2 . They are mainly sapric material, but there may be thin layers of hemic material with an aggregate thickness of less than 10 inches.

The C horizon is neutral or has hue of 10 YR to 5 GY , value of 3 to 6 , and chroma of 0 to 4 . It is silty clay loam, silt loam, loam, very fine sandy loam, or fine sandy loam.

Formation of the Soils

This section relates the factors of soil formation to the soils in the Washington County Area Soil Survey and explains the processes of soil formation.

Factors of Soil Formation

Soil is formed by the interaction of five major soil-forming factors: climate, parent material, plant and animal life, topography, and time. Each of these factors from place to place influences the soil-forming processes differently. In some places one factor dominates in the formation of a soil and determines most of its properties. The differing influence of each of the five factors causes the local variations in the soil in the survey area.

Climate

Physical weathering, in the form of alternate freezing and thawing, takes place from fall to spring. This promotes the granulation of soil material and the breaking of rock fragments into smaller units. This alternate freezing and thawing process improves soil structure in those soils that have been compacted as the result of the use of heavy equipment.

The soil survey area is at a latitude just halfway between the North Pole and Equator. These soils, therefore, are more deeply weathered and thickly formed than those in polar regions, but they are not so highly weathered or deep as most soils in tropical latitudes, where climate commonly masks the influence of different parent materials.

Parent Material

The parent material of the soils in the survey area and the inherent landscape features have resulted largely from the Wisconsin Glaciation. The five major kinds of parent material of soils in the survey area are glacial till, glaciofluvial deposits, marine sediments, lacustrine sediments, and organic material.

Soils that formed in friable glacial till, such as Hermon soils, show evidence of the gouging, scraping, and transportation action of the glacier that deposited this material across the landscape. Colonel, Dixfield, Marlow, and Brayton soil formed in dense, compact glacial till derived mainly from schist, phyllite, and granite.

Colonel, Dixfield, and Marlow soils are on till ridges and drumlins. Brayton soils are in depressions on these ridges and drumlins.

Glaciofluvial deposits are stratified sandy, loamy, or gravelly material in deltas, outwash plains, kame terraces, kames, and eskers. This material was picked up by the glacier and then sorted and deposited by glacial meltwater. Adams and Colton soils formed dominantly in glaciofluvial deposits.

Marine and lacustrine sediments are material deposited in quiet bodies of water. Buxton, Lamoine, and Scantic are soils formed in sediments of silt and clay.

Organic material accumulated in depressions that were ponded at one time and subsequently became filled with plant remains. Wonsqueak and Bucksport soils
formed in highly decomposed plant material derived from mosses, grasses, and other herbaceous and woody plants. Wonsqueak soils are underlain by mineral material at a depth of less than 51 inches.

Plant and Animal Life

The presence of living plants and animals and the decaying remains of plants and animals in a mineral soil are among the features that distinguish the soil from its parent material. Plants generally supply the organic matter that gives color to the surface layer. In poorly drained and very poorly drained areas, organic matter generally collects on the surface in thick, organic layers.

Decaying plants and animals also supply nutrients to the soil. Trees and other plants take up nutrients and store them in leaves, stems, and roots. When the trees and plants die, they are acted on by bacteria or fungi, and thus the nutrients are returned to the soil. Fungi produce some of the organic acids in soils such as Adams and Hermon soils, especially where the soils have not been plowed.

Earthworms, insects, rodents, and other animals that live in the soil help to mix the soil layers. In particular, earthworms help to decompose organic matter.

Human activities also change the soil. The layers of soil are mixed through plowing. In some areas compact, impermeable layers have formed within the soil because of plowing or use of machinery. On some soils, accelerated erosion in cultivated areas has resulted in the loss of the original surface layer. Soils that have been limed and fertilized for long periods have become less acid. Where drainage systems have been installed, the soil has often become more aerated and warmer and the organic matter content in the surface layer is decreased.

Topography

The influence of topography on the soils can be seen by comparing soils where the parent material and the climate are the same, but where topography and drainage are different.

The Marlow, Dixfield, Colonel, and Brayton soils, for example, formed in compact glacial till. The Marlow soils are well drained, have mainly convex slopes, and are on the tops and upper parts of glacial till ridges. Dixfield soils are moderately well drained, have mainly convex slopes and are on the side slopes of glacial till ridges. Colonel soils are somewhat poorly drained, have mainly concave slopes, and are on the lower parts of glacial till ridges. Brayton soils are poorly drained, have mainly concave slopes, and are in depressions and on lower slopes of glacial till ridges.

Time

The degree of development, or maturity, of a soil commonly reflects the length of time that parent material has been in place. In this survey area, the formation of most upland soils in their present state began about 13,500 years ago with the retreat of the last glacier.

Some soils show evidence of change and maturity, such as the formation of a distinct dark reddish brown subsoil that is distinct from other layers in the soil. This layer indicates the accumulation of organic matter and of iron and aluminum oxides over a long period. Tunbridge soils have such a layer.

Processes of Soil Formation

Robert V. Rourke, Soil Scientist (retired), Maine Agricultural and Forest Experiment Station, helped to prepare this section.

The mineral soils of Washington County have developed distinct features as a result of soil formation. The soils reflect: the addition of organic matter; or,
translocation of organic matter, iron and aluminum; or, transformation of iron or organic matter; some weathering of primary minerals to clay size particles; and the formation of soil structure. Not all processes are present in each soil.

The weathering processes, important in the formation of horizons in mineral soils ranging in drainage from excessive to somewhat poorly drained, involve the movement of organic matter, iron oxides, and aluminum oxides from the surface horizon to the B horizon. Loss of soluble cations and the decomposition of organic matter in the surface horizon create acidity which solubilizes sesquioxides (iron and aluminum oxides), reduces iron, and forms soluble metal-organic complexes. These complexes, or soluble ions, are leached from the soil mineral surface horizon into an illuvial B horizon and precipitated there as a result of mechanical, chemical, and biological processes. The surface mineral soil develops into the E horizon and represents an area of intense eluviation. When the accumulation of illuvial material is significant the horizons formed are the Bh, Bs, and/or Bhs. If there is only slight accumulation resulting in a color change or if there is just soil structure development, the horizon formed is the Bw.

Organic matter that is incorporated into the mineral soil surface forms the A horizon. If the soil surface has been mixed by cultivation it is called an Ap horizon.

In wooded areas there is an organic (0) horizon composed of an accumulation of materials, such as, leaves, twigs, or other humified matter on the mineral soil surface. The amount and rate of organic accumulation relates to the type of vegetation, the aspect, climatic conditions, and soil drainage. Usually excessively drained soils accumulate thinner organic horizons than do poorly drained and wetter soils.

The poorly and very poorly drained mineral soils, such as Scantic and Biddeford, have soil horizons that reflect the wet conditions under which they are developed. The surface of the very poorly drained soils frequently has an organic horizon that is eight or more inches thick. Often beneath the organic horizon is a horizon of mixed organic and mineral (A) or a leached horizon (Eg) that has low chroma colors and contains redoximorphic features. These horizons are above a horizon that contains redoximorphic features and usually exhibits soil structure and some color development (Bg). The lowest soil horizon in these soils (Cg) is either highly reduced with blue or greenish color or contains redoximorphic features and has matrix colors that are of low chroma.

There are areas of organic soils in Washington County, such as Wonsqueak and Bucksport soils, that frequently have formed in wet depressions in the landscape. These soils are derived from organic materials that have accumulated over many years. The soils may have layers that are highly decomposed with no indication of the source of the organic material remaining (Oa), or there may be some evidence of the fiber source (Oe), or there may be a highly undecomposed fiber content (Oi) that allows the identification of the plant source. These soils are usually very wet and as a result do not decompose rapidly.

During the survey, and in years preceding the survey, some of the soils mapped in Washington County were described and sampled for a wide array of physical and chemical characteristics, such as texture, percent rock fragments, available water holding capacity, organic carbon, pH , cation exchange capacity and base saturation. Soils sampled in the survey area were the Colonel and Dixfield series (Rourke, 1994), the Creasey, Hogback and Lyman series (Rourke and Beek, 1968), the Brayton and Scantic series (Rourke and Schmidt, 1979), and the Colton series (Rourke and Bull, 1982).

Physiography and Geology

D. Bruce Champeon, Geologist (retired), Natural Resources Conservation Service, assisted in preparing this section

Physiography

This survey area is located in the New Brunswick Highlands physiographic unit, which is characterized by low, rounded mountains and broad lowlands (Denny, 1982). Relief generally is low and summit elevations typically are less than 500 feet. The northwestern part of the soil survey area is somewhat more rugged, as Spruce Mountain in Beddington reaches an elevation of 1,076 feet.

The topography is mature and the drainage pattern is well defined. The area contains several large lakes, hundreds of smaller ponds, and thousands of acres of wetlands. Waterbodies in the northern part of the area drain easterly to the St. Croix River. Others drain to the Atlantic Ocean through a number of smaller coastal rivers and streams.

Bedrock Geology

Several hundred million years of the earth's long and complex geologic history are represented by the many bedrock units found in southern Washington County (Gates, 1989; Loiselle and Thompson, 1987; Osberg et al. 1985). Clastic sediments derived from the continental land mass and volcanic debris (lava, volcanic ash, and larger fragments) derived from offshore volcanic island arcs were deposited into shallow, subsiding ocean basins. This material eventually hardened into stratified sedimentary rocks such as conglomerate, various types of sandstone, pelite, and volcanic rocks. Most bedrock is probably within the range of 800 to 360 million years old, or Precambrian Z to Upper Devonian in age, although an intrusive dike in Robbinston is dated as Lower Jurassic, or about 200 million years old (Gates, 1989).

Some of the older sedimentary and volcanic rocks (protoliths) described above were folded, faulted, and subjected to high temperatures and pressures during two major episodes of geologic plate movement and mountain building. New rock types such as slate, phyllite, schist, gneiss, quartzite, metasandstone, metaconglomerate, and metavolcanic rocks were formed from the existing rocks during this complex recrystallization process known as metamorphism. The degree of metamorphism in this soil survey area was not severe, so many of the original depositional features of the stratified rocks, including animal fossils useful for relative age determinations, have been preserved. The last metamorphism ended before deposition of the area's youngest rocks.

Practically all the soil survey area is within the Coastal Lithotectonic Block that lies south of a major northeast-southwest trending fault zone, known as the Norumbega Fault Zone. Many major pre- and post-metamorphic normal and thrust faults exist in the Coastal Lithotectonic Block, including the Fundy Fault, Lubec Fault Zone, and Oak Bay Fault (Gates, 1989).

Calcareous metasedimentary rocks of Upper Ordovician to Lower Devonian age occur north of the Norumbega Fault Zone that passes through Baileyville and Princeton. These rocks, known as the Flume Ridge Formation, formed in a quieter marine environment in an area now called the Fredericton Trough.

Deposition of volcanic debris and some sulfidic and carbonaceous clastic sediments was underway in Precambrian Z time and continued into Middle Ordovician time. In Middle Ordovician time offshore volcanic island arcs collided with mainland North America, causing the formation of Vermont's Taconic Mountains. This collision, known as the Taconic Orogeny, also caused deformation and metamorphism of the area's pre-Middle Ordovician rocks including the Columbia Falls

Formation around Columbia Falls and the Cookson and Penobscot Formations that occur in a band between Woodland and Beddington.

Deposition continued through the remainder of the Ordovician, through the Silurian, and into the Early Devonian Periods. Some clastic sediment was deposited, but mafic to felsic volcanic sediments and flows predominated. These rocks include the Quoddy, Dennys, Oak Bay, Edmunds, Leighton, Hersey, and Eastport Formations.

The last, and most severe, deformation and metamorphism of the area's rocks occurred during Early Devonian time when northeastern North America collided with the European/African plate. This collision, known as the Acadian Orogeny, created much of the northern Appalachian Mountain chain. It also caused molten rock from deep within the earth to push and melt its way into the existing rocks where it cooled and solidified, forming large bodies of igneous rocks such as granite, quartz diorite, and gabbro. All these bodies, called plutons, have been determined through radiometric dating to be Devonian in age and were emplaced from 400 to 350 million years ago. Most of the large boulders commonly found on the ground surface throughout the county were broken from these plutons and dropped hundreds of millions of years later by the last glacier.

Conglomerate, sandstone, shale, and some basalt flows were deposited just after the Acadian Orogeny. These unmetamorphosed, reddish-colored Upper Devonian rocks of the Perry Formation occur near Perry.

Seismicity

The overall seismic risk in Maine is low, but this soil survey area has a significant historical and recent record of seismic activity (Ebel, 1989). The strongest earthquake in Maine occurred near Eastport in 1904, and another strong quake occurred there in 1912. A series of five strong quakes occurred west of Passamaquoddy Bay in 1984. Many other mild earthquakes have originated within this area, one of the most seismically active in the state. Although people generally have felt these quakes, they have produced only minor, localized structural damage, if any. Some geologists believe that crustal stresses associated with movement of the earth's geologic plates are reactivating existing faults in the area's bedrock.

Surficial Geology

The slow, but persistent, process of erosion removed a significant amount of bedrock in the over 200 million years following the last igneous or depositional activity in this area. However, the present day landscape is a result mainly of the events of the Pleistocene Epoch, which began about 2 million years ago. Continental ice sheets advanced and retreated over this area perhaps as many as four times during that epoch. Primarily, evidence remains only of the last major glaciation, known as the Wisconsinan stage (Loiselle and Thompson, 1987; Thompson and Borns, 1985).

When global climate cooled in Late Wisconsinan time, the Laurentide Ice Sheet began to form east of James Bay, Quebec, several hundred miles north of eastern Maine. By about 20,000 B.P. (Before Present) Laurentide ice had spread southward through Maine onto the continental shelf. It covered the area's highest hills. As it advanced, the glacier eroded the soil and bedrock beneath it. This debris was incorporated into the lower part of the ice sheet, transported, and reworked. Some debris was deposited under the ice as a compact blanket of glacial till, a mixture of rock fragments ranging from clay-sized material to boulders. Dixfield and Colonel soils are examples of soils developed in this dense, lodgment till that overlies bedrock throughout the soil survey area.

The sheer weight of a massive sheet of ice thousands of feet thick depressed the land surface hundreds of feet, but the extent of this depression in this area is not known fully. The great quantities of moisture locked up in glacial ice resulted in a general worldwide lowering of sea level by about 300 to 350 feet. The climate began
to warm and by about 20,000 B.P. the rate of melting exceeded the rate of advance, resulting in a net northward retreat of the glacial margin. The ice margin had melted back to the present Maine coastline by about 13,500 B.P., and from the soil survey area by about 13,000 B.P.

During early stages of deglaciation the sea actively eroded the ice margin. When the ice margin stabilized temporarily during the overall retreat, debris from the melting ice accumulated to form small, elongate ridges parallel to the ice margin. Some of these ridges, called moraines, formed under water and were later wave-washed as the land emerged from the sea. Moraines contain primarily gravel and sand, but may be interbedded with till or fine-grained marine sediments. They are most prevalent near the coast. Hermon and Monadnock soils are examples of soils formed in moraines.

Large volumes of meltwater carried and eventually deposited sand and gravel as flat-topped, marine ice-contact deltas at areas where the glacier was grounded on the shore. About 15 of these deposits occur at elevations of 180 to 250 feet, the most extensive of which are in the western half of the area next to the higher hills to the north. Colton and Adams soils are examples of soils formed in marine deltas.

Some moraines and deltas occur together to form large complexes of ice-contact deposits, as at Pineo Ridge in Cherryfield and Columbia. Blueberries are grown on many of these moraines and deltas, known locally as 'barrens'.

Sands and gravels also were deposited in the valleys as terraces, kames, and eskers in contact with the stagnating ice, and as outwash plains and valley fill downstream of the ice margin. An extensive area of kame terraces occurs in Beddington, and Townships T24MD, and T25MD. Several long eskers occur in the eastern half of the county. A large area of outwash occurs in the middle of T24MD. Colton and Adams soils are examples of soils formed in ice-contact deposits and outwash. These deposits often are significant aquifers, supplying domestic water to individual rural homes and to some communities, including Lubec, Machias, and Milbridge (Weddle et al., 1988).

Rising seas flooded lowlands and valleys until about 11,200 years ago. Sea levels were as much as 250 feet higher than at present. Large quantities of clay- and siltsized sediment settled out in these low-lying areas, forming the familiar 'blue clays' of the coastal zone and river valleys. Lamoine and Scantic soils are examples of soils developed in marine sediments.

When meltwater quantities decreased, not all the eroded debris within the stagnating ice could be transported. Some remained to form a thin cover of loose till, called ablation till, on some upland ridges and slopes. Hermon and Monadnock soils are examples of soils formed in ablation till.

Ice and glacial debris sometimes dammed drainageways in lowlands and valleys, creating temporary lakes, ponds, and wetlands that trapped the remaining finegrained sediment. Many formed during the last stages of deglaciation. Some still exist, but lacustrine sediments and organic materials filled others. Sebago and Moosabec soils are examples of soils formed in organic materials.

As the ice melted and its weight was removed, the land began to rebound and emerge from the sea. Emergence began about 13,000 years ago and continued until about 9,000 years ago, when sea level was about 200 feet below its present level. Since that time, submergence has brought the sea up to today's level.

The process of erosion, sedimentation, and landscape alteration is still active. Soils continue to form in postglacial materials. Alluvial soils, such as Medomak soils, formed in the floodplains of rivers and streams. Gouldsboro soils developed in coastal marshes subject to the influence of daily tides. Colton and Adams soils formed in loose water-worked sandy, gravely, or cobbly materials. Udorthents are soils that are heavily influenced by human activity such as cut and fill and grading operations.

Economic Geology

Quarrying of the granitic and gabbroic plutons for building and decorative stone, monuments, and paving stone once was a significant enterprise in eastern and southern Washington County (Rand, 1958). However, no quarries are now operating. Over 20 separate quarries existed in the towns of Addison, Baileyville, Calais, Jonesboro, Jonesport, Marshfield, and Milbridge.

Some of the area's plutonic and volcanic rocks contain small quantities of copper, iron, lead, molybdenum, silver, and zinc sulfides and gold (Young, 1963). Many small deposits were mined over a 40 year interval that ended about 1910. Activity centered in the Eastport, Lubec, and Cherryfield areas. Most of the known mineralized zones were reevaluated during the 1950s through the 1970s, but no significant finds were made.

The mining of ice-contact sand and gravel deposits for use in the construction industry continues to be of minor economic importance. Peat deposits from Denbo Heath in Deblois were mined commercially in the late 1980s and early 1990s for use as fuel at a nearby electric power generating facility that has since ceased operation. About 25 other peat deposits have been evaluated. Some could be exploited in the future for use as fuel or soil conditioners (Cameron et al., 1984).

References

American Society for Testing and Materials (ASTM). 2001. Standard classification of soils for engineering purposes. ASTM Standard D 2487-00.

Cameron, Cornelia C. and others, 1984. Peat Resources of Maine. Volume 5: Washington County. Bulletin 32. Maine Geological Survey, Department of Conservation, Augusta, ME.

Denny, Charles S., 1982. Geomorphology of New England. Geological Survey Professional Paper 1208. Geological Survey, U.S. Department of the Interior, Washington, DC.

Ebel, John E., 1989. 'The Seismicity of Maine' in Neotectonics of Maine-Studies in Seismicity, Crustal Warping, and Sea-Level Change. Bulletin 40. Maine Geological Survey, Department of Conservation, Augusta, ME.

Gates, Olcott, 1989. ‘The Geology and Geophysics of the Passamaquoddy Bay Area, Maine and New Brunswick, and their Bearing on Local Subsidence' in Neotectonics of Maine-Studies in Seismicity, Crustal Warping, and Sea-Level Change. Bulletin 40. Maine Geological Survey, Department of Conservation, Augusta, ME.

Hurt, G.W., P.M. Whited, and R.F. Pringle, editors. Version 4.0, 1998. Field indicators of hydric soils in the United States.

Loiselle, Marc and Woodrow B. Thompson, 1987. 'The Geology of Maine’ in Rocks and Minerals, November/December 1987, Volume 62, Number 6.

Osberg, Philip H., A. M. Hussey II, and G. M. Boone, Editors, 1985. Bedrock Geologic Map of Maine. Maine Geological Survey, Department of Conservation, Augusta, ME.

Rand, John R., 1958. Maine Granite Quarries and Prospects, Mineral Resources Index No. 2. Maine Geological Survey, Department of Economic Development, Augusta, ME.

Rourke R.V., January 1994. Chemical and Physical Properties of the Chesuncook, Colonel, Dixfield, and Telos Soil Map Units. University of Maine, Orono, Maine Agricultural and Forest Experiment Station. Technical Bulletin 155, 61p.p.

Rourke, R.V. and C. Beek. 1968. Soil-Water, Chemical and Physical Characteristics of Eight Soil series in Maine.

Rourke, R.V. and D.C. Bull. 1982. Chemical and Physical Properties of the Becket, Colton, Finch, Lyman, Masardis, Naumburg and Skerry Soil Mapping Units. University of Maine, Orono, Maine Agricultural and Forest Experiment Station. Technical Bulletin 108, 95p.p.

Rourke, R.V. and K.A. Schmidt. 1979. Chemical and Physical Properties of the Boothbay, Brayton, Croghan, Monarda, Plaisted, Scantic and Swanville Soil Mapping Units. University of Maine, Orono, Maine Agricultural and Forest Experiment Station. Technical Bulletin 94, 99p.p.

Soil Survey Staff, 1981. Land resource regions and major land resource areas of the United States. Agriculture Handbook 296. Rev. Ed. United States Department of Agriculture, Soil Conservation Service. Washington, DC. 156 p.

Soil Survey Staff. 1993. Soil Survey Manual. Agric. Handbook no. 18. U.S. Government Printing Office, Washington D.C.

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service. U.S. Department of Agriculture Handbook 436.

Thompson, Woodrow B. and Harold W. Borns, Editors, 1985. Surficial Geologic Map of Maine. Maine Geological Survey, Department of Conservation, Augusta, ME.
U.S. Department of Agriculture, Natural Resources Conservation Service, 2003. National Soil Survey Handbook, title 430-VI. [Online] Available: http:// soils.usda.gov/technical/handbook

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. (http://nsscnt.nssc.nrcs.usda.gov/nfm/)

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210.

University of Maine, Orono, Maine Agricultural and Forest Experiment Station. Technical Bulletin 29, 95p.p.

Weddle, Thomas K., and others, 1988. Hydrogeology and Water Quality of Significant Sand and Gravel Aquifers in parts of Hancock, Penobscot, and Washington Counties, Maine. Open File No. 88-7a. Maine Geological Survey, Department of Conservation, Augusta, ME.

Young, Robert S., 1963. Prospect Evaluations, Washington County, Maine. Special Economic Studies Series No. 3. Maine Geological Survey, Department of Economic Development, Augusta, ME.

Glossary

ABC soil. A soil having an A, a B, and a C horizon.
Ablation till. Loose, permeable till deposited during the final downwasting of glacial ice. Lenses of crudely sorted sand and gravel are common.
AC soil. A soil having only an A and a C horizon. Commonly, such soil formed in recent alluvium or on steep, rocky slopes.
Aeration, soil. The exchange of air in soil with air from the atmosphere. The air in a well aerated soil is similar to that in the atmosphere; the air in a poorly aerated soil is considerably higher in carbon dioxide and lower in oxygen.
Aggregate, soil. Many fine particles held in a single mass or cluster. Natural soil aggregates, such as granules, blocks, or prisms, are called peds. Clods are aggregates produced by tillage or logging.
Alluvial fan. The fanlike deposit of a stream where it issues from a gorge upon a plain or of a tributary stream near or at its junction with its main stream.
Alluvium. Material, such as sand, silt, or clay, deposited on land by streams.
Alpha,alpha-dipyridyl. A dye that when dissolved in 1 N ammonium acetate is used to detect the presence of reduced iron (Fe II) in the soil. A positive reaction indicates a type of redoximorphic feature.
Animal unit month (AUM). The amount of forage required by one mature cow of approximately 1,000 pounds weight, with or without a calf, for 1 month.
Aquic conditions. Current soil wetness characterized by saturation, reduction, and redoximorphic features.
Aspect. The direction in which a slope faces.
Association, soil. A group of soils or miscellaneous areas geographically associated in a characteristic repeating pattern and defined and delineated as a single map unit.
Available water capacity (available moisture capacity). The capacity of soils to hold water available for use by most plants. It is commonly defined as the difference between the amount of soil water at field moisture capacity and the amount at wilting point. It is commonly expressed as inches of water per inch of soil. The capacity, in inches, in a 40-inch profile or to a limiting layer is expressed as:

Low ... 3 to 3.2

Backslope. The position that forms the steepest and generally linear, middle portion of a hillslope. In profile, backslopes are commonly bounded by a convex shoulder above and a concave footslope below.
Basal area. The area of a cross section of a tree, generally referring to the section at breast height and measured outside the bark. It is a measure of stand density, commonly expressed in square feet.
Basal till. Compact glacial till deposited beneath the ice.

Base saturation. The degree to which material having cation-exchange properties is saturated with exchangeable bases (sum of $\mathrm{Ca}, \mathrm{Mg}, \mathrm{Na}$, and K), expressed as a percentage of the total cation-exchange capacity.
Base slope. A geomorphic component of hills consisting of the concave to linear (perpendicular to the contour) slope that, regardless of the lateral shape, forms an apron or wedge at the bottom of a hillside dominated by colluvium and slopewash sediments (for example, slope alluvium).
Bedding planes. Fine strata, less than 5 millimeters thick, in unconsolidated alluvial, eolian, lacustrine, or marine sediment.
Bedding system. A drainage system made by plowing, grading, or otherwise shaping the surface of a flat field. It consists of a series of low ridges separated by shallow, parallel dead furrows.
Bedrock. The solid rock that underlies the soil and other unconsolidated material or that is exposed at the surface.
Bedrock-controlled topography. A landscape where the configuration and relief of the landforms are determined or strongly influenced by the underlying bedrock.
Bench terrace. A raised, level or nearly level strip of earth constructed on or nearly on a contour, supported by a barrier of rocks or similar material, and designed to make the soil suitable for tillage and to prevent accelerated erosion.
Bisequum. Two sequences of soil horizons, each of which consists of an illuvial horizon and the overlying eluvial horizons.
Bottom land. The normal flood plain of a stream, subject to flooding.
Boulders. Rock fragments larger than 2 feet (60 centimeters) in diameter.
Breast height. An average height of 4.5 feet above the ground surface; the point on a tree where diameter measurements are ordinarily taken.
Brush management. Use of mechanical, chemical, or biological methods to make conditions favorable for reseeding or to reduce or eliminate competition from woody vegetation and thus allow understory grasses and forbs to recover. Brush management increases forage production and thus reduces the hazard of erosion. It can improve the habitat for some species of wildlife.
Canopy. The leafy crown of trees or shrubs. (See Crown.)
Capillary water. Water held as a film around soil particles and in tiny spaces between particles. Surface tension is the adhesive force that holds capillary water in the soil.
Catena. A sequence, or "chain," of soils on a landscape that formed in similar kinds of parent material but have different characteristics as a result of differences in relief and drainage.
Cation. An ion carrying a positive charge of electricity. The common soil cations are calcium, potassium, magnesium, sodium, and hydrogen.
Cation-exchange capacity. The total amount of exchangeable cations that can be held by the soil, expressed in terms of milliequivalents per 100 grams of soil at neutrality (pH 7.0) or at some other stated pH value. The term, as applied to soils, is synonymous with base-exchange capacity but is more precise in meaning.
Channery soil material. Soil material that has, by volume, 15 to 35 percent thin, flat fragments of sandstone, shale, slate, limestone, or schist as much as 6 inches (15 centimeters) along the longest axis. A single piece is called a channer.
Chemical treatment. Control of unwanted vegetation through the use of chemicals.
Chiseling. Tillage with an implement having one or more soil-penetrating points that shatter or loosen hard, compacted layers to a depth below normal plow depth.
Clay. As a soil separate, the mineral soil particles less than 0.002 millimeter in diameter. As a soil textural class, soil material that is 40 percent or more clay, less than 45 percent sand, and less than 40 percent silt.
Clay depletions. Low-chroma zones having a low content of iron, manganese, and clay because of the chemical reduction of iron and manganese and the removal of iron, manganese, and clay. A type of redoximorphic depletion.

Clay film. A thin coating of oriented clay on the surface of a soil aggregate or lining pores or root channels. Synonyms: clay coating, clay skin.
Climax plant community. The stabilized plant community on a particular site. The plant cover reproduces itself and does not change so long as the environment remains the same.
Coarse textured soil. Sand or loamy sand.
Cobble (or cobblestone). A rounded or partly rounded fragment of rock 3 to 10 inches (7.6 to 25 centimeters) in diameter.
Cobbly soil material. Material that has 15 to 35 percent, by volume, rounded or partially rounded rock fragments 3 to 10 inches (7.6 to 25 centimeters) in diameter. Very cobbly soil material has 35 to 60 percent of these rock fragments, and extremely cobbly soil material has more than 60 percent.
COLE (coefficient of linear extensibility). See Linear extensibility.
Colluvium. Soil material or rock fragments, or both, moved by creep, slide, or local wash and deposited at the base of steep slopes.
Compact substratum the dense zone underlying the solum.
Complex slope. Irregular or variable slope. Planning or establishing terraces, diversions, and other water-control structures on a complex slope is difficult.
Complex, soil. A map unit of two or more kinds of soil or miscellaneous areas in such an intricate pattern or so small in area that it is not practical to map them separately at the selected scale of mapping. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas.
Concretions. Cemented bodies with crude internal symmetry organized around a point, a line, or a plane. They typically take the form of concentric layers visible to the naked eye. Calcium carbonate, iron oxide, and manganese oxide are common compounds making up concretions. If formed in place, concretions of iron oxide or manganese oxide are generally considered a type of redoximorphic concentration.
Conglomerate. A coarse grained, clastic rock composed of rounded or subangular rock fragments more than 2 millimeters in diameter. It commonly has a matrix of sand and finer textured material. Conglomerate is the consolidated equivalent of gravel.
Conservation cropping system. Growing crops in combination with needed cultural and management practices. In a good conservation cropping system, the soilimproving crops and practices more than offset the effects of the soil-depleting crops and practices. Cropping systems are needed on all tilled soils. Soilimproving practices in a conservation cropping system include the use of rotations that contain grasses and legumes and the return of crop residue to the soil. Other practices include the use of green manure crops of grasses and legumes, proper tillage, adequate fertilization, and weed and pest control.
Conservation tillage. A tillage system that does not invert the soil and that leaves a protective amount of crop residue on the surface throughout the year.
Consistence, soil. Refers to the degree of cohesion and adhesion of soil material and its resistance to deformation when ruptured. Consistence includes resistance of soil material to rupture and to penetration; plasticity, toughness, and stickiness of puddled soil material; and the manner in which the soil material behaves when subject to compression. Terms describing consistence are defined in the "Soil Survey Manual."
Contour stripcropping. Growing crops in strips that follow the contour. Strips of grass or close-growing crops are alternated with strips of clean-tilled crops or summer fallow.
Control section. The part of the soil on which classification is based. The thickness varies among different kinds of soil, but for many it is that part of the soil profile between depths of 10 inches and 40 or 80 inches.

Corrosion. Soil-induced electrochemical or chemical action that dissolves or weakens concrete or uncoated steel.
Cover crop. A close-growing crop grown primarily to improve and protect the soil between periods of regular crop production, or a crop grown between trees and vines in orchards and vineyards.
Cropping system. Growing crops according to a planned system of rotation and management practices.
Crop residue management. Returning crop residue to the soil, which helps to maintain soil structure, organic matter content, and fertility and helps to control erosion.
Cross-slope farming. Deliberately conducting farming operations on sloping farmland in such a way that tillage is across the general slope.
Crown. The upper part of a tree or shrub, including the living branches and their foliage.
Cutbanks cave (in tables). The walls of excavations tend to cave in or slough.
Deferred grazing. Postponing grazing or resting grazing land for a prescribed period.
Delta. A body of alluvium having a surface that is nearly flat and fan shaped; deposited at or near the mouth of a river or stream where it enters a body of relatively quiet water, generally a sea or lake.
Dense layer (in tables). A very firm, massive layer that has a bulk density of more than 1.8 grams per cubic centimeter. Such a layer affects the ease of digging and can affect filling and compacting.
Depth, soil. Generally, the thickness of the soil over bedrock. Very deep soils are more than 60 inches deep over bedrock; deep soils, 40 to 60 inches; moderately deep, 20 to 40 inches; shallow, 10 to 20 inches; and very shallow, less than 10 inches.
Diversion (or diversion terrace). A ridge of earth, generally a terrace, built to protect downslope areas by diverting runoff from its natural course.
Divided-slope farming. A form of field stripcropping in which crops are grown in a systematic arrangement of two strips, or bands, across the slope to reduce the hazard of water erosion. One strip is in a close-growing crop that provides protection from erosion, and the other strip is in a crop that provides less protection from erosion. This practice is used where slopes are not long enough to permit a full stripcropping pattern to be used.
Drainage class (natural). Refers to the frequency and duration of wet periods under conditions similar to those under which the soil formed. Alterations of the water regime by human activities, either through drainage or irrigation, are not a consideration unless they have significantly changed the morphology of the soil. Seven classes of natural soil drainage are recognized-excessively drained, somewhat excessively drained, well drained, moderately well drained, somewhat poorly drained, poorly drained, and very poorly drained. These classes are defined in the "Soil Survey Manual."
Drainage, surface. Runoff, or surface flow of water, from an area.
Draw. A small stream valley that generally is more open and has broader bottom land than a ravine or gulch.
Drumlin. A low, smooth, elongated oval hill, mound, or ridge of compact glacial till. The longer axis is parallel to the path of the glacier and commonly has a blunt nose pointing in the direction from which the ice approached.
Duff. A generally firm organic layer on the surface of mineral soils. It consists of fallen plant material that is in the process of decomposition and includes everything from the litter on the surface to underlying pure humus.
Ecological site. An area where climate, soil, and relief are sufficiently uniform to produce a distinct natural plant community. An ecological site is the product of all the environmental factors responsible for its development. It is typified by an
association of species that differ from those on other ecological sites in kind and/ or proportion of species or in total production.
Eluviation. The movement of material in true solution or colloidal suspension from one place to another within the soil. Soil horizons that have lost material through eluviation are eluvial; those that have received material are illuvial.
Endosaturation. A type of saturation of the soil in which all horizons between the upper boundary of saturation and a depth of 2 meters are saturated.
Eolian soil material. Earthy parent material accumulated through wind action; commonly refers to sandy material in dunes or to loess in blankets on the surface.
Ephemeral stream. A stream, or reach of a stream, that flows only in direct response to precipitation. It receives no long-continued supply from melting snow or other source, and its channel is above the water table at all times.
Episaturation. A type of saturation indicating a perched water table in a soil in which saturated layers are underlain by one or more unsaturated layers within 2 meters of the surface.
Erosion. The wearing away of the land surface by water, wind, ice, or other geologic agents and by such processes as gravitational creep.
Erosion (geologic). Erosion caused by geologic processes acting over long geologic periods and resulting in the wearing away of mountains and the building up of such landscape features as flood plains and coastal plains. Synonym: natural erosion.
Erosion (accelerated). Erosion much more rapid than geologic erosion, mainly as a result of human or animal activities or of a catastrophe in nature, such as a fire, that exposes the surface.
Erosion pavement. A layer of gravel or stones that remains on the surface after fine particles are removed by sheet or rill erosion.
Escarpment. A relatively continuous and steep slope or cliff breaking the general continuity of more gently sloping land surfaces and resulting from erosion or faulting. Synonym: scarp.
Esker. A narrow, winding ridge of stratified gravelly and sandy drift deposited by a stream flowing in a tunnel beneath a glacier.
Extrusive rock. Igneous rock derived from deep-seated molten matter (magma) emplaced on the earth's surface.
Fallow. Cropland left idle in order to restore productivity through accumulation of moisture. Summer fallow is common in regions of limited rainfall where cereal grain is grown. The soil is tilled for at least one growing season for weed control and decomposition of plant residue.
Fertility, soil. The quality that enables a soil to provide plant nutrients, in adequate amounts and in proper balance, for the growth of specified plants when light, moisture, temperature, tilth, and other growth factors are favorable.
Fibric soil material (peat). The least decomposed of all organic soil material. Peat contains a large amount of well preserved fiber that is readily identifiable according to botanical origin. Peat has the lowest bulk density and the highest water content at saturation of all organic soil material.
Field moisture capacity. The moisture content of a soil, expressed as a percentage of the ovendry weight, after the gravitational, or free, water has drained away; the field moisture content 2 or 3 days after a soaking rain; also called normal field capacity, normal moisture capacity, or capillary capacity.
Fill slope. A sloping surface consisting of excavated soil material from a road cut. It commonly is on the downhill side of the road.
Fine textured soil. Sandy clay, silty clay, or clay.
Firebreak. Area cleared of flammable material to stop or help control creeping or running fires. It also serves as a line from which to work and to facilitate the
movement of firefighters and equipment. Designated roads also serve as firebreaks.
First bottom. The normal flood plain of a stream, subject to frequent or occasional flooding.
Flaggy soil material. Material that has, by volume, 15 to 35 percent flagstones. Very flaggy soil material has 35 to 60 percent flagstones, and extremely flaggy soil material has more than 60 percent flagstones.
Flagstone. A thin fragment of sandstone, limestone, slate, shale, or (rarely) schist 6 to 15 inches (15 to 38 centimeters) long.
Flood plain. A nearly level alluvial plain that borders a stream and is subject to flooding unless protected artificially.
Fluvial. Of or pertaining to rivers; produced by river action, as a fluvial plain.
Foothill. A steeply sloping upland that has relief of as much as 1,000 feet (300 meters) and fringes a mountain range or high-plateau escarpment.
Footslope. The position that forms the inner, gently inclined surface at the base of a hillslope. In profile, footslopes are commonly concave. A footslope is a transition zone between upslope sites of erosion and transport (shoulders and backslopes) and downslope sites of deposition (toeslopes).
Forb. Any herbaceous plant not a grass or a sedge.
Forest cover. All trees and other woody plants (underbrush) covering the ground in a forest.
Forest type. A stand of trees similar in composition and development because of given physical and biological factors by which it may be differentiated from other stands.
Fragipan. A loamy, brittle subsurface horizon low in porosity and content of organic matter and low or moderate in clay but high in silt or very fine sand. A fragipan appears cemented and restricts roots. When dry, it is hard or very hard and has a higher bulk density than the horizon or horizons above. When moist, it tends to rupture suddenly under pressure rather than to deform slowly.
Genesis, soil. The mode of origin of the soil. Refers especially to the processes or soil-forming factors responsible for the formation of the solum, or true soil, from the unconsolidated parent material.
Glacial drift. Pulverized and other rock material transported by glacial ice and then deposited. Also, the sorted and unsorted material deposited by streams flowing from glaciers.
Glacial outwash. Gravel, sand, and silt, commonly stratified, deposited by glacial meltwater.
Glacial till. Unsorted, nonstratified glacial drift consisting of clay, silt, sand, and boulders transported and deposited by glacial ice.
Glaciofluvial deposits. Material moved by glaciers and subsequently sorted and deposited by streams flowing from the melting ice. The deposits are stratified and occur as kames, eskers, deltas, and outwash plains.
Glaciolacustrine deposits. Material ranging from fine clay to sand derived from glaciers and deposited in glacial lakes mainly by glacial meltwater. Many deposits are interbedded or laminated.
Gleyed soil. Soil that formed under poor drainage, resulting in the reduction of iron and other elements in the profile and in gray colors.
Graded stripcropping. Growing crops in strips that grade toward a protected waterway.
Grassed waterway. A natural or constructed waterway, typically broad and shallow, seeded to grass as protection against erosion. Conducts surface water away from cropland.
Gravel. Rounded or angular fragments of rock as much as 3 inches (2 millimeters to 7.6 centimeters) in diameter. An individual piece is a pebble.

Gravelly soil material. Material that has 15 to 35 percent, by volume, rounded or angular rock fragments, not prominently flattened, as much as 3 inches (7.6 centimeters) in diameter.
Green manure crop (agronomy). A soil-improving crop grown to be plowed under in an early stage of maturity or soon after maturity.
Ground water. Water filling all the unblocked pores of the material below the water table.
Gully. A miniature valley with steep sides cut by running water and through which water ordinarily runs only after rainfall. The distinction between a gully and a rill is one of depth. A gully generally is an obstacle to farm machinery and is too deep to be obliterated by ordinary tillage; a rill is of lesser depth and can be smoothed over by ordinary tillage.
Hard bedrock. Bedrock that cannot be excavated except by blasting or by the use of special equipment that is not commonly used in construction.
Hardpan. A hardened or cemented soil horizon, or layer. The soil material is sandy, loamy, or clayey and is cemented by iron oxide, silica, calcium carbonate, or other substance.
Hard to reclaim (in tables). Reclamation is difficult after the removal of soil for construction and other uses. Revegetation and erosion control are extremely difficult.
Heath bog. A broad area of open land, often mounded and very poorly drained, consisting mostly of fibric and hemic organic materials.
Head slope. A geomorphic component of hills consisting of a laterally concave area of a hillside, especially at the head of a drainageway. The overland waterflow is converging.
Hemic soil material (mucky peat). Organic soil material intermediate in degree of decomposition between the less decomposed fibric material and the more decomposed sapric material.
High-residue crops. Such crops as small grain and corn used for grain. If properly managed, residue from these crops can be used to control erosion until the next crop in the rotation is established. These crops return large amounts of organic matter to the soil.
Hill. A natural elevation of the land surface, rising as much as 1,000 feet above surrounding lowlands, commonly of limited summit area and having a well defined outline; hillsides generally have slopes of more than 15 percent. The distinction between a hill and a mountain is arbitrary and is dependent on local usage.
Horizon, soil. A layer of soil, approximately parallel to the surface, having distinct characteristics produced by soil-forming processes. In the identification of soil horizons, an uppercase letter represents the major horizons. Numbers or lowercase letters that follow represent subdivisions of the major horizons. An explanation of the subdivisions is given in the "Soil Survey Manual." The major horizons of mineral soil are as follows:
O horizon.-An organic layer of fresh and decaying plant residue.
A horizon.-The mineral horizon at or near the surface in which an accumulation of humified organic matter is mixed with the mineral material. Also, a plowed surface horizon, most of which was originally part of a B horizon. E horizon.-The mineral horizon in which the main feature is loss of silicate clay, iron, aluminum, or some combination of these.
B horizon.-The mineral horizon below an A horizon. The B horizon is in part a layer of transition from the overlying A to the underlying C horizon. The B horizon also has distinctive characteristics, such as (1) accumulation of clay, sesquioxides, humus, or a combination of these; (2) prismatic or blocky structure; (3) redder or browner colors than those in the A horizon; or (4) a combination of these.

C horizon.-The mineral horizon or layer, excluding indurated bedrock, that is little affected by soil-forming processes and does not have the properties typical of the overlying soil material. The material of a C horizon may be either like or unlike that in which the solum formed. If the material is known to differ from that in the solum, an Arabic numeral, commonly a 2, precedes the letter C. Cr horizon.-Soft, consolidated bedrock beneath the soil. R layer.-Consolidated bedrock beneath the soil. The bedrock commonly underlies a C horizon, but it can be directly below an A or a B horizon.
Humus. The well decomposed, more or less stable part of the organic matter in mineral soils.
Hydrologic soil groups. Refers to soils grouped according to their runoff potential. The soil properties that influence this potential are those that affect the minimum rate of water infiltration on a bare soil during periods after prolonged wetting when the soil is not frozen. These properties are depth to a seasonal high water table, the infiltration rate and permeability after prolonged wetting, and depth to a very slowly permeable layer. The slope and the kind of plant cover are not considered but are separate factors in predicting runoff.
Igneous rock. Rock formed by solidification from a molten or partially molten state. Major varieties include plutonic and volcanic rock. Examples are andesite, basalt, and granite.
Illuviation. The movement of soil material from one horizon to another in the soil profile. Generally, material is removed from an upper horizon and deposited in a lower horizon.
Impervious soil. A soil through which water, air, or roots penetrate slowly or not at all. No soil is absolutely impervious to air and water all the time.
Infiltration. The downward entry of water into the immediate surface of soil or other material, as contrasted with percolation, which is movement of water through soil layers or material.
Infiltration capacity. The maximum rate at which water can infiltrate into a soil under a given set of conditions.
Infiltration rate. The rate at which water penetrates the surface of the soil at any given instant, usually expressed in inches per hour. The rate can be limited by the infiltration capacity of the soil or the rate at which water is applied at the surface.
Intake rate. The average rate of water entering the soil under irrigation. Most soils have a fast initial rate; the rate decreases with application time. Therefore, intake rate for design purposes is not a constant but is a variable depending on the net irrigation application. The rate of water intake, in inches per hour, is expressed as follows:

$\begin{aligned} & 0.2 \text { to } 0.4 . . . \\ & 0.4 \text { to } 0.75 \\ & 0.75 \text { to } 1.25 \\ & 1.25 \text { to } 1.75 \\ & 1.75 \text { to } 2.5 \end{aligned}$

Interfluve. An elevated area between two drainageways that sheds water to those drainageways.
Intermittent stream. A stream, or reach of a stream, that flows for prolonged periods only when it receives ground-water discharge or long, continued contributions from melting snow or other surface and shallow subsurface sources.
Iron depletions. Low-chroma zones having a low content of iron and manganese oxide because of chemical reduction and removal, but having a clay content similar to that of the adjacent matrix. A type of redoximorphic depletion.

Irrigation. Application of water to soils to assist in production of crops. Methods of irrigation are:
Basin.-Water is applied rapidly to nearly level plains surrounded by levees or dikes.
Border.-Water is applied at the upper end of a strip in which the lateral flow of water is controlled by small earth ridges called border dikes, or borders. Controlled flooding.-Water is released at intervals from closely spaced field ditches and distributed uniformly over the field.
Corrugation.-Water is applied to small, closely spaced furrows or ditches in fields of close-growing crops or in orchards so that it flows in only one direction. Drip (or trickle).-Water is applied slowly and under low pressure to the surface of the soil or into the soil through such applicators as emitters, porous tubing, or perforated pipe.
Furrow.-Water is applied in small ditches made by cultivation implements.
Furrows are used for tree and row crops.
Sprinkler.-Water is sprayed over the soil surface through pipes or nozzles from a pressure system.
Subirrigation.-Water is applied in open ditches or tile lines until the water table is raised enough to wet the soil. Wild flooding.-Water, released at high points, is allowed to flow onto an area without controlled distribution.
Kame. An irregular, short ridge or hill of stratified glacial drift.
Knoll. A small, low, rounded hill rising above adjacent landforms.
$\mathbf{K}_{\text {sat }}$. Saturated hydraulic conductivity. (See Permeability.)
Lacustrine deposit. Material deposited in lake water and exposed when the water level is lowered or the elevation of the land is raised.
Landslide. The rapid downhill movement of a mass of soil and loose rock, generally when wet or saturated. The speed and distance of movement, as well as the amount of soil and rock material, vary greatly.
Large stones (in tables). Rock fragments 3 inches (7.6 centimeters) or more across. Large stones adversely affect the specified use of the soil.
Leaching. The removal of soluble material from soil or other material by percolating water.
Linear extensibility. Refers to the change in length of an unconfined clod as moisture content is decreased from a moist to a dry state. Linear extensibility is used to determine the shrink-swell potential of soils. It is an expression of the volume change between the water content of the clod at $1 / 3$ - or $1 / 10$-bar tension (33 kPa or 10 kPa tension) and oven dryness. Volume change is influenced by the amount and type of clay minerals in the soil. The volume change is the percent change for the whole soil. If it is expressed as a fraction, the resulting value is COLE, coefficient of linear extensibility.
Liquid limit. The moisture content at which the soil passes from a plastic to a liquid state.
Loam. Soil material that is 7 to 27 percent clay particles, 28 to 50 percent silt particles, and less than 52 percent sand particles.
Loess. Fine grained material, dominantly of silt-sized particles, deposited by wind.
Low-residue crops. Such crops as corn used for silage, peas, beans, and potatoes. Residue from these crops is not adequate to control erosion until the next crop in the rotation is established. These crops return little organic matter to the soil.
Low strength. The soil is not strong enough to support loads.
Masses. Concentrations of substances in the soil matrix that do not have a clearly defined boundary with the surrounding soil material and cannot be removed as a discrete unit. Common compounds making up masses are calcium carbonate, gypsum or other soluble salts, iron oxide, and manganese oxide. Masses
consisting of iron oxide or manganese oxide generally are considered a type of redoximorphic concentration.
Mechanical treatment. Use of mechanical equipment for seeding, brush management, and other management practices.
Medium textured soil. Very fine sandy loam, loam, silt loam, or silt.
Metamorphic rock. Rock of any origin altered in mineralogical composition, chemical composition, or structure by heat, pressure, and movement. Nearly all such rocks are crystalline.
Mineral soil. Soil that is mainly mineral material and low in organic material. Its bulk density is more than that of organic soil.
Minimum tillage. Only the tillage essential to crop production and prevention of soil damage.
Miscellaneous area. An area that has little or no natural soil and supports little or no vegetation.
Moderately coarse textured soil. Coarse sandy loam, sandy loam, or fine sandy loam.
Moderately fine textured soil. Clay loam, sandy clay loam, or silty clay loam.
Moraine. An accumulation of earth, stones, and other debris deposited by a glacier. Some types are terminal, lateral, medial, and ground.
Morphology, soil. The physical makeup of the soil, including the texture, structure, porosity, consistence, color, and other physical, mineral, and biological properties of the various horizons, and the thickness and arrangement of those horizons in the soil profile.
Mottling, soil. Irregular spots of different colors that vary in number and size. Descriptive terms are as follows: abundance-few, common, and many; sizefine, medium, and coarse; and contrast-faint, distinct, and prominent. The size measurements are of the diameter along the greatest dimension. Fine indicates less than 5 millimeters (about 0.2 inch); medium, from 5 to 15 millimeters (about 0.2 to 0.6 inch); and coarse, more than 15 millimeters (about 0.6 inch).

Mountain. A natural elevation of the land surface, rising more than 1,000 feet above surrounding lowlands, commonly of restricted summit area (relative to a plateau) and generally having steep sides. A mountain can occur as a single, isolated mass or in a group forming a chain or range.
Muck. Dark, finely divided, well decomposed organic soil material. (See Sapric soil material.)
Munsell notation. A designation of color by degrees of three simple variables-hue, value, and chroma. For example, a notation of $10 \mathrm{YR} 6 / 4$ is a color with hue of 10YR, value of 6 , and chroma of 4 .
Neutral soil. A soil having a pH value of 6.6 to 7.3. (See Reaction, soil.)
Nodules. Cemented bodies lacking visible internal structure. Calcium carbonate, iron oxide, and manganese oxide are common compounds making up nodules. If formed in place, nodules of iron oxide or manganese oxide are considered types of redoximorphic concentrations.
Nose slope. A geomorphic component of hills consisting of the projecting end (laterally convex area) of a hillside. The overland waterflow is predominantly divergent.
Nutrient, plant. Any element taken in by a plant essential to its growth. Plant nutrients are mainly nitrogen, phosphorus, potassium, calcium, magnesium, sulfur, iron, manganese, copper, boron, and zinc obtained from the soil and carbon, hydrogen, and oxygen obtained from the air and water.
Organic matter. Plant and animal residue in the soil in various stages of decomposition. The content of organic matter in the surface layer is described as follows:
Very low less than 0.5 percent
Low
Moderately low 1.0 to 2.0 percent
Moderate 2.0 to 4.0 percent
High .. 4.0 to 8.0 percent
Very high more than 8.0 percent

Outwash plain. A landform of mainly sandy or coarse textured material of glaciofluvial origin. An outwash plain is commonly smooth; where pitted, it generally is low in relief.
Paleoterrace. An erosional remnant of a terrace that retains the surface form and alluvial deposits of its origin but was not emplaced by, and commonly does not grade to, a present-day stream or drainage network.
Pan. A compact, dense layer in a soil that impedes the movement of water and the growth of roots. For example, hardpan, fragipan, claypan, plowpan, and traffic pan.
Parent material. The unconsolidated organic and mineral material in which soil forms.
Peat. Unconsolidated material, largely undecomposed organic matter, that has accumulated under excess moisture. (See Fibric soil material.)
Ped. An individual natural soil aggregate, such as a granule, a prism, or a block.
Pedisediment. A thin layer of alluvial material that mantles an erosion surface and has been transported to its present position from higher lying areas of the erosion surface.
Pedon. The smallest volume that can be called "a soil." A pedon is three dimensional and large enough to permit study of all horizons. Its area ranges from about 10 to 100 square feet (1 square meter to 10 square meters), depending on the variability of the soil.
Percolation. The movement of water through the soil.
Permeability. The quality of the soil that enables water or air to move downward through the profile. The rate at which a saturated soil transmits water is accepted as a measure of this quality. In soil physics, the rate is referred to as "saturated hydraulic conductivity," which is defined in the "Soil Survey Manual." In line with conventional usage in the engineering profession and with traditional usage in published soil surveys, this rate of flow continues to be expressed as "permeability." Terms describing permeability, measured in inches per hour, are as follows:

permeable less than 0.0015 inch	
Very slow 0.0015 to 0.06 inch	
Slow	... 0.06 to 0.2 inch
Moderately slow	0.2 to 0.6 inch
Moderate	0.6 inch to 2.0 inches
Moderately rapid	2.0 to 6.0 inches
Rapi	es
Very rapid	more than 20 inches

Phase, soil. A subdivision of a soil series based on features that affect its use and management, such as slope, stoniness, and flooding.
pH value. A numerical designation of acidity and alkalinity in soil. (See Reaction, soil.)
Piping (in tables). Formation of subsurface tunnels or pipelike cavities by water moving through the soil.
Plasticity index. The numerical difference between the liquid limit and the plastic limit; the range of moisture content within which the soil remains plastic.
Plastic limit. The moisture content at which a soil changes from semisolid to plastic.
Plowpan. A compacted layer formed in the soil directly below the plowed layer.

Ponding. Standing water on soils in closed depressions. Unless the soils are artificially drained, the water can be removed only by percolation or evapotranspiration.
Poorly graded. Refers to a coarse grained soil or soil material consisting mainly of particles of nearly the same size. Because there is little difference in size of the particles, density can be increased only slightly by compaction.
Potential native plant community. See Climax plant community.
Potential rooting depth (effective rooting depth). Depth to which roots could penetrate if the content of moisture in the soil were adequate. The soil has no properties restricting the penetration of roots to this depth.
Prescribed burning. Deliberately burning an area for specific management purposes, under the appropriate conditions of weather and soil moisture and at the proper time of day.
Productivity, soil. The capability of a soil for producing a specified plant or sequence of plants under specific management.
Profile, soil. A vertical section of the soil extending through all its horizons and into the parent material.
Proper grazing use. Grazing at an intensity that maintains enough cover to protect the soil and maintain or improve the quantity and quality of the desirable vegetation. This practice increases the vigor and reproduction capacity of the key plants and promotes the accumulation of litter and mulch necessary to conserve soil and water.
Reaction, soil. A measure of acidity or alkalinity of a soil, expressed in pH values. A soil that tests to pH 7.0 is described as precisely neutral in reaction because it is neither acid nor alkaline. The degrees of acidity or alkalinity, expressed as pH values, are:

Redoximorphic concentrations. Nodules, concretions, soft masses, pore linings, and other features resulting from the accumulation of iron or manganese oxide. An indication of chemical reduction and oxidation resulting from saturation.
Redoximorphic depletions. Low-chroma zones from which iron and manganese oxide or a combination of iron and manganese oxide and clay has been removed. These zones are indications of the chemical reduction of iron resulting from saturation.
Redoximorphic features. Redoximorphic concentrations, redoximorphic depletions, reduced matrices, a positive reaction to alpha,alpha-dipyridyl, and other features indicating the chemical reduction and oxidation of iron and manganese compounds resulting from saturation.
Reduced matrix. A soil matrix that has low chroma in situ because of chemically reduced iron (Fe II). The chemical reduction results from nearly continuous wetness. The matrix undergoes a change in hue or chroma within 30 minutes after exposure to air as the iron is oxidized (Fe III). A type of redoximorphic feature.

Regolith. The unconsolidated mantle of weathered rock and soil material on the earth's surface; the loose earth material above the solid rock.
Relief. The elevations or inequalities of a land surface, considered collectively.
Residuum (residual soil material). Unconsolidated, weathered or partly weathered mineral material that accumulated as consolidated rock disintegrated in place.
Rill. A steep-sided channel resulting from accelerated erosion. A rill generally is a few inches deep and not wide enough to be an obstacle to farm machinery.
Road cut. A sloping surface produced by mechanical means during road construction. It is commonly on the uphill side of the road.
Rock fragments. Rock or mineral fragments having a diameter of 2 millimeters or more; for example, pebbles, cobbles, stones, and boulders.
Root zone. The part of the soil that can be penetrated by plant roots.
Runoff. The precipitation discharged into stream channels from an area. The water that flows off the surface of the land without sinking into the soil is called surface runoff. Water that enters the soil before reaching surface streams is called ground-water runoff or seepage flow from ground water.
Sand. As a soil separate, individual rock or mineral fragments from 0.05 millimeter to 2.0 millimeters in diameter. Most sand grains consist of quartz. As a soil textural class, a soil that is 85 percent or more sand and not more than 10 percent clay.
Sandstone. Sedimentary rock containing dominantly sand-sized particles.
Sapric soil material (muck). The most highly decomposed of all organic soil material. Muck has the least amount of plant fiber, the highest bulk density, and the lowest water content at saturation of all organic soil material.
Saprolite. Unconsolidated residual material underlying the soil and grading to hard bedrock below.
Saturation. Wetness characterized by zero or positive pressure of the soil water. Under conditions of saturation, the water will flow from the soil matrix into an unlined auger hole.
Scarification. The act of abrading, scratching, loosening, crushing, or modifying the surface to increase water absorption or to provide a more tillable soil.
Second bottom. The first terrace above the normal flood plain (or first bottom) of a river.
Sedimentary rock. Rock made up of particles deposited from suspension in water. The chief kinds of sedimentary rock are conglomerate, formed from gravel; sandstone, formed from sand; shale, formed from clay; and limestone, formed from soft masses of calcium carbonate. There are many intermediate types. Some wind-deposited sand is consolidated into sandstone.
Sequum. A sequence consisting of an illuvial horizon and the overlying eluvial horizon. (See Eluviation.)
Series, soil. A group of soils that have profiles that are almost alike, except for differences in texture of the surface layer. All the soils of a series have horizons that are similar in composition, thickness, and arrangement.
Shale. Sedimentary rock formed by the hardening of a clay deposit.
Sheet erosion. The removal of a fairly uniform layer of soil material from the land surface by the action of rainfall and surface runoff.
Shoulder. The position that forms the uppermost inclined surface near the top of a hillslope. It is a transition from backslope to summit. The surface is dominantly convex in profile and erosional in origin.
Shrink-swell (in tables). The shrinking of soil when dry and the swelling when wet. Shrinking and swelling can damage roads, dams, building foundations, and other structures. It can also damage plant roots.
Side slope. A geomorphic component of hills consisting of a laterally planar area of a hillside. The overland waterflow is predominantly parallel.

Silica. A combination of silicon and oxygen. The mineral form is called quartz.
Silica-sesquioxide ratio. The ratio of the number of molecules of silica to the number of molecules of alumina and iron oxide. The more highly weathered soils or their clay fractions in warm-temperate, humid regions, and especially those in the tropics, generally have a low ratio.
Silt. As a soil separate, individual mineral particles that range in diameter from the upper limit of clay (0.002 millimeter) to the lower limit of very fine sand (0.05 millimeter). As a soil textural class, soil that is 80 percent or more silt and less than 12 percent clay.
Siltstone. Sedimentary rock made up of dominantly silt-sized particles.
Similar soils. Soils that share limits of diagnostic criteria, behave and perform in a similar manner, and have similar conservation needs or management requirements for the major land uses in the survey area.
Site index. A designation of the quality of a forest site based on the height of the dominant stand at an arbitrarily chosen age. For example, if the average height attained by dominant and codominant trees in a fully stocked stand at the age of 50 years is 75 feet, the site index is 75 .
Slickensides. Polished and grooved surfaces produced by one mass sliding past another. In soils, slickensides may occur at the bases of slip surfaces on the steeper slopes; on faces of blocks, prisms, and columns; and in swelling clayey soils, where there is marked change in moisture content.
Slope. The inclination of the land surface from the horizontal. Percentage of slope is the vertical distance divided by horizontal distance, then multiplied by 100. Thus, a slope of 20 percent is a drop of 20 feet in 100 feet of horizontal distance. In this survey, classes for simple slopes are as follows:

Classes for complex slopes are as follows:

Sloughed till. Water-saturated till that has flowed slowly downhill from its original place of deposit by glacial ice. It may rest on other till, on glacial outwash, or on a glaciolacustrine deposit.
Slow refill (in tables). The slow filling of ponds, resulting from restricted permeability in the soil.
Soft bedrock. Bedrock that can be excavated with trenching machines, backhoes, small rippers, and other equipment commonly used in construction.
Soil. A natural, three-dimensional body at the earth's surface. It is capable of supporting plants and has properties resulting from the integrated effect of climate and living matter acting on earthy parent material, as conditioned by relief over periods of time.
Soil separates. Mineral particles less than 2 millimeters in equivalent diameter and ranging between specified size limits. The names and sizes, in millimeters, of separates recognized in the United States are as follows:
Very coarse sand 2.0 to 1.0
Coarse sand ... 1.0 to 0.5
Medium sand ... 0.5 to 0.25
Fine sand ... 0.25 to 0.10
Very fine sand .. 0.10 to 0.05
Silt ... 0.05 to 0.002
Clay .. Iess than 0.002

Solum. The upper part of a soil profile, above the C horizon, in which the processes of soil formation are active. The solum in soil consists of the A, E, and B horizons. Generally, the characteristics of the material in these horizons are unlike those of the material below the solum. The living roots and plant and animal activities are largely confined to the solum.
Stone line. A concentration of coarse fragments in a soil. Generally, it is indicative of an old weathered surface. In a cross section, the line may be one fragment or more thick. It generally overlies material that weathered in place and is overlain by recent sediment of variable thickness.
Stones. Rock fragments 10 to 24 inches (25 to 60 centimeters) in diameter if rounded or 15 to 24 inches (38 to 60 centimeters) in length if flat.
Stony. Refers to a soil containing stones in numbers that interfere with or prevent tillage.
Stripcropping. Growing crops in a systematic arrangement of strips or bands that provide vegetative barriers to wind erosion and water erosion.
Structure, soil. The arrangement of primary soil particles into compound particles or aggregates. The principal forms of soil structure are-platy (laminated), prismatic (vertical axis of aggregates longer than horizontal), columnar (prisms with rounded tops), blocky (angular or subangular), and granular. Structureless soils are either single grained (each grain by itself, as in dune sand) or massive (the particles adhering without any regular cleavage, as in many hardpans).
Stubble mulch. Stubble or other crop residue left on the soil or partly worked into the soil. It protects the soil from wind erosion and water erosion after harvest, during preparation of a seedbed for the next crop, and during the early growing period of the new crop.
Subsoil. Technically, the B horizon; roughly, the part of the solum below plow depth.
Subsoiling. Tilling a soil below normal plow depth, ordinarily to shatter a hardpan or claypan.
Substratum. The part of the soil below the solum.
Subsurface layer. Technically, the E horizon. Generally refers to a leached horizon lighter in color and lower in content of organic matter than the overlying surface layer.
Summer fallow. The tillage of uncropped land during the summer to control weeds and allow storage of moisture in the soil for the growth of a later crop. A practice common in semiarid regions, where annual precipitation is not enough to produce a crop every year. Summer fallow is frequently practiced before planting winter grain.
Summit. The topographically highest position of a hillslope. It has a nearly level (planar or only slightly convex) surface.
Surface layer. The soil ordinarily moved in tillage, or its equivalent in uncultivated soil, ranging in depth from 4 to 10 inches (10 to 25 centimeters). Frequently designated as the "plow layer," or the "Ap horizon."
Surface soil. The A, E, AB, and EB horizons, considered collectively. It includes all subdivisions of these horizons.
Talus. Fragments of rock and other soil material accumulated by gravity at the foot of cliffs or steep slopes.

Taxadjuncts. Soils that cannot be classified in a series recognized in the classification system. Such soils are named for a series they strongly resemble and are designated as taxadjuncts to that series because they differ in ways too small to be of consequence in interpreting their use and behavior. Soils are recognized as taxadjuncts only when one or more of their characteristics are slightly outside the range defined for the family of the series for which the soils are named.
Terminal moraine. A belt of thick glacial drift that generally marks the termination of important glacial advances.
Terrace. An embankment, or ridge, constructed across sloping soils on the contour or at a slight angle to the contour. The terrace intercepts surface runoff so that water soaks into the soil or flows slowly to a prepared outlet. A terrace in a field generally is built so that the field can be farmed. A terrace intended mainly for drainage has a deep channel that is maintained in permanent sod.
Terrace (geologic). An old alluvial plain, ordinarily flat or undulating, bordering a river, a lake, or the sea.
Texture, soil. The relative proportions of sand, silt, and clay particles in a mass of soil. The basic textural classes, in order of increasing proportion of fine particles, are sand, loamy sand, sandy loam, loam, silt loam, silt, sandy clay loam, clay loam, silty clay loam, sandy clay, silty clay, and clay. The sand, loamy sand, and sandy loam classes may be further divided by specifying "coarse," "fine," or "very fine."
Thin layer (in tables). Otherwise suitable soil material that is too thin for the specified use.
Till plain. An extensive area of nearly level to undulating soils underlain by glacial till.
Tilth, soil. The physical condition of the soil as related to tillage, seedbed preparation, seedling emergence, and root penetration.
Toeslope. The position that forms the gently inclined surface at the base of a hillslope. Toeslopes in profile are commonly gentle and linear and are constructional surfaces forming the lower part of a hillslope continuum that grades to valley or closed-depression floors.
Topsoil. The upper part of the soil, which is the most favorable material for plant growth. It is ordinarily rich in organic matter and is used to topdress roadbanks, lawns, and land affected by mining.
Trace elements. Chemical elements, for example, zinc, cobalt, manganese, copper, and iron, in soils in extremely small amounts. They are essential to plant growth.
Upland. Land at a higher elevation, in general, than the alluvial plain or stream terrace; land above the lowlands along streams.
Valley fill. In glaciated regions, material deposited in stream valleys by glacial meltwater. In nonglaciated regions, alluvium deposited by heavily loaded streams.
Variegation. Refers to patterns of contrasting colors assumed to be inherited from the parent material rather than to be the result of poor drainage.
Varve. A sedimentary layer or a lamina or sequence of laminae deposited in a body of still water within a year. Specifically, a thin pair of graded glaciolacustrine layers seasonally deposited, usually by meltwater streams, in a glacial lake or other body of still water in front of a glacier.
Water bars. Smooth, shallow ditches or depressional areas that are excavated at an angle across a sloping road. They are used to reduce the downward velocity of water and divert it off and away from the road surface. Water bars can easily be driven over if constructed properly.
Water table. The upper limit of the soil or underlying rock material that is wholly saturated with water.
Water table, apparent. A thick zone of free water in the soil. An apparent water table
is indicated by the level at which water stands in an uncased borehole after adequate time is allowed for adjustment in the surrounding soil.
Water table, perched. A water table standing above an unsaturated zone. In places, an upper or perched water table is separated from a lower one by a dry zone.
Weathering. All physical and chemical changes produced in rocks or other deposits at or near the earth's surface by atmospheric agents. These changes result in disintegration and decomposition of the material.
Well graded. Refers to soil material consisting of coarse grained particles that are well distributed over a wide range in size or diameter. Such soil normally can be easily increased in density and bearing properties by compaction. Contrasts with poorly graded soil.
Wilting point (or permanent wilting point). The moisture content of soil, on an ovendry basis, at which a plant (specifically a sunflower) wilts so much that it does not recover when placed in a humid, dark chamber.
Windthrow. The uprooting and tipping over of trees by the wind.

Tables

(Recorded in the period 1971-2000 at JONESBORO, ME4183)

* A growing degree day is a unit of heat available for plant growth. It can be calculated by adding the maximum and minimum daily temperatures, dividing the sum by 2 , and subtracting the temperature below which growth is minimal for the principal crops in the area (40 degrees F).

Table 1.-Temperature and Precipitation-continued
(Recorded in the period 1971-2000 at EASTPORT, ME2426)

Month	Temperature						Precipitation				
	Average daily maximum	Average daily minimum	Average	2 years in 10 will have-		$\left\|\begin{array}{l}\text { Average } \\ \mid \text { number of } \\ \text { growing } \\ \text { degree } \\ \text { days* }\end{array}\right\|$	Average	$\left\lvert\, \begin{gathered}2 \text { years in } 10 \\ \text { will have- }\end{gathered}\right.$		Average number of days with 0.10 inch or more	Average snowfall
				Maximum temperature higher than-	Minimum temperature lower than-			$\begin{gathered} \text { Less } \\ \text { than } \mid \end{gathered}$	More than-		
	${ }^{\circ} \mathrm{F}$	Units	In	In	In		In				
January--	30.1	13.6	21.9	53	-11	4	4.37	2.48	6.07	8	14.2
February-	31.3	15.9	23.6	52	-7	3	3.11	1.64	4.54	6	13.0
March----	38.8	24.0	31.4	62	-1	15	4.14	2.72	5.54	7	14.1
April----	49.1	33.3	41.2	71	19	86	3.60	2.09	4.99	7	4.4
May-----	59.7	41.2	50.5	82	31	325	3.82	1.73	5.64	7	0.1
June-----	68.4	48.1	58.3	89	38	547	3.37	1.91	4.67	6	0.0
July-----	73.9	53.5	63.7	89	45	729	3.12	1.75	4.34	5	0.0
August---	73.5	54.1	63.8	89	44	736	3.05	1.31	4.81	5	0.0
September	65.9	48.7	57.3	83	35	519	3.81	2.35	4.99	6	0.0
October--	55.3	40.3	47.8	73	26	249	3.91	2.16	5.40	6	0.1
November-	45.2	32.2	38.7	63	13	78	4.20	2.75	5.58	7	2.2
December-	35.2	20.4	27.8	56	-6	12	4.45	2.48	6.32	8	10.7
Yearly:											
Average	52.2	35.4	43.8	-	-	-	-	-	-	-	--
Extreme	98	-16	-	92	-13	-	-	-	-	-	--
Total--	-	-	-	-	-	3304	44.94	36.01	49.16	78	58.7

* A growing degree day is a unit of heat available for plant growth. It can be calculated by adding the maximum and minimum daily temperatures, dividing the sum by 2 , and subtracting the temperature below which growth is minimal for the principal crops in the area (40 degrees F).

Table 2.-Freeze Dates in Spring and Fall
(Recorded in the period 1971-2000 at JONESBORO, ME4183)

| Probability | Temperature |
| :--- | :--- | :--- | :--- |

Table 3.-Growing Season

(Recorded for the period $1971-2000$ at JONESBORO, ME4183)

Table 3.-Growing Season-continued
(Recorded for the period 1971-2000 at EASTPORT, ME2426)

Probability	Daily Minimum Temperature During growing season		
	Higher than $24^{\circ} \mathrm{F}$	Higher than $28{ }^{\circ} \mathrm{F}$	Higher than $32^{\circ} \mathrm{F}$
	Days	Days	Days
9 years in 10	209	181	152
8 years in 10	214	188	158
5 years in 10	225	201	171
2 years in 10	236	213	183
1 year in 10	242	220	190

Table 4.-Acreage and Proportionate Extent of the Soils

Map symbol	Soil name	Acres	Percent
AaE	Abram-Hogback complex, 15 to 45 percent slopes, very stony-	673	*
AbE	Abram-Lyman complex, 15 to 45 percent slopes, very stony	866	*
ACE	Abram-Rock outcrop-Ricker complex, 15 to 80 percent slope	5,239	0.5
AdA	Adams loamy sand, 0 to 3 percent slopes	491	*
AdB	Adams loamy sand, 3 to 8 percent slope	1,001	*
AdC	Adams loamy sand, 8 to 15 percent slop	486	*
AGB	Adams-Croghan association, 0 to 8 percent slope	4,064	0.4
BeC	Becket fine sandy loam, 8 to 15 percent slopes, very stony	277	*
BKD	Becket-Skerry association, 8 to 30 percent slopes, very stony	963	*
BnB	Brayton fine sandy loam, 0 to 5 percent slopes, very stony	492	*
BRB	Brayton-Colonel association, 0 to 8 percent slopes, very stony	38,818	3.4
BTB	Brayton-Colonel association, 0 to 8 percent slopes, extremely stony	4,926	0.4
BW	Bucksport and Wonsqueak soils	40,159	3.6
BxC	Buxton silt loam, 8 to 15 percent slopes	2,639	0.2
BZC	Buxton-Lamoine Complex, 3 to 15 percent slop	7,437	0.7
ChB	Chesuncook silt loam, 3 to 8 percent slope	717	*
ChC	Chesuncook silt loam, 8 to 15 percent slope	209	*
CKC	Chesuncook-Elliottsville-Telos complex, 3 to 15 percent slopes, very stony-	2,143	0.2
CLC	Chesuncook-Telos Complex, 3 to 15 percent slopes, very stony	2,779	0.2
CoA	Colton gravelly sandy loam, 0 to 3 percent slope	2,891	0.3
Cob	Colton gravelly sandy loam, 3 to 8 percent slopes	3,954	0.4
CoC	Colton gravelly sandy loam, 8 to 15 percent slope	1,646	0.1
CoE	Colton gravelly sandy loam, 15 to 70 percent slope	813	*
CpB	Colton gravelly sandy loam, 0 to 8 percent slopes, very bouldery	1,072	*
CpC	Colton gravelly sandy loam, 8 to 15 percent slopes, very bouldery	833	*
CRC	Colton-Adams complex, 3 to 15 percent slopes	9,736	0.9
CRE	Colton-Adams complex, 15 to 70 percent slopes	2,338	0.2
CSC	Colton-Hermon complex, 3 to 15 percent slopes, very bouldery	7,634	0.7
CSD	Colton-Hermon complex, 15 to 30 percent slopes, very bouldery	875	*
CtB	Creasey gravelly silt loam, 3 to 8 percent slopes	764	*
CtC	Creasey gravelly silt loam, 8 to 15 percent slope	470	*
CVC	Creasey-Abram complex, 3 to 15 percent slopes	807	*
CXC	Creasey-Lamoine Complex, 3 to 15 percent slope	1,579	0.1
CzB	Croghan loamy sand, 3 to 8 percent slopes	585	*
DAC	Danforth-Elliottsville complex, 3 to 15 percent slopes, very stony	1,217	0.1
DdC	Dixfield fine sandy loam, 8 to 15 percent slopes	1,307	0.1
DfC	Dixfield fine sandy loam, 8 to 15 percent slopes, very stony	693	*
DgB	Dixfield-Colonel complex, 3 to 8 percent slopes	2,898	0.3
DHB	Dixfield-Colonel complex, 0 to 8 percent slopes, very stony	24,800	2.2
DkB	Dixfield-Colonel complex, 3 to 8 percent slopes, very stony	2,521	0.2
DMC	Dixfield-Marlow association, 3 to 15 percent slopes, very stony	13,450	1.2
DRC	Dixfield-Marlow-Rawsonville complex, 3 to 15 percent slopes, very stony--	216	*
DTC	Dixfield-Marlow-Tunbridge complex, 3 to 15 percent slopes, very stony----	7,134	0.6
DUC	Dixfield-Rawsonville-Colonel complex, 3 to 15 percent slopes, very stony-	831	*
DWC	Dixfield-Tunbridge-Colonel complex, 3 to 15 percent slopes, very stony---	19,230	1.7
EcB	Elliottsville-Chesuncook complex, 3 to 8 percent slopes	190	*
EMC	Elliottsville-Monson complex, 3 to 15 percent slopes, very stony	1,132	0.1
Go	Gouldsboro silt loam-	3,275	0.3
HCC	Hermon-Colton-Abram complex, 3 to 15 percent slopes, very bouldery	3,436	0.3
HeB	Hermon-Monadnock complex, 3 to 8 percent slopes	302	*
HeC	Hermon-Monadnock complex, 8 to 15 percent slopes	333	*
HkB	Hermon-Monadnock complex, 3 to 8 percent slopes, very bouldery	885	*
HkC	Hermon-Monadnock complex, 8 to 15 percent slopes, very bouldery-	2,517	0.2
HMD	Hermon-Monadnock complex, 15 to 30 percent slopes, very bouldery--------	997	*
HOE	Hermon-Monadnock complex, 15 to 45 percent slopes, extremely bouldery----	1,045	*
HSC	Hermon-Monadnock-Skerry complex, 3 to 15 percent slopes, very bouldery---	15,627	1.4
HVC	Hermon-Monadnock-Skerry complex, 3 to 15 percent slopes, extremely bouldery-	2,966	0.3
HWE	Hogback-Abram-Rawsonville complex, 15 to 60 percent slopes, very stony---	6,982	0.6
HXC	Hogback-Rawsonville-Abram complex, 3 to 15 percent slopes, very stony----	27,078	2.4
Kn	Kinsman sand-	629	*

Table 4.-Acreage and Proportionate Extent of the Soils-continued

* Less than 0.1 percent.

Table 5.-Prime and other Important Farmland
(Only the soils considered prime or important farmland are listed. Urban or built-up areas of the soils listed are not considered prime or important farmland. If a soil is prime or important farmland only under certain conditions, the conditions are specified in parentheses after the soil name.)

	Map unit name	Farmland Classification
ChB	Chesuncook silt loam, 3 to 8 percent slopes	All areas are prime farmland
DgB	Dixfield-Colonel complex, 3 to 8 percent slopes	All areas are prime farmland
EcB	Elliottsville-Chesuncook complex, 3 to 8 percent slopes	All areas are prime farmland
NGB	Nicholville-Croghan complex, 0 to 5 percent slopes	All areas are prime farmland
RhB	Rawsonville-Hogback complex, 3 to 8 percent slopes	All areas are prime farmland
SkB	Skerry fine sandy loam, 3 to 12 percent slopes	All areas are prime farmland
TuB	Tunbridge-Lyman complex, 3 to 8 percent slopes	All areas are prime farmland
AdA	Adams loamy sand, 0 to 3 percent slopes	Farmland of statewide importance
AdB	Adams loamy sand, 3 to 8 percent slopes	Farmland of statewide importance
AGB	Adams-Croghan association, 0 to 8 percent slopes	Farmland of statewide importance
BxC	Buxton silt loam, 8 to 15 percent slopes	Farmland of statewide importance
BZC	Buxton-Lamoine complex, 3 to 15 percent slopes	Farmland of statewide importance
ChC	Chesuncook silt loam, 8 to 15 percent slopes	Farmland of statewide importance
CoA	Colton gravelly sandy loam, 0 to 3 percent slopes	Farmland of statewide importance
Cob	Colton gravelly sandy loam, 3 to 8 percent slopes	Farmland of statewide importance
CRC	Colton-Adams complex, 3 to 15 percent slopes	Farmland of statewide importance
CtB	Creasey gravelly silt loam, 3 to 8 percent slopes	Farmland of statewide importance
CXC	Creasey-Lamoine complex, 3 to 15 percent slopes	Farmland of statewide importance
CzB	Croghan loamy sand, 3 to 8 percent slopes	Farmland of statewide importance
DdC	Dixfield fine sandy loam, 8 to 15 percent slopes	Farmland of statewide importance
HeB	Hermon-Monadnock complex, 3 to 8 percent slopes	Farmland of statewide importance
LaB	Lamoine silt loam, 0 to 6 percent slopes	Farmland of statewide importance
LbB	Lamoine-Buxton complex, 0 to 8 percent slopes	Farmland of statewide importance
LCB	Lamoine-Buxton-Scantic complex, 0 to 15 percent slopes	Farmland of statewide importance
LEB	Lamoine-Creasey-Scantic complex, 0 to 8 percent slopes	Farmland of statewide importance
LHB	Lamoine-Nicholville complex, 0 to 8 percent slopes	Farmland of statewide importance
LmB	Lamoine-Scantic complex, 0 to 5 percent slopes	Farmland of statewide importance
MaC	Marlow fine sandy loam, 8 to 15 percent slopes	Farmland of statewide importance
MmA	Masardis fine sandy loam, 0 to 3 percent slopes	Farmland of statewide importance
MmB	Masardis fine sandy loam, 3 to 8 percent slopes	Farmland of statewide importance
MSC	Masardis-Sheepscot complex, 0 to 15 percent slopes	Farmland of statewide importance
NdB	Nicholville very fine sandy loam, 3 to 8 percent slopes	Farmland of statewide importance
NdC	Nicholville very fine sandy loam, 8 to 15 percent slopes	Farmland of statewide importance
NGC	Nicholville-Croghan complex, 5 to 15 percent slopes	Farmland of statewide importance
RhC	Rawsonville-Hogback complex, 8 to 15 percent slopes	Farmland of statewide importance
ShB	Sheepscot fine sandy loam, 0 to 8 percent slopes	Farmland of statewide importance
SJB	Sheepscot-Croghan-Kinsman complex, 0 to 8 percent slopes	Farmland of statewide importance
TaB	Telos silt loam, 3 to 8 percent slopes	Farmland of statewide importance
TuC	Tunbridge-Lyman complex, 8 to 15 percent slopes	Farmland of statewide importance

Table 6.-Land Capability Classes and Yields per Acre Crops and Pasture
(Yields are those that can be expected under a high level of management. They are for nonirrigated areas. Absence of a yield indicates that the soil is not suited to the crop or the crop generally is not grown on the soil.)

Table 6.-Land Capability Classes and Yields per Acre Crops and Pasture-continued

Table 6.-Land Capability Classes and Yields per Acre Crops and Pasture-continued

Table 6.-Land Capability Classes and Yields per Acre Crops and Pasture-continued

Map symbol and soil name	Land capability	Alfalfa hay	Blueberries	Grass hay	Pasture	$\begin{aligned} & \text { Irish } \\ & \text { potatoes } \end{aligned}$
		Tons	Lbs	Tons	AUM	Cwt
Dixfield---	6 s	---	---	---	5.50	---
Rawsonville-	$6 s$	---	---	---	2.70	---
Colonel--	6 s	---	---	---	4.50	---
DWC:						
Dixfield-	$6 s$	---	---	---	5.50	---
Tunbridge-	$6 s$	---	---	---	3.10	--
Colonel-	$6 s$	---	---	---	4.50	---
EcB :						
Elliottsville-	2 e	4.00	---	3.50	4.20	275.00
Chesuncook-------	2w	4.50	---	---	7.50	270.00
EMC:						
Elliottsville----	$6 s$	---	---	---	3.00	---
Monson---	$6 s$	---	---	---	2.50	--
Go:						
Gouldsboro-------	8w	---	---	---	---	--
HCC:						
Hermon-----------	7 s	---	---	---	-	--
Colton--------	$6 s$	---	---	---	---	--
Abram-----	7 s	---	---	---	--	--
HeB :						
Hermon-	2 s	4.00	3,000.00	3.00	5.70	270.00
Monadnock-------	2 e	4.00	3,500.00	3.50	---	-
HeC:						
Hermon-	3 e	4.00	3,000.00	3.00	5.70	240.00
Monadnock-	3 e	4.00	3,500.00	3.00	---	---
HkB :						
Hermon------------	7 s	---	3,000.00	---	---	---
Monadnock-	$6 s$	---	3,500.00	---	---	--
HkC:						
Hermon--	7 s	--	3,000.00	-	--	--
Monadnock---------	$6 s$	---	3,500.00	---	--	--
HMD :						
Hermon------------	7 s	---	---	---	--	---
Monadnock---------	6 s	---	---	-	---	---
HOE :						
Hermon------------	7 s	---	---	---	---	---
Monadnock-------	7s	---	-	---	--	---

Table 6.-Land Capability Classes and Yields per Acre Crops and Pasture-continued

Table 6．－Land Capability Classes and Yields per Acre Crops and Pasture－continued

	cemomity	Matase arer	pumersteo	grase mer	secture	
边	5	．．．	\ldots	．．．	s．o	
mune	\checkmark	\cdots	．－．	－	2，00	
）		\cdots		\cdots	2．50	
䢒	${ }^{30}$	3.00	\cdots	， 3.50	5．500	\ldots
mind	${ }^{\circ}$	\cdots	．－．	．－．	5，50	\cdots
	\％	．－．	\cdots	．．．	0．90	
	$\stackrel{ }{\circ}$	\cdots	\cdots	．－．	5.50	\cdots
	\％	\cdots			${ }^{3.400}$	
mix	\％	\cdots	．－．	．－	5．00	\cdots
nmarsise	＂	\cdots	\cdots	\cdots	3．10	
	\％	．．．	．．．	．．．	3．00	
arear	\％	\cdots	－－	\cdots	．．	\cdots
	＂	－－			3.0	\cdots
	\％	\cdots	\cdots	\cdots	\cdots	
Brame	$\%$	－－－	－－	－－	－	
necome	3	\％0	。	－	－．	${ }^{200.0}$
amemer	${ }^{\circ}$	－－	2，500．00	．－	．－．	
amicoum	${ }^{\circ}$	\cdots			\cdots	
vistad	＂	\cdots			5.00	
	\％	\cdots	\cdots	\cdots	$\stackrel{\square}{2,0}$	
Dixseas．．．．－－	\％	－．－	－．	\cdots	5．50	

Table 6.-Land Capability Classes and Yields per Acre Crops and Pasture-continued

Table 6.-Land Capability Classes and Yields per Acre Crops and Pasture-continued

Map symbol and soil name	Land capability	Alfalfa hay	Blueberries	Grass hay	Pasture	$\begin{aligned} & \text { Irish } \\ & \text { potatoes } \end{aligned}$
		Tons	Lbs	Tons	AUM	Cwt
NCB : Naskeag						
	$7 s$	-	---	---	3.50	---
Tunbridge--------------	$6 s$	---	---	---	3.10	---
Lyman------------------	$6 s$	--	---	-	---	---
NdB :						
Nicholville------------	2 e	4.50	---	---	7.50	270.00
NdC:						
Nicholville------------	3 e	4.00	---	---	6.50	240.00
NGB :						
Nicholville------------	2w	4.50	---	---	7.50	270.00
Croghan-----------------	2w	3.00	-	---	5.50	---
NGC :						
Nicholville------------	3 e	4.00	---	---	6.50	240.00
Croghan-----------------	2w	3.00	---	--	5.50	---
Pg:						
Pits, sand and gravel---	8 s	--	--	---	-	---
RhB :						
Rawsonville------------	$6 s$	---	---	---	2.70	---
Hogback----------------	$6 s$	-- -	---	-	2.40	---
RhC:						
Rawsonville------------	$6 s$	---	---	---	2.70	---
Hogback----------------	$6 s$	---	---	-	2.40	---
RmC:						
Rawsonville------------	$6 s$	---	-	--	2.70	---
Hogback----------------	$6 s$	---	---	-	2.40	--
Abram------------------	7 s	---	1,500.00	---	---	---
RNC:						
Rawsonville------------	$6 s$	-	-	--	2.70	---
Lamoine----------------	$6 s$	---	-	-	5.50	---
Hogback----------------	$6 s$	--	---	---	2.40	---
Sa:						
Scantic----------------	4w	--	-	3.00	5.00	---
SF:						
Scantic----------------	$4 w$	-	-	3.00	5.00	---
Biddeford--------------	5w	---	---	---	---	---
SG :						
Sebago-----------------	8w	---	---	---	---	---
Moosabec---------------	8w	---	---	---	---	---

Table 6.-Land Capability Classes and Yields per Acre Crops and Pasture-continued

Table 6.-Land Capability Classes and Yields per Acre Crops and Pasture-continued

Map symbol and soil name	Land capability	Alfalfa hay	Blueberries	Grass hay	Pasture	$\begin{aligned} & \text { Irish } \\ & \text { potatoes } \end{aligned}$
		Tons	Lbs	Tons	AUM	Cwt
Tunbridge--	3 e	4.00	3,500.00	3.50	---	--
Lyman-	4 e	---	3,500.00	2.00	---	--
TyC :						
Tunbridge-------	$6 s$	---	3,500.00	---	3.10	---
Lyman--	$6 s$	---	3,500.00	---	---	--
Abram------------	7 s	---	1,500.00	---	---	---
Ud:						
Udorthents--------	---	---	---	---	---	--
Urban land------	8s	---	---	---	---	---
W:						
Water------------	--	---	--	--	--	--
WF:						
Wonsqueak---------	7w	---	--	-	--	--
Bucksport---------	7w	---	-	---	---	---

Table 7.-Forestland Productivity

Map symbol and soil name	Potential productivity			Trees to manage	
	Common trees	Site index	Volume of wood fiber		
			cu ft/ac		
AaE:Abram					
	\|balsam fir---------		33	57	jack pine
	\|eastern hemlock-----		--	0	
	\|eastern hophornbeam-		- -	0	
	\|eastern white pine--		48	72	
	\|gray birch---------		--	0	
	\|jack pine----------	---	0		
	\|paper birch--------		40	43	
	\|red spruce---------		34	57	
	scarlet oak---------	40	29		
	white spruce	37	72		
Hogback	\|American beech-----		---	0	balsam fir, eastern
	\|balsam fir---------		48	86	white pine, Norway
	eastern white pine--	55	86	spruce, red spruce	
	\|northern red oak----		63	43	
	\|paper birch--------		---	0	
	\|red spruce---------		42	86	
	\|sugar maple---------		50	29	
	\|white spruce-------		55	129	
	\|yellow birch--------		---	0	
AbE :					
Abram-	\|balsam fir---------		33	57	\|jack pine
	eastern hemlock-----	---	0		
	eastern hophornbeam-	---	0		
	\|eastern white pine--		48	72	
	\|gray birch	---	0		
	jack pine	---	0		
	paper birch	40	43		
	\|red spruce---------		34	57	
	\|scarlet oak---------		40	29	
	\|white spruce-------		37	72	
Lyman-------------	balsam fir----------	60	114		
	red spruce	40	86	white pine, red	
	\|sugar maple--------		50	29	pine, white spruce
	\|white spruce-------		55	129	
ACE:					
Abram------------	\|balsam fir----------		33	57	\|jack pine
	eastern hemlock	---	0		
	\|eastern hophornbeam-		---	0	
	\|eastern white pine--		48	72	
	\|gray birch---------		--	0	
	jack pine	---	0		
	paper birch	40	43		
	\|red spruce---------		34	57	
	scarlet oak	40	29		
	white spruce	37	72		
Rock outcrop-----	-	---	---	---	
Ricker------------	\|Arizona mountainash-		---	0	---
	\|balsam fir----------		20	57	
	paper birch	---	0		
	red spruce	20	29		
	\|yellow birch-------		---	0	

Table 7.-Forestland Productivity-continued

Map symbol and soil name	Potential productivity			Trees to manage
	Common trees	Site index	Volume of wood fiber	
			cu ft/ac	
AdA: Adams				eastern white pine, European larch, red pine
	American beech	-	0	
	eastern hemlock	---	0	
	eastern white pine--	66	114	
	red maple	--	0	
	sugar maple	61	43	
AdB :				
Adams------------	American beech-	---	0	```eastern white pine, European larch, red pine```
	eastern hemlock----	---	0	
	eastern white pine--	66	114	
	red maple---------	---	0	
	\|sugar maple--------	61	43	
AdC:				
Adams-------------	American beech	---	0	eastern white pine, European larch, red pine
	eastern hemlock-----	---	0	
	eastern white pine--	66	114	
	red maple	---	0	
	sugar maple	61	43	
AGB :				
Adams-------------	American beech-----eastern hemlock-----	---	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	eastern white pine, European larch, red pine
	eastern white pine--	66	114	
	red maple	---	0	
	sugar maple	61	43	
Croghan-----------	eastern white pine--	65	143	\|eastern white pine, European larch, Norway spruce
	red maple	---	0	
	sugar maple--------	55	29	
BeC:				
Becket------------	balsam fir---------	55	114	eastern white pine, red pine, white spruce
	eastern white pine--	71	129 86	
	sugar maple--------	60	43	
	white spruce-------	55	129	
BKD :				
Becket------------	balsam fir---------	55	114	```eastern white pine, red pine, white spruce```
	eastern white pine--	69	129	
	paper birch--------	71	86	
	sugar maple--------	60	43	
	white spruce-------	55	129	
Skerry	balsam fir---------	57	114	eastern white pine, white spruce
	eastern white pine--	80	143	
	sugar maple--------	60	43	
	white spruce-------	60	143	
BnB :				
Brayton----------	balsam fir---------	68	129	black spruce, red spruce, tamarack
	black spruce-------	---	0	
	eastern white pine--	67	114	
	paper birch--------	60	57	
	red maple----------	65	43	
	red spruce---------	50	114	
	tamarack-----------	60	57	
	white spruce--------	48	100	

Table 7.-Forestland Productivity-continued

Table 7.-Forestland Productivity-continued

Map symbol and soil name	Potential productivity			Trees to manage	
	Common trees	Site index	Volume of wood fiber		
			cu ft/ac		
BZC:Buxton				eastern white pine, white spruce	
	\|balsam fir----------		55	114	
	\|eastern hemlock	--	0		
	\|eastern white pine--		62	114	
	\|northern red oak----		60	43	
	\|paper birch---------		57	57	
	\|white spruce--------		55	129	
Lamoine-----------	\|balsam fir----------		55	114	```black spruce, eastern arborvitae, eastern white pine```
	\|eastern hemlock	---	0		
	\|eastern white pine--		65	114	
	\|gray birch---------		---	0	
	\|paper birch---------		58	57	
	\|red maple----------		58	43	
	red spruce---------	45	100		
	\|sugar maple---------		50	29	
	\|white spruce--------		55	129	
	\|yellow birch--------	50	29		
ChB:					
Chesuncook	\|balsam fir---------		55	114	```eastern white pine, red spruce, white spruce```
	\|eastern white pine--		69	129	
	red maple----------\|	55	29		
	\|red spruce---------		47	100	
	\|sugar maple--------		55	29	
ChC:					
Chesuncook--------	\|balsam fir---------		55	114	eastern white pine, red spruce, white spruce
	\|eastern white pine--		69	129	
	red maple----------\|	55	29		
	red spruce----------	47	100		
	\|sugar maple--------		55	29	
CKC:					
Chesuncook---------			114	```eastern white pine, red spruce, white spruce```	
	\|eastern white pine--		69	129	
	\|red maple----------		55	29	
	red spruce----------	47	100		
	\|sugar maple--------		55	29	
Elliottsville-----	American beech-----\|	55	29	eastern white pine, European larch, red spruce, tamarack, white spruce	
	\|balsam fir---------		55	114	
	\|eastern white pine--		69	129	
	\|paper birch---------	55	57		
	\|red spruce---------	47	100		
	\|sugar maple---------	55	29		
	\|white spruce--------		55	129	
	\|yellow birch--------	55	29		
Telos-------------	\|balsam fir---------		53	100	black spruce, red spruce, white spruce
	\|eastern white pine--		67	114	
	\|red maple----------	55	29		
	red spruce	44	86		
	\|white spruce-------		55	129	
CLC:					
Chesuncook--------	balsam fir	55	114	```eastern white pine, red spruce, white spruce```	
	eastern white pine--\|	69	129		
	\|red maple----------		55	29	
	\|red spruce---------		47	100	
	\|sugar maple---------	55	29		

Table 7.-Forestland Productivity-continued

Map symbol and soil name	Potential productivity			Trees to manage
	Common trees	Site index	Volume of wood fiber	
			$\overline{c u f t / a c}$	
CLC:Telo				black spruce, red spruce, white spruce
	balsam fir-	53	100	
	eastern white pine--	67	114	
	red maple--------	55	29	
	red spruce---------	44	86	
	white spruce-------	55	129	
CoA :				
Colton------------	eastern white pine--	62	114	eastern white pine, European larch, red pine
	red pine----------	52	86	
	red spruce---------	39	86	
	sugar maple--------	61	43	
	white spruce-------	52	114	
Cob:				
Colton------------	eastern white pine--	62	114	```eastern white pine, European larch, red pine```
	red pine----------	52	86	
	red spruce	39	86	
	sugar maple--------	61	43	
	white spruce-------	52	114	
CoC:				
Colton------------	eastern white pine red pine-	$\begin{aligned} & 62 \\ & 52 \end{aligned}$	$\begin{array}{r} 114 \\ 86 \end{array}$	eastern white pine, European larch, red pine
	red spruce---------	39	86	
	sugar maple--------	61	43	
	white spruce-------	52	114	
CoE:				
Colton------------	eastern white pine--	62	114	eastern white pine, European larch, red pine
	red pine----------	52	86	
	red spruce---------	39	86	
	sugar maple---------	61	43	
	white spruce-------	52	114	
CpB :				
Colton------------	eastern white pine--	62	114	eastern white pine, European larch, red pine
	red pine----------	52	86	
	red spruce	39	86	
	sugar maple---------	61	43	
	white spruce-------	52	114	
CpC:				
Colton------------	eastern white pine--	62	114	eastern white pine, European larch, red pine
	red pine----------	52	86	
	red spruce	39	86	
	sugar maple--------	61	43	
	white spruce-------	52	114	
CRC:				
Colton------------	eastern white pine--	62	114	eastern white pine, European larch, red pine
	red pine----------	52	86	
	red spruce	39	86	
	sugar maple--------	61	43	
	white spruce-------	52	114	
Adams-------------	American beech-----	---	0	eastern white pine, European larch, red pine
	eastern hemlock----	--	0	
	eastern white pine--	66	114	
	red maple---------	---	0	
	sugar maple---------	61	43	

Table 7.-Forestland Productivity-continued

Map symbol and soil name	Potential productivity			Trees to manage	
	Common trees	Site index	Volume of wood fiber		
			cu ft/ac		
CRE : Colton				eastern white pine, European larch, red pine	
	eastern white pine--\|	62	114		
	red pine-----------	52	86		
	red spruce	39	86		
	\|sugar maple---------	61	43		
	white spruce--------\|	52	114		
Adams -	American beech-----\|	---	0	eastern white pine, European larch, red pine	
	\|eastern hemlock-----		---	0	
	eastern white pine--\|	66	114		
	red maple	---	0		
	sugar maple	61	43		
Colton------------	eastern white pine--\|	62	114	eastern white pine, European larch, red pine	
	red pine	52	86		
	red spruce----------	39	86		
	sugar maple	61	43		
	white spruce	52	114		
Hermon	eastern white pine--\|	59	100	eastern white pine, European larch, red pine	
	red pine-----------	59	100		
	red spruce---------	46	100		
	\|sugar maple---------	55	29		
	white spruce--------	45	100		
CSD :					
Colton------------	eastern white pine--\|	62	114	eastern white pine, European larch, red pine	
	red pine-----------	52	86		
	red spruce---------	39	86		
	sugar maple---------	61	43		
	\|white spruce-------		52	114	
Hermon------------	eastern white pine--\|	59	100	```eastern white pine, European larch, red pine```	
	red pine-----------	59	100		
	red spruce---------	46	100		
	sugar maple--------	55	29		
	white spruce-------	45	100		
CtB :					
Creasey----------	\|balsam fir---------	55	114	white spruce	
	\|eastern white pine--		58	100	
	red spruce---------	41	86		
	\|white spruce-------		55	129	
CtC:					
Creasey-----------		55	114	white spruce	
	eastern white pine--\|	58	100		
	red spruce---------	41	86		
	white spruce-------\|	55	129		
CVC:					
Creasey-----------	balsam fir---------\|	55	114	white spruce	
	eastern white pine--\|	58	100		
	red spruce---------	41	86		
	\|white spruce-------	55	129		

Table 7.-Forestland Productivity-continued

Map symbol and soil name	Potential productivity			Trees to manage	
	Common trees	Site index	Volume of wood fiber		
			cu ft/ac		
CXC: Abram					
	\|balsam fir---------		33	57	jack pine
	\|eastern hemlock-----		-	0	
	\|eastern hophornbeam-		-- -	0	
	\|eastern white pine--		48	72	
	\|gray birch---------		--	0	
	\|jack pine----------	---	0		
	\|paper birch---------		40	43	
	\|red spruce---------	34	57		
	scarlet oak---------	40	29		
	white spruce	37	72		
Creasey	\|balsam fir---------		55	114	white spruce
	\|eastern white pine--		58	100	
	red spruce---------	41	86		
	\|white spruce-------		55	129	
Lamoine	balsam fir---------\|	55	114		
	\|eastern hemlock-----		---	0	eastern
	\|eastern white pine--		65	114	arborvitae,
	\|gray birch---------		---	0	eastern white pine
	paper birch--------	58	57		
	\|red maple----------	58	43		
	\|red spruce---------		45	100	
	\|sugar maple---------	50	29		
	white spruce	55	129		
	yellow birch--------	50	29		
CzB:					
Croghan-----------	\|eastern white pine--		65	143	\|eastern white pine,
	red maple----------	---	0	European larch,	
	\|sugar maple--------		55	29	Norway spruce
DAC:					
Danforth-	balsam fir				
	beech	55	29	red spruce, white	
	\|eastern white pine--		65	114	spruce
	paper birch--------	55	57		
	\|red maple----------		65	43	
	red spruce---------	45	100		
	\|sugar maple--------		55	29	
	yellow birch-------	55	29		
Elliottsville-----	American beech-----\|	55	29	eastern white pine,	
	\|balsam fir---------		55	114	European larch,
	\|eastern white pine--		69	129	red spruce,
	paper birch--------\|	55	57	tamarack, white	
	\|red spruce---------		47	100	spruce
	sugar maple--------\|	55	29		
	\|white spruce--------		55	129	
	\|yellow birch-------		55	29	
DdC:					
Dixfield	\|balsam fir---------		64	129	black spruce,
	\|eastern white pine--		70	129	eastern white
	paper birch	62	72	pine, European	
	red spruce---------	54	114		
	\|sugar maple--------		62	43	
	\|white spruce-------		64	143	

Table 7.-Forestland Productivity-continued

Table 7.-Forestland Productivity-continued

Map symbol and soil name	Potential productivity			Trees to manage
	Common trees	Site index	Volume of wood fiber	
			cu ft/ac	
DRC:				
Dixfield----------	balsam fir-	64	129	black spruce,
	eastern white pine--	70	129	eastern white
	paper birch	62	72	pine, European
	red spruce-	54	114	larch
	sugar maple--------	62	43	
Marlow------------	American beech-----	60	43	```eastern white pine, red pine, white spruce```
	balsam fir---------	58	114	
	eastern white pine--	66	114	
	paper birch--------	65	72	
	red pine----------	65	114	
	red spruce---------	48	100	
	sugar maple--------	60	43	
	white ash----------	67	43	
	white spruce-------	60	143	
	yellow birch-------	60	43	
Rawsonville-------	American beech-----	64	43	balsam fir, eastern white pine, red spruce, Scotch pine, tamarack, white spruce
	balsam fir-	---	0	
	eastern hemlock-----	---	0	
	paper birch	---	0	
	red maple---------	---	0	
	red spruce---------	45	100	
	sugar maple---------	60	43	
	white ash---------	67	43	
	white spruce-------	55	129	
	yellow birch-------	55	29	
DTC:				
Dixfield	balsam fir-	64	129	black spruce, eastern white pine, European larch
	eastern white pine--	70	129	
	paper birch---------	62	72	
	red spruce	54	114	
	sugar maple--------	62	43	
Marlow------------	American beech	60	43	```eastern white pine, red pine, white spruce```
	balsam fir---------	58	114	
	eastern white pine--	66	114	
	paper birch--------	65	72	
	red pine----------	65	114	
	red spruce---------	48	100	
	sugar maple--------	60	43	
	white ash----------	67	43	
	white spruce-------	60	143	
	yellow birch-------	60	43	
Tunbridge---------	balsam fir---------	---	0	balsam fir, eastern white pine, red spruce, Scotch pine, tamarack, white spruce
	eastern white pine--	50	86	
	northern red oak----	---	0	
	paper birch--------	---	0	
	red spruce---------	50	114	
	sugar maple---------	60	43	
	white ash---------	65	43	
	white spruce-------	55	129	
	yellow birch-------	55	29	
DUC:				
Dixfield---------	balsam fir---------	64	129	black spruce, eastern white pine, European larch
	eastern white pine--	70	129	
	paper birch	62	72	
	red spruce---------	54	114	
	sugar maple--------	62	43	

Table 7.-Forestland Productivity-continued

Map symbol and soil name	Potential productivity			Trees to manage
	Common trees	Site index	Volume of wood fiber	
			cu ft/ac	
DUC:				
Rawsonville-------	American beech-----	64	43	balsam fir, eastern white pine, red spruce, Scotch pine, tamarack, white spruce
	balsam fir---------	---	0	
	eastern hemlock-----	---	0	
	paper birch--------	---	0	
	red maple	---	0	
	red spruce---------	45	100	
	sugar maple---------	60	43	
	white ash----------	67	43	
	white spruce-------	55	129	
	yellow birch-------	55	29	
Colonel-----------	balsam fir---------	54	100	black spruce, eastern white pine, European larch, tamarack
	eastern white pine--	64	114	
	paper birch--------	55	57	
	red maple---------	64	43	
	red spruce---------	45	100	
DWC:				
Dixfield---------	balsam fir---------	64	129	black spruce, eastern white pine, European larch
	eastern white pine--	70	129	
	paper birch--------	62	72	
	red spruce---------	54	114	
	sugar maple--------	62	43	
Tunbridge	balsam fir---------	--	0	balsam fir, eastern white pine, red spruce, Scotch pine, tamarack, white spruce
	eastern white pine--	50	86	
	northern red oak----	---	0	
	paper birch--------	---	0	
	red spruce---------	50	114	
	sugar maple---------	60	43	
	white ash---------	65	43	
	white spruce-------	55	129	
	yellow birch-------	55	29	
Colonel	balsam fir---------	54	100	black spruce, eastern white pine, European larch, tamarack
	eastern white pine--	64	114	
	paper birch--------	55	57	
	red maple---------	64	43	
	red spruce---------	45	100	
EcB:Elliottsville				
	American beech-----	55	29	```eastern white pine, European larch, red spruce, tamarack, white spruce```
	balsam fir---------	55	114	
	eastern white pine--	69	129	
	paper birch--------	55	57	
	red spruce---------	47	100	
	sugar maple--------	55	29	
	white spruce-------	67	143	
	yellow birch-------	55	29	
Chesuncook	balsam fir---------	55	114	```eastern white pine, red spruce, white spruce```
	eastern white pine--	69	129	
	red maple---------	55	29	
	red spruce---------	47	100	
	sugar maple--------	55	29	

Table 7.-Forestland Productivity-continued

Table 7.-Forestland Productivity-continued

Map symbol and soil name	Potential productivity			Trees to manage							
	Common trees	Site index	Volume of wood fiber								
			cu ft/ac								
HeC:											
Monadnock---------	eastern white pine--	63	114	eastern white pine,							
	northern red oak--	55	43	red pine, white							
	red pine-	60	100	spruce							
	white spruce------	55	129								
HkB :											
Hermon	eastern white pine--	59	100	eastern white pine,							
	red pine---------	59	100	European larch, red pine							
	red spruce---------	46	100								
	sugar maple	55	29								
	white spruce	45	100								
Monadnock--------------\|	---	---	---	---							
HkC: \|											
Hermon------------	eastern white pine--	59	100	eastern white pine, European larch, red pine							
	red pine----------	59	100								
	red spruce---------	46	100								
	sugar maple---------	55	29								
	white spruce-------	45	100								
Monadnock---------	eastern white pine--	63	114	```eastern white pine, red pine, white spruce```							
	northern red oak----	53	43								
	red pine----------	60	100								
	white spruce-------	55	129								
HMD :											
Hermon-----------	eastern white pine--	59	100	\|eastern white pine, European larch, red pine							
	red pine----------	59	100								
	red spruce---------	46	100								
	sugar maple--------	55	29								
	white spruce-------	45	100								
Monadnock---------	eastern white pine--	63	114	```eastern white pine, red pine, white spruce```							
	northern red oak----	53	43								
	red pine----------	60	100								
	white spruce-------	55	129								
HOE:											
Hermon-	eastern white pine-red pine-----------	59	100	eastern white pine, European larch, red pine							
	red spruce---------	46	100								
	sugar maple--------	55	29								
	white spruce--------	45	100								
Monadnock--------	eastern white pine--	63	114	```eastern white pine, red pine, white spruce```							
	northern red oak----	53	43								
	red pine----------	60	100								
	white spruce-------	55	129								
HSC:											
Hermon------------	eastern white pine--	59	100	eastern white pine, European larch, red pine							
	red pine----------	59	100								
	red spruce---------	46	100								
	sugar maple--------	55	29								
	white spruce-------	45	100								
Monadnock	eastern white pine--	63	114	```eastern white pine, red pine, white spruce```							
	northern red oak----	53	43								
	red pine----------	60	100								
	white spruce-------	55	129								

Table 7.-Forestland Productivity-continued

Map symbol and soil name	Potential productivity			Trees to manage	
	Common trees	Site index	Volume of wood fiber		
			cu ft/ac		
HSC:					
Skerry------------	balsam fir---------\|	57	114	eastern white pine, white spruce	
	eastern white pine--\|	80	143		
	\|sugar maple--------		60	43	
	white spruce-------\|	60	143		
HVC:					
Hermon------------	eastern white pine--\|	59	100	eastern white pine, European larch, red pine	
	red pine	59	100		
	red spruce---------	46	100		
	sugar maple	55	29		
	white spruce	45	100		
Monadnock---------	eastern white pine--\|	63	114	```eastern white pine, red pine, white spruce```	
	northern red oak----\|	53	43		
	red pine	60	100		
	white spruce-------\|	55	129		
Skerry	balsam fir---------\|	57	114	eastern white pine, white spruce	
	eastern white pine--\|	80	143		
	sugar maple--------\|	60	43		
	white spruce-------\|	60	143		
HWE:					
Hogback-----------	American beech			balsam fir, eastern white pine, Norway spruce, red spruce	
	balsam fir----------	48	86		
	eastern white pine--\|	55	86		
	northern red oak----\|	63	43		
	paper birch--------	---	0		
	red spruce---------	42	86		
	sugar maple--------	50	29		
	white spruce-------\|	55	129		
	yellow birch-------	---	0		
Abram-------------	balsam fir---------\|	33	57	jack pine	
	\|eastern hemlock-----		--	0	
	eastern hophornbeam-\|	---	0		
	eastern white pine--\|	48	72		
	gray birch---------\|	---	0		
	jack pine----------	---	0		
	paper birch--------	40	43		
	red spruce---------	34	57		
	scarlet oak---------	40	29		
	white spruce-------\|	37	72		
Rawsonville-------	American beech-----\|	64	43	balsam fir, eastern white pine, red spruce, Scotch pine, tamarack, white spruce	
	balsam fir---------\|	---	0		
	\|eastern hemlock-----		-	0	
	paper birch--------	---	0		
	red maple----------	---	0		
	red spruce---------	45	100		
	sugar maple---------	60	43		
	white ash----------	67	43		
	white spruce	55	129		
	yellow birch-------	55	29		

Table 7.-Forestland Productivity-continued

Map symbol and soil name	Potential productivity			Trees to manage
	Common trees	Site index	Volume of wood fiber	
			cu ft/ac	
HXC:				
Hogback-----------	American beech-	---	0	balsam fir, eastern
	balsam fir	48	86	white pine, Norway
	\|eastern white pine--	55	86	spruce, red spruce
	\|northern red oak----	63	43	
	paper birch---------	---	0	
	red spruce---------	42	86	
	\| sugar maple--------	50	29	
	white spruce-------	55	129	
	yellow birch-------	---	0	
Rawsonville-------	American beech-----	64	43	balsam fir, eastern
	balsam fir---------	---	0	white pine, red
	\|eastern hemlock-----	---	0	spruce, Scotch
	\| paper birch---------	---	0	pine, tamarack,
	red maple----------	---	0	white spruce
	red spruce---------	45	100	
	\|sugar maple--------	60	43	
	white ash-----------	67	43	
	white spruce-------	55	129	
	\|yellow birch-------	55	29	
Abram-	balsam fir---------	33	57	jack pine
	\|eastern hemlock-----	---	0	
	\|eastern hophornbeam-	---	0	
	\|eastern white pine--	48	72	
	\|gray birch---------	---	0	
	\| jack pine----------	---	0	
	paper birch--------	40	43	
	red spruce---------	34	57	
	\|scarlet oak---------	40	29	
	white spruce-------	37	72	
Kn :				
Kinsman-----------	red maple----------	60	43	eastern white pine,
	white spruce-------	50	114	Norway spruce
KW :				
Kinsman-	red maple	60	43	eastern white pine,
	\|white spruce	50	114	Norway spruce
Wonsqueak---------	balsam fir---------	---	0	--
	balsam poplar-------	---	0	
	\|black spruce-------	20	29	
	eastern arborvitae--	---	0	
	quaking aspen-------	---	0	
	red maple	---	0	
	tamarack-----------	---	0	
LaB :				
Lamoine-----------	balsam fir---------	55	114	black spruce,
	\|eastern hemlock-----	---	0	eastern
	eastern white pine--	65	114	arborvitae,
	gray birch----------	---	0	eastern white pine
	paper birch--------	58	57	
	red maple----------	58	43	
	red spruce---------	45	100	
	sugar maple--------	50	29	
	white spruce--------	55	129	
	yellow birch-------	50	29	

Table 7.-Forestland Productivity-continued

Map symbol and soil name	Potential productivity			Trees to manage	
	Common trees	Site index	Volume of wood fiber		
			$\overline{\mathrm{cu} \mathrm{ft/ac}}$		
LbB:Lamoine					
	\|balsam fir---------		55	114	
	\|eastern hemlock-----		---	0	eastern
	\|eastern white pine--		65	114	arborvitae,
	\|gray birch---------		-- -	0	eastern white pine
	paper birch--------\|	58	57		
	\|red maple----------	58	43		
	\|red spruce----------	45	100		
	\| sugar maple---------	50	29		
	\|white spruce	55	129		
	\|yellow birch--------	50	29		
Buxton	\|balsam fir---------		55	114	
	\|eastern hemlock-----		---	0	white spruce
	\|eastern white pine--		62	114	
	\|northern red oak----		60	43	
	paper birch	57	57		
	\|white spruce-------		55	129	
LCB :					
Lamoine	\|balsam fir-	55	114	black spruce,	
	\|eastern hemlock-----		---	0	eastern
	\|eastern white pine--		65	114	arborvitae,
	\|gray birch---------	---	0	eastern white pine	
	\| paper birch---------	58	57		
	\|red maple----------	58	43		
	\|red spruce---------	45	100		
	\| sugar maple---------	50	29		
	\|white spruce-------		55	129	
	yellow birch-------	50	29		
Buxton	balsam fir----------	55	114	eastern white pine,	
	\|eastern hemlock-----		---	0	white spruce
	\|eastern white pine--		62	114	
	\|northern red oak----		60	43	
	\|paper birch---------	57	57		
	\|white spruce-------		55	129	
Scantic-----------	\|balsam fir---------		60	114	balsam fir, black
	\|eastern white pine--		58	100	spruce, eastern
	red maple	55	29	arborvitae,	
	white ash	67	29	eastern white	
	\|white spruce-------		60	143	pine, red spruce, tamarack, white spruce
LEB :					
Lamoine-		55			
	eastern hemlock	---	0	eastern	
	eastern white pine--	65	114	arborvitae,	
	gray birch----------	---	0 57	eastern white pine	
	paper birch---------	58	57		
	red maple-----------	58	43		
	red spruce----------	45	100		
	\|sugar maple---------	50	29		
	\|white spruce	55	129		
	\|yellow birch--------	50	29		
Creasey-	\|balsam fir---------		55	114	white spruce
	\|eastern white pine--		58	100	
	red spruce---------\|	41	86		
	\|white spruce-------		55	129	

Table 7.-Forestland Productivity-continued

Map symbol and soil name	Potential productivity			Trees to manage	
	Common trees	Site index	Volume of wood fiber		
			$\overline{c u} \mathrm{ft} / \mathrm{ac}$		
LEB :					
Scantic	\|balsam fir---------		60	114	balsam fir, black
	\|eastern white pine--		58	100	spruce, eastern
	\|red maple----------		55	29	\| arborvitae,
	white ash	67	29	eastern white	
	white spruce	60	143	pine, red spruce, tamarack, white spruce	
LHB :					
Lamoine	\|balsam fir----------	55	114	black spruce,	
	\|eastern hemlock-----		---	0	eastern
	\|eastern white pine--		65	114	arborvitae,
	gray birch---------\|	---	0	eastern white pine	
	paper birch--------	58	57		
	red maple----------\|	58	43		
	red spruce---------	45	100		
	sugar maple---------	50	29		
	white spruce-------\|	55	129		
	yellow birch	50	29		
Nicholville-------	\|eastern white pine--		75	172	\|eastern white pine,
	northern red oak----	70	57	European larch,	
	sugar maple	65	43	Norway spruce, white spruce	
LKB :					
Lamoine----------	\|balsam fir---------	55	114	black spruce,	
	\|eastern hemlock-----	---	0	\| eastern	
	\|eastern white pine--	65	114		
	gray birch	---	0	eastern white pine	
	\| paper birch---------	58	57		
	\|red maple----------	58	43		
	\|red spruce---------	45	100		
	\|sugar maple--------	50	29		
	\|white spruce-------	55	129		
	\|yellow birch-------	50	29		
Rawsonville-------	American beech-----	64	43	\|balsam fir, eastern	
	\|balsam fir---------	-	0	white pine, red	
	eastern hemlock	---	0	spruce, Scotch	
	paper birch	--	0	pine, tamarack,	
	\|red maple	---	0	white spruce	
	\|red spruce---------	45	100		
	\|sugar maple--------	60	43		
	white ash----------	67	43		
	\|white spruce-------	55	129		
	\|yellow birch-------	55	29		
Scantic----------	\|balsam fir---------	60	114	balsam fir, black	
	\|eastern white pine--	58	100	\| spruce, eastern	
	red maple	55	29	arborvitae,	
	white ash----------	67	29	eastern white	
	\|white spruce-------	60	143	pine, red spruce, tamarack, white spruce	

Table 7.-Forestland Productivity-continued

Map symbol and soil name	Potential productivity			Trees to manage
	Common trees	Site index	Volume of wood fiber	
			$\overline{c u ~ f t / a c}$	
LmB :Lamoine				
	balsam fir---------	55	114	black spruce,
	\|eastern hemlock-	--	0	eastern
	\|eastern white pine--	65	114	arborvitae,
	\|gray birch---------	---	0	eastern white pine
	paper birch--------	58	57	
	\|red maple----------	58	43	
	\|red spruce---------	45	100	
	\| sugar maple--------	50	29	
	\|white spruce-------	55	129	
	yellow birch-	50	29	
Scantic----------	\|balsam fir---------	60	114	
	eastern white pine--	58	100	spruce, eastern
	red maple----------	55	29	arborvitae,
	\|white ash-----------	67	29	eastern white
	\|white spruce-------	60	143	pine, red spruce, tamarack, white spruce
LnB :				
Lamoine	balsam fir---------	55	114	black spruce,
	\|eastern hemlock-----	---	0	eastern
	\|eastern white pine--	65	114	arborvitae,
	gray birch	---	0	eastern white pine
	paper birch	58	57	
	\|red maple----------	58	43	
	\|red spruce---------	45	100	
	\| sugar maple--------	50	29	
	white spruce-------	55	129	
	yellow birch-------	50	29	
Scantic-----------	\|balsam fir---------	60	114	\|balsam fir, black
	\|eastern white pine--	58	100	spruce, eastern
	red maple	55	29	arborvitae,
	white ash	67	29	eastern white
	white spruce-------	60	143	pine, red spruce, tamarack, white spruce
LSB :				
Lamoine	balsam fir---------	55	114	black spruce,
	\|eastern hemlock-----	--	0	eastern
	\|eastern white pine--	65	114	arborvitae,
	\|gray birch---------	---	0	eastern white pine
	paper birch--------	58	57	
	\|red maple----------	58	43	
	\|red spruce---------	45	100	
	\|sugar maple	50	29	
	white spruce-------	55	129	
	yellow birch-------	50	29	
Scantic-----------	balsam fir---------	60	114	\|balsam fir, black
	\|eastern white pine--	58	100	spruce, eastern
	\|red maple----------	55	29	\| arborvitae,
	white ash	67	29	eastern white
	white spruce-------	60	143	pine, red spruce, tamarack, white spruce

Table 7.-Forestland Productivity-continued

Map symbol and soil name	Potential productivity			Trees to manage
	Common trees	Site index	Volume of wood fiber	
			cu ft/ac	
LSB :				
Colonel	balsam fir---------	54	100	black spruce,
	eastern white pine--	64	114	eastern white
	paper birch	55	57	pine, European
	red maple-	64	43	larch, tamarack
	red spruce---------	45	100	
LTB:				
Lamoine-----------	balsam fir----------	55	114	black spruce,
	eastern hemlock-----	---	0	eastern
	eastern white pine--	65	114	arborvitae,
	gray birch---------	---	0	eastern white pine
	paper birch--------	58	57	
	red maple----------	58	43	
	red spruce---------	45	100	
	sugar maple---------	50	29	
	white spruce--------	55	129	
	yellow birch-------	50	29	
Tunbridge	balsam fir---------	---	0	balsam fir, eastern
	eastern white pine--	50	86	white pine, red
	northern red oak----	---	0	spruce, Scotch
	paper birch--------	---	0	pine, tamarack,
	red spruce---------	50	114	white spruce
	sugar maple---------	60	43	
	white ash---------	65	43	
	white spruce--------	55	129	
	yellow birch-------	55	29	
Scantic-----------	balsam fir---------	60	114	balsam fir, black
	eastern white pine--	58	100	spruce, eastern
	red maple----------	55	29	arborvitae,
	white ash----------	67	29	eastern white
	white spruce-------	60	143	pine, red spruce, tamarack, white spruce
LUE:				
Lyman	balsam fir---------	60	114	balsam fir, eastern
	red spruce---------	40	86	white pine, red
	sugar maple--------	50	29	pine, white spruce
	white spruce-------	55	129	
Abram	balsam fir----------	33	57	jack pine
	eastern hemlock-----	---	0	
	eastern hophornbeam-	---	0	
	eastern white pine--	48	72	
	gray birch---------	-	0	
	jack pine---------	---	0	
	paper birch---------	40	43	
	red spruce---------	34	57	
	scarlet oak--------	40	29	
	white spruce--------	37	72	

Table 7.-Forestland Productivity-continued

Map symbol and soil name	Potential productivity			Trees to manage	
	Common trees	Site index	Volume of wood fiber		
			cu ft/ac		
LUE:Tunbridge				balsam fir, eastern	
	\|balsam fir---------		---	0	
	\|eastern white pine--		50	86	white pine, red
	\|northern red oak---	---	0	spruce, Scotch	
	paper birch---------	-	0	pine, tamarack,	
	\|red spruce----------	50	114	white spruce	
	\|sugar maple---------		60	43	
	\|white ash----------		65	43	
	\|white spruce--------		55	129	
	\|yellow birch--------	55	29		
LYC:					
Lyman	\|balsam fir---------		60	114	balsam fir, eastern white pine, red pine, white spruce
	red spruce----------	40	86		
	\|sugar maple--------		50	29	
	\|white spruce--------		55	129	
Tunbridge--------	\|balsam fir---------		---	0	balsam fir, eastern white pine, red spruce, Scotch pine, tamarack, white spruce
	\|eastern white pine--		50	86	
	\|northern red oak----		-- -	0	
	paper birch--------\|	---	0		
	red spruce	50	114		
	\|sugar maple---------	60	43		
	\|white ash----------		65	43	
	\|white spruce--------		55	129	
	\|yellow birch--------		55	29	
Abram-	\|balsam fir---------		33	57	\|jack pine
	\|eastern hemlock-----		---	0	
	\|eastern hophornbeam-		---	0	
	\|eastern white pine--		48	72	
	\|gray birch---------		---	0	
	\|jack pine----------		--	0	
	paper birch---------	40	43		
	red spruce---------\|	34	57		
	\|scarlet oak---------		40	29	
	\|white spruce--------		37	72	
MaC:					
Marlow------------	\|American beech------		60	43	eastern white pine, red pine, white spruce
	\|balsam fir---------		58	114	
	\|eastern white pine--		66	114	
	\| paper birch--------		65	72	
	\|red pine-----------		65	114	
	red spruce----------	48	100		
	\|sugar maple---------	60	43		
	\|white ash----------		67	43	
	\|white spruce--------		60	143	
	\|yellow birch-------		60	43	
MbC :					
Marlow-				```\|eastern white pine, red pine, white spruce```	
	balsam fir	58	114		
	\|eastern white pine--		66	114	
	\|paper birch--------		65	72	
	\|red pine-----------		65	114	
	red spruce----------	48	100		
	\|sugar maple---------	60	43		
	\|white ash----------		67	43	
	\|white spruce--------		60	143	
	\|yellow birch--------		60	43	

Table 7.-Forestland Productivity-continued

Table 7.-Forestland Productivity-continued

Map symbol and soil name	Potential productivity			Trees to manage
	Common trees	Site index	Volume of wood fiber	
			cu ft/ac	
MGD :Tunbridg				balsam fir, eastern
	\|balsam fir-	---	0	
	\|eastern white pine--	50	86	white pine, red
	northern red oak----	---	0	spruce, Scotch
	paper birch--------	---	0	pine, tamarack,
	red spruce---------	50	114	white spruce
	\| sugar maple--------	60	43	
	\|white ash----------	65	43	
	\|white spruce-------	55	129	
	yellow birch-------	55	29	
Dixfield	balsam fir---------	64	129	black spruce, eastern white pine, European larch
	\|eastern white pine--	70	129	
	paper birch--------	62	72	
	red spruce	54	114	
	\| sugar maple--------	62	43	
MmA :				
Masardis----------	balsam fir---------	55	114	```eastern white pine, red pine, white spruce```
	\|eastern arborvitae--	55	86	
	\|eastern white pine--	60	100	
	paper birch--------	55	57	
	\|red pine----------	52	86	
	\|red spruce---------	45	100	
	\|sugar maple--------	55	29	
	white spruce-------	48	100	
	yellow birch-------	55	29	
MmB :				
Masardis----------	balsam fir---------	55	114	```eastern white pine, red pine, white spruce```
	\|eastern arborvitae--	55	86	
	\|eastern white pine--	60	100	
	\| paper birch--------	55	57	
	red pine----------	52	86	
	red spruce---------	45	100	
	\| sugar maple--------	55	29	
	\|white spruce-------	48	100	
	yellow birch-------	55	29	
MmC :				
Masardis---------	balsam fir		114	eastern white pine, red pine, white spruce
	eastern arborvitae--	55	86	
	\|eastern white pine--	60	100	
	paper birch--------	55	57	
	red pine----------	52	86	
	red spruce---------	45	100	
	\| sugar maple--------	55	29	
	white spruce-------	48	100	
	yellow birch-------	55	29	
MmE :				
Masardis----------	balsam fir---------			eastern white pine, red pine, white spruce
	eastern arborvitae--	55	86	
	\|eastern white pine--	60	100	
	paper birch--------	55	57	
	\|red pine----------	52	86	
	red spruce---------	45	100	
	\|sugar maple--------	55	29	
	\|white spruce-------	48	100	
	yellow birch-------	55	29	

Table 7.-Forestland Productivity-continued

Map symbol and soil name	Potential productivity			Trees to manage
	Common trees	Site index	Volume of wood fiber	
			cu ft/ac	
MRE:Masardis				eastern white pine, red pine, white spruce
	\|balsam fir	55	114	
	\|eastern arborvitae--	55	86	
	\|eastern white pine--	60	100	
	\| paper birch--------	55	57	
	red pine	52	86	
	red spruce	45	100	
	\| sugar maple--------	55	29	
	\|white spruce-------	48	100	
	yellow birch-------	55	29	
Adams	American beech-----	---	0	```eastern white pine, European larch, red pine```
	\|eastern hemlock-----	66	0	
	\|eastern white pine--	66	114	
	red maple----------	---	0	
	sugar maple	61	43	
MSC:Masardis				
	balsam fir---------	55		eastern white pine, red pine, white spruce
	eastern arborvitae--	55	86	
	\|eastern white pine--	60	100	
	paper birch--------	55	57	
	red pine	52	86	
	red spruce---------	45	100	
	\| sugar maple--------	55	29	
	white spruce-------	48	100	
	yellow birch--------	55	29	
Sheepscot---------	American beech------	55	29	eastern white pine, European larch, tamarack, white spruce
	balsam fir----------	55	114	
	\|eastern arborvitae--	55	86	
	\|eastern hemlock-----	---	0	
	\|eastern white pine--	68	114	
	\| paper birch--------	55	57	
	red spruce---------	45	100	
	sugar maple	55	29	
	white spruce	55	129	
	yellow birch-------	55	29	
MT :Medomak				black spruce
	black spruce-------	-	0	
	\|eastern white pine--	55	86	
	\|gray birch---------	--	0	
	\|red maple	47	29	
	tamarack----------	---	0	
Wonsqueak	balsam fir---------	---	0	---
	balsam poplar------	---	0	
	black spruce-------	20	29	
	\|eastern arborvitae--	---	0	
	\|quaking aspen------	---	0	
	\|red maple----------	---	0	
	tamarack----------	---	0	

Table 7.-Forestland Productivity-continued

Map symbol and soil name	Potential productivity			Trees to manage
	Common trees	Site index	Volume of wood fiber	
			$\overline{\mathrm{cu} \mathrm{ft/ac}}$	
Mvb :Monarda				balsam fir, black spruce, eastern white pine, tamarack, white spruce
	balsam fir-	45	86	
	\|black spruce-------	44	43	
	\|eastern arborvitae--	---	0	
	\|eastern white pine--	66	114	
	paper birch	60	57	
	\|quaking aspen-------	---	0	
	\|red maple----------	---	0	
	\|red spruce---------	40	86	
	\|sugar maple---------	55	29	
	white spruce--------	53	114	
MWB :Monarda				\|balsam fir, black spruce, eastern white pine, tamarack, white spruce
	\|balsam fir---------	45	86	
	\|black spruce-------	44	43	
	\|eastern arborvitae--	---	0	
	eastern white pine--	66	114	
	paper birch	60	57	
	\|quaking aspen------	-	0	
	\|red maple---------	---	0	
	\|red spruce---------	40	86	
	\| sugar maple---------	55	29	
	white spruce	53	114	
Telos	\|balsam fir---------	53	100	```black spruce, red spruce, white spruce```
	eastern white pine--	67	114	
	red maple----------	55	29	
	\|red spruce---------	44	86	
	\|white spruce-------	55	129	
MXB :Monarda				
	\| balsam fir---------			balsam fir, black spruce, eastern white pine, tamarack, white spruce
	black spruce	44	43	
	eastern arborvitae--	---	0	
	\|eastern white pine--	66	114	
	paper birch--------	60	57	
	quaking aspen-	---	0	
	red maple	---	0	
	\|red spruce---------	40	86	
	\|sugar maple	55	29	
	\|white spruce	53	114	
Wonsqueak-	\|balsam fir---------	---	0	---
	\|balsam poplar-------	---	0	
	\|black spruce--------	20	29	
	\|eastern arborvitae--	---	0	
	\|quaking aspen-------	---	0	
	\|red maple	---	0	
	tamarack	---	0	
NAC:				
Naskeag	\|balsam fir---------	55	114	```\| black spruce,```
	\|eastern white pine--	61	100	
	red maple---------	65	43	
	red spruce---------	45	100	
	\|white ash----------	55	29	
	white spruce--------	55	129	

Table 7.-Forestland Productivity-continued

Table 7.-Forestland Productivity-continued

Map symbol and soil name	Potential productivity			Trees to manage	
	Common trees	Site index	Volume of wood fiber		
			cu ft/ac		
NCB :Lyma					
	\|balsam fir---------		60	114	balsam fir, eastern
	\|red spruce---------		40	86	white pine, red
	\|sugar maple--------		50	29	pine, white spruce
	\|white spruce--------		55	129	
NdB :					
Nicholville------------	\|eastern white pine--		75	172	\|eastern white pine,
	\|northern red oak----		70	57	European larch,
	\|sugar maple--------		65	43	Norway spruce, white spruce
NdC:					
Nicholville-----------	\|eastern white pine--		75	172	\|eastern white pine,
	northern red oak----	70	57	European larch,	
	\|sugar maple--------		65	43	Norway spruce, white spruce
NGB :					
Nicholville-----------	northern red oak----	70	172 57	European larch,	
	\|sugar maple--------		65	43	Norway spruce, white spruce
Croghan----------------	\|eastern white pine--		65	143	eastern white pine,
	red maple	--	0	European larch,	
	\|sugar maple---------		55	29	Norway spruce
NGC :					
Nicholville------------	\|eastern white pine--		75	172	eastern white pine,
	\|northern red oak----		70	57	European larch,
	\| sugar maple----	65	43	Norway spruce, white spruce	
Croghan----------------	\|eastern white pine--		65	143	\|eastern white pine,
	\|red maple----------		-	0	European larch,
	\|sugar maple--------		55	29	Norway spruce
Pg :					
Pits, sand and gravel---	---	-	-	---	
RhB :					
Rawsonville-----------	\|American beech-----		64	43	\|balsam fir, eastern
	\|balsam fir-	---	0	\| white pine, red	
	\|eastern hemlock-----		---	0	spruce, Scotch
	\|paper birch--------		---	0	pine, tamarack,
	\|red maple----------		---	0	white spruce
	\|red spruce---------		45	100	
	\|sugar maple---------		60	43	
	\|white ash----------	67	43		
	\|white spruce--------		55	129	
	\|yellow birch--------	55	29		
RhB :					
Hogback----------------	\|American beech-----		---	0	balsam fir, eastern
	\|balsam fir---------		48	86	white pine, Norway
	\|eastern white pine--		55	86	spruce, red spruce
	\|northern red oak----		63	43	
	\|paper birch--------		-	0	
	\|red spruce---------		42	86	
	\|sugar maple--------		50	29	
	\|white spruce--------	55	129		
	\|yellow birch--------	---	0		

Table 7.-Forestland Productivity-continued

Map symbol and soil name	Potential productivity			Trees to manage
	Common trees	Site index	Volume of wood fiber	
			cu ft/ac	
RhC:Rawsonville				balsam fir, eastern white pine, red spruce, Scotch pine, tamarack, white spruce
	American beech------	64	43	
	balsam fir----------	---	0	
	eastern hemlock-----	---	0	
	paper birch--------	---	0	
	red maple----------	--	0	
	red spruce---------	45	100	
	sugar maple---------	60	43	
	white ash----------	67	43	
	white spruce--------	55	129	
	yellow birch-------	55	29	
Hogback	American beech-----	---	0	\|balsam fir, eastern white pine, Norway spruce, red spruce
	balsam fir---------	48	86	
	eastern white pine--	55	86	
	northern red oak----	63	43	
	paper birch---------	---	0	
	red spruce---------	42	86	
	sugar maple---------	50	29	
	white spruce--------	55	129	
	yellow birch--------	---	0	
RmC:Rawsonville				
	American beech------	64	43	balsam fir, eastern white pine, red spruce, Scotch pine, tamarack, white spruce
	balsam fir----------	---	0	
	eastern hemlock-----	---	0	
	paper birch---------	---	0	
	red maple----------	---	0	
	red spruce---------	45	100	
	sugar maple--------	60	43	
	white ash----------	67	43	
	white spruce--------	55	129	
	yellow birch-------	55	29	
Hogback	American beech-----	---	0	\|balsam fir, eastern white pine, Norway spruce, red spruce
	balsam fir---------	48	86	
	eastern white pine--	55	86	
	northern red oak----	63	43	
	paper birch--------	--	0	
	red spruce---------	42	86	
	sugar maple--------	50	29	
	white spruce--------	55	129	
	yellow birch-------	---	0	
Abram-	balsam fir---------	33	57	\|jack pine
	eastern hemlock-----	--	0	
	eastern hophornbeam-	---	0	
	eastern white pine--	48	72	
	gray birch---------	---	0	
	jack pine---------	--	0	
	paper birch---------	40	43	
	red spruce---------	34	57	
	scarlet oak---------	40	29	
	white spruce-------	37	72	

Table 7.-Forestland Productivity-continued

Table 7.-Forestland Productivity-continued

Map symbol and soil name	Potential productivity			Trees to manage
	Common trees	Site index	Volume of wood fiber	
			cu ft/ac	
SG:Sebago				
	balsam fir-	---	0	---
	balsam poplar	---	0	
	black spruce--------	20	29	
	eastern arborvitae--	---	0	
	quaking aspen	---	0	
	red maple----------	---	0	
	tamarack-----------	-- -	0	
Moosabec	black spruce	25	29	black spruce,
	tamarack----------	30	14	tamarack
ShB :				
Sheepscot	American beech------------	$\begin{aligned} & 55 \\ & 55 \end{aligned}$	$\begin{array}{r} 29 \\ 114 \end{array}$	eastern white pine, European larch, tamarack, white spruce
	eastern arborvitae--	55	- 86	
	eastern hemlock-----	---	0	
	eastern white pine--	68	114	
	paper birch--------	55	57	
	red spruce	45	100	
	sugar maple--------	55	29	
	white spruce	55	129	
	yellow birch	55	29	
SJB :				
Sheepscot---------	American beech------	55		eastern white pine, European larch, tamarack, white spruce
	balsam fir---------	55	114	
	eastern arborvitae--	55	86	
	eastern hemlock-----	---	0	
	eastern white pine--	68	114	
	paper birch--------	55	57	
	red spruce---------	45	100	
	sugar maple--------	55	29	
	white spruce	55	129	
	yellow birch--------	55	29	
Croghan-----------	eastern white pine--	65	143	eastern white pine, European larch, Norway spruce
	red maple	---	0	
	sugar maple--------	55	29	
Kinsman-----------	red maple----------	60	43	eastern white pine, Norway spruce
	white spruce-------	50	114	
Skerry	balsam fir	57	114	eastern white pine, white spruce
	eastern white pine--	80	143	
	sugar maple	60	43	
	white spruce-------	60	143	
SmB :				
Skerry------------			114	eastern white pine, white spruce
	eastern white pine--	80	143	
	sugar maple--------	60	43	
	white spruce-------	60	143	
SNC:				
Skerry-	balsam fir---------	57	114	eastern white pine, white spruce
	eastern white pine--	80	143	
	sugar maple	60	43	
	white spruce--------	60	143	

Table 7.-Forestland Productivity-continued

Map symbol and soil name	Potential productivity			Trees to manage	
	Common trees	Site index	Volume of wood fiber		
			cu ft/ac		
SNC: Becket					
	balsam fir---------	55	114	eastern white pine,	
	\|eastern white pine--		69	129	red pine, white
	\|paper birch	71	86	spruce	
	\|sugar maple	60	43		
	\|white spruce--------		55	129	
SOB :					
Skerry------------	balsam fir-	57	114	eastern white pine,	
	\|eastern white pine--		80	143	white spruce
	\|sugar maple	60	43		
	\| white spruce--------	60	143		
Colonel-----------	\|balsam fir---------		54	100	black spruce,
	\|eastern white pine--		64	114	\| eastern white
	paper birch	55	57	pine, European	
	\|red maple----------	64	43	larch, tamarack	
	\|red spruce----------	45	100		
SRC:					
Skerry	\|balsam fir---------		57	114	eastern white pine,
	\|eastern white pine--		80	143	white spruce
	\|sugar maple-	60	43		
	\|white spruce-------		60	143	
Colonel-----------	\|balsam fir---------		54	100	black spruce,
	\|eastern white pine--		64	114	eastern white
	paper birch----	55	57	pine, European	
	\|red maple---------	64	43	larch, tamarack	
	\|red spruce----------	45	100		
Rawsonville-------	\| American beech-----		64	43	balsam fir, eastern
	balsam fir	--	0	white pine, red	
	\|eastern hemlock	-	0	spruce, Scotch	
	paper birch	---	0	pine, tamarack,	
	red maple	---	0	white spruce	
	\|red spruce	45	100		
	\|sugar maple---------	60	43		
	\|white ash----------		67	43	
	\|white spruce--------		55	129	
	\|yellow birch--------		55	29	
STC:					
Skerry	\|balsam fir---------		57	114	eastern white pine,
	\|eastern white pine--		80	143	white spruce
	\|sugar maple--------	60	43		
	\|white spruce-------		60	143	
Colonel-----------	\|balsam fir---------		54	100	black spruce,
	\|eastern white pine--		64	114	eastern white
	\|paper birch--------		55	57	pine, European
	\|red maple----------	64	43	larch, tamarack	
	\|red spruce---------		45	100	
STC:					
Tunbridge	\|balsam fir---------		---	0	balsam fir, eastern
	\|eastern white pine--		50	86	white pine, red
	\|northern red oak----		--	0	spruce, Scotch
	paper birch--------	50	0	pine, tamarack,	
	\|red spruce---------	50	114	white spruce	
	\| sugar maple--------		60	43	
	\|white ash----------		65	43	
	\|white spruce--------		55	129	
	yellow birch-------	55	29		

Table 7.-Forestland Productivity-continued

Table 7.-Forestland Productivity-continued

Map symbol and soil name	Potential productivity			Trees to manage
	Common trees	Site index	Volume of wood fiber	
			cu ft/ac	
TLC:Lamoine				black spruce,
	balsam fir--------	55	114	
	\|eastern hemlock-----	---	0	eastern
	\|eastern white pine--	65	114	arborvitae,
	\|gray birch---------	---	0	eastern white pine
	paper birch	58	57	
	\|red maple----------	58	43	
	\|red spruce---------	45	100	
	\|sugar maple---------	50	29	
	\|white spruce	55	129	
	\|yellow birch--------	50	29	
Lyman	balsam fir---------	60	114	```balsam fir, eastern white pine, red pine, white spruce```
	red spruce---------	40	86	
	sugar maple	50	29	
	white spruce	55	129	
TuB :				
Tunbridge	\|balsam fir---------	---	0	balsam fir, blue spruce, Douglas
	eastern white pine--	65	114	
	\|northern red oak----	68	57	fir, eastern white
	paper birch--------	78	43	pine, Fraser's
	red maple----------	---	0	fir, larch, Norwayspruce, red
	\|red spruce---------	45	100	
	\|sugar maple---------	60	43	spruce, white
	white ash----------	65	43	spruce
	white spruce	55	129	
	\|yellow birch-------	60	43	
Lyman-------------	American beech------	---	0	Austrian pine, balsam fir, eastern white pine, white spruce
	balsam fir	48	114	
	\|eastern hemlock-----	---	0	
	\|eastern white pine--	56	100	
	\|northern red oak----	54	43	
	paper birch	---	0	
	\|red spruce---------	42	86	
	\|sugar maple	---	0	
	\|white spruce	55	129	
TuC:				
Tunbridge	balsam fir		0	balsam fir, blue
	eastern white pine--	65	114	spruce, Douglas
	\|northern red oak---	68	57	fir, eastern white
	paper birch--------	78	43	pine, Fraser's fir, larch, Norway
	red maple----------	---	0	
	red spruce---------	45	100	$\begin{aligned} & \text { spruce, red } \\ & \text { spruce, white } \end{aligned}$
	\|sugar maple--------	60	43	
	\|white ash	65	43	spruce
	\|white spruce--------	55	129	
	yellow birch-------	60	43	
TuC:				
Lyman-------------	American beech-----	---	0	```Austrian pine, balsam fir, eastern white pine, white spruce```
	\| balsam fir---------	48	114	
	\|eastern hemlock-----	---	0	
	\|eastern white pine--	56	100	
	\|northern red oak----	54	43	
	paper birch--------	---	0	
	\|red spruce---------	42	86	
	\|sugar maple---------	---	0	
	\|white spruce--------	55	129	

Table 7.-Forestland Productivity-continued

Map symbol and soil name	Potential productivity			Trees to manage
	Common trees	Site index	Volume of wood fiber	
			cu ft/ac	
TyC:				
Tunbridge--------	balsam fir---------	---	0	balsam fir, eastern
	eastern white pine--\|	50	86	white pine, red
	northern red oak----\|	--	0	spruce, Scotch
	paper birch--------\|	---	0	pine, tamarack,
	red spruce---------	50	114	white spruce
	sugar maple-------- \|	60	43	
	white ash----------\|	65	43	
	white spruce-------\|	55	129	
	yellow birch	55	29	
Lyman	balsam fir---------\|	60	114	balsam fir, eastern
	red spruce---------	40	86	white pine, red
	sugar maple	50	29	pine, white spruce
	white spruce-------\|	55	129	
Abram-------------	balsam fir---------\|	33	57	jack pine
	eastern hemlock-----\|	---	0	
	eastern hophornbeam-\|	---	0	
	eastern white pine--\|	48	72	
	gray birch---------\|	---	0	
	jack pine---------\|	---	0	
	paper birch--------\|	40	43	
	red spruce---------	34	57	
	scarlet oak---------	40	29	
	white spruce-------\|	37	72	
Ud:				
Udorthents-------	---	---	-- -	---
Urban land-------	---	---	---	---
W :				
Water------------	---	---	---	---
WF :				
Wonsqueak	balsam fir-	---	0	---
	balsam poplar------\|	---	0	
	black spruce-------\|	20	29	
	eastern arborvitae--\|	---	0	
	quaking aspen------\|	---	0	
	red maple----------	---	0	
	tamarack----------	---	0	
Bucksport--------	balsam fir---------	30	57	---
	black spruce-------\|	25	29	
	eastern arborvitae--\|	---	0	
	gray birch--------	---	0	
	red maple----------	---	0	
	tamarack-----------	---	0	

Table 8.-Forest Management
(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00 . The larger the value, the greater the limitation. See text for further explanation of ratings in this table.)

Table 8.-Forest Management-continued

Table 8.-Forest Management-continued

Table 8.-Forest Management-continued

Table 8.-Forest Management-continued

Table 8.-Forest Management-continued

Map symbol and soil name	Pct. of map unit	Limitations affecting construction of haul roads and log landings		Suitability for log landings		Soil rutting hazard		
		Rating class and limiting features	Value	Rating class and limiting features	\| Value	Rating class and limiting features	\|Value	
DRC:Dixfield	35	Moderate Wetness	0.50	Poorly suited Low strength Slope Wetness	1.00			
						Moderate		
						Wetness	0.58	
					0.50	Low Strength	0.50	
					0.50			
Marlow----------	30	Slight	0.17	Moderately suited		Slight		
		Wetness			0.50	Low Strength	0.38	
				Wetness	0.50	Wetness	0.17	
Rawsonville-----	20	Moderate Restrictive layer Low strength	0.50	Moderately suited		Moderate	0.50	
					0.50	Low Strength		
			0.50	Low strength	0.50			
DTC:								
Dixfield--------	35	Moderate Wetness	0.50	Poorly suited Low strength Slope Wetness		Moderate	0.580.50	
					1.00	Wetness		
					0.50	Low Strength		
					0.50			
Marlow----------	30	Slight Wetness	0.17	Moderately suited		Slight		
					0.50	Low Strength	0.38	
				Wetness	0.50	Wetness	0.17	
Tunbridge------	20	```Moderate Restrictive layer Low strength```	0.50	Moderately suitedSlope		Slight	0.38	
					0.50	Low Strength		
			0.50	Low strength	0.50			
DUC:								
Dixfield--------	30	Moderate Wetness	0.50	\| Poorly suited ${ }_{\text {Low strength }}$		Moderate	0.58	
					1.00	Wetness		
				Slope	0.50	Low Strength	0.50	
				Wetness	0.50			
Rawsonville-----	25	Moderate Restrictive layer Low strength	0.50	Moderately suited		Moderate	0.50	
				Slope	0.50	Low Strength		
			0.50	Low strength	0.50			
Colonel--------	20	Moderate Wetness	0.75	Poorly suited Low strength Wetness Slope		Severe Wetness Low Strength		
					1.00		0.75	
					0.50			
DWC:								
Dixfield--------	30	Moderate Wetness	0.50	Poorly suited		Moderate		
				Low strength	1.00	Wetness	0.58	
				Slope	0.50	Low Strength	0.50	
				Wetness	0.50			
Tunbridge-	25	Moderate		Moderately suited		Slight		
		\| Restrictive layer		0.50	Slope	0.50	Low Strength	0.38
		Low strength	0.50	Low strength	0.50			
Colonel---------	20	Moderate Wetness		Poorly suited		Severe		
			0.75	Low strength	1.00	Wetness	0.75	
				Wetness	1.00	Low Strength	0.75	
				slope	0.50			

Table 8.-Forest Management-continued

Table 8.-Forest Management-continued

Map symbol and soil name	Pct. of map unit	Limitations affecting construction of haul roads and log landings		Suitability for log landings		Soil rutting hazard	
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	Value
HkC:							
Hermon-------------- \|	50	Slight		Moderately suited slope	0.50	Slight	0.38
				Rock fragments	0.50		
Monadnock----------- \|	30	Slight		Moderately suitedSlope		Slight	0.38
					0.50	Low Strength	
				Rock fragments	0.50		
HMD :							
Hermon------------- \|	45	Moderate Slope	0.50	Poorly suited		Slight	0.38
				Slope	1.00	Low Strength	
				Rock fragments	0.50		
Monadnock---------- \|	35	Moderate Slope	0.50	$\begin{array}{\|l} \text { Poorly suited } \\ \text { Slope } \\ \text { Rock fragments } \end{array}$		Slight	0.38
					1.00	Low Strength	
					0.50		
HOE :							
Hermon-------------	50	Moderate		Poorly suited		Slight	
		Slope	0.50	Slope	1.00	Low Strength	0.38
		Stoniness	0.50	Rock fragments	1.00		
Monadnock-----------	35	Moderate Slope Stoniness		$\begin{aligned} & \text { Poorly suited } \\ & \text { Slope } \\ & \text { Rock fragments } \end{aligned}$		Slight Low Strengt	0.38
			0.50		1.00		
			0.50		1.00		
HSC:Hermon	40						
		Slight		Moderately suited Slope Rock fragments		Slight Low Strength	0.38
					0.50		
					0.50		
Monadnock---------- \|	30	Slight		Moderately suited		Slight Low Strengt	0.38
				Slope	0.50		
				Rock fragments	0.50		
Skerry-------------	15	Moderate Wetness	0.50	Moderately suitedWetness		Moderate	0.58
					0.50	Wetness	
				slope	0.50	Low Strength	0.38
HVC:	40						
Hermon-------------		Moderate		Poorly suited		Slight	0.38
		Stoniness	0.50	Rock fragments	1.00	Low Strength	
				slope	0.50		
Monadnock----------- \|	30	Moderate Stoniness	0.50	Poorly suited Rock fragments Slope		Slight	0.38
					1.00	Low Strength	
Skerry-------------	15	Moderate Stoniness Wetness		Moderately suited		Moderate	
			0.50	Rock fragments	0.50	Wetness	0.58
			0.50	Wetness	0.50	Low Strength	0.38
				slope	0.50		
HWE: Hogback							
	30	$\begin{array}{\|l} \text { Severe } \\ \text { Slope } \\ \text { Low strength } \end{array}$		$\begin{aligned} & \text { Poorly suited } \\ & \text { Slope } \\ & \text { Low strength } \end{aligned}$		Moderate	0.50
			1.00		1.00	Low Strength	
			0.50		0.50		
Abram--------------	25	$\begin{array}{\|r} \text { Severe } \\ \text { Slope } \end{array}$	1.00	Poorly suited Slope	1.00	Slight Low Strength	0.38

Table 8.-Forest Management-continued

Table 8.-Forest Management-continued

Map symbol and soil name	Pct. of map unit	Limitations affecting construction of haul roads and log landings		Suitability for log landings		Soil rutting hazard	
		Rating class and limiting features	\|Value	Rating class and limiting features	\| Value	Rating class and limiting features	\|Value
LEB:							
Lamoine---------	30	Moderate Wetness 0.75		Poorly suited	1.00	Severe	
				Wetness		Wetness	0.75
		Low strength	0.50	Low strength	0.50	Low Strength	0.75
Creasey---------	30	Severe Restrictive layer	1.00	Well suited		Slight	
						Low Strength	0.38
Scantic---------	20	Moderate Wetness		Poorly suited		Severe	
			0.75	Wetness	1.00	Wetness	0.75
		Low strength	0.50	Low strength	0.50	Low Strength	0.75
LHB :							
Lamoine---------	50	Moderate		Poorly suited		Severe	
		Wetness	0.75	Wetness	1.00		0.75
		Low strength	0.50	Low strength	0.50	Low Strength	0.75
Nicholville-----	25	Moderate Low strength Wetness		Moderately suited		Moderate	
			0.500.50		0.50	Wetness	
				Wetness Slope	0.50	Low Strength	0.50
					0.50		
LKB :							
Lamoine---------	30	Moderate		Poorly suited		Severe	
		Wetness Low strength	0.750.50	Wetness Low strength	1.00	Wetness Low Strength	0.75
				Low strength	0.50	Low Strength	0.75
Rawsonville-----	25	Moderate Restrictive layer Low strength	$\left\lvert\, \begin{aligned} & 0.50 \\ & 0.50 \end{aligned}\right.$	\|Moderately suited Low strength	0.50	Moderate	
						Low Strength	0.50
Scantic---------	20	Moderate		Poorly suited		Severe	
		Wetness	0.75	Wetness	1.00	Wetness	0.75
		Low strength	0.50	Low strength	0.50	Low Strength	0.75
LmB :							
Lamoine---------	55	Moderate		Poorly suited		Severe	
			0.75	Wetness	1.00	Wetness	0.75
		Low strength	0.50	Low strength	0.50	Low Strength	0.75
Scantic---------	35	Moderate Wetness Low strength	0.75	Poorly suited Wetness		Severe	
					1.00	Wetness	0.75
			0.50	Low strength	0.50	Low Strength	0.75
LnB :							
Lamoine---------	55	Moderate		Poorly suited		Severe	
		Wetness	0.75	Wetness		Wetness	
		Low strength	0.50	Low strength	0.50	Low Strength	0.75
Scantic---------	35	Moderate Wetness Low strength		Poorly suited \|		Severe	
			0.75	Wetness	1.00	Wetness	0.75
			0.50	Low strength	0.50	Low Strength	0.75
LSB :							
Lamoine---------	35	Moderate		Poorly suited		Severe	
		Wetness	0.75	Wetness	1.00	Wetness	0.75
		Low strength	0.50	Low strength	0.50	Low Strength	0.75
Scantic--	20	Moderate		Poorly suited		Severe	
		Wetness	0.75	Wetness	1.00	Wetness	0.75
		Low strength	0.50	Low strength	0.50	Low Strength	0.75

Table 8.-Forest Management-continued

Table 8.-Forest Management-continued

Map symbol and soil name	$\left\lvert\, \begin{gathered} \text { Pct. } \\ \text { of } \\ \text { map } \\ \text { unit } \end{gathered}\right.$	Limitations affecting construction of haul roads and log landings		Suitability for log landings		Soil rutting hazard	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	\|Value
MFD : Marlow	35	$\left\lvert\, \begin{gathered} \text { Moderate } \\ \text { Slope } \\ \text { Wetness } \end{gathered}\right.$	$\left\lvert\, \begin{aligned} & 0.50 \\ & 0.17 \end{aligned}\right.$	Poorly suited Slope Wetness	$\left\lvert\, \begin{aligned} & 1.00 \\ & 0.50 \end{aligned}\right.$	Slight Low Strength Wetness	$\left\lvert\, \begin{aligned} & 0.38 \\ & 0.17 \end{aligned}\right.$
Rawsonville-	25	Moderate Restrictive layer slope	0.50	Poorly suited Slope Low strength	$\left\lvert\, \begin{aligned} & 1.00 \\ & 0.50 \end{aligned}\right.$	Moderate Low Strength	0.50
Dixfield------	20	Moderate Wetness	0.50	Poorly suited Low strength Slope Wetness	$\left\lvert\, \begin{aligned} & 1.00 \\ & 0.50 \\ & 0.50 \end{aligned}\right.$	Moderate Wetness Low Strength	$\left\lvert\, \begin{aligned} & 0.58 \\ & 0.50 \end{aligned}\right.$
MGD : Marlow---	35	Moderate Slope Wetness	$\begin{array}{\|l} 0.50 \\ 0.17 \end{array}$	$\begin{aligned} & \text { Poorly suited } \\ & \text { Slope } \\ & \text { Wetness } \end{aligned}$	$\left\lvert\, \begin{aligned} & 1.00 \\ & 0.50 \end{aligned}\right.$	Slight Low Strength Wetness	$\left\lvert\, \begin{aligned} & 0.38 \\ & 0.17 \end{aligned}\right.$
Tunbridge	25	Severe Restrictive layer slope	$\left\lvert\, \begin{aligned} & 1.00 \\ & 0.50 \end{aligned}\right.$	Poorly suited Slope Low strength	$\left\lvert\, \begin{aligned} & 1.00 \\ & 0.50 \end{aligned}\right.$	$\begin{aligned} & \text { Slight } \\ & \text { Low Strength } \end{aligned}$	0.38
Dixfield--	20	Moderate Wetness	0.50	Poorly suited Low strength Slope Wetness	$\left\lvert\, \begin{aligned} & 1.00 \\ & 0.50 \\ & 0.50 \end{aligned}\right.$	Moderate Wetness Low Strength	$\left\lvert\, \begin{aligned} & 0.58 \\ & 0.50 \end{aligned}\right.$
MmA : Masardis-	90	Slight		Well suited		$\begin{aligned} & \text { Slight } \\ & \text { Low Strength } \end{aligned}$	0.38
MmB : Masardis--	80	Slight		Moderately suited Slope	0.50	Slight Low Strength	0.38
MmC: Masardis--	85	Slight		Moderately suited Slope	0.50	Slight Low Strength	0.38
MmE : Masardis-	90	Moderate Slope	0.50	Poorly suited slope	1.00	$\begin{array}{\|l} \text { Slight } \\ \text { Low Strength } \end{array}$	0.38
MRE : Masardis-	60	$\begin{array}{\|l} \text { Severe } \\ \text { Slope } \end{array}$	1.00	$\begin{aligned} & \text { Poorly suited } \\ & \text { Slope } \end{aligned}$	1.00	\| Slight Low Strength	0.08
Adams ----	25	Severe Slope	1.00	Poorly suited Slope	1.00	$\begin{aligned} & \text { Slight } \\ & \text { Low Strength } \end{aligned}$	0.38
MSC: Masardis--	55	Slight		Moderately suited slope	0.50	Slight Low Strength	0.08
Sheepscot------	25	Slight		Well suited		Moderate Wetness	0.58

Table 8.-Forest Management-continued

Map symbol and soil name	Pct. of map unit	Limitations affecting construction of haul roads and log landings		Suitability for log landings		Soil rutting hazard				
		Rating class and limiting features	\|Value	Rating class and limiting features	\| Value	Rating class and limiting features	\|Value			
Medomak---------	50	Flooding	1.00	Flooding	1.00	Wetness	0.75			
		Wetness	0.75	Wetness	\| 1.00	Low Strength	0.75			
		Low strength	0.50	Low strength	0.50					
Wonsqueak-------	30	Severe		Poorly suited		Severe				
		Flooding	1.00	Flooding	1.00	Wetness	1.00			
		Wetness	1.00	Low strength	\| 1.00	Low Strength	0.75			
				Wetness	1.00					
Mvb :										
Monarda---------	75	Moderate		Poorly suited		Severe				
		Wetness	0.83	Wetness	\| 1.00	Wetness	0.83			
		Low strength	0.50	Low strength	0.50	Low Strength	0.75			
MWB :										
Monarda---------	45	Moderate		Poorly suited		Severe				
		Wetness	0.83	Wetness	11.00	Wetness	0.83			
		Low strength	0.50	Low strength	0.50	Low Strength	0.75			
Telos-----------	40	Moderate		Poorly suited		Severe				
		Wetness	0.75	Wetness	1.00	Wetness	0.75			
		Low strength	0.50	Low strength	0.50	Low Strength	0.75			
				Slope	0.50					
MXB :										
Monarda--------	35	Moderate		Poorly suited		Severe				
		Wetness	0.83	Wetness	1.00	Wetness	0.83			
		Low strength	0.50	Low strength	0.50	Low Strength	0.75			
Wonsqueak-------	30	Moderate Wetness		Poorly suited Low strength Wetness		Severe				
			0.83		1.00	Wetness	0.83			
					1.00	Low Strength	0.75			
Naskeag---------	35	Wetness	0.67	Poorly suited Wetness	1.00	Wetness	0.75			
		Restrictive layer	0.50			Low Strength	0.38			
Abram-	25	Severe Restrictive layer		\|Moderately suited Slope		Slight				
			1.00		0.50	Low Strength	0.38			
Ricker----------	20	Severe Restrictive layer		Poorly suited Low strength Slope		Slight				
			1.00		1.00	Low Strength	0.38			
					0.50					
NBB :										
Naskeag-	35	Moderate Wetness Restrictive layer		Poorly suited Wetness		Severe				
			0.67		1.00	Wetness	0.75			
			0.50			Low Strength	0.38			
Rawsonville-----	25	Moderate Restrictive layer Low strength		Moderately suited Low strength		Moderate				
			0.50		0.50	Low Strength	0.50			
			0.50	Slope	0.50					
Hogback---------	15	```Severe Restrictive layer Low strength```		Moderately suited		Moderate Low Strength				
			1.00	Low strength	0.50		0.50			
			0.50	Slope	0.50					

Table 8.-Forest Management-continued

Table 8.-Forest Management-continued

Table 8.-Forest Management-continued

Table 8.-Forest Management-continued

Table 8.-Forest Management-continued

(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00 . The larger the value, the greater the limitation. See text for further explanation of ratings in this table.)

Map symbol and soil name	Pct. of map	Hazard of off-road or off-trail erosion		Hazard of erosion on roads and trails		Suitability for roads (natural surface)		Potential for seedling mortality	
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	Value
AaE:									
Abram-	40	Moderate Slope/erodibility	0.50	$\left\lvert\, \begin{gathered} \text { Severe } \\ \text { Slope/erodibility } \end{gathered}\right.$	0.95	$\begin{aligned} & \text { Poorly suited } \\ & \text { Slope } \end{aligned}$	1.00	Moderate Soil reaction	0.50
Hogback-	35	Moderate Slope/erodibility	0.50	\|Severe Slope/erodibility	0.95	$\begin{array}{\|l} \text { Poorly suited } \\ \text { Slope } \\ \text { Low strength } \end{array}$	$\left\lvert\, \begin{aligned} & 1.00 \\ & 0.50 \end{aligned}\right.$	Moderate Soil reaction	0.50
AbE :									
Abram-	40	Moderate Slope/erodibility	0.50	Severe Slope/erodibility	0.95	$\begin{aligned} & \text { Poorly suited } \\ & \text { Slope } \end{aligned}$	1.00	Moderate Soil reaction	0.50
Lyman	35	Moderate Slope/erodibility	0.50	\|Severe Slope/erodibility	0.95	Poorly suited Slope	11.00	Moderate Soil reaction	0.50
ACE :									
		Slope/erodibility	0.75	Slope/erodibility	0.95	slope	1.00	Soil reaction	0.50
Rock outcrop--	30	Not rated		Not rated		Not rated		Not rated	
Ricker-	25	Severe Slope/erodibility	0.75	Severe Slope/erodibility	0.95	Poorly suited Slope	1.00	Moderate Soil reaction	0.50
						Low strength	11.00		
AdA :									
Adams	85	Slight		Slight		Well suited		Low	
AdB :									
Adams -	85	Slight		Moderate Slope/erodibility	0.50	Moderately suited Slope	0.50	Low	
AdC:									
Adams -	85	Slight		Moderate Slope/erodibility	0.50	Moderately suited Slope	0.50	Low	

Table 9.-Hazard of Erosion, Suitability for Roads, and Seedling Mortality on Forestland-continued

Map symbol and soil name	Pct. of	Hazard of off-road or off-trail erosion		Hazard of erosion on roads and trails		Suitability for roads (natural surface)		Potential for seedling mortality	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	\|Value	Rating class and limiting features	Value
AGB :									
Adams -	55	Slight		```Moderate Slope/erodibility```	0.50	Well suited		Moderate Soil reaction	0.50
Croghan-	30	Slight		Slight		Moderately suited Wetness	0.50	Moderate Soil reaction	0.50
$\begin{aligned} & \text { BeC: } \\ & \text { Becket- } \end{aligned}$	80	Slight		\| Severe		Moderately suited		Moderate	
				Slope/erodibility	0.95	Slope	0.50	Soil reaction	0.50
BKD :									
Becket----------		Slope/erodibility	0.50	Severe Slope/erodibility	0.95	Slope	11.00	Moderate Soil reaction	0.50
Skerry----------	25	Slight		Severe Slope/erodibility	0.95	Moderately suited Slope Wetness	0.50	Moderate Soil reaction	0.50
Brayton---------		Slight		Moderate Slope/erodibility	0.50	Poorly suited		High	
	75					Wetness	1.00	Wetness Soil reaction	$\left\lvert\, \begin{aligned} & 1.00 \\ & 0.50 \end{aligned}\right.$
Brayton---------	50	Slight		Moderate Slope/erodibility	0.50	$\left\lvert\, \begin{gathered} \text { Poorly suited } \\ \text { Wetness } \end{gathered}\right.$	1.00	Wetness	1.00
								Soil reaction	0.50
Colonel---------	35	Slight		Moderate Slope/erodibility	0.50	Poorly suited Low strength Wetness		High	
							1.00	Wetness	1.00
							1.00	Soil reaction	0.50
BTB :Brayto									
	50	Slight		Moderate Slope/erodibility	0.50	Poorly suited Wetness Rock fragments		High	
							1.00	Wetness	1.00
							0.50	Soil reaction	0.50
Colonel---------	35	Slight		Moderate Slope/erodibility	0.50	Poorly suited Low strength Wetness Rock fragments		High Wetness Soil reaction	
							1.00		1.00
							1.00		0.50
							0.50		

Map symbol and soil name	Pct. of map	Hazard of off-road or off-trail erosion		Hazard of erosion on roads and trails		Suitability for roads (natural surface)		Potential for seedling mortality	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	\|Value	Rating class and limiting features	Value
BW :									
Bucksport-----	55	Slight		Slight		Poorly suited Low strength Wetness	$\text { \| } 1.00$	High Wetness	1.00
Wonsqueak------	30	\|Slight		Slight		Poorly suited Low strength Wetness	$\left\lvert\, \begin{aligned} & 1.00 \\ & 1.00 \end{aligned}\right.$	High Wetness	1.00
BxC: Buxton	85	Slight		Severe		Moderately suited		Low	
				Slope/erodibility	0.95	Slope	0.50		
						Low strength	0.50		
						Wetness	0.50		
BZC:									
Buxton----------	50	Slight		Severe Slope/erodibility	0.95	Slope	0.50	Low	
						Low strength	0.50		
						Wetness	0.50		
Lamoine--------	35	Slight		```Moderate Slope/erodibility```	0.50	Poorly suited Wetness Low strength Slope		High Wetness	1.00
							1.00		
							0.50		
							0.50		
ChB :									
Chesuncook------	80	Slight		Moderate Slope/erodibility	0.50	Moderately suited		Low	
						Low strength	0.50		
						Slope	0.50		
						Wetness	0.50		
ChC:									
Chesuncook------	80	Slight		Severe Slope/erodibility	0.95	Moderately suited Slope Low strength Wetness		Low	
							0.50		
							0.50		
							0.50		

Table 9.-Hazard of Erosion, Suitability for Roads, and Seedling Mortality on Forestland-continued

Map symbol and soil name	Pct. of map unit	Hazard of off-road or off-trail erosion		Hazard of erosion on roads and trails		Suitability for roads (natural surface)		Potential for seedling mortality	
		Rating class and limiting features	\|Value	Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	Value
CpB :									
Colton-	75	\|Slight		Slight		\|Moderately suited Rock fragments	0.50	Moderate Soil reaction	0.50
CpC:									
				Slope/erodibility	0.50	Slope	0.50	Soil reaction	0.50
						Rock fragments	0.50		
CRC:									
				Slope/erodibility	0.50	Slope	0.50	Soil reaction	0.50
Adams -	20	Slight		Moderate Slope/erodibility	0.50	\|Moderately suited Slope	0.50	Moderate Soil reaction	0.50
CRE :									
Colton----------	75	Severe Slope/erodibility	0.75	```\| Severe ```	0.95	$\begin{aligned} & \text { Poorly suited } \\ & \text { Slope } \end{aligned}$	1.00	Moderate Soil reaction	0.50
Adams-----------	15	\qquad	0.75		0.95	Poorly suited Slope	1.00	Moderate Soil reaction	0.50
CSC:									
Colton----------	40	Slight		Moderate Slope/erodibility	0.50	Moderately suited Slope Rock fragments	0.50	Soil reaction	0.50
							0.50		
Hermon-	35	Slight		Moderate Slope/erodibility	0.50	Moderately suited Slope Rock fragments			
							$\left\lvert\, \begin{aligned} & 0.50 \\ & 0.50 \end{aligned}\right.$	Soil reaction	0.50
CSD :									
Colton----------	60	```Moderate Slope/erodibility```	0.50	Severe Slope/erodibility	0.95	$\begin{aligned} & \text { Poorly suited } \\ & \text { Slope } \\ & \text { Rock fragments } \end{aligned}$	$\left\lvert\, \begin{aligned} & 1.00 \\ & 0.50 \end{aligned}\right.$	Moderate Soil reaction	0.50
Hermon----------	25	```\|Moderate```	0.50	Severe Slope/erodibility	0.95	$\begin{array}{\|l} \text { Poorly suited } \\ \text { Slope } \\ \text { Rock fragments } \end{array}$	$\left\lvert\, \begin{aligned} & 1.00 \\ & 0.50 \end{aligned}\right.$	```Moderate Soil reaction```	0.50
CtB :									
Creasey-	80	Slight		Moderate Slope/erodibility	0.50	Moderately suited Slope	0.50	Low	

Table 9.-Hazard of Erosion, Suitability for Roads, and Seedling Mortality on Forestland-continued

Table 9.-Hazard of Erosion, Suitability for Roads, and Seedling Mortality on Forestland-continued

Table 9.-Hazard of Erosion, Suitability for Roads, and Seedling Mortality on Forestland-continued

Table 9.-Hazard of Erosion, Suitability for Roads, and Seedling Mortality on Forestland-continued

Table 9.-Hazard of Erosion, Suitability for Roads, and Seedling Mortality on Forestland-continued

Table 9.-Hazard of Erosion, Suitability for Roads, and Seedling Mortality on Forestland-continued

Map symbol and soil name	Pct. of map unit	Hazard of off-road or off-trail erosion		Hazard of erosion on roads and trails		Suitability for roads (natural surface)		Potential for seedling mortality	
		Rating class and limiting features	Value	Rating class and limiting features	\|Value	Rating class and limiting features	Value	Rating class and limiting features	Value
MDD : Marlow-	55	Moderate Slope/erodibility	0.50		0.95	$\begin{array}{\|l} \text { Poorly suited } \\ \text { Slope } \\ \text { Wetness } \end{array}$	$\left\lvert\, \begin{aligned} & 1.00 \\ & 0.50 \end{aligned}\right.$		0.50
Dixfield-	30	Slight		Severe Slope/erodibility	0.95	\|Moderately suited Slope Wetness	$\left\lvert\, \begin{aligned} & 0.50 \\ & \mid 0.50 \end{aligned}\right.$		0.50
MFD : Marlow-	35	Moderate Slope/erodibility	0.50		0.95	$\left\lvert\, \begin{gathered} \text { Poorly suited } \\ \text { Slope } \\ \text { Wetness } \end{gathered}\right.$	$\left\lvert\, \begin{aligned} & 1.00 \\ & 0.50 \end{aligned}\right.$	$\begin{array}{\|l} \text { Moderate } \\ \text { Soil reaction } \end{array}$	0.50
Rawsonville---	25	Moderate Slope/erodibility	0.50	Severe Slope/erodibility	0.95	$\begin{array}{\|l} \text { Poorly suited } \\ \text { Slope } \\ \text { Low strength } \end{array}$	$\left\lvert\, \begin{aligned} & 1.00 \\ & 0.50 \end{aligned}\right.$	Moderate Soil reaction	0.50
Dixfield-	20	Slight		$\left\lvert\, \begin{aligned} & \text { Severe } \\ & \text { Slope/erodibility } \mid \end{aligned}\right.$	0.95	$\begin{array}{\|l} \text { Moderately suited } \\ \text { Slope } \\ \text { Wetness } \end{array}$	$\left\lvert\, \begin{aligned} & 0.50 \\ & 0.50 \end{aligned}\right.$	Moderate Soil reaction	0.50
MGD : Marlow	35	Moderate Slope/erodibility	0.50		0.95	$\begin{array}{\|l} \text { Poorly suited } \\ \text { Slope } \\ \text { Wetness } \end{array}$	$\left\lvert\, \begin{aligned} & 1.00 \\ & \mid 0.50 \end{aligned}\right.$		0.50
Tunbridge-	25	Moderate Slope/erodibility	0.50	$\left\lvert\, \begin{aligned} & \text { Severe } \\ & \text { Slope/erodibility } \mid \end{aligned}\right.$	0.95	$\begin{array}{\|l} \text { Poorly suited } \\ \text { Slope } \\ \text { Low strength } \end{array}$	$\left\lvert\, \begin{aligned} & 1.00 \\ & 0.50 \end{aligned}\right.$	Moderate Soil reaction	0.50
Dixfield----	20	Slight		$\left\lvert\, \begin{aligned} & \text { Severe } \\ & \text { Slope/erodibility } \mid \end{aligned}\right.$	0.95	$\begin{array}{\|l} \text { Moderately suited } \\ \text { Slope } \\ \text { Wetness } \end{array}$	$\left\lvert\, \begin{aligned} & 0.50 \\ & \mid 0.50 \end{aligned}\right.$	Moderate Soil reaction	0.50
MmA : Masardis-	90	Slight		Slight		\|Well suited		Low	
MmB : Masardis	80	Slight		Moderate Slope/erodibility	0.50	Moderately suited Slope	0.50	Low	

Map symbol and soil name	\|Pct.	Hazard of off-road or off-trail erosion		Hazard of erosion on roads and trails		Suitability for roads (natural surface)		Potential for seedling mortality	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	\|Value
MmC:									
Masardis-------	85	Slight		```MModerate ```	0.50	Moderately suited Slope	0.50	Low	
MmE :									
		Slope/erodibility	0.50	Slope/erodibility	0.95	slope	1.00		
MRE :									
Masardis-------	60	Severe Slope/erodibility	0.75	```\| Severe ```	0.95	$\begin{aligned} & \text { Poorly suited } \\ & \text { Slope } \end{aligned}$	1.00	Moderate Soil reaction	0.50
Adams-----	25	Severe Slope/erodibility	0.75	```\| Severe ```	0.95	$\begin{aligned} & \text { Poorly suited } \\ & \text { Slope } \end{aligned}$	1.00	Moderate Soil reaction	0.50
MSC :									
				Slope/erodibility	0.50	Slope	0.50	Soil reaction	0.50
Sheepscot----------	25	Slight		Slight		Well suited		```Moderate Soil reaction```	0.50
MT :									
Medomak---------	50	Slight		Slight		Flooding	1.00	Wetness	1.00
						Wetness	1.00	Soil reaction	0.50
						Low strength	0.50		
Wonsqueak-------	30	Slight		Slight		Poorly suited Flooding Low strength Wetness		High	
							1.00	Wetness	1.00
							1.00		
							1.00		
Mvb :									
Monarda---------	75	Slight		Slight		Poorly suited		High	
						Low strength	0.50	Soil reaction	0.50
MWB :									
Monarda---------	45	Slight		Slight		Poorly suited		High	
						Wetness		Wetness	1.00
						Low strength	0.50	Soil reaction	10.50

Table 9.-Hazard of Erosion, Suitability for Roads, and Seedling Mortality on Forestland-continued

Table 9.-Hazard of Erosion, Suitability for Roads, and Seedling Mortality on Forestland-continued

Map symbol and soil name	Pct. of map unit	Hazard of off-road or off-trail erosion		Hazard of erosion on roads and trails		Suitability for roads (natural surface)		Potential for seedling mortality	
		Rating class and limiting features	Value						
Sa: Scantic	80	Slight		Slight		Poorly suited Wetness Low strength		High	1.00
							1.00	Wetness	
							0.50		
SF:									
Scantic------------	50	Slight		Slight		Poorly suitedWetness		High	
							1.00	Wetness	1.00
						Low strength	0.50		
Biddeford----------	30	Slight		Slight		Poorly suited Ponding Low strength		HighWetness	1.00
							1.00		
							1.00		
SG:Sebago	50	Slight		Slight					
						Poorly suited Ponding Low strength Wetness		High	
							1.00	Wetness	1.00
							1.00	Soil reaction	0.50
							1.00		
Moosabec-----------	40	Slight		Slight		Poorly suited Low strength Wetness		High	
							1.00	Wetness	1.00
							0.50	Soil reaction	1.00
ShB :Sheepsco	80	Slight		Slight		Well suited		Moderate	0.50
								Soil reaction	
SJB:	35	Slight		Slight		Well suited		Moderate Soil reaction	0.50
Croghan------------	25	Slight		Slight		\|Moderately suited Wetness	0.50	Moderate Soil reaction	0.50
Kinsman------------	25	Slight		Slight		Poorly suited		High	1.000.50
						Low strength	1.00	Wetness	
						Wetness	1.00	Soil reaction	
SkB :	80	Slight		Moderate Slope/erodibility	0.50	Moderately suited Slope Wetness			
Skerry-------------								Low	
							0.50		
							0.50		

Table 9.-Hazard of Erosion, Suitability for Roads, and Seedling Mortality on Forestland-continued

Table 9.-Hazard of Erosion, Suitability for Roads, and Seedling Mortality on Forestland-continued

Map symbol and soil name	$\left.\begin{array}{\|} \mid \text { Pct. } \\ \text { of } \\ \text { map } \\ \text { unit } \end{array} \right\rvert\,$	Hazard of off-road or off-trail erosion		Hazard of erosion on roads and trails		Suitability for roads (natural surface)		Potential for seedling mortality	
		Rating class and limiting features	Value						
WF :									
Wonsqueak--------	50	Slight		Slight		Flooding	1.00	Wetness	1.00
						Low strength	1.00		
						Wetness	1.00		
Bucksport-------	25	Slight		Slight		\| Poorly suited Flooding Low strength Wetness		\|High Wetness	1.00
							1.00		
							1.00		
							\| 1.00		

Table 10.-Forestland Planting and Harvesting
(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00 . The larger the value, the greater the limitation. See text for further explanation of ratings in this table.)

Table 10.-Forestland Planting and Harvesting-continued

Table 10.-Forestland Planting and Harvesting-continued

Map symbol and soil name	Pct.	Suitability for hand planting		Suitability for mechanical planting		Suitability for use of harvesting equipment	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	Value
DWC:							
Colonel------------	20	Moderately suited Wetness		Moderately suited		Poorly suited	
			0.50	Wetness	0.50	Low strength	1.00
				Rock fragments	0.50	Wetness	0.75
				Slope	0.50		
EcB :							
Elliottsville------	45	Well suited		Poorly suited Restrictive layer slope		Moderately suited	
						Low strength	0.50
					0.50		
Chesuncook----------	35	Well suited		Moderately suited Slope	0.50	\| Moderately suited Low strength Wetness	
							0.50
							0.50
EMC: Elliottsville							
	50	Well suited		Poorly suited		Moderately suited Low strength	0.50
				Restrictive layer\|	0.66		
				Rock fragments	0.50		
				Slope	0.50		
Monson-------------	20	Well suited		Unsuited		Moderately suited Low strength	0.50
				Restrictive layer	1.00		
				Rock fragments	0.50		
				Slope	0.50		
Go:							
Gouldsboro---------	90	Poorly suited Wetness	0.62	Poorly suited Wetness	0.75	\| Poorly suited Wetness	1.00
						Low strength	0.50
HCC:							
Hermon-------------	40	Well suited		Moderately suited		Moderately suited	
				Rock fragments	0.50	Rock fragments	0.50
				Slope	0.50		
Colton--------------	20	\|Well suited		\| Moderately suited		Moderately suited	0.50
				Rock fragments	0.50	Rock fragments	
				Sandiness	0.50		
				slope	0.50		
Abram--------------	15		1.00	Unsuited Restrictive layer Rock fragments slope		Moderately suited Rock fragments	0.50
					1.00		
					0.50		
					0.50		
HeB :							
Hermon-------------	45	Well suited		Moderately suitedSlope	0.50	Well suited	
Monadnock----------- \|	40	Well suited		Moderately suited slope	0.50	Well suited	
HeC:							
Hermon-------------	50	Well suited		\|Moderately suited Slope	0.50	Well suited	
Monadnock----------	35	Well suited		$\begin{aligned} & \text { Moderately suited } \\ & \text { Slope } \end{aligned}$	0.50	Well suited	

Table 10.-Forestland Planting and Harvesting-continued

Table 10.-Forestland Planting and Harvesting-continued

Map symbol and soil name	Pct. of map unit	Suitability for hand planting		Suitability for mechanical planting		Suitability for use of harvesting equipment		
		Rating class and limiting features	\|Value	Rating class and limiting features	\| Value	Rating class and limiting features	\|Value	
				Slope	1.00	Low strength	0.50	
				Rock fragments	0.50			
Abram-----------	25	Unsuited Restrictive layer	\|1.00 0.50	Unsuited Restrictive layer	1.00	Poorly suited Slope	1.00	
				Slope	1.00			
				Rock fragments	0.50			
Rawsonville-----	25	Well suited		```Poorly suited Slope Restrictive layer Rock fragments```		Moderately suitedLow strength	0.50	
					0.75			
					0.66	slope	0.50	
					0.50			
HXC:								
Hogback---------	30	Well suited				Moderately suited	0.50	
				Restrictive layer	1.00	Low strength		
				Rock fragments	0.50			
				slope	0.50			
Rawsonville-----	30	Well suited		Poorly suited Restrictive layer Rock fragments slope		Moderately suited Low strength	0.50	
					0.66			
					0.50			
					0.50			
Abram----------	15	Unsuited Restrictive layer	1.00	UnsuitedRestrictive layer		Well suited		
					1.00			
				Rock fragments	0.50			
				slope	0.50			
Kn :								
Kinsman---------	75	Moderately suited Wetness	0.50	Poorly suited Wetness	0.75	Poorly suited		
						Low strength	1.00	
						Wetness	0.75	
KW :								
Kinsman--------	45	Moderately suitedWetness	0.50	Poorly suited Wetness	0.75	Poorly suited		
						Low strength	1.00	
						Wetness	0.75	
Wonsqueak-------	35	Moderately suited Wetness	0.50	Poorly suited Wetness	0.75	Poorly suited		
						Low strength	1.00	
						Wetness	0.83	
LaB:								
Lamoine--------	80	Moderately suited Wetness	0.50	Moderately suited Wetness	0.50	Poorly suited		
						Wetness	0.75	
						Low strength	0.50	
LbB :								
Lamoine--------	50	Moderately suited		Moderately suited		Poorly suited		
		Wetness	0.50	Wetness	0.50	Wetness	0.75	
						Low strength	0.50	
Buxton----------	35	Well suited		Moderately suited slope		Moderately suited		
					0.50	Low strength	0.50	
						Wetness	0.50	

Table 10.-Forestland Planting and Harvesting-continued

Map symbol and soil name	Pct. of map unit	Suitability for hand planting		Suitability for mechanical planting		Suitability for use of harvesting equipment	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	Value
LCB : Lamoine-	45	Moderately suited Wetness	0.50	Moderately suited Wetness	0.50	Poorly suited Wetness Low strength	$\left\lvert\, \begin{aligned} & 0.75 \\ & 0.50 \end{aligned}\right.$
Buxton-	20	Well suited		Moderately suited Slope	0.50	Moderately suited Low strength Wetness	$\left\lvert\, \begin{aligned} & 0.50 \\ & 0.50 \end{aligned}\right.$
Scantic-	20	Moderately suited Wetness	0.50	\|Moderately suited Wetness	0.50	\| Poorly suited Wetness Low strength	$\left\lvert\, \begin{aligned} & 0.75 \\ & 0.50 \end{aligned}\right.$
Lamoine	30	Moderately suited Wetness	0.50	Moderately suited Wetness	0.50	Poorly suited Wetness Low strength	$\left\lvert\, \begin{aligned} & 0.75 \\ & 0.50 \end{aligned}\right.$
Creasey---	30	Well suited		Unsuited Restrictive layer	1.00	Well suited	
Scantic-	20	Moderately suited Wetness	0.50	Moderately suited Wetness	0.50	Poorly suited Wetness Low strength	$\left\lvert\, \begin{aligned} & 0.75 \\ & \mid 0.50 \end{aligned}\right.$
LHB : Lamoine	50	Moderately suited Wetness	0.50	Moderately suited Wetness	0.50	Poorly suited Wetness Low strength	$\left\lvert\, \begin{aligned} & 0.75 \\ & \mid 0.50 \end{aligned}\right.$
Nicholville-	25	Well suited		\|Moderately suited slope	0.50	\| Moderately suited Low strength Wetness	$\left\lvert\, \begin{aligned} & 0.50 \\ & \mid 0.50 \end{aligned}\right.$
LKB : Lamoine	30	Moderately suited Wetness	0.50	\|Moderately suited Rock fragments Wetness	$\left\lvert\, \begin{aligned} & 0.50 \\ & 0.50 \end{aligned}\right.$	Poorly suited Wetness Low strength	$\left\lvert\, \begin{aligned} & 0.75 \\ & \mid 0.50 \end{aligned}\right.$
Rawsonville---	25	Well suited		$\|$Poorly suited Restrictive layer Rock fragments Slope	$\left\lvert\, \begin{aligned} & 0.66 \\ & 0.50 \\ & 0.50 \end{aligned}\right.$	\|Moderately suited Low strength	0.50
Scantic-	20	Moderately suited Wetness	0.50	\|Moderately suited Wetness Rock fragments	$\left\lvert\, \begin{aligned} & 0.50 \\ & 0.50 \end{aligned}\right.$	\| Poorly suited Wetness Low strength	$\left\lvert\, \begin{aligned} & 0.75 \\ & 0.50 \end{aligned}\right.$
LmB : Lamoine--	55	Moderately suited Wetness	0.50	$\begin{aligned} & \text { Moderately suited } \\ & \text { Wetness } \end{aligned}$	0.50	Poorly suited Wetness Low strength	$\left\lvert\, \begin{aligned} & 0.75 \\ & 0.50 \end{aligned}\right.$
Scantic---	35	Moderately suited Wetness	0.50	$\begin{aligned} & \text { Moderately suited } \\ & \text { Wetness } \end{aligned}$	0.50	$\begin{array}{\|l} \text { Poorly suited } \\ \text { Wetness } \\ \text { Low strength } \end{array}$	$\left\lvert\, \begin{aligned} & 0.75 \\ & 0.50 \end{aligned}\right.$
LnB : Lamoine	55	Moderately suited Wetness	0.50	Moderately suited Rock fragments Wetness	$\left\lvert\, \begin{aligned} & 0.50 \\ & 0.50 \end{aligned}\right.$	$\begin{aligned} & \text { Poorly suited } \\ & \text { Wetness } \\ & \text { Low strength } \end{aligned}$	$\left\lvert\, \begin{aligned} & 0.75 \\ & 0.50 \end{aligned}\right.$

Table 10.-Forestland Planting and Harvesting-continued

Map symbol and soil name	Pct. of map unit	Suitability for hand planting		Suitability for mechanical planting		Suitability for use of harvesting equipment		
		Rating class and limiting features	Value	Rating class and limiting features	\| Value	Rating class and limiting features	\|Value	
LnB :								
Scantic------------	35	Moderately suited Wetness	0.50	Moderately suited Wetness	0.50	Poorly suited Wetness	0.75	
				Rock fragments	0.50	Low strength	0.50	
LSB :								
Lamoine-----------	35	Moderately suited Wetness		Moderately suited		Poorly suited		
			0.50	Rock fragments	0.50	Wetness	0.75	
				Wetness	0.50	Low strength	0.50	
Scantic------------	20	Moderately suited Wetness	0.50	\| Moderately suited		Poorly suited		
				Wetness	0.50	Wetness	0.75	
				Rock fragments	0.50	Low strength	0.50	
Colonel------------	20	Moderately suited Wetness	0.50	\|Moderately suited Wetness		Poorly suited		
					0.50	Low strength	1.00	
				Rock fragments	0.50	Wetness	0.75	
				Slope	0.50			
LTB :								
Lamoine-----------	30	Moderately suited Wetness	0.50	Moderately suited		Poorly suited		
				- Rock fragments	0.50	Wetness	0.75	
				Wetness	0.50	Low strength	0.50	
Tunbridge----------	25	\|Well suited		Poorly suited		Moderately suited		
				Restrictive layer	0.66	Low strength	0.50	
				Rock fragments	0.50			
				Slope	0.50			
Scantic-----------	20	Moderately suited Wetness	0.50	Moderately suited		Poorly suited		
				Wetness	0.50	Wetness	0.75	
				Rock fragments	0.50	Low strength	0.50	
LUE:								
Lyman--------------	30	Moderately suited Slope	0.50	```Unsuited Restrictive layer Slope Rock fragments```		Poorly suited		
					1.00	Slope	1.00	
					1.00			
					0.50			
Abram--------------	25	Unsuited Restrictive layer Slope	$\left\lvert\, \begin{aligned} & 1.00 \\ & 0.50 \end{aligned}\right.$	```Unsuited Restrictive layer Slope```		Poorly suited		
					1.00	slope	1.00	
					1.00			
				Rock fragments \|0	0.50			
Tunbridge----------	25	Well suited		Poorly suited Restrictive layer	0.66	Moderately suited Low strength		
				Restrictive layer Slope	0.75	Slope	0.50	
				Rock fragments	0.50			
LYC:								
Lyman--------------	30	Well suited		Unsuited		Well suited		
				Restrictive layer	1.00			
				Rock fragments	0.50			
				Slope	0.50			
Tunbridge----------	30	Well suited		Poorly suited		Moderately suited		
				\| Restrictive layer		0.66	Low strength	0.50
				\| Rock fragments	0	0.50		
				Slope	0.50			

Table 10.-Forestland Planting and Harvesting-continued

Table 11.-Camp Areas, Picnic Areas, and Playgrounds
(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00. The larger the value, the greater the limitation. See text for further explanation of ratings in this table.)

Map symbol and soil name	Pct. of map unit	Camp areas		Picnic areas		Playgrounds	
		Rating class and limiting features	\|Value	Rating class and limiting features	\| Value	Rating class and limiting features	\|Value
AaE:							
Abram-----------	40	\| Very limited		Very limited		Very limited	
		slope	1.00	Slope	1.00	slope	1.00
		Depth to bedrock	1.00	Depth to bedrock	1.00	Depth to bedrock	1.00
		Large stones content	0.53	Large stones content	0.53	Large stones content	0.53
Hogback---------	35	Very limited		Very limited		Very limited	
		slope	1.00	slope	1.00	Slope	1.00
		Depth to bedrock	1.00	Depth to bedrock	1.00	Depth to bedrock	1.00
		Large stones content	0.53	Large stones content	0.53	Large stones content	0.53
AbE :							
Abram-----------	40	Very limited		Very limited		Very limited	
		slope	1.00	Slope	1.00	Slope	1.00
		Depth to bedrock	1.00	Depth to bedrock	1.00	Depth to bedrock	1.00
		Large stones content	0.53	Large stones content	0.53	Large stones content	0.53
Lyman-----------	35	Very limited		Very limited		Very limited	
		Slope	1.00	Slope	1.00	Slope	1.00
		Depth to bedrock	1.00	Depth to bedrock	1.00	Depth to bedrock	1.00
		Large stones content	0.53	Large stones content	0.53	Large stones content	0.53
ACE:							
Abram-----------	30	\| Very limited		Very limited		Very limited	
		Slope		Slope	1.00	Slope	
		Depth to bedrock	1.00	Depth to bedrock	1.00	Depth to bedrock	1.00
Rock outcrop-------	30	Not rated		Not rated		Not rated	
Ricker---------	25	$\begin{array}{\|l} \text { Very limited } \\ \text { Slope } \\ \text { Depth to bedrock } \end{array}$		Very limited Slope		\| Very limited	
			1.00		11.00	Slope	1.00
			1.00	Depth to bedrock	1.00	Depth to bedrock	1.00
AdA:							
Adams -	85	Somewhat limited Too sandy	0.60	Somewhat limited Too sandy	0.60	Somewhat limited Too sandy	0.60
AdB :							
Adams-----------	85	Somewhat limited Too sandy		Somewhat limited Too sandy		Very limited	
			0.60		0.60	Slope Too sandy	1.00
				Too sandy			0.60
AdC:							
Adams----------	85	Somewhat limited		Somewhat limited		Very limited	
			0.63	Slope	0.63	Slope	1.00
		Too sandy	0.60	Too sandy	0.60	Too sandy	0.60

Table 11.-Camp Areas, Picnic Areas, and Playgrounds-continued

Table 11.-Camp Areas, Picnic Areas, and Playgrounds-continued

Map symbol and soil name	Pct. of map unit	Camp areas		Picnic areas		Playgrounds							
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	Value						
BTB :													
	35	Depth to saturated zone	\| 1.00	Large stones	1.00	Large stones content	1.00						
		Large stones content	1.00	Depth to saturated zone	0.99	Depth to saturated zone slope	1.00						
							0.50						
BW : Bucksport	55	Very limited		Very limited		Very limited							
		Depth to saturated zone	1.00	Depth to saturated zone	1.00	Depth to saturated zone	1.00						
		Organic matter content	1.00	Organic matter content	1.00	Organic matter content	1.00						
Wonsqueak-------	30	Very limited Depth to saturated zone	\| 1.00	Very limited Depth to saturated zone	1.00	Very limited Depth to saturated zone							
							1.00						
BxC :													
Buxton---------	85	Somewhat limited		Somewhat limited		Very limited							
		Slow water movement	0.99	Slow water movement	0.99	Slope	1.00						
		slope	0.63	slope	0.63	Slow water movement	0.99						
		Depth to saturated zone	0.56	Depth to saturated zone	0.28	Depth to saturated zone	0.56						
Buxton-	50	```Somewhat limited Slow water movement Slope```	0.99	Somewhat limited Slow water movement slope	0.99	```Very limited Slope```	1.00						
			0.63	Slope	0.63	Slow water movement	0.99						
		Depth to saturated zone	0.56	Depth to saturated zone	0.28	Depth to saturated zone	0.56						
Lamoine---------	35	Very limited Depth to saturated zone Slow water movement		Very limited Depth to saturated zone Slow water movement		```Very limited Depth to saturated zone slope```							
			1.00		1.00		1.00						
			0.99		0.99	slope	1.00						
						Slow water movement	0.99						
ChB :													
Chesuncook--	80	Somewhat limited Depth to saturated zone	0.77	Somewhat limited Depth to saturated zone	0.43	Very limited Slope	1.00						
						Depth to saturated zone Gravel content	$\left\lvert\, \begin{aligned} & 0.77 \\ & 0.41\end{aligned}\right.$						
ChC:													
Chesuncook--	80	```Somewhat limited Depth to saturated zone Slope```	0.77	Somewhat limited Slope	0.63	Very limited Slope	1.00						
			0.63	Depth to saturated zone	0.43	Depth to saturated zone Gravel content	$\left\lvert\, \begin{aligned} & 0.77 \\ & 0.41 \end{aligned}\right.$						

Table 11.-Camp Areas, Picnic Areas, and Playgrounds-continued

Table 11.-Camp Areas, Picnic Areas, and Playgrounds-continued

Map symbol and soil name	Pct. of map unit	Camp areas		Picnic areas		Playgrounds	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	\|Value
HeC: Monadnock							
	35	Somewhat limited Slope		Somewhat limited		Very limited	
			0.63	Slope	0.63	Slope	1.00
						Gravel content	0.14
HkB :							
Hermon----------	40	Somewhat limited Large stones content	0.97	Somewhat limited Large stones content	0.97	Very limited Slope	11.00
						Large stones content	0.97
Monadnock-------	40	Somewhat limited Large stones content	0.53	Somewhat limited Large stones content	0.53	Very limited	
						slope	1.00
						Large stones content	0.53
HkC :							
Hermon---------	50	Somewhat limited	0.97	Somewhat limite	0.97	Very limited slope	
		Large stones content		Large stones content		slope	1.00
		slope	0.63	slope	0.63	Large stones content	0.97
Monadnock-------	30	Somewhat limitedSlope	0.63	Somewhat limited		Very limited	
				Slope	0.63	Slope	1.00
		Large stones content	0.53	Large stones content	0.53	Large stones content	0.53
HMD :							
Hermon---------	45	Very limitedSlope	1.00	Very limited		Very limited	
				slope	1.00	Slope	1.00
		Large stones content	0.53	Large stones content	0.53	Large stones content	0.53
Monadnock-------	35	Very limited		Very limited		Very limited	
		Slope Large stones content	$\left\lvert\, \begin{aligned} & 1.00 \\ & \mid 0.53 \end{aligned}\right.$	Slope Large stones content	1.00	Slope	1.00
					0.53	Large stones content	0.53
HOE :							
Hermon---------	50	Very limited Slope	1.00	Very limited		Very limited	
				Large stones content	1.00	Large stones content	11.00
		Large stones content	1.00	Slope	1.00	Slope	\| 1.00
Monadnock-------	35	Very limited Slope		Very limited		Very limited	
			1.00	Large stones content	1.00	Large stones content	1.00
		Large stones content	1.00	Slope	1.00	Slope	11.00
HSC:							
Hermon----------	40	Somewhat limited Large stones content slope	0.53	Somewhat limited		Very limited	
				Large stones content	0.53	Slope	1.00
			0.04	Slope	0.04	Large stones content	0.53

Table 11.-Camp Areas, Picnic Areas, and Playgrounds-continued

$\begin{aligned} & \text { Map symbol } \\ & \text { and soil name } \end{aligned}$	$\begin{array}{\|} \text { Pct. } \\ \text { of } \\ \text { map } \\ \text { unit } \end{array}$	Camp areas		Picnic areas		Playgrounds		
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	Value	
HSC: Monadnock								
	30	Somewhat limited	0.53	Somewhat limited	0.53		1.00	
		Large stones		Large stones		slope		
		slope	0.04	slope	0.04	Large stones content	0.53	
Skerry----------	15	Somewhat limited	0.77	Somewhat limited	0.53	$\begin{aligned} & \text { Very limited } \\ & \text { Slope } \end{aligned}$	1.00	
		Depth to saturated zone		Large stones content				
		Large stones	0.53	Depth to	0.43	Depth to	0.77	
						Large stones content	0.53	
HVC:								
Hermon	40	Very limited	1.00	Very limited		Very limited	1.00	
		Large stones content		Large stones content	\| 1.00	Large stones content		
		slope	0.04	Slope	0.04	slope	1.00	
Monadnock-------	30	```\|ery limited Large stones content slope```	1.00	Very limited Large stones content slope	\| 1.00	```\|Very limited Large stones content Slope```		
							1.00	
			0.04		0.04		1.00	
Skerry---------	15	Very limited Large stones content Depth to saturated zone	1.00		\| 1.00	Very limited	1.00	
				Large stones content		Large stones content		
			0.77	Depth to saturated zone	0.43	Slope	1.00	
						Depth to saturated zone	0.77	
HWE :								
Hogback--------	30	Very limited Slope 1.00		$\begin{aligned} & \text { Very limited } \\ & \text { Slope } \end{aligned}$		Very limited		
				1.00	Slope	1.00		
		Depth to bedrock	1.00		Depth to bedrock	\| 1.00	Depth to bedrock	1.00
		Large stones content	0.53	Large stones content	0.53	Large stones content	0.53	
Abram----------	25	Very limited		Very limitedSlope		\| Very limited		
		Slope	1.00		\| 1.00	slope	1.00	
		Depth to bedrock	1.00	Depth to bedrock	1.00	Depth to bedrock	1.00	
		Large stones content	0.53	Large stones content	0.53	Large stones content	0.53	
Rawsonville----HXC:	25	$\begin{aligned} & \text { \|Very limited } \\ & \text { Slope } \end{aligned}$	1.00	Very limited Slope	1.00	$\begin{aligned} & \text { Very limited } \\ & \text { Slope } \end{aligned}$	1.00	
HXC: Hogback	30	```Very limited Depth to bedrock Large stones content Slope```		Very limited		Very limited		
			1.00	Depth to bedrock	1.00	Depth to bedrock Slope	1.00	
			0.53	```Large stones content Slope```	\| 0.53		1.00	
			0.04		0.04	Large stones content	0.53	
		Large stones content	0.53	Large stones content	0.53	Large stones content Depth to bedrock	$\left\lvert\, \begin{aligned} & 0.53 \\ & 0.06\end{aligned}\right.$	

Table 11.-Camp Areas, Picnic Areas, and Playgrounds-continued

Table 11.-Camp Areas, Picnic Areas, and Playgrounds-continued

Table 11.-Camp Areas, Picnic Areas, and Playgrounds-continued

Map symbol and soil name	Pct. of map unit	Camp areas		Picnic areas		Playgrounds	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	\|Value
LKB :							
Rawsonville-----	25	Somewhat limited Large stones content	0.53	Somewhat limited Large stones content	0.53	Somewhat limited Slope	0.88
						Large stones content	0.53
						Depth to bedrock	0.06
Scantic--------	20	Very limited	1.00	Very limited	1.00	Very limited	1.00
		Depth to saturated zone		Depth to saturated zone		Depth to saturated zone	
		Slow water movement	0.99	Slow water movement	0.99	Slow water movement	0.99
		Large stones content	0.53	Large stones content	0.53	Large stones content	0.53
LmB :							
Lamoine---------	55	Very limited	1.00	Very limited Depth to	1.00	Very limited	1.00
		Depth to saturated zone		Depth to saturated zone		Depth to saturated zone	
		Slow water movement	0.99	Slow water movement	0.99	Slow water movement	0.99
						Slope	0.12
Scantic---------	35	Very limited		Very limited		Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone	1.00	Depth to saturated zone	11.00
		Slow water movement	0.99	Slow water movement	0.99	Slow water movement	0.99
LnB :	55	Very limited					
Lamoine---------						Very limited	
	55	Depth to saturated zone	1.00	Depth to saturated zone	1.00	Depth to saturated zone	11.00
		slow water movement Large stones content	0.99	slow water movement	0.99	Slow water movement	0.99
			0.53	Large stones content	0.53	```Large stones content Slope```	0.53
							0.12
Scantic---------	35	Very limited		Very limited		Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone	1.00	Depth to saturated zone	1.00
		Slow water movement	0.99	Slow water movement	0.99	Slow water movement	0.99
		Large stones content	0.53	Large stones content	0.53	Large stones content	0.53
LSB :							
Lamoine	35	Very limited		Very limited		Very limited	
		Depth to saturated zone Slow water movement Large stones content	1.00	Depth to saturated zone	1.00	Depth to saturated zone	1.00
			0.99	```Slow water movement Large stones content```	0.99	Slow water movement	0.99
			0.53		0.53	Large stones content slope	0.53

Table 11.-Camp Areas, Picnic Areas, and Playgrounds-continued

Map symbol and soil name	Pct. of map unit	Camp areas		Picnic areas		Playgrounds	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	Value
LSB :							
Scantic--------	20	Very limited		Very limited		Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone	1.00	Depth to saturated zone	1.00
		Slow water movement	0.99	Slow water movement	0.99	Slow water movement	0.99
		Large stones content	0.53	Large stones content	0.53	Large stones content	0.53
Colonel	20		Very limited			Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone	0.99 0.53	Depth to saturated zone	1.00
		Large stones content	0.53	Large stones content	0.53	slope	1.00
						Large stones content	0.53
LTB :							
Lamoine---------	30	\| Very limited		Very limited		Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone	1.00	Depth to saturated zone	1.00
		Slow water movement Large stones	0.99	Slow water movement	0.99	Slow water movement	0.99
		Large stones content	0.53	Large stones content	0.53	```Large stones content Slope```	0.53
							0.12
Tunbridge-------	25	Somewhat limited Large stones content	0.53	Somewhat limited Large stones content	0.53	$\begin{aligned} & \text { Very limited } \\ & \text { Slope } \end{aligned}$	
							1.00
						Depth to bedrock	0.65
						Large stones content	0.53
Scantic--------	20	Very limited		Very limited Depth to	1.00	Very limited	
		Depth to saturated zone	1.00	saturated zone	1.00	Depth to saturated zone	1.00
		Slow water movement	0.99	Slow water movement	0.99	Slow water movement	0.99
		Large stones content	0.53	Large stones content	0.53	Large stones content	0.53
LUE:							
Lyman-----------	30	Very limited \|		Very limited			
		\| Slope	1.00	Slope	1.00	slope	1.00
		Depth to bedrock	1.00	Depth to bedrock	1.00	Depth to bedrock	1.00
		Large stones content	0.53	Large stones content	0.53	Large stones content	0.53
Abram-----------	25	\| Very limited		\| Very limited		Very limited	
		Slope	1.00	Slope	1.00	Slope	1.00
		Depth to bedrock	1.00	Depth to bedrock	1.00	Depth to bedrock	1.00
		Large stones content	0.53	Large stones content	0.53	Large stones content	0.53
Tunbridge-------	25	```Very limited Slope Large stones content```		```Very limited Slope Large stones content```		Very limited	
			1.00		1.00	Slope	1.00
			0.53		0.53	Depth to bedrock	0.65
						Large stones content	0.53

Table 11.-Camp Areas, Picnic Areas, and Playgrounds-continued

Map symbol and soil name	Pct. of map unit	Camp areas		Picnic areas		Playgrounds	
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	Value
LYC:							
Lyman-----------	30	Very limited		Very limited		Very limited	
		Depth to bedrock	1.00	Depth to bedrock	11.00	Depth to bedrock	\| 1.00
		Large stones content	0.53	Large stones content	0.53	slope	1.00
		slope	0.04	slope	0.04	Large stones content	0.53
Tunbridge-------	30	Somewhat limited		Somewhat limited		Very limited	
		Large stones content	0.53	Large stones content	0.53	slope	1.00
		Slope	0.04	slope	0.04	Depth to bedrock	0.65
						Large stones content	0.53
Abram-----------	15	Very limited Depth to bedrock		Very limited		Very limited	
			1.00	Depth to bedrock	1.00	Depth to bedrock	1.00
		Large stones content	0.53	Large stones content	0.53	Slope	1.00
		Slope	0.04	slope	0.04	Large stones content	0.53
MaC:							
Marlow	82	Somewhat limited		Somewhat limited		Very limited	
		slope	0.63	slope	0.63	slope	1.00
		Slow water movement	0.43	Slow water movement	0.43	Slow water movement	0.43
		Depth to saturated zone	0.39	Depth to saturated zone	0.19	Depth to saturated zone	0.39
						Gravel content	0.14
MbC :							
Marlow----------		Somewhat limited		Somewhat limited		Very limited	
	80	Slope	0.63	Slope	0.63	Slope	11.00
		Large stones content	0.53	Large stones content	0.53	Large stones content	0.53
		Slow water movement	0.43	Slow water movement	0.43	Slow water movement	0.43
		Depth to saturated zone	0.39	Depth to saturated zone	0.19	Depth to saturated zone	0.39
MDD :							
Marlow-		Very limited		\| Very limited		Very limited	
	55	Slope	1.00	slope	1.00	Slope	1.00
		Large stones content	0.53	Large stones content	0.53	Large stones content	0.53
		Slow water movement	0.43	Slow water movement	0.43	Slow water movement	0.43
		Depth to saturated zone	0.39	Depth to saturated zone	0.19	Depth to saturated zone	0.39
Dixfield--------	30	Somewhat limitedSlope		Somewhat limited		Very limited	
			0.63	Slope	0.63	Slope	\| 1.00
		Depth to saturated zone	0.56	Large stones content	0.53	Depth to saturated zone	\| 0.56
		Large stones content	0.53	Depth to saturated zone	0.28	Large stones content	0.53

Table 11.-Camp Areas, Picnic Areas, and Playgrounds-continued

Table 11.-Camp Areas, Picnic Areas, and Playgrounds-continued

Map symbol and soil name	Pct. of map unit	Camp areas		Picnic areas		Playgrounds	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	\|Value
MmE :							
Masardis-------	90	Very limitedSlope	1.00	\|Very limited	1.00	\| Very limited	
						Slope	11.00
						Gravel content	0.43
MRE :							
Masardis-------	60	$\begin{aligned} & \text { Very limited } \\ & \text { Slope } \end{aligned}$	\| 1.00	$\begin{aligned} & \text { Very limited } \\ & \text { Slope } \end{aligned}$	1.00	Very limited Slope	
							11.00
Adams----------	25	Very limited slope		Very limited		\| Very limited	
			1.00	slope	1.00	Slope	11.00
MSC :							
Masardis-------	55	Somewhat limited Slope	0.04	Somewhat limited Slope	0.04	Very limited Slope	1.00
Sheepscot------	25	Somewhat limited Depth to saturated zone		Somewhat limited Depth to saturated zone		Somewhat limited	
			0.07		0.03	slope	0.50
						Depth to saturated zone	0.07
MT :							
Medomak--------	50	Very limited	1.00	```\|Very limited Depth to saturated zone Flooding```		Very limited	
		Depth to saturated zone			1.00	Depth to	11.00
		Flooding	1.00		0.40	Flooding	1.00
Wonsqueak-------	30	Very limited Depth to saturated zone		$\begin{array}{\|l} \text { Very limited } \\ \text { Depth to } \\ \text { saturated zone } \end{array}$	1.00	Very limited	
			1.00			Depth to saturated zone	\| 1.00
Mvb :							
Monarda---------	75	Very limited Depth to saturated zone Large stones content	\| 1.00	```\|Very limited Depth to saturated zone Large stones content```	1.00	Very limited	
						Depth to saturated zone	11.00
			0.53		0.53	Large stones content	0.53
						slope	0.50
MWB :							
Monarda--------	45	Very limited Depth to saturated zone Large stones content	1.00	Very limited Depth to saturated zone Large stones content		Very limited	
					1.00	Depth to saturated zone	11.00
			0.53		0.53	```Large stones content Slope```	$\left\lvert\, \begin{aligned} & 0.53 \\ & 0.12\end{aligned}\right.$
Telos	40	Very limited Depth to saturated zone Large stones content	1.00	Very limited Depth to saturated zone Large stones content		Very limited	
					0.99 0.53	Depth to saturated zone slope	$1 \begin{aligned} & 1.00 \\ & 1.00\end{aligned}$
						Large stones content	0.53

Table 11.-Camp Areas, Picnic Areas, and Playgrounds-continued

Table 11.-Camp Areas, Picnic Areas, and Playgrounds-continued

Map symbol and soil name	Pct. of map unit	Camp areas		Picnic areas		Playgrounds	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	Value
SOB :							
Skerry----------	50	Somewhat limited		Somewhat limited		Very limited	
		Depth to saturated zone	0.77	Large stones content	0.53	slope	1.00
		Large stones content	0.53	Depth to saturated zone	0.43	Depth to saturated zone	0.77
						Large stones content	0.53
Colonel---------	30	Very limited		Very limited		Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone	0.99	Depth to saturated zone	1.00
		Large stones content	0.53	Large stones content	0.53	Large stones content	0.53
						slope	0.12
SRC:							
Skerry----------	35	Somewhat limited Depth to		Somewhat limited		Very limited	
		Depth to saturated zone	0.77	Large stones content	0.53	Slope	1.00
		Large stones	0.53	Depth to	0.43	Depth to	0.77
		slope	0.04	slope	0.04	Large stones content	0.53
Colonel---------	25	Very limited		Very limited		Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone	0.99	Depth to saturated zone	1.00
		Large stones content	0.53	Large stones content	0.53	Large stones content	0.53
						Slope	0.50
Rawsonville-----	20	Somewhat limited		Somewhat limited		Very limited	
		Large stones content	0.53	Large stones content	0.53	Slope	1.00
		Slope	0.04	Slope	0.04	Large stones content	0.53
						Depth to bedrock	0.06
STC:							
Skerry----------	35	Somewhat limited		Somewhat limited		Very limited	
		Depth to saturated zone	0.77	Large stones content	0.53	slope	\| 1.00
		Large stones content	0.53	Depth to saturated zone	0.43	Depth to saturated zone	0.77
		Slope	0.04	Slope	0.04	Large stones content	0.53
STC:							
Colonel---------	25	Very limited		Very limited		Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone	0.99	Depth to saturated zone	1.00
		Large stones content	0.53	Large stones content	0.53	Large stones content slope	0.53
Tunbridge-------	20	Somewhat limited		Somewhat limited		Very limited	
		Large stones content slope	0.53	Large stones content Slope	0.53	Slope	1.00
			0.04		0.04	Depth to bedrock	0.65
						Large stones content	0.53

Table 11.-Camp Areas, Picnic Areas, and Playgrounds-continued

Map symbol and soil name	Pct. of map unit	Camp areas		Picnic areas		Playgrounds	
		Rating class and limiting features	Value	Rating class and limiting features	\|Value	Rating class and limiting features	Value
TaB:							
Telos----------	80	Very limited		Very limited		Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone	0.99	Depth to	1.00
						Slope	1.00
						Gravel content	0.41
TCB :							
Telos-----------	55	Very limited		Very limited		Very limited	
		Depth to	1.00	Depth to	0.99	Depth to	1.00
		Large stones content	0.53	Large stones content	0.53	Large stones content	0.53
						slope	0.12
Chesuncook------	25	Somewhat limited		Somewhat limited		Very limited	
		Depth to saturated zone	0.77	Large stones content	0.53	slope	11.00
		Large stones content	0.53	Depth to saturated zone	0.43	Depth to saturated zone	0.77
						Large stones content	0.53
TEB :							
Telos	35	Very limited		Very limited		Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone	0.99	Depth to saturated zone	1.00
		Large stones content	0.53	Large stones content	0.53	Large stones content	0.53
						Slope	0.50
Elliottsville---	25	Somewhat limited Large stones content		Somewhat limited Large stones content			
			0.53		0.53	slope	1.00
						Large stones content	0.53
						Depth to bedrock	0.35
Monarda---------	20	Very limited		Very limited		Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone	\| 1.00	Depth to saturated zone	1.00
		Large stones content	0.53	Large stones content	0.53	Large stones content	0.53
TLC:							
Tunbridge-------	35	Somewhat limited		Somewhat limited		Very limited	
		Large stones content	0.53	Large stones content	0.53	slope	1.00
		Slope	0.04	slope	0.04	Depth to bedrock	0.65
						Large stones content	0.53
Lamoine	25	Very limited		Very limited		Very limited	
		Depth to saturated zone Slow water movement Large stones content	1.00	Depth to saturated zone	1.00	Depth to saturated zone	11.00
			0.99	Slow water movement	0.99	Slow water movement	0.99
			0.53	Large stones content	0.53	Large stones content	0.53
						slope	0.12

Table 11.-Camp Areas, Picnic Areas, and Playgrounds-continued

Map symbol and soil name	Pct. of map unit	Camp areas		Picnic areas		Playgrounds	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	\|Value
		Depth to bedrock	1.00	Depth to bedrock	1.00	Depth to bedrock	1.00
		Large stones content	0.53	Large stones content	0.53	slope	\| 1.00
		slope	0.04	Slope	0.04	Large stones content	0.53
Tunbridge------	55	Not limited		Not limited		Very limited	
						Slope	1.00
						Depth to bedrock	0.65
						Gravel content	0.12
Lyman----------	20	Very limited Depth to bedrock	1.00	Very limited Depth to bedrock	\| 1.00	Very limited	1.00
						Slope	1.00
						Gravel content	0.12
Tunbridge------	TuC:						
	50	Somewhat limitedSlope	0.63	Somewhat limited	0.63	Slope	1.00
						Depth to bedrock	0.65
						Gravel content	0.12
Lyman-----------	25	Very limited Depth to bedrock Slope		Depth to bedrock Slope		\| Very limited	
			1.00		1.00	Slope	1.00
			0.63		0.63	Depth to bedrock	1.00
						Gravel content	0.12
TyC: Tunbridge							
	35	Somewhat limited		\|Somewhat limited		\| Very limited	
		Large stones content	0.53	Large stones content	0.53	Slope	11.00
		slope	0.04	Slope	0.04	Depth to bedrock	0.65
						Large stones content	0.53
Lyman-----------	30	Very limited		\|Very limited		Very limited	
		Depth to bedrock	1.00	Depth to bedrock	1.00	Depth to bedrock	1.00
		Large stones content	0.53	Large stones content	0.53	Slope	\| 1.00
		Slope	0.04	Slope	0.04	Large stones content	0.53
TyC:							
Abram----------	20	Very limited		Very limited		Very limited	
		Depth to bedrock	1.00	Depth to bedrock	1.00 0.53	Depth to bedrock slope	1.00
		Large stones content slope		Large stones content	0.53	slope	\| 1.00
		slope	0.04	slope	0.04	Large stones content Gravel content	$\left\lvert\, \begin{aligned} & 0.53 \\ & 0.03\end{aligned}\right.$
Ud:							
Udorthents-----	50	Not rated		Not rated		Not rated	
Urban land-	30	Not rated		Not rated		Not rated	

Table 11.-Camp Areas, Picnic Areas, and Playgrounds-continued

$\begin{aligned} & \text { Map symbol } \\ & \text { and soil name } \end{aligned}$	Pct.	Camp areas		Picnic areas		Playgrounds	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	Value
W: Wat	100	Not rated		Not rated		Not rated	
WF:							
Wonsqueak	50	Very limited Depth to saturated zone	1.00	Very limited Depth to saturated zone	1.00	Very limited Depth to saturated zone	1.00
Bucksport-------	25	Very limited		Very limited		Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone	1.00	Depth to saturated zone	1.00
		Organic matter content	1.00	Organic matter content	1.00	Organic matter content	1.00

Table 12.-Paths, Trails, and Golf Fairways
(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00. The larger the value, the greater the limitation. See text for further explanation of ratings in this table.)

Table 12.-Paths, Trails, and Golf Fairways-continued

Table 12.-Paths, Trails, and Golf Fairways-continued

Map symbol and soil name	Pct.	Paths and trails		Off-road motorcycle trails		Golf fairways	
		Rating class and limiting features	\|Value	Rating class and limiting features	\| Value	Rating class and limiting features	Value
EcB:							
Elliottsville-	45	Not limited		Not limited		Somewhat limited Depth to bedrock	0.54
Chesuncook--	35	Somewhat limited Depth to saturated zone	0.08	Somewhat limited Depth to saturated zone	0.08	Somewhat limited Depth to saturated zone	0.43
EMC:							
Elliottsville----	50	Somewhat limited Large stones content	0.53	Somewhat limited Large stones content	0.53	Large stones content	0.61
						Depth to bedrock	0.35
						slope	0.04
Monson-----------	20	Somewhat limited Large stones content	0.53	```Somewhat limited Large stones content```	0.53	Very limited Depth to bedrock	1.00
						Large stones content	0.61
						Droughty	0.44
						Slope	0.04
Go:							
Gouldsboro------	90	Very limited	$1 \begin{aligned} & 1.00 \\ & 0.40\end{aligned}$	\| Very limited		Very limited	
		Depth to saturated zone		Depth to saturated zone	$1 \begin{aligned} & 1.00 \\ & 0.40\end{aligned}$	Flooding	1.00
		Flooding	0.40	Flooding	0.40	Depth to saturated zone	1.00
						Sulfur content	1.00
HCC:							
Hermon	40	Somewhat limited Large stones content	0.53	Somewhat limited Large stones content	0.53	Somewhat limited Large stones content slope	
							0.61 0.04
Colton----------	20	Somewhat limited Large stones content	0.53	Somewhat limited Large stones content	0.53	Very limited Droughty	
							1.00
						Large stones content	0.61
						slope	0.04
Abram-----------	15	Somewhat limited Large stones content	0.53	Somewhat limited Large stones content	0.53	Very limited	
						Depth to bedrock	1.00
						Droughty	1.00
						Large stones content	0.61
						slope	0.04
HeB :							
Hermon--	45	Not limited		Not limited		Not limited	
Monadnock-------	40	Not limited		Not limited		Somewhat limited Droughty Large stones content	0.16
							0.01

Table 12.-Paths, Trails, and Golf Fairways-continued

Table 12.-Paths, Trails, and Golf Fairways-continued

Table 12.-Paths, Trails, and Golf Fairways-continued

Table 12.-Paths, Trails, and Golf Fairways-continued

Map symbol and soil name	Pct.	Paths and trails		Off-road motorcycle trails		Golf fairways	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	Value
LCB :							
Lamoine---------	45	Very limited		Very limited		Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone	1.00	Depth to saturated zone	1.00
Buxton----------	20	Somewhat limited		Somewhat limited		Somewhat limited	
		Depth to saturated zone	0.01	Depth to saturated zone	0.01	Slope	0.63
						Depth to saturated zone	0.28
Scantic---------	20	Very limited		Very limited		Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone	1.00	Depth to saturated zone	1.00
LEB :							
Lamoine---------	30	$\begin{aligned} & \text { Very limited } \\ & \text { Depth to } \\ & \text { saturated zone } \end{aligned}$		Very limited		Very limited	
			1.00	Depth to saturated zone	1.00	Depth to saturated zone	1.00
Creasey---------	30	Not limited		Not limited		\| Very limited	
						Depth to bedrock	1.00
						Droughty	0.98
						Gravel content	0.24
Scantic---------	20	$\begin{array}{\|l} \text { Very limited } \\ \text { Depth to } \\ \text { saturated zone } \end{array}$	1.00	Very limited Depth to saturated zone	1.00	$\begin{aligned} & \text { Very limited } \\ & \text { Depth to } \\ & \text { saturated zone } \end{aligned}$	1.00
LHB :							
Lamoine---------	50	$\begin{array}{\|l} \text { Very limited } \\ \text { Depth to } \\ \text { saturated zone } \end{array}$	1.00	Very limited	1.00	Very limited	1.00
				Depth to saturated zone		Depth to saturated zone	
Nicholville-----	25	Somewhat limited Depth to saturated zone	0.08	Somewhat limited Depth to saturated zone	0.08	Somewhat limited Depth to saturated zone	
							0.43
LKB :							
Lamoine---------	30	Very limited Depth to saturated zone Large stones content		Very limited Depth to saturated zone Large stones content	1.00	$\begin{array}{\|l} \text { Very limited } \\ \text { Depth to } \\ \text { saturated zone } \end{array}$	
			1.00				1.00
			0.53		0.53		
Rawsonville-----	25	Somewhat limited Large stones content	0.53	Somewhat limited Large stones content	0.53	Somewhat limited Large stones content Depth to bedrock	
							0.61
							0.06
Scantic---------	20	Very limited Depth to saturated zone Large stones content		Very limited Depth to saturated zone Large stones content	1.00	$\begin{aligned} & \text { Very limited } \\ & \text { Depth to } \\ & \text { saturated zone } \end{aligned}$	1.00
			1.00				
			0.53		0.53		

Table 12.-Paths, Trails, and Golf Fairways-continued

Table 12.-Paths, Trails, and Golf Fairways-continued

Table 12.-Paths, Trails, and Golf Fairways-continued

Map symbol and soil name	Pct. of map unit	Paths and trails		Off-road motorcycle trails		Golf fairways	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	Value
		Large stones content	0.53	Large stones content	0.53	Slope	0.63
						Large stones content	0.61
						Depth to saturated zone Droughty	0.19 0.13
```MDD : Marlow```							
	55	Somewhat limited Slope	0.92	Somewhat limited Large stones content	0.53	Very limited Slope	1.00
		Large stones content	0.53			Large stones content	0.61
						Depth to	0.19
						Droughty	0.13
Dixfield--------	30	Somewhat limited		Somewhat limited	0.53	Somewhat limited	
		Large stones content	0.53	Large stones content		slope	0.63
		Depth to saturated zone	0.01	Depth to saturated zone	0.01	Large stones content	0.61
						Depth to saturated zone	0.28
MFD :							
Marlow----------	35	Somewhat limited Slope	0.92	Somewhat limited Large stones content	0.53	Very limited Slope	1.00
		Large stones content	0.53			Large stones content	0.61
						```Depth to saturated zone Droughty```	0.19 0.13
Rawsonville-----	25	Somewhat limited Slope	0.92	Somewhat limited Large stones content	0.53	Very limitedSlope	
							1.00
		Large stones content	0.53			Large stones content	0.61
						Depth to bedrock	0.06
Dixfield--------	20	Somewhat limited Large stones content Depth to saturated zone	0.53	Somewhat limited Large stones content Depth to saturated zone	0.53	Somewhat limited Slope	
							0.63
			0.01		0.01	Large stones content	0.61
						Depth to saturated zone	0.28
MGD :							
Marlow----------	35	Somewhat limited Slope	0.92	Somewhat limited Large stones content	0.53	Very limited Slope	1.00
		Large stones content	0.53			Large stones content	0.61
						Depth to saturated zone Droughty	0.19 0.13

Table 12.-Paths, Trails, and Golf Fairways-continued

Table 12.-Paths, Trails, and Golf Fairways-continued

Map symbol and soil name	\| Pct. of	Paths and trails		Off-road motorcycle trails		Golf fairways	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	Value
SNC:Skerry	45						
		Somewhat limited Large stones content Depth to saturated zone	0.53	Large stones content	0.53	Somewhat limited Droughty	0.71
			0.08	Depth to saturated zone	0.08	Large stones content	0.61
						```Depth to saturated zone Slope```	0.43 0.04
Becket---------	35	Somewhat limited Large stones content	0.53	Somewhat limited Large stones content	0.53	Somewhat limited Droughty	0.86
						Slope	0.63
						Large stones content	0.61
SOB :							
Skerry----------	50	Somewhat limited   Large stones content   Depth to saturated zone	0.53	Somewhat limited Large stones content	0.53	Somewhat limited Droughty	0.71
			0.08	Depth to saturated zone	0.08	Large stones content	0.61
						Depth to saturated zone	0.43
Colonel---------	30	Somewhat limited Depth to saturated zone	0.99	Somewhat limited	0.99	Very limited	0.99
				Depth to saturated zone		```Depth to saturated zone```	
		Large stones content	0.53	Large stones content	0.53	Large stones content	0.61
SRC:							
Skerry---------	35	Somewhat limited   Large stones content   Depth to saturated zone	0.53	Somewhat limited   Large stones content   Depth to saturated zone	0.53	Somewhat limited Droughty	0.71
			0.08		0.08	Large stones content	0.61
						Depth to saturated zone Slope	0.43 0.04
Colonel---------	25	Somewhat limited   Depth to saturated zone   Large stones content		Somewhat limited Depth to saturated zone	0.99	$\begin{aligned} & \text { Very limited } \\ & \text { Depth to } \\ & \text { saturated zone } \end{aligned}$	0.99
			0.99				
			0.53	Large stones content	0.53	Large stones content	0.61
Rawsonville-----	20	Somewhat limited Large stones content	0.53	Somewhat limited Large stones content	0.53	Somewhat limited   Large stones content   Depth to bedrock Slope	0.61
							0.06
							0.04

Table 12.-Paths, Trails, and Golf Fairways-continued


Table 12.-Paths, Trails, and Golf Fairways-continued


Table 12.-Paths, Trails, and Golf Fairways-continued


Table 13.-Wildlife Habitat
(See text for definitions of terms used in this table. Absence of an entry indicates that no rating is applicable.)


Table 13.-Wildlife Habitat-continued


Table 13.-Wildlife Habitat-continued

Map symbol and soil name	Potential for habitat elements							Potential as habitat for--		
	Grain and seed crops	Grasses and legumes	Wild   herba-   ceous   plants	Hardwood trees	```Conif- erous plants```	Wetland plants	Shallow water areas	Open-   land   wild-   life	Wood-   land   wild-   life	```Wetland wild- life```
NdB :   Nicholville	Good	Good	\| Good	\| Good	Good	Poor	Very poor	Good	Good	Very poor
NdC:   Nicholville	Fair	Good	Good	Good	Good	Very poor	Very poor	Good	Good	Very poor
NGB :   Nicholville	Good	Good	Good	Good	Good	Poor	Poor	Good	Good	Poor
Croghan-----------------	Poor	Fair	\| Fair	\|Fair	Fair	Poor	\| Poor	\| Fair	Fair	Poor
NGC :   Nicholville	Fair	Good	\| Good	\| Good	Good	Very poor	Very poor	\| Good	Good	Very poor
Croghan----------------	Poor	Fair	Fair	Fair	Fair	Poor	Very poor	Fair	Fair	Very poor
Pg:   Pits, Sand And Gravel---	Very poor	Very poor	Very poor	\|Very	Very poor	Very poor	\|Very	Very poor	Very poor	Very poor
RhB:   Rawsonville	Very poor	Poor	Good	Good	Good	Very poor	Very poor	Poor	Good	Very poor
Hogback----------------	Very poor	Poor	Fair	Fair	Fair	Very poor	Very poor	Poor	Fair	Very poor
RhC:   Rawsonville	Very poor	Poor	Good	Good	Good	Very poor	Very poor	Poor	Good	Very poor
Hogback----------------	Very poor	Poor	Fair	\| Fair	Fair	Very poor	$\begin{aligned} & \text { Very } \\ & \text { poor } \end{aligned}$	Poor	Fair	\|Very poor
$\mathrm{RmC}:$   Rawsonville	Very poor	Poor	Good	Good	Good	Very poor	Very poor	Poor	Good	Very poor
Hogback----------------	Very poor	Poor	Fair	Fair	Fair	Very poor	$\begin{aligned} & \text { \|Very } \\ & \text { \| poor } \end{aligned}$	Poor	Fair	Very poor
Abram------------------	Very poor	Very poor	Poor	Very poor						
RNC:   Rawsonville	Very poor	Poor	Good	Good	Good	Very poor	Very poor	Poor	Good	Very poor
Lamoine----------------	Very poor	Poor	\| Good	Good	Good	Fair	\| Poor	Poor	Good	Poor
Hogback----------------	Very poor	Poor	\| Fair	\| Fair	Fair	Very poor	\|Very poor	Poor	Fair	Very poor
Sa:   Scantic	Poor	Fair	Fair	Fair	Fair	Good	\| Fair	Fair	Fair	Fair

Table 13.-Wildlife Habitat-continued


Table 13.-Wildlife Habitat-continued

Map symbol and soil name	Potential for habitat elements							Potential as habitat for--		
	Grain and seed crops	Grasses and legumes	Wild   herba-   ceous   plants	Hard-   wood   trees	$\begin{array}{\|} \text { Conif- } \\ \text { erous } \\ \text { plants } \end{array}$	Wetland plants	Shallow water areas	Open-   land   wild-   life	Wood-   land wild-   life	$\begin{array}{\|l\|} \hline \text { Wetland } \\ \text { wild- } \\ \text { life } \end{array}$
$\begin{aligned} & \text { STC: } \\ & \text { Colonel- } \end{aligned}$	Very poor	Poor	Good	Fair	Fair	Poor	Very poor	Poor	Fair	Very poor
Tunbridge	Very poor	Poor	Good	Good	Good	Very poor	Very poor	Poor	Good	Very poor
TaB: Telos-	Fair	Good	Good	Good	Good	Poor	Very poor	Good	Good	Very poor
TCB : Telos-	Very poor	Poor	Good	Good	Good	Poor	Very poor	Poor	Good	Very poor
Chesuncook-	Very poor	Poor	Good	Good	Good	Poor	Very poor	Poor	Good	Very poor
TEB : Telos-	Very poor	Poor	Good	Good	Good	Poor	Very poor	Poor	Good	Very poor
Elliottsville-	Very poor	Poor	Good	Good	Good	Poor	Very poor	Poor	Good	Very poor
Monarda--	Very poor	Poor	Fair	Fair	Fair	Good	Fair	Poor	Fair	Fair
TLC: Tunbridge	Very poor	Poor	Good	Good	Good	Very poor	Very poor	Poor	Good	Very poor
Lamoine-	Very poor	Poor	Good	Good	Good	Fair	Poor	Poor	Good	Poor
Lyman	Very poor	Poor	Fair	Poor	Poor	Very poor	Very poor	Poor	Poor	Very poor
TuB :   Tunbridge-										
	Fair	Good	Good	Good	Good	Poor	Very poor	Good	Good	Very poor
Lyman-	Poor	Poor	Fair	Poor	Poor	Very poor	Very poor	Poor	Poor	Very poor
TuC:   Tunbridge	Fair	Good	Good	Good	Good	Very poor	Very poor	Good	Good	Very poor
Lyman-	Poor	Poor	Fair	Poor	Poor	Very poor	Very poor	Poor	Poor	Very poor
$\begin{aligned} & \text { TyC: } \\ & \text { Tunbridge- } \end{aligned}$	Very poor	Poor	Good	Good	Good	Very poor	Very poor	Poor	Good	Very poor
Lyman-	Very poor	Poor	Fair	Poor	Poor	Very poor	Very poor	Poor	Poor	Very poor
Abram--	Very poor	\| Very poor	Poor	Very poor	Very poor	Very poor	Very poor	\| Very poor	Very poor	Very poor

Table 13.-Wildlife Habitat-continued

Map symbol and soil name	Potential for habitat elements							Potential as habitat for--		
	Grain		Wild					Open -	Wood-	Wetland
	and	Grasses	herba-	Hard-	Conif -	Wetland	Shallow	land	land	wild-
	seed	and	ceous	wood	erous	plants	water	wild-	wild-	life
	crops	legumes	plants	trees	plants		areas	life	life	
Ud:										
Udorthents---------------	---	-	---	---	-	---	---	--	---	---
Urban Land--------------	-	-	-	-	-	-	---	--	---	---
W:										
Water----------------------	-	---	--	-	- -	-	-	---	---	---
WF :										
Wonsqueak----------------	Very poor	Poor	Poor	Very	Very	Good	Good	Poor	$\begin{aligned} & \text { Very } \\ & \text { poor } \end{aligned}$	Good
				poor	poor					
Bucksport---------------	Very poor	$\begin{array}{\|l} \text { Very } \\ \text { poor } \end{array}$	Poor	Very poor	$\left\lvert\, \begin{gathered} \text { Very } \\ \text { poor } \end{gathered}\right.$	Good	Good	Very poor	Very poor	Good

Table 14.-Source of Gravel and Sand
(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The ratings given for the thickest layer are for the thickest layer above and excluding the bottom layer. The numbers in the value columns range from 0.00 to 0.99 . The greater the value, the greater the likelihood that the bottom layer or thickest layer of the soil is a source of sand or gravel. See text for further explanation of ratings in this table.)


Table 14.-Source of Gravel and Sand-continued

Map symbol and soil name	$\left\lvert\, \begin{gathered} \text { Pct. } \\ \text { of } \\ \text { map } \\ \text { unit } \end{gathered}\right.$	Potential source of gravel		Potential source of sand	
		Rating class	Value	Rating class	Value
AGB :					
Croghan---------	30	Poor		Fair	
		\| Bottom layer	0.00	Thickest layer	0.09
		Thickest layer	0.00	Bottom layer	0.82
BeC:					
Becket---------	80	\| Poor		Fair	
		Bottom layer	0.00	Thickest layer	0.01
		Thickest layer	0.00	Bottom layer	0.02
BKD :					
Becket---------	60	Poor		Fair	
		Bottom layer	0.00	Thickest layer	0.01
		Thickest layer	0.00	Bottom layer	0.02
Skerry----------	25	Poor		Fair	
		Bottom layer	0.00	Thickest layer	0.00
		Thickest layer	0.00	Bottom layer	0.08
BnB :					
Brayton---------	75	Poor		Poor	
		Bottom layer	0.00	Thickest layer	0.00
		Thickest layer	0.00	Bottom layer	0.00
BRB :					
Brayton---------	50	Poor		Poor	
		Bottom layer	0.00	Thickest layer	0.00
		Thickest layer	0.00	Bottom layer	0.00
Colonel---------	35	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
BTB :					
Brayton---------	50	Poor		Poor	
		Bottom layer	0.00	Thickest layer	0.00
		Thickest layer	0.00	Bottom layer	0.00
Colonel---------	35	Poor		Poor	
		Bottom layer	$0.00$	Bottom layer	
		Thickest layer	$0.00$	Thickest layer	$0.00$
BW :					
Bucksport-------	55	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
		Organic matter content	0.00	Organic matter content	0.00
Wonsqueak-------	30	Poor		\| Poor	
		Bottom layer		Bottom layer	
		Thickest layer	0.00	Thickest layer	$0.00$
BxC:					
Buxton----------	85	Poor		\| Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
BZC:					
Buxton----------	50	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		\| Thickest layer	0.00	Thickest layer	0.00

Table 14.-Source of Gravel and Sand-continued

Map symbol and soil name	$\left\lvert\, \begin{gathered} \text { Pct. } \\ \text { of } \\ \text { map } \\ \text { unit } \end{gathered}\right.$	Potential source of gravel		Potential source of sand			
		Rating class	Value	Rating class	Value		
BZC:							
Lamoine------------	35	Poor		Poor			
		Bottom layer	0.00	Bottom layer	0.00		
		Thickest layer	0.00	Thickest layer	0.00		
ChB :							
Chesuncook---------	80	Poor		Poor			
		Bottom layer	0.00	Bottom layer	0.00		
		Thickest layer	0.00	Thickest layer	0.00		
ChC:							
Chesuncook----------	80	Poor		Poor			
		Bottom layer	0.00	Bottom layer	0.00		
		Thickest layer	$0.00$	Thickest layer	0.00		
CKC :							
Chesuncook---------	25	Poor		Poor			
		Bottom layer	0.00	Bottom layer	0.00		
		Thickest layer	0.00	Thickest layer	0.00		
Elliottsville------	25	Poor		Poor			
		Bottom layer	0.00	Bottom layer	0.00		
		Thickest layer	0.00	Thickest layer	0.00		
Telos--------------	20	Poor		Poor			
		Bottom layer	0.00	Bottom layer	0.00		
		Thickest layer	0.00	Thickest layer	0.00		
CLC :							
Chesuncook--------- \|	50	Poor		Poor			
		\| Bottom layer	0.00	Bottom layer			
		Thickest layer	0.00	Thickest layer	0.00		
Telos--------------	30	Poor		Poor			
		Bottom layer	0.00	Bottom layer	0.00		
		Thickest layer	0.00	Thickest layer	0.00		
	90	Thickest layer	0.00	Thickest layer	0.09		
		Bottom layer	0.20	Bottom layer	0.20		
Cob :							
Colton-------------	80	Fair   Thickest layer Bottom layer		Fair			
			0.00	Thickest layer	0.09		
			0.20	Bottom layer	0.20		
	85	Thickest layer	0.00	Thickest layer	0.09		
		Bottom layer	0.20	Bottom layer	0.20		
CoE: \|							
Colton-------------	85	Fair		Fair			
		Thickest layer	$0.00$	Thickest layer   Bottom layer			
		Bottom layer	$0.20$		$0.20$		
CpB :							
Colton-------------	75	Fair		Fair			
		Thickest layer	0.00	Thickest layer	0.03		
		Bottom layer	0.20	Bottom layer	0.20		

Table 14.-Source of Gravel and Sand-continued

Map symbol and soil name	Pct.   of   map   unit	Potential source of gravel		Potential source of sand	
		Rating class	Value	Rating class	Value
CpC:					
Colton	75	Fair		Fair	
		Thickest layer	0.00	Thickest layer	0.03
		Bottom layer	0.20	Bottom layer	0.20
CRC:					
Colton----------	65	Fair		Fair	
		Thickest layer	0.00	Thickest layer	0.03
		Bottom layer	0.20	Bottom layer	0.20
Adams-----------	20	Poor		\| Fair	
		Bottom layer	0.00	Bottom layer	0.82
		Thickest layer	0.00	Thickest layer	0.82
CRE :					
Colton----------	75	Fair		Fair	
		\| Thickest layer	0.00	Thickest layer	0.03
		Bottom layer	0.20	Bottom layer	0.20
Adams-----------	15	Poor		Fair	
		Bottom layer	0.00	Bottom layer	0.82
		Thickest layer	0.00	Thickest layer	0.82
CSC:					
Colton----------	40	Fair		Fair	
		Thickest layer	0.00	Thickest layer	0.03
		Bottom layer	0.20	Bottom layer	0.20
Hermon----------	35	Fair   Thickest layer Bottom layer		Fair	
			0.00	Thickest layer	0.01
			0.05	Bottom layer	0.66
CSD :					
Colton----------	60	Fair		Fair	
		Thickest layer	$0.00$	Thickest layer	
		Bottom layer	$0.20$	Bottom layer	0.20
Hermon----------	25	Fair   Thickest layer   Bottom layer		Fair	
			0.00	Thickest layer	0.01
			0.05	Bottom layer	0.66
CtB :					
Creasey---------	80	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
CtC :					
Creasey---------	80	Poor		Poor	
		Bottom layer		Bottom layer	
		Thickest layer	$0.00$	Thickest layer	0.00
CVC:					
Creasey--------	55	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
Abram-----------	20	Poor   Bottom layer   Thickest layer		Poor	
			0.00	Bottom layer	0.00
			0.00	Thickest layer	0.00

Table 14.-Source of Gravel and Sand-continued

Map symbol and soil name	Pct.   of   map   unit	Potential source of gravel		Potential source of sand	
		Rating class	Value	Rating class	Value
CXC:					
Creasey---------	55	Poor		\| Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
Lamoine---------	30	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
CzB:					
Croghan---------	75	Poor		Fair	
		Bottom layer	0.00	Thickest layer	0.09
		Thickest layer	0.00	Bottom layer	0.82
DAC:					
Danforth--------	45	Poor		Fair	
		Bottom layer	0.00	Thickest layer	0.00
		Thickest layer	0.00	Bottom layer	0.01
Elliottsville---	30	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
DdC:					
Dixfield--------	80	Poor		\| Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
DfC:					
Dixfield--------	80	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
DgB :					
Dixfield-------	45	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
Colonel---------	40	Poor Bottom layer Thickest layer		\| Poor	
			0.00	Bottom layer	0.00
			0.00	Thickest layer	0.00
DHB :					
Dixfield-------	50	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
Colonel---------	35	Poor		\| Poor	
		Bottom layer   Thickest layer	0.00	Bottom layer   Thickest layer	
			0.00		0.00
DkB :					
Dixfield--------	45	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
Colonel---------	40	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00

Table 14.-Source of Gravel and Sand-continued

Map symbol and soil name	Pct.   of map unit	Potential source of gravel		Potential source of sand	
		Rating class	Value	Rating class	Value
DMC:					
Dixfield--------	55	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
Marlow----------	30	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
DRC:					
Dixfield--------	35	Poor		Poor	
		Bottom layer	$0.00$	Bottom layer	0.00
		Thickest layer	$0.00$	Thickest layer	$0.00$
Marlow----------	30	Poor		Poor	
		Bottom layer	$0.00$	Bottom layer	$0.00$
		Thickest layer	$0.00$	Thickest layer	$0.00$
Rawsonville-----	20	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	$0.00$
		Organic matter content	0.00	Organic matter content	0.00
DTC:					
Dixfield--------	35	Poor		Poor	
		Bottom layer		Bottom layer	
		Thickest layer	$0.00$	Thickest layer	$0.00$
Marlow----------	30	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
Tunbridge-------	20	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
DUC:					
Dixfield--------	30	Poor		Poor	
		Bottom layer		Bottom layer	
		Thickest layer	$0.00$	Thickest layer	$0.00$
Rawsonville-----	25	Poor		Poor	
		Bottom layer		Bottom layer	
		Thickest layer	0.00	Thickest layer	0.00
		Organic matter content	0.00	Organic matter content	0.00
Colonel---------	20	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
DWC:					
Dixfield--------	30	Poor		Poor	
		Bottom layer		Bottom layer	
		Thickest layer	0.00	Thickest layer	0.00
Tunbridge------	25	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00

Table 14.-Source of Gravel and Sand-continued

Map symbol and soil name	$\left\lvert\, \begin{gathered} \text { Pct. } \\ \text { of } \\ \text { map } \\ \text { unit } \end{gathered}\right.$	Potential source of gravel		Potential source of sand				
		Rating class	Value	Rating class	Value			
DWC:								
Colonel------------	20	Poor		Poor				
		Bottom layer	0.00	Bottom layer	0.00			
		Thickest layer	0.00	Thickest layer	0.00			
EcB :								
Elliottsville------	45	\| Poor		Poor				
		Bottom layer	0.00	Bottom layer	0.00			
		Thickest layer	0.00	Thickest layer	0.00			
Chesuncook----------	35	Poor		Poor				
		Bottom layer	0.00	Bottom layer	0.00			
		Thickest layer	0.00	Thickest layer	0.00			
EMC:								
Elliottsville------ \|	50	Poor		Poor				
		Bottom layer	0.00	Bottom layer				
		Thickest layer	0.00	Thickest layer	$0.00$			
Monson------------- \|	20	Poor		Poor				
		Bottom layer	0.00	Bottom layer	0.00			
		Thickest layer	0.00	Thickest layer	0.00			
Go:								
Gouldsboro--------- \|	90	Poor		Poor				
		Bottom layer	0.00	Bottom layer	0.00			
		Thickest layer	0.00	Thickest layer	0.00			
HCC :								
Hermon-------------	40	Fair		Fair				
		Thickest layer	$0.00$	Thickest layer				
		Bottom layer	$0.05$	Bottom layer	$0.66$			
Colton-------------	20	Fair   Thickest layer Bottom layer		Fair				
			$0.00$	Thickest layer				
			$0.20$	Bottom layer	$0.20$			
Abram-------------	15	Poor		\| Poor				
		Bottom layer	0.00	Bottom layer	0.00			
		Thickest layer	0.00	Thickest layer	0.00			
HeB :								
Hermon-------------	45	Fair		Fair				
		Thickest layer	0.00	Thickest layer	0.01			
		Bottom layer	0.05	Bottom layer	0.66			
Monadnock----------	40	Poor   Bottom layer   Thickest layer		Fair				
				Thickest layer				
			$0.00$	Bottom layer	$0.10$			
HeC: \|	${ }^{\text {a }}$ \|							
Hermon------------- \|	50	Fair		Fair				
		Thickest layer	0.00	Thickest layer	0.01			
		Bottom layer	0.05	Bottom layer	0.66			
Monadnock----------	35	Poor   Bottom layer Thickest layer		Fair				
			0.00	Thickest layer	0.00			
			0.00	Bottom layer	0.10			

Table 14.-Source of Gravel and Sand-continued

Map symbol and soil name	Pct.   of map unit	Potential source of gravel		Potential source of sand	
		Rating class	Value	Rating class	Value
HkB :					
Hermon----------	40	Fair		Fair	
		\| Thickest layer	0.00	Thickest layer	0.01
		Bottom layer	0.05	Bottom layer	0.66
Monadnock-------	40	Poor		\| Fair	
			0.00	Thickest layer	0.00
		Thickest layer	0.00	Bottom layer	0.10
HkC :					
Hermon----------	50	Fair		Fair	
		Thickest layer	$0.00$	Thickest layer	0.01
		Bottom layer	$0.05$	Bottom layer	$0.66$
Monadnock-------	30	Poor		\| Fair	
		Bottom layer	$0.00$	Thickest layer	$0.00$
		Thickest layer	$0.00$	Bottom layer	0.10
HMD :					
Hermon----------	45	Fair		Fair	
		Thickest layer	0.00	Thickest layer	0.01
		Bottom layer	0.05	Bottom layer	0.66
Monadnock-------	35	Poor		\| Fair	
		Bottom layer	0.00	Thickest layer	0.00
		Thickest layer	0.00	Bottom layer	0.10
HOE:					
Hermon----------	50	Fair		\| Fair	
		Thickest layer   Bottom layer	0.00		
			$0.05$	Bottom layer	0.66
Monadnock-------	35	Poor		Fair	
		Bottom layer	0.00	Thickest layer	
		Thickest layer	0.00	Bottom layer	0.10
HSC :					
Hermon----------	40	Fair		\| Fair	
		Thickest layer	0.00	Thickest layer	0.01
		Bottom layer	0.05	Bottom layer	0.66
Monadnock-------	30	Poor		Fair	
			0.00		0.00
		Thickest layer	0.00	Bottom layer	0.10
Skerry----------	15	Poor		\| Fair	
		Thickest layer	0.00	Bottom layer	0.08
HVC:					
Hermon----------	40	Fair		Fair	
		Thickest layer	0.00	Thickest layer	0.01
		Bottom layer	0.05	Bottom layer	0.66
Monadnock-------	30	Poor		\| Fair	
		Bottom layer	0.00	Thickest layer	0.00
		Thickest layer	0.00	Bottom layer	0.10
Skerry----------	15	Poor		\|Fair	
		Bottom layer	0.00	Thickest layer	0.00
		Thickest layer	0.00	Bottom layer	0.08

Table 14.-Source of Gravel and Sand-continued


Table 14.-Source of Gravel and Sand-continued

Map symbol and soil name	Pct.   of   map   unit	Potential source of gravel		Potential source of sand	
		Rating class	Value	Rating class	Value
LCB :					
Lamoine---------	45	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
Buxton-----------	20	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
Scantic---------	20	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
LEB :					
Lamoine---------	30	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
Creasey---------	30	\| Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
Scantic---------	20	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
LHB :					
Lamoine---------	50	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
Nicholville-----	25	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
LKB :					
Lamoine---------	30	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
Rawsonville-----	25	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
		Organic matter content	0.00	Organic matter content	0.00
Scantic---------	20	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
LmB :					
Lamoine--------	55	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
Scantic---------	35	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	\| Thickest layer	0.00

Table 14.-Source of Gravel and Sand-continued

Map symbol and soil name	Pct.   of map unit	Potential source of gravel		Potential source of sand	
		Rating class	Value	Rating class	Value
LnB :					
Lamoine------------	55	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
Scantic------------	35	Poor		Poor	
			0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
LSB :					
Lamoine------------	35	Poor		Poor	
		Bottom layer	$0.00$	Bottom layer Thickest layer	$0.00$
		Thickest layer	$0.00$		$0.00$
Scantic-----------	20	Poor		\| Poor	
		Bottom layer	$0.00$	Bottom layer	$0.00$
		Thickest layer	$0.00$	Thickest layer	$0.00$
Colonel------------	20	Poor		\| Poor	
			0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
LTB :					
Lamoine------------	30	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
Tunbridge----------	25	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
Scantic-----------	20	Poor   Bottom layer Thickest layer		Poor	
			$0.00$	Thickest layer	0.00
LUE:					
Lyman--------------	30	Poor		\| Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
Abram--------------	25	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
Tunbridge----------	25	Poor   Bottom layer   Thickest layer		Poor	
			0.00	Bottom layer	0.00
			0.00	Thickest layer	0.00
LYC:					
Lyman--------------	30	Poor		Poor	
		Bottom layer		Bottom layer	
		Thickest layer	0.00	Thickest layer	$0.00$
Tunbridge----------	30	Poor		\| Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
Abram-------------- \|	15	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00

Table 14.-Source of Gravel and Sand-continued


Table 14.-Source of Gravel and Sand-continued

Map symbol and soil name	Pct.   of   map unit	Potential source of gravel		Potential source of sand	
		Rating class	Value	Rating class	Value
MmE :					
Masardis-----------	90	\| Fair		Fair	
		Thickest layer	0.00	Thickest layer	0.00
		Bottom layer	0.31	Bottom layer	0.63
MRE :					
Masardis----------	60	\| Fair		Fair	
		Thickest layer	0.00	Thickest layer	0.00
		Bottom layer	0.31	Bottom layer	0.63
Adams--------------	25	\| Poor		Fair	
		Bottom layer	0.00	Bottom layer	0.82
		Thickest layer	0.00	Thickest layer	0.82
MSC :					
Masardis-----------	55	\| Fair		Fair	
		Thickest layer	0.00	Thickest layer	0.00
		Bottom layer	0.31	Bottom layer	0.63
Sheepscot----------	25	Fair		Fair	
		Bottom layer	0.31	Thickest layer	0.09
		Thickest layer	0.31	Bottom layer	0.54
MT :					
Medomak------------	50	\| Poor		Poor	
		Thickest layer	0.00	Bottom layer	0.00
		Organic matter content	0.00	Thickest layer	0.00
		Bottom layer	0.00	Organic matter content	0.00
Wonsqueak----------	30	\| Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
Mvb :					
Monarda------------	75	\| Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
MWB :					
Monarda------------	45	\| Poor		Poor	
		Bottom layer		Bottom layer	
		Thickest layer	$0.00$	Thickest layer	$0.00$
Telos--------------	40	\| Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
MXB :					
Monarda------------	35	\| Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
Wonsqueak----------	30	\| Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
NAC:					
Naskeag------------	35	\| Poor		Fair	
		Bottom layer	0.00	Bottom layer	0.08
		Thickest layer	0.00	Thickest layer	0.08

Table 14.-Source of Gravel and Sand-continued

Map symbol and soil name	Pct.   of map unit	Potential source of gravel		Potential source of sand	
		Rating class	Value	Rating class	Value
NAC:					
Abram--------------	25	\| Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
Ricker-------------	20	\| Poor		Fair	
		Bottom layer	0.00	Thickest layer	0.00
		Thickest layer	0.00	Bottom layer	0.02
NBB :					
Naskeag-----------	35	\| Poor		Fair	
		Bottom layer	0.00	Bottom layer	$0.08$
		Thickest layer	$0.00$	Thickest layer	$0.08$
Rawsonville--------	25	\| Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
		Organic matter content	0.00	Organic matter content	0.00
Hogback------------	15	\| Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
		Organic matter content		Organic matter content	
NCB :   Naskeag					
	35	\| Poor		Fair	
		Bottom layer	$0.00$	Bottom layer	0.08
		Thickest layer	$0.00$	Thickest layer	0.08
Tunbridge----------	25	\| Poor		Poor	
		Bottom layer	$0.00$	Bottom layer	$0.00$
		Thickest layer	$0.00$	Thickest layer	$0.00$
Lyman--------------	15	\| Poor		Poor	
		Bottom layer		Bottom layer	$0.00$
		Thickest layer	$0.00$	Thickest layer	$0.00$
NdB :					
Nicholville--------	80	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
NdC:   Nicholville					
	75	\| Poor		Poor	
		Bottom layer	$0.00$	Bottom layer	
		Thickest layer	$0.00$	Thickest layer	0.00
NGB :					
Nicholville--------	55	\| Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
Croghan------------	25	\| Poor		Fair	
		Bottom layer	0.00	Thickest layer	0.09
		Thickest layer	0.00	Bottom layer	0.82
NGC:					
Nicholville--------	55	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00

Table 14.-Source of Gravel and Sand-continued

Map symbol and soil name	Pct.   of map unit	Potential source of gravel		Potential source of sand	
		Rating class	Value	Rating class	Value
NGC :					
Croghan-	20	\| Poor		Fair	
		Bottom layer	0.00	Thickest layer	0.09
		Thickest layer	0.00	Bottom layer	0.82
Pg:					
gravel---------	90	Fair		Fair	
		Bottom layer	0.44	Bottom layer	0.63
		Thickest layer	0.63	Thickest layer	0.63
RhB :					
Rawsonville-----	55	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
Hogback---------	20	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
		Organic matter content	0.00	Organic matter content	0.00
RhC:					
Rawsonville-----	50	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
Hogback---------	25	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
		Organic matter content	0.00	Organic matter content	0.00
RmC:					
Rawsonville----	35	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
		Organic matter content	0.00	Organic matter content	0.00
Hogback--------	30	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
		Organic matter content	0.00	Organic matter content	0.00
Abram----------	20	Poor		Poor	
		Bottom layer	$0.00$	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
RNC:					
Rawsonville-----	35	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
		Organic matter content	0.00	Organic matter content	10.00
Lamoine---------	25	Poor		\| Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00

Table 14.-Source of Gravel and Sand-continued

Map symbol and soil name	$\left\lvert\, \begin{gathered} \text { Pct. } \\ \text { of } \\ \mid \text { map } \\ \text { unit } \end{gathered}\right.$	Potential source of gravel		Potential source of sand	
		Rating class	Value	Rating class	Value
RNC:					
Hogback--	20	\| Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
		Organic matter content	0.00	Organic matter content	0.00
Sa:					
Scantic---------	80	\| Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
SF:					
Scantic---------	50	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
Biddeford-------	30	Poor		Poor	
		Bottom layer	$0.00$	Bottom layer	$0.00$
		Thickest layer	$0.00$	Thickest layer	$0.00$
SG:					
Sebago-----------	50	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
		Organic matter content	0.00	Organic matter content	0.00
Moosabec--------	40	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
		Organic matter content	0.00	Organic matter content	0.00
ShB :					
Sheepscot-------	80	Fair		Fair	
		Bottom layer		Thickest layer	
		Thickest layer	$0.31$	Bottom layer	$0.54$
SJB :					
Sheepscot------	35	Fair		Fair	
		Bottom layer	0.31	Thickest layer	0.09
		Thickest layer	0.31	Bottom layer	0.54
Croghan---------	25	Poor		Fair	
		Bottom layer	0.00	Thickest layer	0.09
		Thickest layer	0.00	Bottom layer	0.82
Kinsman---------	25	Poor		Fair	
		Bottom layer	0.00	Bottom layer	0.79
		Thickest layer	0.00	Thickest layer	0.79
SkB :					
Skerry	80	Poor		Fair	
		Bottom layer	$0.00$	Thickest layer	
		Thickest layer	$0.00$	Bottom layer	0.08
SmB :					
Skerry---------	80	Poor		Fair	
		Bottom layer	0.00	Thickest layer	0.00
		Thickest layer	0.00	Bottom layer	0.08

Table 14.-Source of Gravel and Sand-continued

Map symbol and soil name	Pct.   of map unit	Potential source of gravel		Potential source of sand	
		Rating class	Value	Rating class	Value
SNC:					
Skerry----------	45	Poor		Fair	
		Bottom layer	0.00	Thickest layer	0.00
		Thickest layer	0.00	Bottom layer	0.08
Becket----------	35	Poor		Fair	
		Bottom layer	0.00	Thickest layer	0.01
		Thickest layer	0.00	Bottom layer	0.02
SOB :					
Skerry	50	Poor		Fair	
		Bottom layer	0.00	Thickest layer	0.00
		Thickest layer	0.00	Bottom layer	0.08
Colonel---------	30	Poor		\| Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
SRC:					
Skerry----------	35	Poor		Fair	
		Bottom layer	0.00	Thickest layer	0.00
		Thickest layer	0.00	Bottom layer	0.08
Colonel---------	25	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
Rawsonville-----	20	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
		Organic matter content	0.00	Organic matter content	0.00
STC:					
Skerry----------	35	Poor		Fair	
		Bottom layer	0.00	Thickest layer	
		Thickest layer	0.00	Bottom layer	0.08
Colonel----------	25	\| Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
Tunbridge-------	20	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
TaB:					
Telos----------	80	Poor		\| Poor	
		Bottom layer	0.00		0.00
		Thickest layer	0.00	Thickest layer	0.00
TCB :					
Telos-----------	55	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
Chesuncook------	25	Poor		\| Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00

Table 14.-Source of Gravel and Sand-continued


Table 14.-Source of Gravel and Sand-continued

Map symbol and soil name	Pct.   of map unit	Potential source of gravel		Potential source of sand	
		Rating class	Value	Rating class	Value
Ud:					
Urban land-	30	Not rated		Not rated	
W:					
Water-	100	Not rated		Not rated	
WF:					
Wonsqueak-------	50	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
Bucksport-------	25	\| Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
		Organic matter content	0.00	Organic matter content	0.00

Table 15.-Source of Reclamation Material, Roadfill, and Topsoil
(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.00 to 0.99 . The smaller the value, the greater the limitation. See text for further explanation of ratings in this table.)

Map symbol and soil name	$\begin{array}{\|} \text { Pct. } \\ \text { of } \\ \text { map } \\ \text { unit } \end{array}$	Potential source of reclamation material		Potential source of roadfill		Potential source of topsoil	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	Value
AaE:							
Abram-----------	40		0.00	Depth to bedrock	0.00	Slope	0.00
		Depth to bedrock	0.00	slope	0.00	Depth to bedrock	0.00
		Too acid	0.50			Rock fragments	0.50
						Too acid	0.59
Hogback---------	35	Poor		Poor		Poor	
		Depth to bedrock	0.00	Depth to bedrock	0.00	Slope	0.00
		Droughty	0.12	Slope	0.00	Depth to bedrock	0.00
		Too acid	0.50			Rock fragments	0.88
						Too acid	0.88
AbE:							
Abram-----------	40	Poor		Poor		Poor	
		Droughty	0.00	Depth to bedrock	0.00	Slope	0.00
		Depth to bedrock	0.00	Slope	0.00	Depth to bedrock	0.00
		Too acid	0.50			Rock fragments	0.50
						Too acid	0.59
Lyman-----------	35	Poor		Poor		Poor	
		Depth to bedrock	0.00	Depth to bedrock	0.00	Slope	0.00
		Droughty	0.43	slope	0.00	Depth to bedrock	0.00
		Too acid	0.50			Rock fragments	$0.12$
		Stone content	0.99			Too acid	0.76
ACE:							
Abram	30	Poor		Poor		Poor	
		Droughty	0.00	Depth to bedrockSlope	0.00		0.00
		Depth to bedrock	0.00		0.00	Depth to bedrock Rock fragments Too acid	$0.00$
		Too acid					0.50
							0.59
Rock outcrop-------	30	Not rated		Not rated		Not rated	
Ricker----------	25	Poor		Poor		Poor	
		Droughty	0.00	Depth to bedrock	0.00	Slope	0.00
		Depth to bedrock	0.00	Slope	0.00	Organic matter content high	0.00
		Too acid	0.50			Depth to bedrock	0.00
		Water erosion	0.68			Too acid	0.12
AdA:							
Adams-----------	85	Poor		Good		PoorToo sandyToo acid	
		Too sandy	0.00				0.00
		Wind erosion	0.00				0.98
		Droughty	$10.00$				
		Organic matter content low	0.12 0.50				
		Too acid	0.50				

Table 15.-Source of Reclamation Material, Roadfill, and Topsoil-continued

Map symbol and soil name	Pct.   of map unit	Potential source of reclamation material		Potential source of roadfill		Potential source of topsoil	
		Rating class and   limiting features	\| Value	Rating class and limiting features	Value	Rating class and limiting features	Value
AdB :   Adams	85	Poor		Good		Poor	
		Too sandy	0.00			Too sandy	0.00
		Wind erosion	0.00			Too acid	0.98
		Droughty	0.00				
		Organic matter	0.12				
		```content low Too acid```	0.50				
AdC:							
Adams-----------	85	Poor		Good		Poor	
		Too sandy	0.00			Too sandy	0.00
		Wind erosion	0.00			Slope	0.37
		Droughty	0.00			Too acid	0.98
		Organic matter content low	0.12				
		Too acid	0.50				
AGB :							
Adams-----------	55	Poor		Good		Poor	
		Too sandy	0.00			Too sandy	0.00
		Wind erosion	0.00			Too acid	0.98
		Droughty	0.00				
		Organic matter content low	0.12				
		Too acid	0.50				
Croghan---------	30	Poor		Fair	0.32	Fair	
		Wind erosion	0.00	Wetness depth		Too sandy	0.14
		Droughty	0.02			Wetness depth	0.32
		Too sandy	0.14			Rock fragments	0.97
		Too acid	0.50			Too acid	0.98
BeC:							
Becket----------	80	Poor		Good		Fair	
		Droughty	0.00			Rock fragments	0.28
		Too acid	0.50			Slope	0.37
						Too acid	0.92
BKD :							
Becket----------	60	Poor		Fair		Poor	
		Droughty	0.00	slope	0.08	Slope	0.00
		Too acid	0.50			Rock fragments	0.28
						Too acid	0.92
Skerry----------	25	Poor		Fair		Fair	
		Droughty	0.00	Wetness depth	0.32	Rock fragments	0.28
		Too acid	0.68			Wetness depth	0.32
						slope	0.37
BnB :							
Brayton--------	75	Poor		Poor		Poor	
		Droughty	0.00	Wetness depth	0.00	Wetness depth	0.00
		Too acid	0.50			Rock fragments	0.28
						Too acid	0.92
BRB:							
Brayton---------	50	PoorDroughtyToo acid		Poor		Poor	
			0.00	Wetness depth	0.00	Wetness depth	0.00
			0.50			Rock fragments	0.28
						Too acid	0.92

Table 15.-Source of Reclamation Material, Roadfill, and Topsoil-continued

Map symbol and soil name	Pct. of map unit	Potential source of reclamation material		Potential source of roadfill		Potential source of topsoil	
		Rating class and limiting features	Value	Rating class and limiting features	\|Value	Rating class and limiting features	Value
BRB :							
Colonel---------	35	Fair		Poor		Poor	
		Droughty	0.32	Wetness depth	0.00	Wetness depth	0.00
		Too acid	0.50	Stone content	0.99	Rock fragments	0.12
		Stone content	0.99			Too acid	0.92
BTB :							
Brayton---------	50	Poor		Poor	0.00	Poor	
		Droughty	0.00	Wetness depth		Wetness depth	0.00
		Too acid	0.50			Rock fragments	0.28
						Too acid	0.92
Colonel--------	35	Fair		Poor		Poor	
		Droughty	0.32	Wetness depth	0.00	Wetness depth	0.00
		Too acid	0.50	Stone content	0.99	Rock fragments	0.12
		Stone content	0.99			Too acid	0.92
BW:							
Bucksport-------	55	FairToo acid		\|Poor	0.00	Poor	
			0.12	Wetness depth		Wetness depth	0.00
						Organic matter content high	0.00
						Too acid	0.76
Wonsqueak-------	30	Fair		Poor		Poor	
		Too acid	0.50	Wetness depth	0.00	Wetness depth	0.00
						Organic matter content high	0.00
BxC:							
Buxton----------	85	Poor		Poor		Poor	
		Too clayey	0.00	Low strength	0.00	Too clayey	0.00
		Organic matter content low	0.12	Wetness depth	0.44	Slope	0.37
		Water erosion	0.68	Shrink-swell	0.87	Wetness depth	0.44
		Too acid	0.68				
BZC:							
Buxton----------	50	Poor		Poor		Poor	
		Too clayey	0.00	Low strength	0.00	Too clayey	0.00
		Organic matter content low	0.12	Wetness depth	0.44	Slope	0.37
		Water erosion	0.68	Shrink-swell	0.87	Wetness depth	0.44
		Too acid	0.68				
Lamoine--------	35	Poor		Poor		Poor	
		Too clayey	0.00	Wetness depth	0.00	Wetness depth	0.00
		Organic matter content low	0.12	Low strength	0.00	Too clayey	0.00
		Water erosion	0.68	Shrink-swell	0.87		
		Too acid	0.68				
ChB :							
Chesuncook------	80	Fair Too acid Droughty		Fair Wetness depth		FairRock fragmentsWetness depthToo acid	
			0.50		0.32		0.04
			0.98				0.32
							0.76

Table 15.-Source of Reclamation Material, Roadfill, and Topsoil-continued

Table 15.-Source of Reclamation Material, Roadfill, and Topsoil-continued

Table 15.-Source of Reclamation Material, Roadfill, and Topsoil-continued

Map symbol and soil name	$\left\lvert\, \begin{gathered} \text { Pct. } \\ \text { of } \\ \text { map } \\ \text { unit } \end{gathered}\right.$	Potential source of reclamation material		Potential source of roadfill		Potential source of topsoil	
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	Value
		Droughty	0.00	Slope	0.00	Slope	0.00
		Organic matter content low	0.05	Cobble content	0.99	Hard to reclaim (rock fragments)	0.00
		Too sandy	0.16			Rock fragments	0.00
		Too acid	0.50			Too sandy	0.16
						Too acid	0.76
Adams----------	15	Poor		Poor		Poor	
		Too sandy	0.00	Slope	0.00	Slope	0.00
		Wind erosion	0.00			Too sandy	0.00
		Droughty	0.00			Too acid	0.98
		Organic matter content low Too acid	$\left\lvert\, \begin{aligned} & 0.12 \\ & 0.50\end{aligned}\right.$				
CSC:							
Colton---------	40	Poor		Fair	0.99	Poor	
		Droughty	0.00	Cobble content		Hard to reclaim (rock fragments)	0.00
		Organic matter content low	0.05			Rock fragments	0.00
		Too sandy	0.16			Too sandy	0.16
		Too acid	0.50			Too acid	0.76
						Slope	0.96
Hermon----------	35	Poor		Fair		Poor	
		Too sandy	0.00	Stone content	0.99	Too sandy	0.00
		Too acid	0.50			Rock fragments	0.00
		Organic matter content low	0.50			Hard to reclaim (rock fragments)	0.02
		No stoniness limitation	0.99			Slope	0.96
CSD :							
Colton--------	60	Poor		Fair		Poor	
		Droughty	0.00	Slope	0.08	Slope	0.00
		Organic matter content low	0.05	Cobble content	0.99	Hard to reclaim (rock fragments)	0.00
		Too sandy	0.16			Rock fragments	0.00
		Too acid	0.50			Too sandy	0.16
						Too acid	0.76
Hermon---------	25	Poor		Fair		Poor	
		Too sandy	0.00	Slope	0.08	Slope	0.00
		Too acid	0.50	Stone content	0.99	Too sandy	0.00
		Organic matter content low	0.50			Rock fragments	0.00
		No stoniness limitation	0.99			Hard to reclaim (rock fragments)	0.02
CtB :							
Creasey--------	80	Poor		PoorDepth to bedrock	0.00	Poor	
		Depth to bedrock	0.00			Depth to bedrock	0.00
		Droughty	0.00			Rock fragments	0.00
		Too acid	0.54			Too acid	0.98

Table 15.-Source of Reclamation Material, Roadfill, and Topsoil-continued

Map symbol and soil name	$\left\lvert\, \begin{gathered} \text { Pct. } \\ \text { of } \\ \text { map } \\ \text { unit } \end{gathered}\right.$	Potential source of reclamation material		Potential source of roadfill		Potential source of topsoil	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	Value
CtC:							
		Depth to bedrock	0.00	Depth to bedrock	0.00	Depth to bedrock	0.00
		Droughty	0.00			Rock fragments	0.00
		Too acid	0.54			Slope	0.37
						Too acid	0.98
CVC:							
Creasey--------	55	Poor		Poor	0.00	Poor	
		Depth to bedrock	0.00	Depth to bedrock		Depth to bedrock	0.00
		Droughty	0.00			Rock fragments	0.00
		Too acid	0.54			Slope	0.96
						Too acid	0.98
Abram----------	20	Poor		Poor	0.00	Poor	
		Droughty	0.00	Depth to bedrock		Depth to bedrock	0.00
		Depth to bedrock	0.00			Rock fragments	0.50
		Too acid	0.50			Too acid	0.59
						Slope	0.96
CxC:							
Creasey--------	55	Poor		Poor	0.00	Poor	
		Depth to bedrock	0.00	Depth to bedrock		Depth to bedrock	0.00
		Droughty	0.00			Rock fragments	0.00
		Too acid	0.54			Slope	0.96
						Too acid	0.98
Lamoine---------	30	Poor		Poor		Poor	
		Too clayey	0.00	Wetness depth	0.00	Wetness depth	0.00
		Organic matter content low	0.12	Low strength	0.00	Too clayey	0.00
		Water erosion	0.68	Shrink-swell	0.87		
		Too acid	0.68				
CzB:							
Croghan--------	75	Poor		Fair		Fair	
		Wind erosion	0.00	Wetness depth	0.32	Too sandy	0.14
		Droughty	0.03			Wetness depth	0.32
		Too sandy	0.14			Rock fragments	0.97
		Too acid	0.50			Too acid	0.98
DAC:							
Danforth--------	45	Fair		Good		Poor	
		Too acid	0.50			Rock fragments	0.00
		Organic matter content low	0.50			Hard to reclaim (rock fragments)	0.00
						Too acid	0.59
						slope	0.96
Elliottsville---	30	Fair ${ }^{\text {Too acid }}$		Poor	0.00	Fair	
			0.50			Rock fragments	0.03
		Depth to bedrock	0.65			Too acid	0.59
						Depth to bedrock	0.65
						slope	0.96
DdC:							
Dixfield-------	80	Fair ${ }^{\text {Too acid }}$		Fair Wetness depth		Fair	
			0.50		0.44	Rock fragments	0.12
						Slope	0.37
						Wetness depth	0.44

Table 15.-Source of Reclamation Material, Roadfill, and Topsoil-continued

Table 15.-Source of Reclamation Material, Roadfill, and Topsoil-continued

Map symbol and soil name	Pct. of map unit	Potential source of reclamation material		Potential source of roadfill		Potential source of topsoil	
		Rating class and limiting features	\|Value	Rating class and limiting features	Value	Rating class and limiting features	\|Value
DRC:							
Rawsonville	20	Too acid Depth to bedrock	$\begin{array}{\|l\|} 0.50 \\ 0.93 \end{array}$	Depth to bedrock	0.00	Rock fragments	0.28
						Too acid	0.88
						Depth to bedrock	0.93
						slope	0.96
DTC:							
Dixfield--------	35	Fair		Fair		Fair	
		Too acid	0.50	Wetness depth	0.44	Rock fragments	0.12
		Stone content	0.99	Stone content	0.99	Wetness depth	0.44
						Slope	0.96
Marlow----------	30	Fair		Fair	0.53	Fair	
		Droughty	0.06	Wetness depth		Slope	0.37
		Too acid	0.50			Wetness depth	0.53
						Too acid	0.76
						Rock fragments	0.88
Tunbridge-------	20	Fair		Poor	0.00	Fair	
		Droughty	0.33	Depth to bedrock		Rock fragments	0.28
		Depth to bedrock	0.35			Depth to bedrock	0.35
		Too acid	0.50			Too acid	0.76
						Slope	0.96
DUC:							
Dixfield--------	30	FairToo acidStone content		FairWetness depthStone content		Fair	
			0.50		0.44	Rock fragments	0.12
			0.99		0.99	Wetness depth	0.44
						Slope	0.96
Rawsonville-----	25	FairToo acid		Poor	0.00	Fair	
			0.50	Depth to bedrock		Rock fragments	0.28
		Depth to bedrock	0.93			Too acid	0.88
						Depth to bedrock	0.93
						Slope	0.96
Colonel---------	20	Fair		Poor		Poor	
		Droughty	0.32	Wetness depth	0.00	Wetness depth	0.00
		Too acid	0.50	Stone content	0.99	Rock fragments	0.12
		Stone content	0.99			Too acid	0.92
DWC:Dixfield							
	30	FairToo acidStone content		Fair		Fair	
			0.50	Wetness depth	0.44	Rock fragments	0.12
			0.99	Stone content	0.99	Wetness depth	0.44
						slope	0.96
Tunbridge-------	25	Fair		Poor		Fair	
		Droughty	0.33	Depth to bedrock	0.00	Rock fragments	0.28
		Depth to bedrock	0.35			Depth to bedrock	0.35
		Too acid	0.50			Too acid	0.76
						slope	0.96
Colonel--------	20	Fair		Poor		Poor	
		Droughty	0.32	Wetness depth	0.00	Wetness depth	0.00
		Too acid	0.50	Stone content	0.99	Rock fragments	0.12
		Stone content	0.99			Too acid	0.92

Table 15.-Source of Reclamation Material, Roadfill, and Topsoil-continued

Map symbol and soil name	Pct. of map unit	Potential source of reclamation material		Potential source of roadfill		Potential source of topsoil	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	Value
EcB:							
Elliottsville---	45	Organic matter content low Depth to bedrock Too acid	0.12 0.46 0.50	Depth to bedrock	0.00	Rock fragments Depth to bedrock Too acid	0.03
Chesuncook-------	35	Fair		Fair	0.32	Fair	
		Too acid	0.50	Wetness depth		Rock fragments	0.04
		Droughty	0.98			Wetness depth	0.32
						Too acid	0.76
EMC:							
Elliottsville----	50	Fair		Poor	0.00	Fair	
		Too acid	0.50	Depth to bedrock		Rock fragments	0.03
		Depth to bedrock	0.65			Too acid	0.59
						Depth to bedrock	0.65
						Slope	0.96
Monson----------	20	Poor		Poor	0.00	Poor	
		Depth to bedrock	0.00	Depth to bedrock		Depth to bedrock	0.00
		Droughty	0.00			Rock fragments	0.03
		Too acid	0.50			Too acid	0.76
						Slope	0.96
Go:							
Gouldsboro------	90	Fair		Poor		Poor	
		Too acid	0.84	Wetness depth	0.00	Wetness depth	0.00
		Water erosion	0.99	Low strength	0.00		
				Shrink-swell	0.87		
HCC:							
Hermon	40	Poor		Fair		Poor	
		Too sandy	0.00	Stone content	0.99	Too sandy	0.00
		Too acid	0.50			Rock fragments	0.00
		Organic matter content low	0.50			Hard to reclaim (rock fragments)	0.02
		No stoniness limitation	0.99			Slope	0.96
Colton----------	20	Poor		Fair		Poor	
		Droughty	0.00	Cobble content	0.99	Hard to reclaim (rock fragments)	0.00
		Organic matter content low	0.05			Rock fragments	0.00
		Too sandy	0.16			Too sandy	0.16
		Too acid	0.50			Too acid	0.76
						Slope	0.96
Abram-----------	15	Poor		Poor	0.00	Poor	
		Droughty	0.00	Depth to bedrock		Depth to bedrock	0.00
		Depth to bedrock	0.00			Rock fragments	0.50
		Too acid	0.50			Too acid	0.59
						Slope	0.96
HeB :							
Hermon----------	45	Fair		Good		Poor	
		Too acid	0.50			Rock fragments	0.00
		Organic matter content low	0.50			Hard to reclaim (rock fragments) Too acid	$\left\lvert\, \begin{aligned} & 0.02 \\ & 0.76\end{aligned}\right.$

Table 15.-Source of Reclamation Material, Roadfill, and Topsoil-continued

Table 15.-Source of Reclamation Material, Roadfill, and Topsoil-continued

Map symbol and soil name	Pct. of map unit	Potential source of reclamation material		Potential source of roadfill		Potential source of topsoil	
		Rating class and limiting features	\|Value	Rating class and limiting features	Value	Rating class and limiting features	Value
HMD :							
Hermon----------	45	Too sandy	0.00	Slope	0.08	Slope	0.00
		Too acid	0.50	Stone content	0.99	Too sandy	0.00
		Organic matter content low	0.50			Rock fragments	0.00
		No stoniness limitation	0.99			Hard to reclaim (rock fragments)	0.02
Monadnock-------	35	Fair		\| Fair		Poor	
		Organic matter content low	0.12	Slope	0.08	Slope	0.00
		Too sandy	0.16			Rock fragments	0.00
		Too acid	0.50			Too sandy	0.16
		Droughty	0.75			Hard to reclaim (rock fragments) Too acid	$\left\lvert\, \begin{aligned} & 0.24 \\ & 0.76\end{aligned}\right.$
HOE :							
Hermon---------	50	Poor		Poor		Poor	
		Too sandy	0.00	Slope	0.00	Slope	0.00
		Too acid	0.50	Stone content	0.99	Too sandy	0.00
		Organic matter content low	0.50			Rock fragments	0.00
		No stoniness limitation	0.99			Hard to reclaim (rock fragments)	0.02
Monadnock-------	35	Fair		Poor		Poor	
		Organic matter content low	0.12	Slope	0.00	Slope	0.00
		Too sandy	0.16			Rock fragments	0.00
		Too acid	0.50			Too sandy	0.16
		Droughty	0.75			Hard to reclaim (rock fragments)	$\left\lvert\, \begin{aligned} & 0.24 \\ & 0.76\end{aligned}\right.$
						Too acid	0.76
HSC:							
Hermon---------	40	Poor		Fair		Poor	
		Too sandy	0.00	Stone content	0.99	Too sandy	0.00
		Too acid	0.50			Rock fragments	0.00
		Organic matter content low	0.50			Hard to reclaim (rock fragments)	0.02
		No stoniness limitation	0.99			slope	0.96
Monadnock-------	30	Fair		Good		Poor	
		Organic matter content low	0.12			Rock fragments	0.00
		Too sandy	0.16			Too sandy	0.16
		Too acid	0.50			Hard to reclaim (rock fragments)	0.24
		Droughty	0.75			Too acid	0.76
						slope	0.96
Skerry---------	15	PoorDroughtyToo acid		FairWetness depth	0.32	Fair	
			0.00			Rock fragments	0.28
			0.68			Wetness depth	0.32

Table 15.-Source of Reclamation Material, Roadfill, and Topsoil-continued

Table 15.-Source of Reclamation Material, Roadfill, and Topsoil-continued

Map symbol and soil name	Pct. of map unit	Potential source of reclamation material		Potential source of roadfill		Potential source of topsoil	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	Value
$\mathrm{Kn}:$							
Kinsman	75	Too sandy	0.00	Wetness depth	0.00	Too sandy	0.00
		Wind erosion	0.00			Wetness depth	0.00
		Droughty	0.17			Too acid	0.76
		Too acid	0.20				
KW :							
Kinsman---------	45	Poor		Poor		Poor	
		Too sandy	0.00	Wetness depth	0.00	Too sandy	0.00
		Wind erosion	0.00			Wetness depth	0.00
		Droughty	0.17			Too acid	0.76
		Too acid	0.20				
Wonsqueak-------	35	Fair		Poor		Poor	
		Too acid	0.50	Wetness depth	0.00	Wetness depth	0.00
						Organic matter content high	0.00
LaB:							
Lamoine--------	80	Poor		Poor		Poor	
		Too clayey	0.00	Wetness depth	0.00	Wetness depth	0.00
		Organic matter content low	0.12	Low strength	0.00	Too clayey	0.00
		Water erosion	0.68	Shrink-swell	0.87		
		Too acid	0.68				
LbB :							
Lamoine---------	50	Poor		\| Poor		Poor	
		Too clayey	0.00	Wetness depth	0.00	Wetness depth	0.00
		Organic matter content low	0.12	Low strength	0.00	Too clayey	0.00
		Water erosion	0.68	Shrink-swell	0.87		
		Too acid	0.68				
Buxton----------	35	Poor		Poor		Poor	
		Too clayey	0.00	Low strength	0.00	Too clayey	0.00
		Organic matter content low	0.12	Wetness depth	0.44	Wetness depth	0.44
		Water erosion	0.68	Shrink-swell	0.87		
		Too acid	0.68				
LCB :							
Lamoine---------	45	Poor		Poor		Poor	
		Too clayey	0.00	Wetness depth	0.00	Wetness depth	0.00
		Organic matter content low	0.12	Low strength	0.00	Too clayey	0.00
		Water erosion	0.68	Shrink-swell	0.87		
		Too acid	0.68				
Buxton----------	20	Poor		\| Poor		Poor	
		Too clayey	0.00	Low strength	0.00	Too clayey	0.00
		Organic matter content low	0.12	Wetness depth	0.44	Slope	0.37
		Water erosion	0.68	Shrink-swell	0.87	Wetness depth	0.44
		Too acid	0.68				

Table 15.-Source of Reclamation Material, Roadfill, and Topsoil-continued

Map symbol and soil name	Pct. of map unit	Potential source of reclamation material		Potential source of roadfill		Potential source of topsoil	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	Value
LCB :							
Scantic---------	20	Too clayey	0.00	Wetness depth	0.00	Wetness depth	0.00
		Organic matter content low	0.12	Low strength	0.00	Too clayey	0.00
		Water erosion	0.68	Shrink-swell	0.89		
		Too acid	0.68				
LEB :							
Lamoine---------	30	\| Poor		Poor		Poor	
		Too clayey	0.00	Wetness depth	0.00	Wetness depth	0.00
		Organic matter content low	0.12	Low strength	0.00	Too clayey	0.00
		Water erosion	0.68	Shrink-swell	0.87		
		Too acid	0.68				
Creasey---------	30	Poor		Poor		Poor	
		Depth to bedrock	0.00	Depth to bedrock	0.00	Depth to bedrock	0.00
		Droughty	0.00			Rock fragments	0.00
		Too acid	0.54			Too acid	0.98
Scantic---------	20	Poor		Poor		Poor	
		Too clayey	0.00	Wetness depth	0.00	Wetness depth	0.00
		Organic matter content low	0.12	Low strength	0.00	Too clayey	0.00
		Water erosion	0.68	Shrink-swell	0.89		
		Too acid	0.68				
LHB :							
Lamoine---------	50	Poor		Poor		Poor	
		\| Too clayey	0.00	Wetness depth	0.00	Wetness depth	0.00
		Organic matter content low	0.12	Low strength	0.00	Too clayey	0.00
		Water erosion	0.68	Shrink-swell	0.87		
		Too acid	0.68				
Nicholville-----	25	Fair		Fair		Fair	
		Organic matter content low Too acid	0.12 0.50	Wetness depth	0.32	Wetness depth	0.32
LKB :							
Lamoine---------	30	Poor		Poor		Poor	
		Too clayey	0.00	Wetness depth	0.00	Wetness depth	0.00
		Organic matter content low	0.12	Low strength	0.00	Too clayey	0.00
		Water erosion	0.68	Shrink-swell	0.87		
		Too acid	0.68				
Rawsonville------	25	$\left\lvert\, \begin{aligned} & \text { Fair } \\ & \text { Too acid } \\ & \text { Depth to bedrock }\end{aligned}\right.$		PoorDepth to bedrock		Fair	
			0.50		0.00	Rock fragments	0.28
			0.93			Too acid	0.88
						Depth to bedrock	0.93
Scantic---------	20	Poor		Poor		Poor	
		Too clayey	0.00	Wetness depth	0.00	Wetness depth Too clayey	0.00
		Organic matter content low	0.12	Low strength	0.00		0.00
		Water erosion	0.68	Shrink-swell	0.89		
		Too acid	0.68				

Table 15.-Source of Reclamation Material, Roadfill, and Topsoil-continued

Table 15.-Source of Reclamation Material, Roadfill, and Topsoil-continued

Map symbol and soil name	Pct. of map unit	Potential source of reclamation material		Potential source of roadfill		Potential source of topsoil	
		Rating class and limiting features	\|Value	Rating class and limiting features	Value	Rating class and limiting features	Value
LTB: Scantic	20	Poor		Poor		Poor	
		Too clayey	0.00	Wetness depth	0.00	Wetness depth	0.00
		Organic matter	0.12	Low strength	0.00	Too clayey	0.00
		Water erosion	0.68	Shrink-swell	0.89		
		Too acid	0.68				
LUE:							
Lyman------------	30	Poor		Poor		Poor	
		Depth to bedrock	0.00	Depth to bedrock	0.00	Slope	0.00
		Droughty	0.43	slope	0.00	Depth to bedrock	0.00
		Too acid	0.50			Rock fragments	0.12
		Stone content	0.99			Too acid	0.76
Abram-----------	25	Poor		Poor		Poor	
		Droughty	0.00	Depth to bedrock	0.00	Slope	0.00
		Depth to bedrock	0.00	Slope	0.00	Depth to bedrock	0.00
		Too acid	0.50			Rock fragments	0.50
						Too acid	0.59
Tunbridge-------	25	Fair		Poor		Poor	
		Droughty	0.33	Depth to bedrock	0.00	Slope	0.00
		Depth to bedrock	0.35	Slope	0.50	Rock fragments	0.28
		Too acid	0.50			Depth to bedrock	0.35
						Too acid	0.76
LYC:							
Lyman----------	30	Poor		Poor		Poor	
		Depth to bedrock	0.00	Depth to bedrock	0.00	Depth to bedrock	0.00
		Droughty	0.43			Rock fragments	0.12
		Too acid	0.50			Too acid	0.76
		Stone content	0.99			Slope	0.96
Tunbridge-------	30	Fair		Poor		Fair	
		Droughty	0.33	Depth to bedrock	0.00	Rock fragments	0.28
		Depth to bedrock	0.35			Depth to bedrock	0.35
		Too acid	0.50			Too acid	0.76
						Slope	0.96
Abram-----------	15	Poor		Poor		Poor	
		Droughty	0.00	Depth to bedrock	0.00	Depth to bedrock	0.00
		Depth to bedrock	0.00			Rock fragments	0.50
		Too acid	0.50			Too acid	0.59
						Slope	0.96
MaC:							
Marlow-	82	Fair		Fair		Fair	
		Droughty	0.16	Wetness depth	0.53	Slope	0.37
		Too acid	0.50			Wetness depth	0.53
						Too acid	0.76
						Rock fragments	0.88
MbC :							
Marlow----------	80	Fair Droughty Too acid		FairWetness depth		Fair	
			0.06		0.53	Slope	
			0.50			Wetness depth	0.53
						Too acid	0.76
						Rock fragments	0.88

Table 15.-Source of Reclamation Material, Roadfill, and Topsoil-continued

Map symbol and soil name	$\left\lvert\, \begin{gathered} \text { Pct. } \\ \text { of } \\ \text { map } \\ \text { unit } \end{gathered}\right.$	Potential source of reclamation material		Potential source of roadfill		Potential source of topsoil	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	Value
MDD :							
Marlow----------	55	Fair		Fair		Poor	
		Droughty	0.06	Slope	0.08	Slope	0.00
		Too acid	0.50	Wetness depth	0.53	Wetness depth	0.53
						Too acid	0.76
						Rock fragments	0.88
Dixfield--------	30	Fair		Fair		Fair	
		Too acid	0.50		0.44	Rock fragments	0.12
		Stone content	0.99	Stone content	0.99	Slope	0.37
						Wetness depth	0.44
MFD :							
Marlow	35	Fair		Fair		Poor	
		Droughty	0.06	Slope	0.08	Slope	0.00
		Too acid	0.50	Wetness depth	0.53	Wetness depth	0.53
						Too acid	0.76
						Rock fragments	0.88
Rawsonville-----	25	Fair		Poor ${ }^{\text {Depth to bedrock }}$		Poor	
		Too acid	0.50		0.00	Slope	0.00
		Depth to bedrock	0.93	Slope	0.08	Rock fragments	0.28
						Too acid	0.88
						Depth to bedrock	0.93
Dixfield--------	20	Fair		Fair		Fair	
		Too acid	0.50		0.44	Rock fragments	0.12
		Stone content	0.99	Stone content	0.99	Slope	0.37
						Wetness depth	0.44
MGD :							
Marlow---------	35	Fair		FairSlope		Poor	
		Droughty	0.06			Slope	0.00
		Too acid	0.50	Wetness depth	0.53	Wetness depth	0.53
						Too acid	0.76
						Rock fragments	0.88
Tunbridge-------	25	Fair		Poor Depth to bedrock		Poor	
		Droughty	0.33		0.00	Slope	0.00
		Depth to bedrock Too acid	0.35	Slope	0.08	Rock fragments	0.28
			0.50			Depth to bedrock Too acid	0.35
							0.76
Dixfield--------	20	Fair		Fair		Fair	
		Too acid	0.50	Wetness depth	0.44	Rock fragments	0.12
		Stone content	0.99	Stone content	0.99	Slope	0.37
						Wetness depth	0.44
MmA :							
Masardis--------	90	Poor		Good		Poor	
		Too sandy	0.00			Too sandy	0.00
		Organic matter content low	0.12			Hard to reclaim (rock fragments)	0.00
		Too acid	0.50			Rock fragments	0.00
		Droughty	0.84			Too acid	0.98

Table 15.-Source of Reclamation Material, Roadfill, and Topsoil-continued

Map symbol and soil name	$\left\lvert\, \begin{gathered} \text { Pct. } \\ \text { of } \\ \text { map } \\ \text { unit } \end{gathered}\right.$	Potential source of reclamation material		Potential source of roadfill		Potential source of topsoil	
		Rating class and limiting features	\|Value	Rating class and limiting features	Value	Rating class and limiting features	Value
MmB :							
		Too sandy	0.00			Too sandy	0.00
		Organic matter content low	0.12			Hard to reclaim (rock fragments)	0.00
		Too acid	0.50			Rock fragments	0.00
		Droughty	0.84			Too acid	0.98
MmC :							
Masardis-------	85	Poor		Good		Poor	
		Too sandy	0.00			Too sandy	0.00
		Organic matter content low	0.12			Hard to reclaim (rock fragments)	0.00
		Too acid	0.50			Rock fragments	0.00
		Droughty	0.84			Slope	0.37
						Too acid	0.98
MmE :							
Masardis--------	90	Poor		PoorSlope		Poor	
		Too sandy	0.00		0.00	Slope	0.00
		Organic matter content low	0.12			Too sandy	0.00
		Too acid	0.50			Hard to reclaim (rock fragments)	0.00
		Droughty	0.84			Rock fragments	0.00
						Too acid	0.98
MRE :							
Masardis-------	60	Poor		Poor		Poor	
		Too sandy	0.00	Slope	0.00	Slope	0.00
		Organic matter content low	0.12			Too sandy	0.00
		Too acid	0.50			Hard to reclaim (rock fragments)	0.00
		Droughty	0.73			Rock fragments	0.00
						Too acid	0.98
Adams----------	25	Poor		Poor		Poor	
		Too sandy	0.00	Slope	0.00	Slope	0.00
		Wind erosion	0.00			Too sandy	0.00
		Droughty	0.00			Too acid	0.98
		Organic matter content low Too acid	$\left\lvert\, \begin{aligned} & 0.12 \\ & 0.50\end{aligned}\right.$				
MSC :							
Masardis-------	55	Poor $\mid 0.00$		Good		\| Poor	
		Too sandy	0.00			Too sandy	0.00
		Organic matter content low	0.12			Hard to reclaim (rock fragments)	0.00
		Too acid	0.50			Rock fragments	0.00
		Droughty	0.73			Slope	0.96
						Too acid	0.98
Sheepscot------	25	FairToo sandy		Fair	0.76	Poor	
			0.08	Wetness depth		Hard to reclaim (rock fragments)	0.00
		Organic matter content low	0.12			Rock fragments	0.00 0.08
		Droughty Too acid	0.13 0.50			Too sandy Wetness depth	0.08
						Too acid	0.92

Table 15.-Source of Reclamation Material, Roadfill, and Topsoil-continued

Map symbol and soil name	$\begin{array}{\|c} \text { Pct. } \\ \text { of } \\ \text { map } \\ \text { unit } \end{array}$	Potential source of reclamation material		Potential source of roadfill		Potential source of topsoil	
		Rating class and limiting features	\|Value	Rating class and limiting features	\| Value	Rating class and limiting features	Value
MT :							
Medomak---------	50	Fair ${ }^{\text {Too acid }}$	0.39	Poor	0.00	Poor	
				Wetness depth		Wetness depth	0.00
						Too acid	0.92
Wonsqueak-------	30	Fair	0.50	Poor	0.00	Poor	
		Too acid		Wetness depth		Wetness depth	0.00
						Organic matter content high	0.00
Mvb :							
Monarda--------	75	Fair	0.40	Poor	0.00	Poor	
		Droughty		Wetness depth		Wetness depth	0.00
		Too acid	0.50			Rock fragments	0.12
						Too acid	0.98
MWB :							
Monarda--------	45	Fair	0.40	Poor	0.00	Poor	
		Droughty		Wetness depth		Wetness depth	0.00
		Too acid				Rock fragments	0.12
						Too acid	0.98
Telos-----------	40	Fair	0.500.56	Poor	0.00	Poor	
		Too acid		Wetness depth		Wetness depth	0.00
		Droughty				Rock fragments	0.28
						Too acid	0.76
MXB :							
Monarda---------	35	\|Fair	0.40	Poor	0.00	Poor	
		Droughty		Wetness depth		Wetness depth	0.00
		Too acid	0.50			Rock fragments	0.12
						Too acid	0.98
Wonsqueak-------	30	Fair ${ }^{\text {Too acid }}$	0.50	Poor	0.00	Poor	
				Wetness depth		Wetness depth	0.00
						Organic matter content high	0.00
NAC: Naskeag	35						
		Poor		Poor		Poor	
		Droughty	0.00	Wetness depth	0.00	Wetness depth	0.00
		Too sandy	0.16	Depth to bedrock	0.00	Too sandy	0.16
		Too acid	0.50			Rock fragments	0.28
		Depth to bedrock	0.99			Too acid	0.88
						Depth to bedrock	0.99
Abram-----------	25	Poor		Poor	0.00	Poor	
		Droughty	0.00	Depth to bedrock		Depth to bedrock	0.00
		Depth to bedrock	0.00			Rock fragments	0.50
		Too acid	0.50			Too acid	0.59
						Slope	0.96
Ricker---------	20	Poor		Poor		Poor	
		Droughty	0.00	Depth to bedrock	0.00	Organic matter content high	0.00
		Depth to bedrock	0.00			Depth to bedrock	0.00
		Too acid	0.50			Too acid	0.12
		Water erosion	0.68			Slope	0.96

Table 15.-Source of Reclamation Material, Roadfill, and Topsoil-continued

Map symbol and soil name	$\left\lvert\, \begin{gathered} \text { Pct. } \\ \text { of } \\ \text { map } \\ \text { unit } \end{gathered}\right.$	Potential source of reclamation material		Potential source of roadfill		Potential source of topsoil	
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
NBB :							
Naskeag		Droughty	0.00	Wetness depth	0.00	Wetness depth	0.00
		Too sandy	0.16	Depth to bedrock	0.00	Too sandy	0.16
		Too acid	0.50			Rock fragments	0.28
		Depth to bedrock	0.99			Too acid	0.88
						Depth to bedrock	0.99
Rawsonville-----	25	Fair		\|Poor		Fair	
		Too acid	0.50	Depth to bedrock	0.00	Rock fragments	0.28
		Depth to bedrock	0.93			Too acid	0.88
						Depth to bedrock	0.93
Hogback--------	15	Poor		Poor	0.00	Poor	
		Depth to bedrock	0.00	Depth to bedrock		Depth to bedrock	0.00
		Droughty	0.12			Rock fragments	0.88
		Too acid	0.50			Too acid	0.88
NCB :							
Naskeag--------	35	Poor		Poor		Poor	
		Droughty	0.00	Wetness depth	0.00	Wetness depth	0.00
		Too sandy	0.16	Depth to bedrock	0.00	Too sandy	0.16
		Too acid	0.50			Rock fragments	0.28
		Depth to bedrock	0.99			Too acid	0.88
						Depth to bedrock	0.99
Tunbridge------	25	\| Fair		Poor	0.00	Fair	
		Droughty	0.33	Depth to bedrock		Rock fragments	0.28
		Depth to bedrock	0.35			Depth to bedrock	0.35
		Too acid	0.50			Too acid	0.76
Lyman-----------	15	Poor		Poor		Poor	
		Depth to bedrock	0.00	Depth to bedrock	0.00	Depth to bedrock	0.00
		Droughty	0.43			Rock fragments	0.12
		Too acid	0.50			Too acid	0.76
		Stone content	0.99				
NdB :							
Nicholville--	80	\| Fair		Fair		\| Fair	
		Water erosion		Wetness depth	0.32	Wetness depth	
		Organic matter	0.12			Too acid	0.98
		Too acid	0.50				
NdC:							
Nicholville---	75	Fair		Fair		\| Fair	
		Water erosion		Wetness depth	0.32	Wetness depth	
		Organic matter content low	0.12			slope	0.37
		Too acid	0.50			Too acid	0.98
NGB :							
Nicholville-----	55	Fair		Fair		Fair	
		Organic matter content low Too acid	$\left\lvert\, \begin{aligned} & 0.12 \\ & 0.50 \end{aligned}\right.$	Wetness depth	\| 0.32	Wetness depth	0.32

Table 15.-Source of Reclamation Material, Roadfill, and Topsoil-continued

Table 15.-Source of Reclamation Material, Roadfill, and Topsoil-continued

Map symbol and soil name	$\left\lvert\, \begin{gathered} \text { Pct. } \\ \text { of } \\ \text { map } \\ \text { unit } \end{gathered}\right.$	Potential source of reclamation material		Potential source of roadfill		Potential source of topsoil	
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
RmC:							
		Droughty	0.00	Depth to bedrock	0.00	Depth to bedrock	0.00
		Depth to bedrock	0.00			Rock fragments	0.50
		Too acid	0.50			Too acid	0.59
						Slope	0.96
RNC:							
Rawsonville-----	35	Fair		Poor	0.00	Fair	
		Too acid	0.50	Depth to bedrock		Rock fragments	0.28
		Depth to bedrock	0.93			Too acid	0.88
						Depth to bedrock	0.93
						slope	0.96
Lamoine---------	25	Poor		Poor		Poor	
		Too clayey	0.00	Wetness depth	0.00	Wetness depth	0.00
		Organic matter content low	0.12	Low strength	0.00	Too clayey	0.00
		Water erosion	0.68	Shrink-swell	0.87		
		Too acid	0.68				
Hogback--------	20	Poor		Poor		Poor	
		Depth to bedrock	0.00	Depth to bedrock	0.00	Depth to bedrock	0.00
		Droughty	0.12			Rock fragments	0.88
		Too acid	0.50			Too acid	0.88
						Slope	0.96
Sa:							
Scantic--------	80	\| Poor		Poor		Poor	
		Too clayey	0.00	Wetness depth	0.00	Wetness depth	0.00
		Organic matter content low	0.12	Low strength	0.00	Too clayey	0.00
		Water erosion	0.68	Shrink-swell	0.89		
		Too acid	0.68				
SF:							
Scantic--------	50	\| Poor		Poor		Poor	
		Too clayey	0.00	Wetness depth	0.00	Wetness depth	0.00
		Organic matter content low	0.12	Low strength	0.00	Too clayey	0.00
		Water erosion	0.68	Shrink-swell	0.89		
		Too acid	0.68				
Biddeford------	30	Poor		Poor		Poor	
		Too clayey	0.00	Wetness depth	0.00	Wetness depth	0.00
		Organic matter content low	0.12	Low strength	0.00	Too clayey	0.00
		Too acid	0.68	Shrink-swell	0.94		
SG:							
Sebago---------	50	Fair ${ }_{\text {Too acid }}$		Poor		Poor	
			0.50	Wetness depth	0.00	Wetness depth	0.00
						Organic matter content high Too acid	$\left\lvert\, \begin{aligned} & 0.00 \\ & 0.12\end{aligned}\right.$
Moosabec-------	40	\| Fair		Poor		Poor	
			0.50	Wetness depth	0.00	Organic matter content high Too acid Wetness depth	0.00 0.00 0.00

Table 15.-Source of Reclamation Material, Roadfill, and Topsoil-continued

Table 15.-Source of Reclamation Material, Roadfill, and Topsoil-continued

Map symbol and soil name	Pct. of map unit	Potential source of reclamation material		Potential source of roadfill		Potential source of topsoil	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	\|Value
$\begin{aligned} & \text { SOB: } \\ & \text { Colonel } \end{aligned}$	30	Fair		Poor		Poor	
		Droughty	0.32	Wetness depth	0.00	Wetness depth	0.00
		Too acid	0.50	Stone content	0.99	Rock fragments	0.12
		Stone content	0.99			Too acid	0.92
SRC:							
Skerry---------	35	Poor ${ }^{\text {Droughty }}$		Fair	0.32	Fair	
			0.00	Wetness depth		Rock fragments	0.28
		Too acid	0.68			Wetness depth	0.32
						Slope	0.96
Colonel---------	25	\| Fair		Poor		\| Poor	
		Droughty	0.32	Wetness depth	0.00	Wetness depth	0.00
		Too acid	0.50	Stone content	0.99	Rock fragments	0.12
		Stone content	0.99			Too acid	0.92
Rawsonville-----	20	Fair		Poor	0.00	\| Fair	
		Too acid	0.50	Depth to bedrock		Rock fragments	0.28
		Depth to bedrock	0.93			Too acid	0.88
						Depth to bedrock	0.93
						slope	0.96
STC:							
Skerry	35	Poor		Fair		\| Fair	
		Droughty	0.00	Wetness depth	0.32	Rock fragments	0.28
		Too acid	0.68			Wetness depth	0.32
						Slope	0.96
Colonel--------	25	Fair		Poor		Poor	
		Droughty	0.32	Wetness depth	0.00	Wetness depth	0.00
		Too acid	0.50	Stone content	0.99	Rock fragments	0.12
		Stone content	0.99			Too acid	0.92
Tunbridge-------	20	Fair		Poor	0.00	Fair	
		Droughty	0.33	Depth to bedrock		Rock fragments	0.28
		Depth to bedrock	0.35			Depth to bedrock	0.35
		Too acid	0.50			Too acid	0.76
						Slope	0.96
TaB:							
Telos	80	\|Fair		Poor	0.00	Poor	
		Too acid	0.50	Wetness depth		Wetness depth	0.00
		Droughty	0.79			Rock fragments	0.28
						Too acid	0.76
TCB :							
Telos----------	55	Fair		Poor		Poor	
		Too acid	0.50	Wetness depth	0.00	Wetness depth	0.00
		Droughty	0.56			Rock fragments	0.28
						Too acid	0.76
TCB :							
Chesuncook------	25	Fair Droughty Too acid		Fair Wetness depth	0.32	$\left\lvert\, \begin{aligned} & \text { Fair } \\ & \text { Rock fragments } \\ & \text { Wetness depth } \\ & \text { Too acid }\end{aligned}\right.$	
			0.48				0.04
			0.50				0.32
							0.76

Table 15.-Source of Reclamation Material, Roadfill, and Topsoil-continued

Map symbol and soil name	Pct. of map unit	Potential source of reclamation material		Potential source of roadfill		Potential source of topsoil	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	Value
TEB: Telo	35	Fair		Poor		Poor	
		Too acid	0.50	Wetness depth	0.00	Wetness depth	0.00
		Droughty	0.56			Rock fragments	0.28
						Too acid	0.76
Elliottsville---	25	Fair	0.50	Poor	0.00	Fair	
		Too acid		Depth to bedrock		Rock fragments	0.03
		Depth to bedrock	0.65			Too acid	0.59
						Depth to bedrock	0.65
Monarda---------	20	Fair		Poor		Poor	
		Droughty	0.40	Wetness depth	0.00	Wetness depth	0.00
		Too acid	0.50			Rock fragments	0.12
						Too acid	0.98
TLC:							
Tunbridge-------	35	Fair		Poor		Fair	
		Droughty	0.33	Depth to bedrock	0.00	Rock fragments	0.28
		Depth to bedrock	0.35			Depth to bedrock	0.35
		Too acid	0.50			Too acid	0.76
						Slope	0.96
Lamoine---------	25	Poor		Poor		Poor	
		Too clayey	0.00	Wetness depth	0.00	Wetness depth	0.00
		Organic matter content low	0.12	Low strength	0.00	Too clayey	0.00
		Water erosion	0.68	Shrink-swell	0.87		
		Too acid	0.68				
Lyman-----------	20	Poor		Poor		Poor	
		Depth to bedrock	0.00	Depth to bedrock	0.00	Depth to bedrock	0.00
		Droughty	0.43			Rock fragments	0.12
		Too acid	0.50			Too acid	0.76
		Stone content	0.99			slope	0.96
TuB :							
Tunbridge-------	55	Fair		Poor		Fair	
		Depth to bedrock	0.35	Depth to bedrock	0.00	Rock fragments Depth to bedrock Too acid	0.28
		Too acid	0.50				0.35
		Droughty	0.53				0.76
Lyman-----------	20	Poor		Poor		Poor	
		Depth to bedrock	0.00	Depth to bedrock	0.00	Depth to bedrock	0.00
		Droughty	0.40			Rock fragments	0.12
		Too acid	0.50			Too acid	0.76
TuC:							
Tunbridge-------	50	Fair		Poor		Fair	
		Depth to bedrock		Depth to bedrock	0.00	Rock fragments	0.28
		Too acid	0.50			Depth to bedrock	0.35
		Droughty	0.53			Slope	0.37
						Too acid	0.76
TuC:							
Lyman------------	25	Poor		Poor		Poor	
		Depth to bedrock Droughty Too acid	0.00		0.00	Depth to bedrock Rock fragments Slope Too acid	0.00
			0.40	Depth to bedrock			0.12
			0.50				0.37
							0.76

Table 15.-Source of Reclamation Material, Roadfill, and Topsoil-continued

Table 16.-Dwellings and Small Commercial Buildings
(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00. The larger the value, the greater the limitation. See text for further explanation of ratings in this table.)

Table 16.-Dwellings and Small Commercial Buildings-continued

Map symbol and soil name	Pct. of	Dwellings without basements		Dwellings with basements		Small commercial buildings	
		Rating class and limiting features	Value	Rating class and limiting features	\| Value	Rating class and limiting features	Value
AGB : Adams	55	Not limited		Not limited		Somewhat limited Slope	0.12
Croghan-------------	30	Somewhat limited Depth to saturated zone	0.77	$\begin{array}{\|l} \text { Very limited } \\ \text { Depth to } \\ \text { saturated zone } \end{array}$	\| 1.00	Somewhat limited Depth to saturated zone	0.77
BeC: Becket	80	Somewhat limited Slope	0.63	Somewhat limited Depth to saturated zone Slope		Very limited	
					10.95	slope	\| 1.00
BKD : Becket							
	60	$\begin{aligned} & \text { Very limited } \\ & \text { Slope } \end{aligned}$	1.00	```Very limited Slope Depth to saturated zone```	1.00	$\begin{aligned} & \text { Very limited } \\ & \text { Slope } \end{aligned}$	1.00
					0.95		
Skerry-------------	25	```Somewhat limited Depth to saturated zone slope```		Very limited		Very limited	
			0.77	Depth to saturated zone	1.00	slope	\| 1.00
			0.63	Slope	0.63	Depth to saturated zone	0.77
BnB: Brayton							
	75	$\begin{array}{\|l} \text { Very limited } \\ \text { Depth to } \\ \text { saturated zone } \end{array}$	1.00	$\begin{array}{\|l} \text { Very limited } \\ \text { Depth to } \\ \text { saturated zone } \end{array}$	1.00	$\begin{array}{\|l} \text { Very limited } \\ \text { Depth to } \\ \text { saturated zone } \end{array}$	1.00
BRB : Brayton							
	50	$\begin{aligned} & \text { Very limited } \\ & \text { Depth to } \\ & \text { saturated zone } \end{aligned}$	1.00	$\begin{array}{\|l} \text { Very limited } \\ \text { Depth to } \\ \text { saturated zone } \end{array}$		Very limited	
					1.00	Depth to saturated zone	1.00
Colonel------------	35	$\begin{aligned} & \text { Very limited } \\ & \text { Depth to } \\ & \text { saturated zone } \end{aligned}$		\| Very limited		Very limited	
			1.00	Depth to saturated zone	1.00	Depth to saturated zone	1.00
BTB :							
Brayton------------ \|	50	$\begin{array}{\|l} \text { Very limited } \\ \text { Depth to } \\ \text { saturated zone } \end{array}$	1.00	$\begin{aligned} & \text { Very limited } \\ & \text { Depth to } \\ & \text { saturated zone } \end{aligned}$	1.00	$\begin{aligned} & \text { Very limited } \\ & \text { Depth to } \\ & \text { saturated zone } \end{aligned}$	1.00
Colonel-------------	35	Very limited Depth to saturated zone	1.00	$\begin{array}{\|l} \text { Very limited } \\ \text { Depth to } \\ \text { saturated zone } \end{array}$	1.00	$\begin{aligned} & \text { Very limited } \\ & \text { Depth to } \\ & \text { saturated zone } \end{aligned}$	1.00
BW :							
Bucksport---------	55	Very limited Depth to saturated zone Organic matter content	1.00	Very limited Depth to saturated zone Organic matter content		$\left\lvert\, \begin{aligned} & \text { Very limited } \\ & \text { Depth to } \\ & \text { saturated zone } \\ & \text { Organic matter } \\ & \text { content } \end{aligned}\right.$	
					1.00		1.00
			\| 1.00		1.00		\| 1.00
Wonsqueak---------- - \|	30	Very limited Depth to saturated zone Organic matter content		Very limited Depth to saturated zone	1.00	Very limited	
			11.00			Depth to saturated zone Organic matter content	$1 \begin{aligned} & 1.00 \\ & 1.00\end{aligned}$

Table 16.-Dwellings and Small Commercial Buildings-continued

Map symbol and soil name	Pct. of map unit	Dwellings without basements		Dwellings with basements		Small commercial buildings	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	Value
BxC :							
Buxton----------	85	Somewhat limited		Very limited		Very limited	
		Slope	0.63	Depth to	1.00	slope	1.00
		Depth to saturated zone	0.56	slope	0.63	Depth to saturated zone	0.56
		Shrink-swell	0.50	Shrink-swell	0.50	Shrink-swell	0.50
BZC:							
Buxton	50	Somewhat limited		Very limited		Very limited	
		slope	0.63	Depth to saturated zone	1.00	Slope	1.00
		Depth to saturated zone	0.56	slope	0.63	Depth to saturated zone	0.56
		Shrink-swell	0.50	Shrink-swell	0.50	Shrink-swell	0.50
Lamoine---------	35	Very limited Depth to saturated zone Shrink-swell		Very limited		Very limited	
			1.00	Depth to saturated zone	1.00	Depth to saturated zone	1.00
			0.50	Shrink-swell	0.50	Slope	0.50
						Shrink-swell	0.50
ChB: Chesuncook							
	80	Somewhat limited Depth to saturated zone		Very limited		Somewhat limited	
			0.77	Depth to	1.00	Depth to	0.77
						slope	0.50
ChC:							
Chesuncook------	80	```\|Somewhat limited Depth to saturated zone Slope```		\| Very limited		\| Very limited	
			0.77	Depth to saturated zone	11.00	Slope	1.00
			0.63	slope	0.63	Depth to	0.77
CKC: Chesuncook	25	Somewhat limited Depth to saturated zone Slope		\|Very limited		\|Very limited	
			0.77	Depth to saturated zone	1.00	Slope	1.00
			0.04	slope	0.04	Depth to saturated zone	0.77
Elliottsville----	25	Somewhat limited Depth to hard bedrock					
			0.35	Depth to hard bedrock	11.00	Slope	1.00
		Slope	0.04	slope	0.04	Depth to hard bedrock	0.35
Telos-----------	20	$\begin{aligned} & \text { Very limited } \\ & \text { Depth to } \\ & \text { saturated zone } \end{aligned}$		\| Very limited		Very limited	
			1.00	Depth to saturated zone	\| 1.00	Depth to saturated zone slope	$\left\lvert\, \begin{aligned} & 1.00 \\ & 0.50\end{aligned}\right.$
CLC:							
Chesuncook------	50	Somewhat limited Depth to saturated zone slope	0.77	$\begin{array}{\|l} \text { Very limited } \\ \text { Depth to } \\ \text { saturated zone } \end{array}$	\| 1.00	```Very limited Slope```	1.00
			0.16	slope	0.16	Depth to saturated zone	0.77

Table 16.-Dwellings and Small Commercial Buildings-continued

Table 16.-Dwellings and Small Commercial Buildings-continued

Map symbol and soil name	Pct. of map unit	Dwellings without basements		Dwellings with basements		Small commercial buildings	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	Value
Creasey---------	80	Very limited		Very limited		Very limited	
		Depth to hard bedrock	1.00	Depth to hard bedrock	1.00	slope	1.00
		slope	0.63	slope	0.63	Depth to hard bedrock	1.00
CVC:							
Creasey---------	55	Very limited		Very limited		Very limited	
		(Depth to hard bedrock	1.00	Depth to hard bedrock	1.00	Depth to hard bedrock	1.00
		slope	0.04	slope	0.04	slope	1.00
Abram----------	20	Very limited		Very limited		Very limited	
		Depth to hard bedrock	1.00	Depth to hard bedrock	1.00	Depth to hard bedrock	1.00
		Organic matter content	1.00	slope	0.04	Slope	1.00
		Slope	0.04			Organic matter content	1.00
CXC:							
Creasey--------	55	Very limited		Very limited		Very limited	
		Depth to hard bedrock	1.00	Depth to hard bedrock	1.00	Depth to hard bedrock	1.00
		Slope	0.04	Slope	0.04	Slope	1.00
Lamoine---------	30	```Very limited Depth to saturated zone Shrink-swell```		```Very limited Depth to saturated zone Shrink-swell```		Very limited	
			1.00		1.00	Depth to	1.00
						saturated zone	
			0.50		0.50	Shrink-swell	0.50
						Slope	0.12
CzB :							
Croghan--	75	Somewhat limited Depth to saturated zone		$\begin{array}{\|l} \text { Very limited } \\ \text { Depth to } \\ \text { saturated zone } \end{array}$		```Somewhat limited Depth to saturated zone Slope```	
			0.77		1.00		0.77
							0.12
DAC:							
Danforth--	45	Somewhat limited Slope		Somewhat limitedSlope		Very limited	
			0.04		0.04	slope	1.00
Elliottsville---	30	Somewhat limited 0.35		Very limited		Very limited Slope	
		Depth to hard bedrock	0.35	Depth to hard bedrock	1.00		1.00
		slope	0.04	Slope	0.04	Depth to hard bedrock	0.35
DdC:							
Dixfield-----	80	Somewhat limited		Very limited		Very limited	
		slope	0.63	Depth to saturated zone	1.00	slope	1.00
		Depth to saturated zone	0.56	slope	0.63	Depth to saturated zone	0.56
DfC:							
Dixfield--------	80	Somewhat limited Slope		Very limited		Very limited	
			0.63	Depth to saturated zone	1.00	Slope	1.00
		Depth to saturated zone	0.56	slope	0.63	Depth to saturated zone	0.56

Table 16.-Dwellings and Small Commercial Buildings-continued

Table 16.-Dwellings and Small Commercial Buildings-continued

Table 16.-Dwellings and Small Commercial Buildings-continued

Map symbol and soil name	Pct. of	Dwellings without basements		Dwellings with basements		Small commercial buildings	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	Value
EcB: Elliottsvill	45	Somewhat limited Depth to hard bedrock	0.54	Very limited Depth to hard bedrock	1.00	```Somewhat limited Depth to hard bedrock slope```	
							$\left\lvert\, \begin{aligned} & 0.54 \\ & 0.50\end{aligned}\right.$
Chesuncook------	35	Somewhat limited Depth to saturated zone	0.77	$\begin{aligned} & \text { Very limited } \\ & \text { Depth to } \\ & \text { saturated zone } \end{aligned}$	1.00	Somewhat limited Depth to saturated zone slope	0.77 0.50
EMC: Elliottsville---	50	Somewhat limited		```Very limited Depth to hard bedrock slope```		\|Very limited Slope	
		Depth to hard bedrock	0.35		1.00		1.00
		Slope	0.04		0.04	Depth to hard bedrock	0.35
Monson---------	20	```Very limited Depth to hard bedrock Slope```		\| Very limited		Very limited	
			1.00	Depth to hard bedrock	1.00	Depth to hard bedrock	1.00
			0.04	slope	0.04	slope	1.00
Go: Gouldsboro	90	Very limited Flooding Depth to saturated zone Shrink-swell		\| Very limited		Very limited	
			1.00	Flooding	1.00	Flooding	1.00
			1.00	Depth to saturated zone	1.00	Depth to saturated zone	1.00
			0.50	Shrink-swell	0.50	Shrink-swell	0.50
HCC: Hermon							
	40	Somewhat limited Slope	0.04	Somewhat limited Slope	0.04	Very limited Slope	1.00
Colton---------	20	\| $\begin{aligned} & \text { Somewhat limited } \\ & \text { Slope }\end{aligned}$	0.04	Somewhat limited Slope	0.04	\|Very limited Slope	1.00
Abram-----------	15	\|Very limited Depth to hard bedrock Organic matter content Slope		\|Very limited		Very limited	
			1.00	Depth to hard bedrock	1.00	Depth to hard bedrock	1.00
			1.00	Slope	0.04	Slope	1.00
			0.04			Organic matter content	1.00
HeB :							
Hermon-------	45	Not limited		Not limited		Somewhat limited Slope	0.50
Monadnock-----	40	Not limited		Not limited		Somewhat limited Slope	0.50
HeC:							
Hermon--------	50	Somewhat limited Slope	0.63	Somewhat limited Slope	0.63	\|Very limited Slope	1.00
Monadnock-----	35	Somewhat limited Slope	0.63	Somewhat limited Slope	0.63	\|Very limited Slope	1.00

Table 16.-Dwellings and Small Commercial Buildings-continued

Map symbol and soil name	\| Pct.	Dwellings without basements		Dwellings with basements		Small commercial buildings	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	Value
HkB : Hermon							
	40	Not limited		Not limited		Somewhat limited Slope	0.50
Monadnock-	40	Not limited		Not limited		Somewhat limited Slope	0.50
HkC:							
Hermon-	50	Somewhat limited Slope	0.63	$\left\lvert\, \begin{gathered}\text { Somewhat limited } \\ \text { Slope }\end{gathered}\right.$	0.63	Very limited Slope	1.00
Monadnock--	30	Somewhat limited slope	0.63	$\begin{aligned} & \text { Somewhat limited } \\ & \text { Slope } \end{aligned}$	0.63	Very limited Slope	1.00
HMD :							
Hermon--	45	Very limited Slope	1.00	$\begin{aligned} & \text { Very limited } \\ & \text { Slope } \end{aligned}$	1.00	Very limited Slope	1.00
Monadnock--	35	Very limited Slope	1.00	$\begin{aligned} & \text { Very limited } \\ & \text { Slope } \end{aligned}$	1.00	Very limited Slope	1.00
HOE:							
Hermon-----	50	Very limited Slope	1.00	$\begin{aligned} & \text { Very limited } \\ & \text { Slope } \end{aligned}$	1.00	Very limited Slope	1.00
Monadnock-	35	Very limited Slope	1.00	\|Very limited Slope	1.00	Very limited Slope	1.00
HSC:							
Hermon--	40	$\begin{aligned} & \text { Somewhat limited } \\ & \text { Slope } \end{aligned}$	0.04	$\begin{aligned} & \text { Somewhat limited } \\ & \text { Slope } \end{aligned}$	0.04	Very limited Slope	1.00
Monadnock-	30	Somewhat limited Slope	0.04	Somewhat limited Slope	0.04	Very limited Slope	1.00
Skerry--	15	Somewhat limited Depth to saturated zone	0.77	$\begin{array}{\|l} \text { Very limited } \\ \text { Depth to } \\ \text { saturated zone } \end{array}$	1.00	Somewhat limited Depth to saturated zone slope	0.77 0.50
HVC:							
Hermon--	40	Somewhat limited Slope	0.04	Somewhat limited Slope	0.04	Very limited Slope	1.00
Monadnock--	30	Somewhat limited Slope	0.04	Somewhat limited Slope	0.04	Very limited Slope	1.00
Skerry------	15	Somewhat limited Depth to saturated zone	0.77	$\begin{array}{\|l} \text { Very limited } \\ \text { Depth to } \\ \text { saturated zone } \end{array}$	1.00	Somewhat limited Depth to saturated zone Slope	0.77 0.50
HWE:							
Hogback---------	30	\| Very limited		\| Very limited		Very limited	
		Slope	1.00	Slope	1.00	Slope	1.00
		Depth to hard bedrock	1.00	Depth to hard bedrock	1.00	Depth to hard bedrock	1.00

Table 16.-Dwellings and Small Commercial Buildings-continued

Table 16.-Dwellings and Small Commercial Buildings-continued

Map symbol and soil name	Pct. of map unit	Dwellings without basements		Dwellings with basements		Small commercial buildings	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	Value
MDD :							
Marlow---------	55	Slope	1.00	Slope	1.00	Slope	1.00
		Depth to saturated zone	0.39	Depth to saturated zone	1.00	Depth to saturated zone	0.39
Dixfield-------	30	Somewhat limited		\| Very limited		\| Very limited	
		Slope	0.63	Depth to saturated zo	1.00	Slope	1.00
		Depth to saturated zone	0.56	slope	0.63	Depth to saturated zone	0.56
MFD :							
Marlow---------	35	\| Very limited		\|Very limited		\| Very limited	
		Slope	1.00	Slope	1.00	Slope	1.00
		Depth to saturated zone	0.39	Depth to saturated zone	1.00	Depth to saturated zone	0.39
Rawsonville-----	25	\| Very limited		Very limited		Very limited	
		Slope	1.00	slope	1.00	slope	1.00
		Depth to hard bedrock	0.06	Depth to hard bedrock	1.00	Depth to hard bedrock	0.06
Dixfield-------	20	Somewhat limited		Very limited		\| Very limited	
		Slope	0.63	Depth to	1.00	Slope	1.00
		Depth to saturated zone	0.56	slope	0.63	Depth to saturated zone	0.56
MGD :							
Marlow---------	35	\| Very limited		Very limited		\| Very limited	
		slope	1.00	Slope	1.00	slope	1.00
		Depth to saturated zone	0.39	Depth to saturated zone	1.00	Depth to saturated zone	0.39
Tunbridge------	25	\| Very limited		\| Very limited		\| Very limited	
		Slope	1.00	Slope	1.00	Slope	1.00
		Depth to hard bedrock	0.64	Depth to hard bedrock	1.00	Depth to hard bedrock	0.64
Dixfield--------	20	Somewhat limited		Very limited		\|Very limited	
		Slope	0.63	Depth to saturated zone	1.00	Slope	\| 1.00
		Depth to saturated zone	0.56	Slope	0.63	Depth to saturated zone	0.56
MmA :							
Masardis--	90	Not limited		Not limited		Not limited	
MmB :							
Masardis---	80	Not limited		Not limited		$\begin{array}{\|l} \text { Somewhat limited } \\ \text { Slope } \end{array}$	0.50
MmC :							
Masardis---	85	$\begin{aligned} & \text { Somewhat limited } \\ & \text { Slope } \end{aligned}$	0.63	$\begin{aligned} & \text { Somewhat limited } \\ & \text { Slope } \end{aligned}$	0.63	$\begin{aligned} & \text { Very limited } \\ & \text { Slope } \end{aligned}$	1.00
MmE :							
Masardis-------	90	$\begin{aligned} & \text { Very limited } \\ & \text { Slope } \end{aligned}$	1.00	$\begin{aligned} & \text { Very limited } \\ & \text { Slope } \end{aligned}$	1.00	$\begin{aligned} & \text { Very limited } \\ & \text { Slope } \end{aligned}$	1.00

Table 16.-Dwellings and Small Commercial Buildings-continued

Map symbol and soil name		Dwellings without basements		Dwellings with basements		Small commercial buildings	
		Rating class and limiting features	\|Value	Rating class and limiting features	\| Value	Rating class and limiting features	Value
MRE :							
Masardis-----------	60	$\begin{aligned} & \text { \|Very limited } \\ & \text { Slope } \end{aligned}$	11.00	$\begin{aligned} & \text { \|Very limited } \\ & \text { Slope } \end{aligned}$	1.00	$\begin{aligned} & \text { \|Very limited } \\ & \text { Slope } \end{aligned}$	1.00
Adams---------------	25	$\begin{aligned} & \text { \|Very limited } \\ & \text { Slope } \end{aligned}$	1.00	$\begin{aligned} & \text { Very limited } \\ & \text { Slope } \end{aligned}$	1.00	$\begin{aligned} & \text { Very limited } \\ & \text { Slope } \end{aligned}$	1.00
MSC :							
Masardis-----------	55	$\begin{aligned} & \text { Somewhat limited } \\ & \text { Slope } \end{aligned}$	0.04	$\begin{aligned} & \text { Somewhat limited } \\ & \text { Slope } \end{aligned}$	0.04	$\begin{aligned} & \text { Very limited } \\ & \text { Slope } \end{aligned}$	1.00
Sheepscot----------	25	Somewhat limited Depth to saturated zone	0.07	$\begin{array}{\|l} \text { Very limited } \\ \text { Depth to } \\ \text { saturated zone } \end{array}$	1.00	Somewhat limited Depth to saturated zone	0.07
MT :							
Medomak------------	50	Very limited Flooding Depth to saturated zone	\| 1.00	Flooding	1.00	Flooding	1.00
			\| 1.00	Depth to saturated zone	1.00	Depth to saturated zone	1.00
Wonsqueak----------	30	Very limited Depth to saturated zone Organic matter content		Very limited		Very limited	
			\| 1.00	Depth to saturated zone	1.00	Depth to saturated zone	1.00
			1.00			Organic matter content	1.00
Mvb : Monarda							
	75	$\begin{array}{\|l} \text { Very limited } \\ \text { Depth to } \\ \text { saturated zone } \end{array}$		\|Very limited		Very limited	
			1.00	Depth to saturated zone	1.00	Depth to saturated zone	1.00
MWB :							
Monarda------------	45	$\begin{array}{\|l} \text { Very limited } \\ \text { Depth to } \\ \text { saturated zone } \end{array}$		\| Very limited		\| Very limited	
			1.00	Depth to saturated zone	1.00	Depth to saturated zone	1.00
Telos--------------	40	$\begin{array}{\|l} \text { Very limited } \\ \text { Depth to } \\ \text { saturated zone } \end{array}$		\| Very limited		\| Very limited	
			1.00	Depth to saturated zone	1.00	Depth to saturated zone slope	1.00 0.50
MXB :							
Monarda-------------	35	$\begin{aligned} & \text { Very limited } \\ & \text { Depth to } \\ & \text { saturated zone } \end{aligned}$	\| 1.00	$\begin{array}{\|l} \text { Very limited } \\ \text { Depth to } \\ \text { saturated zone } \end{array}$	1.00	$\begin{array}{\|l} \text { Very limited } \\ \text { Depth to } \\ \text { saturated zone } \end{array}$	1.00
Wonsqueak----------	30			\| Very limited		\| Very limited	
			$\left\lvert\, \begin{aligned} & 1.00 \\ & 1.00\end{aligned}\right.$	Depth to saturated zone	1.00	Depth to saturated zone Organic matter content	1.00 1.00
NAC:							
Naskeag------------	35			\| Very limited		Very limited	
			\| 1.00	Depth to saturated zone	1.00	Depth to saturated zone	1.00
			0.01	$\begin{aligned} & \text { Depth to hard } \\ & \text { bedrock } \end{aligned}$	1.00	Depth to hard bedrock	0.01

Table 16.-Dwellings and Small Commercial Buildings-continued

Table 16.-Dwellings and Small Commercial Buildings-continued

Map symbol and soil name	Pct. of	Dwellings without basements		Dwellings with basements		Small commercial buildings	
		Rating class and limiting features	Value	Rating class and limiting features	\|Value	Rating class and limiting features	Value
SOB :							
Skerry---------	50	Somewhat limited Depth to saturated zone	0.77	$\left\lvert\, \begin{aligned} & \text { Very limited } \\ & \text { Depth to } \\ & \text { saturated zone } \end{aligned}\right.$	1.00	```Somewhat limited Depth to saturated zone Slope```	0.77
Colonel--------	30	$\begin{aligned} & \text { Very limited } \\ & \text { Depth to } \\ & \text { saturated zone } \end{aligned}$	1.00	$\begin{array}{\|l} \text { Very limited } \\ \text { Depth to } \\ \text { saturated zone } \end{array}$	1.00	Very limited Depth to saturated zone	1.00
SRC: Skerry	35	```Somewhat limited Depth to saturated zone Slope```		```Very limited Depth to saturated zone slope```		Very limited Slope	
			0.77		1.00		1.00
			0.04		0.04	Depth to saturated zone	0.77
Colonel--------	25	Very limited Depth to saturated zone	1.00	$\begin{array}{\|l} \text { Very limited } \\ \text { Depth to } \\ \text { saturated zone } \end{array}$	1.00	Very limited Depth to saturated zone	1.00
Rawsonville----	20	```Somewhat limited Depth to hard bedrock Slope```	0.06	```Very limited Depth to hard bedrock slope```	1.00	Very limited Slope	1.00
			0.04		0.04	Depth to hard bedrock	0.06
STC:							
Skerry---------	35	```Somewhat limited Depth to saturated zone Slope```	0.77	```Very limited Depth to saturated zone slope```		Very limited Slope	
					\| 1.00		1.00
			0.04		0.04	Depth to saturated zone	0.77
Colonel--------	25	Very limited Depth to saturated zone	1.00	$\begin{array}{\|l} \text { Very limited } \\ \text { Depth to } \\ \text { saturated zone } \end{array}$	1.00	Very limited Depth to saturated zone	1.00
Tunbridge------	20	Somewhat limited Depth to hard bedrock Slope	0.64	\|Very limited		Very limited	
				Depth to hard bedrock	\| 1.00		1.00
			0.04	slope	0.04	Depth to hard bedrock	0.64
TaB:							
Telos	80	Very limited Depth to saturated zone	1.00	$\begin{array}{\|l} \text { Very limited } \\ \text { Depth to } \\ \text { saturated zone } \end{array}$		Very limited Depth to saturated zone Slope	
					1.00		1.00 0.50
TCB : Telos							
	55	Very limited Depth to saturated zone	1.00	$\begin{aligned} & \text { Very limited } \\ & \text { Depth to } \\ & \text { saturated zone } \end{aligned}$	1.00	Very limited Depth to saturated zone	1.00
TCB: Chesuncook							
	25	Somewhat limited Depth to saturated zone	0.77	$\begin{array}{\|l} \text { Very limited } \\ \text { Depth to } \\ \text { saturated zone } \end{array}$	1.00	```Somewhat limited Depth to saturated zone slope```	0.77 0.50

Table 16.-Dwellings and Small Commercial Buildings-continued

Map symbol and soil name	Pct. of map unit	Dwellings without basements		Dwellings with basements		Small commercial buildings	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	Value
$\begin{aligned} & \text { TEB: } \\ & \text { Telos } \end{aligned}$	35	\|Very limited Depth to saturated zone	1.00	Very limited Depth to saturated zone	1.00	Very limited Depth to saturated zone	1.00
Elliottsville--	25	Somewhat limited Depth to hard bedrock	0.35	Very limited Depth to hard bedrock	1.00	Somewhat limited Slope Depth to hard bedrock	$\left\lvert\, \begin{aligned} & 0.50 \\ & 0.35\end{aligned}\right.$
Monarda -	20	$\begin{array}{\|l} \text { Very limited } \\ \text { Depth to } \\ \text { saturated zone } \end{array}$	1.00	Very limited Depth to saturated zone	1.00	Very limited Depth to saturated zone	1.00
TLC: Tunbridge	35	Somewhat limited		Very limited		Very limited	
		Depth to hard bedrock Slope	0.64	Depth to hard bedrock slope	1.00 0.04	```slope Depth to hard bedrock```	$\left\lvert\, \begin{aligned} & 1.00 \\ & 0.64\end{aligned}\right.$
Lamoine-	25	```\|Very limited Depth to saturated zone Shrink-swell```	1.00 0.50	```Very limited Depth to saturated zone Shrink-swell```	1.00 0.50	```Very limited Depth to saturated zone Shrink-swell```	$1 \begin{aligned} & 1.00 \\ & 0.50\end{aligned}$
Lyman-	20	```\|Very limited Depth to hard bedrock Slope```	1.00 0.04	```Very limited Depth to hard bedrock Slope```	1.00 0.04	```Very limited Depth to hard bedrock slope```	1.00 1.00
TuB: Tunbridge							
	55	Somewhat limited Depth to hard bedrock	0.64	Very limited Depth to hard bedrock	1.00	Somewhat limited Depth to hard bedrock slope	$\left\lvert\, \begin{aligned} & 0.64 \\ & 0.50 \end{aligned}\right.$
Lyman-	20	\|Very limited Depth to hard bedrock	1.00	Very limited Depth to hard bedrock	1.00	```Very limited Depth to hard bedrock Slope```	$1 \begin{aligned} & 1.00 \\ & 0.50\end{aligned}$
TuC: Tunbridge	50	Somewhat limited		Very limited		Very limited	
		Depth to hard bedrock Slope	0.64	Depth to hard bedrock slope	$1 \begin{aligned} & 1.00 \\ & 0.63\end{aligned}$	slope Depth to hard bedrock	$\left\lvert\, \begin{aligned} & 1.00 \\ & 0.64\end{aligned}\right.$
Lyman-----------	25	$\begin{array}{\|l} \text { Very limited } \\ \text { Depth to hard } \\ \text { bedrock } \end{array}$	1.00	Very limited Depth to hard bedrock	1.00	Very limited slope	1.00
		Slope	0.63	Slope	0.63	Depth to hard bedrock	1.00

Table 16.-Dwellings and Small Commercial Buildings-continued

Table 17.-Roads and Streets, Shallow Excavations, and Lawns and Landscaping
(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00. The larger the value, the greater the limitation. See text for further explanation of ratings in this table.)

Table 17.-Roads and Streets, Shallow Excavations, and Lawns and Landscaping-continued

Table 17.-Roads and Streets, Shallow Excavations, and Lawns and Landscaping-continued

Table 17.-Roads and Streets, Shallow Excavations, and Lawns and Landscaping-continued

Map symbol and soil name	\mid Pct.of\mid mapunit	Local roads and		Shallow excavations		Lawns and landscaping	
		Rating class and limiting features	Value	Rating class and limiting features	\| Value	Rating class and limiting features	Value
BZC:							
Lamoine	35	Depth to saturated zone Frost action	11.00	Depth to saturated zone	1.00	Depth to saturated zone	1.00
			1.00	Too clayey	0.12		
		Low strength	1.00	Cutbanks cave	0.10		
		Shrink-swell	0.50				
ChB :							
Chesuncook------	80	Somewhat limited		Very limited		Somewhat limited	
		Frost action	0.50	Depth to saturated zone	\| 1.00	Depth to saturated zone	0.43
		Depth to saturated zone	0.43	Cutbanks cave	\| 1.00		
ChC:							
Chesuncook------	80	Somewhat limited		Very limited		Somewhat limited	
		Slope	0.63	Depth to saturated zone	\| 1.00	Slope	0.63
		Frost action	0.50	Cutbanks cave	11.00	Depth to saturated zone	0.43
		Depth to saturated zone	0.43	Slope	0.63		
CKC :							
Chesuncook------	25	Somewhat limited Frost action		\| Very limited		Somewhat limited	
			0.50	Depth to saturated zone	11.00	Large stones content	0.61
		Depth to saturated zone	0.43	Cutbanks cave	11.00	Depth to saturated zone	0.43
		Slope	0.04	Slope	0.04	Slope	0.04
Elliottsville---	25	Somewhat limited Frost action		Very limited		Somewhat limited	
			0.50	Depth to hard bedrock	\| 1.00	Large stones content	0.61
		Depth to hard bedrock	0.35	Cutbanks cave	0.10	Depth to bedrock	0.35
		Slope	0.04	Slope	0.04	Slope	0.04
Telos-----------	20	Very limited Frost action		Very limited		Very limited	
			1.00	Depth to saturated zone	\| 1.00	Depth to saturated zone	0.99
		Depth to saturated zone	0.99	Cutbanks cave	11.00	Large stones content	0.61
CLC:							
Chesuncook------	50	Somewhat limited Frost action		Very limited		Somewhat limited	
			0.50	Depth to saturated zone	1.00	Large stones content	0.61
		Depth to saturated zone	0.43	Cutbanks cave	\| 1.00	Depth to saturated zone	0.43
		Slope	0.16	Slope	0.16	Slope	0.16
Telos-----------	30	Very limited Frost action		Very limited		Very limited	
			1.00	Depth to saturated zone	11.00	Depth to saturated zone	0.99
		Depth to saturated zone	0.99	Cutbanks cave	11.00	Large stones content	0.61

Table 17.-Roads and Streets, Shallow Excavations, and Lawns and Landscaping-continued

Table 17.-Roads and Streets, Shallow Excavations, and Lawns and Landscaping-continued

Map symbol and soil name	Pct. of map unit	Local roads and streets		Shallow excavations		Lawns and landscaping	
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	Value
CSC:							
Colton	40		0.04	Very limited Cutbanks cave	1.00	Droughty	1.00
				slope	0.04	Large stones content	0.61
						Slope	0.04
Hermon----------	35	$\begin{aligned} & \text { Somewhat limited } \\ & \text { Slope } \end{aligned}$	0.04			Somewhat limited	0.61
				Cutbanks cave	1.00	Large stones content	
				Slope	0.04	Slope	0.04
CSD :							
Colton---------	60	Very limited Slope	1.00	Very limitedSlope		Very limited	
					1.00	Slope	1.00
				Cutbanks cave	1.00	Droughty	1.00
						Large stones content	0.61
Hermon----------	25	$\begin{aligned} & \text { Very limited } \\ & \text { Slope } \end{aligned}$	1.00	Very limitedSlope		Very limited	
					\| 1.00	Slope	1.00
				Cutbanks cave	1.00	Large stones content	0.61
CtB :							
Creasey---------	80	Very limited		Very limited		Very limited	
		Depth to hard bedrock	1.00	Depth to hard bedrock	1.00	Depth to bedrock	1.00
		Frost action	0.50	Cutbanks cave	0.10	Droughty	0.98
						Gravel content	0.24
CtC:							
Creasey--------	80	Very limited		Very limited		Very limited	
		Depth to hard bedrock	1.00	Depth to hard bedrock	1.00	Depth to bedrock	1.00
		Slope	0.63	slope	0.63	Droughty	0.98
		Frost action	0.50	Cutbanks cave	0.10	Slope	0.63
						Gravel content	0.24
CVC:							
Creasey-	55	Very limited		Very limited		Very limited	
		Depth to hard bedrock	1.00	Depth to hard bedrock	11.00	Depth to bedrock	1.00
		Frost action	0.50	Cutbanks cave	0.10	Droughty	0.98
		Slope	0.04	Slope	0.04	Gravel content	0.24
						Slope	0.04
Abram-----------	20	```Very limited Depth to hard bedrock slope```		Very limited Depth to hard bedrock slope		Very limited Depth to bedrock	
			1.00		1.00		1.00
			0.04		0.04	Droughty	1.00
						Large stones content	0.61
						Slope	0.04
CXC:							
Creasey---------	55	Very limited Depth to hard bedrock Frost action slope		Very limited		Very limited	
			1.00	Depth to hard bedrock	1.00	Depth to bedrock	1.00
			0.50	Cutbanks cave	0.10	Droughty	0.98
			0.04	Slope	0.04	Gravel content	0.24
						Slope	0.04

Table 17.-Roads and Streets, Shallow Excavations, and Lawns and Landscaping-continued

Table 17.-Roads and Streets, Shallow Excavations, and Lawns and Landscaping-continued

Map symbol and soil name	Pct. of map unit	Local roads and		Shallow excavations		Lawns and landscaping	
		Rating class and limiting features	Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
DgB:							
		Frost action	1.00	Depth to saturated zone	11.00	Depth to saturated zone	0.99
		Depth to saturated zone	0.99	Cutbanks cave	1.00	Gravel content	0.07
				Dense layer	0.50	Large stones content	0.05
DHB :							
Dixfield--------	50	Very limited		Very limited		Somewhat limited	
		Frost action	1.00	Depth to saturated zone	1.00	Large stones content	0.61
		Depth to saturated zone	0.28	Cutbanks cave	1.00	Depth to saturated zone	0.28
				Dense layer	0.50		
Colonel---------	35	Very limited		Very limited		Very limited	
		Frost action	1.00	Depth to saturated zone	\| 1.00	Depth to saturated zone	0.99
		Depth to saturated zone	0.99	Cutbanks cave	\| 1.00	Large stones content	0.61
				Dense layer	0.50		
DkB:							
Dixfield--------	45	Very limited		Very limited		Somewhat limited	
		Frost action	1.00	Depth to saturated zone	11.00	Large stones content	0.61
		Depth to saturated zone	0.28	Cutbanks cave	1.00	Depth to saturated zone	0.28
				Dense layer	0.50		
Colonel---------	40	Very limited		Very limited		Very limited	
		Frost action	1.00	Depth to saturated zone	\| 1.00	Depth to saturated zone	0.99
		Depth to saturated zone	0.99	Cutbanks cave	1.00	Large stones content	0.61
				Dense layer	0.50		
DMC:							
Dixfield--------	55	Very limited		\|Very limited		Somewhat limited	
		Frost action	1.00	Depth to saturated zone	\| 1.00	Large stones content	0.61
		Depth to saturated zone	0.28	Cutbanks cave	1.00	Depth to saturated zone	0.28
		slope	0.04	Dense layer	0.50	slope	0.04
				Slope	0.04		
Marlow----------	30	Somewhat limited Slope		Very limited		Somewhat limited	
			0.63	Depth to saturated zone	\| 1.00	slope	0.63
		Frost action	0.50	Slope	0.63	Large stones content	0.61
		Depth to saturated zone	0.19	Dense layer	$\left\lvert\, \begin{aligned} & 0.50 \\ & 0.10\end{aligned}\right.$	Depth to saturated zone	0.19 0.13
				Cutbanks cave	0.10	Droughty	0.13

Table 17.-Roads and Streets, Shallow Excavations, and Lawns and Landscaping-continued

Table 17.-Roads and Streets, Shallow Excavations, and Lawns and Landscaping-continued

Table 17.-Roads and Streets, Shallow Excavations, and Lawns and Landscaping-continued

Map symbol and soil name	Pct. of map unit	Local roads and streets		Shallow excavations		Lawns and landscaping	
		Rating class and limiting features	Value	Rating class and limiting features	\|Value	Rating class and limiting features	Value
EMC:							
Monson----------	20	Depth to hard bedrock	1.00	Depth to hard bedrock	1.00	Depth to bedrock	1.00
		Frost action	0.50	slope	0.04	Large stones content	0.61
		Slope	0.04			Droughty	0.44
						slope	0.04
Go:							
Gouldsboro------	90	Very limited		Very limited		Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone	1.00	Flooding	1.00
		Frost action	1.00	Flooding	0.80	Depth to saturated z	1.00
		Flooding	1.00	Cutbanks cave	0.10	Sulfur content	1.00
		Low strength	1.00				
		Shrink-swell	0.50				
HCC:							
Hermon----------	40	Somewhat limited		Very limited		Somewhat limited	
		slope	0.04	Cutbanks cave	1.00	Large stones content	0.61
				Slope	0.04	Slope	0.04
Colton----------	20	Somewhat limited Slope		Very limited Cutbanks cave slope		Very limited	
			0.04		1.00	Droughty	1.00
					0.04	Large stones content	0.61
						Slope	0.04
Abram-----------	15	Very limited		Very limited		Very limited	
		Depth to hard bedrock	1.00	Depth to hard bedrock	1.00	Depth to bedrock	1.00
		slope	0.04	slope	0.04	Droughty	
						Large stones content	0.61
						slope	0.04
HeB :							
Hermon----	45	Not limited		Very limited Cutbanks cave		Not limited	
					1.00		
Monadnock-------	40	Not limited		Very limited Cutbanks cave		Somewhat limited	
					1.00	\| Droughty	0.16
						Large stones content	0.01
HeC:							
Hermon----	50	Somewhat limited Slope	0.63	Very limited Cutbanks cave Slope	$\left\lvert\, \begin{aligned} & 1.00 \\ & 0.63 \end{aligned}\right.$	Somewhat limited Slope	0.63
Monadnock------	35	Somewhat limited slope	0.63	Very limited Cutbanks cave slope		```Somewhat limited Slope Droughty Large stones content```	
					1.00		0.63
					0.63		0.16
							0.01

Table 17.-Roads and Streets, Shallow Excavations, and Lawns and Landscaping-continued

Map symbol and soil name	Pct. of map unit	Local roads and		Shallow excavations		Lawns and landscaping	
		Rating class and limiting features	\|Value	Rating class and limiting features	\| Value	Rating class and limiting features	Value
HkB :							
Hermon-	40	Not limited		\|Very limited Cutbanks cave	1.00	\|Very limited Large stones content	1.00
Monadnock-------	40	Not limited		\|Very limited		Somewhat limited	
				Cutbanks cave	1.00	Large stones content Droughty	0.61 0.21
							0.21
HkC:							
Hermon----------	50	Somewhat limited Slope	0.63			Very limited	
				Cutbanks cave	1.00	Large stones content	1.00
				Slope	0.63	slope	0.63
Monadnock------	30	Somewhat limited Slope	0.63	\|Very limited Cutbanks cave slope		Somewhat limited	
					11.00	Slope	0.63
					0.63	Large stones content	0.61
						Droughty	0.21
HMD :							
Hermon---------	45	Very limited Slope	1.00	\| Very limited		Very limited	
				slope	1.00	Slope	1.00
				Cutbanks cave	1.00	Large stones content	0.61
Monadnock-------	35	Very limited Slope	1.00	\| Very limited		Very limited	
				Slope	1.00	Slope	1.00
				Cutbanks cave	1.00	Large stones content	0.61
						Droughty	0.21
HOE:							
Hermon---------	50	Very limited Slope	11.00	\|Very limited		Very limited	
				Slope	1.00	Slope	1.00
				Cutbanks cave	1.00	Large stones content	0.61
Monadnock-------	35	Very limited Slope		\|Very limited		Very limited	
			11.00	slope	11.00	Slope	1.00
				Cutbanks cave	1.00	Large stones content	0.61
						Droughty	0.21
HSC :							
Hermon--------	40	Somewhat limited Slope		\|Very limited		Somewhat limited Large stones content Slope	
			0.04	Cutbanks cave	1.00		0.61
				Slope	0.04		0.04
Monadnock-------	30	Somewhat limited slope		\|Very limited		Somewhat limited	
			0.04	Cutbanks cave Slope	11.00	Large stones content	0.61
					0.04	Droughty	0.21
						Slope	0.04

Table 17.-Roads and Streets, Shallow Excavations, and Lawns and Landscaping-continued

Table 17.-Roads and Streets, Shallow Excavations, and Lawns and Landscaping-continued

Table 17.-Roads and Streets, Shallow Excavations, and Lawns and Landscaping-continued

Table 17.-Roads and Streets, Shallow Excavations, and Lawns and Landscaping-continued

Map symbol and soil name	$\left\lvert\, \begin{gathered} \text { Pct. } \\ \text { of } \\ \text { map } \\ \text { unit } \end{gathered}\right.$	Local roads and streets		Shallow excavations		Lawns and landscaping		
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	Value	
		Depth to saturated zone	1.00	Depth to saturated zone	11.00	Depth to saturated zone	\| 1.00	
		Frost action	1.00	Too clayey	0.12			
		Low strength	1.00	Cutbanks cave	0.10			
		Shrink-swell	0.50					
LmB :								
Lamoine---------	55	Very limited		Very limited		\| Very limited		
		Depth to saturated zone	1.00	Depth to saturated zone	11.00	Depth to saturated zone	1.00	
		Frost action	1.00	Too clayey	0.12			
		Low strength	1.00	Cutbanks cave	0.10			
		Shrink-swell	0.50					
Scantic---------	35	Very limited		Very limited		Very limited		
		Depth to saturated zone	1.00	Depth to saturated zone	\| 1.00	Depth to saturated zone	11.00	
		Frost action	1.00	Too clayey	0.12			
		Low strength	1.00	Cutbanks cave	0.10			
		Shrink-swell	0.50					
LnB :								
Lamoine--------	55	Very limited \|		Very limited		Very limited	1.00	
		Depth to saturated zone	1.00	Depth to saturated zone	11.00	Depth to saturated zone		
		Frost action	1.00	Too clayey	0.12			
		Low strength	1.00	Cutbanks cave	0.10			
		Shrink-swell	0.50					
Scantic-	35	Very limited 1.00		Very limited Depth to		Very limited	1.00	
		Depth to saturated zone	1.00	Depth to saturated zone	1.00	Depth to saturated zone		
		Frost action	1.00	Too clayey	0.12			
		Low strength	1.00	Cutbanks cave	0.10			
		Shrink-swell	0.50					
LSB :								
Lamoine-	35	Very limited		Very limited		Very limited	1.00	
		Depth to saturated zone	1.00	Depth to saturated zone	1.00	Depth to saturated zone		
		Frost action	1.00	Too clayey	0.12			
		Low strength	1.00	Cutbanks cave	0.10			
		Shrink-swell	0.50					
Scantic--------	20	Very limited		Very limited		Very limited	1.00	
		Depth to saturated zone	1.00	Depth to saturated zone	1.00	Depth to saturated zone		
		Frost action	1.00	Too clayey	0.12			
		Low strength	1.00	Cutbanks cave	0.10			
		Shrink-swell	0.50					
Colonel---------	20	Very limited Frost action		Very limited		Very limited		
			1.00	Depth to saturated zone	1.00	Depth to saturated zone	0.99	
		Depth to saturated zone	0.99	Cutbanks cave	11.00	Large stones content	0.61	
				Dense layer	0.50			

Table 17.-Roads and Streets, Shallow Excavations, and Lawns and Landscaping-continued

Map symbol and soil name	$\left\lvert\, \begin{gathered} \text { Pct. } \\ \text { of } \\ \text { map } \\ \text { unit } \end{gathered}\right.$	Local roads and streets		Shallow excavations		Lawns and landscaping		
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	Value	
		Depth to saturated zone	1.00	Depth to saturated zone	1.00	Depth to saturated zone	1.00	
		Frost action	1.00	Too clayey	0.12			
		Low strength	1.00	Cutbanks cave	0.10			
		Shrink-swell	0.50					
Tunbridge-------	25	Somewhat limited		Very limited		Somewhat limited		
		Depth to hard bedrock	0.64	Depth to hard bedrock	1.00	Depth to bedrock	0.65	
		Frost action	0.50	Cutbanks cave	1.00	Large stones content	0.61	
Scantic--------	20	Very limited		Very limited		Very limited	1.00	
		Depth to saturated zone	1.00	Depth to saturated zone	1.00	Depth to saturated zone		
		Frost action	1.00	Too clayey	0.12			
		Low strength	1.00	Cutbanks cave	0.10			
			0.50					
LUE:								
Lyman-----------	30	Very limited		Very limited		\| Very limited		
		Depth to hard bedrock	1.00	Depth to hard bedrock	1.00	slope	1.00	
		Slope	1.00	slope	1.00	Depth to bedrock	1.00	
		Frost action	0.50			Large stones content	0.61	
Abram-----------	25	```Very limited Depth to hard bedrock slope```		```Very limited Depth to hard bedrock Slope```		Very limited Depth to bedrock		
			1.00		1.00	Depth to bedrock	1.00	
			1.00		1.00	Slope	1.00	
						Droughty	1.00	
						Large stones content	0.61	
Tunbridge-------	25	Very limited Slope		Very limited		Very limited		
			1.00	Depth to hard bedrock	1.00	slope	1.00	
		Depth to hard bedrock	0.64	slope	1.00	Depth to bedrock	0.65	
		Frost action	0.50	Cutbanks cave	1.00	Large stones content	0.61	
LYC:								
Lyman-----------	30	Very limited		Very limited		Very limited		
		Depth to hard bedrock	1.00	Depth to hard bedrock	1.00	Depth to bedrock	1.00	
		Frost action	0.50	slope	0.04	Large stones content	0.61	
		Slope	0.04			Slope	0.04	
Tunbridge-------	30	Somewhat limited Depth to hard bedrock Frost action		Very limited		Somewhat limited Depth to bedrock		
			0.64	Depth to hard bedrock	1.00		0.65	
			0.50	Cutbanks cave	1.00	Large stones content	0.61	
		Slope	0.04	Slope	0.04	Slope	0.04	

Table 17.-Roads and Streets, Shallow Excavations, and Lawns and Landscaping-continued

Table 17.-Roads and Streets, Shallow Excavations, and Lawns and Landscaping-continued

Map symbol and soil name	$\left\lvert\, \begin{gathered} \text { Pct. } \\ \text { of } \\ \text { map } \\ \text { unit } \end{gathered}\right.$	Local roads and streets		Shallow excavations		Lawns and landscaping		
		Rating class and limiting features	Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	
Rawsonville-----	25	Slope	11.00	Depth to hard bedrock	1.00	Slope	1.00	
		Frost action	0.50	slope	1.00	Large stones content	0.61	
		Depth to hard bedrock	0.06	Cutbanks cave	1.00	Depth to bedrock	0.06	
Dixfield-------	20	Very limited		Very limited		Somewhat limited		
		Frost action	11.00	Depth to saturated zone	1.00	Slope	0.63	
		Slope	0.63	Cutbanks cave	1.00	Large stones content	0.61	
		Depth to saturated zone	0.28	Slope	0.63	Depth to saturated zone	0.28	
				Dense layer	0.50			
MGD :								
Marlow---------	35	Very limited		Very limited		Very limited		
		Slope	1.00	Slope	1.00	Slope	1.00	
		Frost action	0.50	Depth to saturated zone	1.00	Large stones content	0.61	
		Depth to saturated zone	0.19	Dense layer	0.50	Depth to saturated zone	0.19	
				Cutbanks cave	0.10	Droughty	0.13	
Tunbridge-------	25			Very limited				
		slope	1.00	Depth to hard bedrock	1.00	Slope	1.00	
		Depth to hard bedrock	0.64	slope	1.00	Depth to bedrock	0.65	
		Frost action	0.50	Cutbanks cave	1.00	Large stones content	0.61	
Dixfield--------	20	Very limited		Very limited		Somewhat limited		
		Frost action	1.00	Depth to saturated zone	1.00	slope	0.63	
		Slope	0.63	Cutbanks cave	1.00	Large stones content	0.61	
		Depth to saturated zone	0.28	Slope	0.63	Depth to saturated zone	0.28	
				Dense layer	0.50			
MmA :								
Masardis--	90	Not limited		\|Very limited Cutbanks cave	1.00	Not limited		
MmB :								
Masardis-	80	Not limited		\|Very limited Cutbanks cave	1.00	Not limited		
MmC :								
Masardis--------	85	Somewhat limited Slope	0.63	Very limited Cutbanks cave slope	$\left\lvert\, \begin{aligned} & 1.00 \\ & 0.63 \end{aligned}\right.$	Somewhat limited Slope	0.63	
MmE :								
Masardis-------	90	Very limited Slope	1.00	$\begin{array}{\|l} \text { Very limited } \\ \text { Slope } \\ \text { Cutbanks cave } \end{array}$	$\text { \| } 1.00$	```Very limited Slope```	1.00	

Table 17.-Roads and Streets, Shallow Excavations, and Lawns and Landscaping-continued

Map symbol and soil name	Pct. of map unit	Local roads and		Shallow excavations		Lawns and landscaping	
		Rating class and limiting features	Value	Rating class and limiting features	\| Value	Rating class and limiting features	Value
MRE :							
Masardis--------	60	Very limited		Very limited		Very limited	
		slope	1.00	Slope	1.001.00	slope	1.00
				Cutbanks cave		Droughty	0.02
Adams-----------	25	Very limitedSlope		Very limited		Very limited	
			1.00	slope	1.00	Slope	1.00
				Cutbanks cave	1.00	Droughty	1.00
MSC :							
Masardis--------	55	Somewhat limited Slope		Very limited Cutbanks cave Slope	1.00	Somewhat limited	
			0.04			Slope	0.04
					0.04	Droughty	0.02
Sheepscot-------	25	Somewhat limited Depth to saturated zone	0.03	Very limited Depth to saturated zone	1.00	Somewhat limited Droughty	
							0.74
				Cutbanks cave	1.00	Depth to saturated zone	0.03
MT :							
Medomak--------	50	```Very limited Depth to saturated zone Frost action```	11.00	Very limited	1.00	Very limited Flooding	
				Depth to saturated zone Flooding			1.00
			1.00		0.80	Depth to saturated zone	1.00
		Flooding	1.00	Cutbanks cave	0.10	Large stones content	0.61
Wonsqueak-------	30	```Very limited Depth to saturated zone Frost action```	1.00	Very limited Depth to saturated zone Organic matter content Cutbanks cave	1.00	Very limited Depth to saturated zone	1.00
			1.00		1.00		
					0.10		
Mvb :							
Monarda---------	75	```Very limited Depth to saturated zone Frost action```	1.00	Very limited Depth to saturated zone Cutbanks cave	1.00	Very limited	
						```Depth to saturated zone Large stones content```	1.00
			1.00		1.00		0.68
				Dense layer	0.50		
MWB :							
Monarda-	45	```Very limited Depth to saturated zone Frost action```	1.00	Very limited Depth to saturated zone Cutbanks cave	1.00	Very limited	
						Depth to saturated zone Large stones content	1.00
			1.00		1.00		0.68
				Dense layer	0.50		
Telos-----------	40	Very limited Frost action   Depth to saturated zone	$\left\lvert\, \begin{aligned} & 1.00 \\ & 0.99 \end{aligned}\right.$	```Very limited Depth to saturated zone Cutbanks cave```	1.00	Very limited	
						Depth to saturated zone	0.99
					1.00	Large stones content	0.61

Table 17.-Roads and Streets, Shallow Excavations, and Lawns and Landscaping-continued


Table 17.-Roads and Streets, Shallow Excavations, and Lawns and Landscaping-continued


Table 17.-Roads and Streets, Shallow Excavations, and Lawns and Landscaping-continued

Map symbol and soil name	Pct.   of   map   unit	Local roads and streets		Shallow excavations		Lawns and landscaping	
		Rating class and limiting features	Value	Rating class and limiting features	\|Value	Rating class and limiting features	Value
NGC: Croghan							
	20	Somewhat limited		Very limited		Very limited	
		Frost action	0.50	Depth to	1.00	Droughty	1.00
		Depth to saturated zone	0.43	Cutbanks cave	1.00	Depth to saturated zone	0.43
Pg:							
Pits, sand and gravel	90	Not limited		Very limited		Not rated	
				Cutbanks cave	1.00		
RhB :							
Rawsonville-----	55	Somewhat limited Frost action	0.50	Very limited	1.00	Somewhat limited Depth to bedrock	0.06
				Depth to hard bedrock			
		Depth to hard bedrock	0.06	Cutbanks cave	1.00	Large stones content	0.01
Hogback---------	20	Very limited Depth to hard bedrock Frost action	1.00	Very limited Depth to hard bedrock	1.00	Very limited	
						Depth to bedrock	1.00
			0.50			Droughty	0.04
						Large stones content	0.01
RhC:							
Rawsonville-----	50	Somewhat limited Slope	0.63	Very limited	1.00	Somewhat limited Slope	0.63
				Depth to hard bedrock			
		Frost action	0.50	Cutbanks cave	1.00	Depth to bedrock	0.06
		Depth to hard bedrock	0.06	slope	0.63	Large stones content	0.01
Hogback---------	25	Very limited   Depth to hard bedrock   Slope   Frost action	1.00	Very limited	1.00	Very limited Depth to bedrock	1.00
				Depth to hard bedrock			
			0.63	slope	0.63	Slope	0.63
			0.50			Droughty	0.04
						Large stones content	0.01
RmC:							
Rawsonville-----	35	Somewhat limited Frost action	0.50	Very limited	1.00	Somewhat limited	0.61
				Depth to hard bedrock		Large stones content	
		Depth to hard bedrock	0.06	Cutbanks cave	1.00	Depth to bedrock	0.06
		slope	0.04	slope	0.04	slope	0.04
Hogback---------	30	Very limited   Depth to hard bedrock   Frost action Slope		```Very limited Depth to hard bedrock Slope```	1.00	Very limited Depth to bedrock	1.00
			1.00				
			0.50		0.04	Droughty	0.04
			0.04			Slope	0.04
						Large stones content	0.01

Table 17.-Roads and Streets, Shallow Excavations, and Lawns and Landscaping-continued

Map symbol and soil name	$\left\lvert\, \begin{gathered} \text { Pct. } \\ \text { of } \\ \text { map } \\ \text { unit } \end{gathered}\right.$	Local roads and streets		Shallow excavations		Lawns and landscaping	
		Rating class and limiting features	Value	Rating class and limiting features	\|Value	Rating class and limiting features	Value
RmC: Abram							
	20	Very limited		Very limited		Very limited	
		Depth to hard bedrock	1.00	Depth to hard bedrock	1.00	Depth to bedrock	1.00
		slope	0.04	slope	0.04	Droughty	1.00
						Large stones content	0.61
						Slope	0.04
RNC:							
Rawsonville-----	35	Somewhat limited Frost action		Very limited		Somewhat limited	
			0.50	Depth to hard bedrock	1.00	Large stones content	0.61
		Depth to hard bedrock	0.06	Cutbanks cave	1.00	Depth to bedrock	0.06
		Slope	0.04	Slope	0.04	Slope	0.04
Lamoine---------	25	Very limited		Very limited		Very limited	1.00
		Depth to saturated zone	1.00	Depth to saturated zone	\| 1.00	Depth to saturated zone	
		Frost action	1.00	Too clayey	0.12		
		Low strength	1.00	Cutbanks cave	0.10		
		Shrink-swell	0.50				
Hogback--------	20	\| Very limited		Very limited		Very limited	
		Depth to hard bedrock	1.00	Depth to hard bedrock	11.00	Depth to bedrock	1.00
		Frost action	0.50	slope	0.04	Large stones content	0.61
		Slope	0.04			Droughty	0.04
						Slope	0.04
Sa:							
Scantic--------	80	Very limited		Very limited	1.00	Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone		Depth to saturated zone	1.00
			1.00	Too clayey	0.12		
		Low strength	1.00	Cutbanks cave	0.10		
		Shrink-swell	0.50				
SF:							
Scantic--------	50	Very limited		Very limited		Very limited	1.00
		Depth to saturated zone	1.00	Depth to saturated zone	1.00	Depth to saturated zone	
		Frost action	1.00	Too clayey	0.12		
		Low strength	1.00	Cutbanks cave	0.10		
		Shrink-swell	0.50				
SF:							
Biddeford-------	30	```Very limited Ponding Depth to saturated zone Frost action```		Very limited Ponding		Very limited	1.00
			1.00		1.00	Ponding	
			1.00	Depth to saturated zone	1.00	Organic matter content	1.00
			1.00	Too clayey	0.12	Depth to saturated zone	1.00
		Low strength	1.00	Cutbanks cave	0.10		
		Shrink-swell	0.50				

Table 17.-Roads and Streets, Shallow Excavations, and Lawns and Landscaping-continued


Table 17.-Roads and Streets, Shallow Excavations, and Lawns and Landscaping-continued


Table 17.-Roads and Streets, Shallow Excavations, and Lawns and Landscaping-continued

Map symbol and soil name	Pct.   of   map   unit	Local roads and streets		Shallow excavations		Lawns and landscaping	
		Rating class and limiting features	\| Value	Rating class and limiting features	\| Value	Rating class and limiting features	\|Value
STC:							
Skerry----------	35	Very limited Frost action	1.00	Depth to saturated zone	1.00	Droughty	0.71
		Depth to saturated zone	0.43	Cutbanks cave	\| 1.00	Large stones content	0.61
		slope	0.04	Slope	0.04	Depth to saturated zone Slope	0.43
Colonel---------	25	Very limited		Very limited		Very limited	
		Frost action	1.00	Depth to saturated zone	1.00	Depth to saturated zone	0.99
		Depth to saturated zone	0.99	Cutbanks cave	\| 1.00	Large stones content	0.61
				Dense layer	0.50		
Tunbridge-------	20	Somewhat limited \|		Very limited		Somewhat limited Depth to bedrock	
		Depth to hard bedrock	0.64	Depth to hard bedrock	1.00		0.65
		Frost action	0.50	Cutbanks cave	1.00	Large stones content	0.61
		Slope	0.04	Slope	0.04	slope	0.04
TaB:							
Telos	80	Very limited		Very limited		Very limited Depth to saturated zone	
		Frost action	1.00	Depth to saturated zone	\| 1.00		0.99
		Depth to saturated zone	0.99	Cutbanks cave	\| 1.00		
TCB:							
Telos-----------	55	Very limited Frost action		Very limited		Very limited	
			11.00	Depth to saturated zone	11.00	Depth to saturated zone	0.99
		Depth to saturated zone	0.99	Cutbanks cave	1.00	Large stones content	0.61
Chesuncook------	25	Somewhat limited Frost action		Very limited Depth to saturated zone Cutbanks cave		Somewhat limited Large stones content	
			0.50		\| 1.00		0.61
		Depth to saturated zone	0.43		1.00	Depth to saturated zone	0.43
TEB:							
Telos	35	Very limited Frost action		Very limited		Very limited	
			1.00	Depth to saturated zone	1.00	Depth to saturated zone	0.99
		Depth to saturated zone	0.99	Cutbanks cave	1.00	Large stones content	0.61
Elliottsville----	25	Somewhat limited Frost action		```\| Very limited Depth to hard bedrock```		Somewhat limited Large stones content	
			0.50		1.00		0.61
		Depth to hard bedrock	0.35	Cutbanks cave	0.10	Depth to bedrock	0.35

Table 17.-Roads and Streets, Shallow Excavations, and Lawns and Landscaping-continued

Map symbol and soil name	$\left\lvert\, \begin{gathered} \text { Pct. } \\ \text { of } \\ \text { map } \\ \text { unit } \end{gathered}\right.$	Local roads and streets		Shallow excavations		Lawns and landscaping	
		Rating class and limiting features	Value	Rating class and limiting features	\| Value	Rating class and limiting features	\|Value
TEB:							
Monarda	20	Depth to saturated zone Frost action	1.00 1.00	Depth to saturated zone	$\left\lvert\, \begin{aligned} & 1.00 \\ & 1.00\end{aligned}\right.$	Depth to saturated zone	$\left\lvert\, \begin{aligned} & 1.00 \\ & 0.68\end{aligned}\right.$
				Dense layer	0.50		
TLC:							
Tunbridge-------	35	Somewhat limited   Depth to hard bedrock   Frost action	0.64	Depth to hard bedrock	\| 1.00	Depth to bedrock	0.65
			0.50	Cutbanks cave	\| 1.00	Large stones content	0.61
		Slope	0.04	Slope	0.04	Slope	0.04
Lamoine---------	25	Very limited		Very limited		Very limited	11.00
		Depth to saturated zone	1.00	Depth to saturated zone	\| 1.00	Depth to saturated zone	
		Frost action	1.00	Too clayey	0.12		
		Low strength	1.00	Cutbanks cave	0.10		
		Shrink-swell	0.50				
Lyman-----------	20	Very limited		Very limited		Very limited	
		Depth to hard bedrock	1.00	Depth to hard bedrock	11.00	Depth to bedrock	1.00
		Frost action	0.50 0.04	Slope	0.04	Large stones content	0.61
		Slope	0.04			Slope	0.04
TuB :							
Tunbridge-------	55	Somewhat limited   Depth to hard bedrock   Frost action		Very limited Depth to hard bedrock Cutbanks cave			
			0.64		11.00	Depth to bedrock	0.65
			0.50		11.00	Large stones content	0.05
Lyman-----------	20	Very limited		Very limited		Very limited	
		Depth to hard bedrock	1.00	Depth to hard bedrock	11.00	Depth to bedrock	1.00
		Frost action	0.50	Cutbanks cave	0.10	Large stones content	0.05
TuC:							
Tunbridge-------	50	Somewhat limited		Very limited		Somewhat limited	
		Depth to hard bedrock	0.64	Depth to hard bedrock	11.00	Depth to bedrock	0.65
		Slope	0.63	Cutbanks cave	1.00	Slope	0.63
		Frost action	0.50	slope	0.63	Large stones content	0.05
Lyman	25	Very limited Depth to hard bedrock Slope Frost action		Very limited		Very limited	
			1.00	Depth to hard bedrock	11.00	Depth to bedrock	11.00
			0.63	Slope	0.63	Slope	0.63
			0.50	Cutbanks cave	0.10	Large stones content	0.05

Table 17.-Roads and Streets, Shallow Excavations, and Lawns and Landscaping-continued

Map symbol and soil name	$\left\|\begin{array}{c} \text { Pct. } \\ \text { of } \\ \text { map } \\ \text { unit } \end{array}\right\|$	Local roads and streets		Shallow excavations		Lawns and landscaping		
		Rating class and limiting features	Value	Rating class and limiting features	\|Value	Rating class and limiting features	Value	
Tunbridge------		Depth to hard bedrock	0.64	Depth to hard bedrock	1.00	Depth to bedrock	0.65	
		Frost action	0.50	Cutbanks cave	1.00	Large stones content	0.61	
		Slope	0.04	Slope	0.04	slope	0.04	
Lyman----------	30	Very limited		Very limited		Very limited		
		Depth to hard bedrock	1.00	Depth to hard bedrock	1.00	Depth to bedrock	1.00	
		Frost action	0.50	Slope	0.04	Large stones content	0.61	
		Slope	0.04			Slope	0.04	
						Droughty	0.02	
Abram-----------	20	Very limited		Very limited		Very limited		
		Depth to hard bedrock	\| 1.00	Depth to hard bedrock	1.00	Depth to bedrock	1.00	
		slope	0.04	slope	0.04	Droughty	1.00	
						Large stones content	0.05 0.04	
							0.04	
Ud:								
Udorthents---	50	Not rated		Not rated		Not rated		
Urban land-	30	Not rated		Not rated		Not rated		
W :								
Water----------	100	Not rated		Not rated		Not rated		
WF :								
Wonsqueak-------	50	Very limited		Very limited		Very limited		
		Depth to saturated zone	\| 1.00	Depth to saturated zone	1.00	Depth to saturated zone	1.00	
		Frost action	1.00	Organic matter content   Cutbanks cave	$1 \begin{aligned} & 1.00 \\ & 0.10\end{aligned}$			
Bucksport------	25	```\| Very limited Depth to saturated zone Frost action```		Very limited		Very limited		
			1.00	Depth to saturated zone	1.00	Organic matter content	1.00	
			1.00	Organic matter content	1.00	Depth to saturated zone	1.00	

Table 18.-Sewage Disposal
(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00 . The larger the value, the greater the limitation. See text for further explanation of ratings in this table.)

Map symbol and soil name	$\left\lvert\, \begin{gathered} \text { Pct. } \\ \text { of } \\ \text { map } \\ \mid \text { unit } \end{gathered}\right.$	Septic tank absorption fields		Sewage lagoons	
		Rating class and limiting features	\|Value	Rating class and limiting features	Value
AaE:					
Abram-----------	40	Very limited Depth to bedrock	\| 1.00	Very limited	
				Depth to hard bedrock	1.00
		Slope	1.00	slope	1.00
		Seepage, bottom layer	1.00		
Hogback---------	35	Very limited Depth to bedrock		\| Very limited	
			1.00	Depth to hard bedrock	1.00
		Slope	1.00	slope	1.00
		Seepage, bottom layer	1.00	Seepage	1.00
AbE:					
Abram----------	40	Very limited		\| Very limited	
		Depth to bedrock	1.00	Depth to hard bedrock	1.00
		Slope	1.00	slope	1.00
		Seepage, bottom layer	\| 1.00		
Lyman-----------	35	Very limited		Very limited	
		Depth to bedrock	1.00	Depth to hard bedrock	1.00
		Slope	1.00	slope	1.00
		Seepage, bottom layer	\| 1.00	Seepage	1.00
ACE:					
Abram----------	30	Very limited		Very limited	
		Depth to bedrock	1.00	Depth to hard bedrock	1.00
		Slope	1.00	slope	1.00
		Seepage, bottom layer	1.00		
Rock outcrop-	30	Not rated		Not rated	
Ricker----------	25	Very limited Depth to bedrock		Very limited	
			1.00	Depth to hard	1.00
		Slope	1.00	slope	1.00
		Seepage, bottom layer	1.00		
AdA :					
Adams----------	85	\|Very limited		Very limited Seepage	
		Filtering capacity	1.00	Seepage	1.00
		Seepage, bottom layer	1.00		

Table 18.-Sewage Disposal-continued

Map symbol and soil name	Pct.   of   map   unit	Septic tank absorption fields		Sewage lagoons	
		Rating class and limiting features	Value	Rating class and limiting features	Value
AdB :					
Adams	85	\| Very limited		Very limited	
		Filtering	1.00	Seepage	1.00
		Seepage, bottom layer	1.00	slope	0.92
AdC:					
Adams-----------	85	Very limited    Filtering 1.00		$\begin{aligned} & \text { Very limited } \\ & \text { Slope } \end{aligned}$	1.00
		capacity			
		Seepage, bottom layer	1.00	Seepage	1.00
		Slope	0.63		
AGB :					
Adams----------	55	Very limited		Very limited	
		Filtering capacity	1.00	Seepage	1.00
		Seepage, bottom layer	1.00	Slope	0.68
Croghan---------	30	Very limited		\|Very limited	
		Depth to saturated zone	1.00	Seepage	1.00
		Filtering capacity	1.00	Depth to saturated zone	1.00
		Seepage, bottom layer	1.00	Slope	0.08
BeC:					
Becket----------	80	Very limited		Very limited	
		Depth to	1.00	Slope	1.00
		saturated zone slope	0.63	Seepage	0.53
		Slow water movement	0.46		
BKD :					
Becket---------	60	Very limited \| 0		Very limited	
		Depth to saturated zone	1.00	slope	1.00
		Slope	1.00	Seepage	0.53
		Slow water movement	0.46		
Skerry----------	25	```Very limited Depth to saturated zone```		Very limited	
			1.00	slope	1.00
			0.63	Depth to saturated zone Seepage	0.92 0.53
BnB :					
Brayton--------	75	Very limited		\| Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone	$\left\lvert\, \begin{aligned} & 1.00 \\ & 0.53 \\ & 0.08 \end{aligned}\right.$

Table 18.-Sewage Disposal-continued

Map symbol and soil name	Pct.   of   map   unit	Septic tank absorption fields		Sewage lagoons	
		Rating class and limiting features	Value	Rating class and limiting features	\| Value
BRB :					
Brayton---------	50	Very limited		Very limited	
		Depth to saturated zo	1.00	Depth to saturated zone	1.00
				Seepage	0.53
				Slope	0.08
Colonel---------	35	Very limited	1.00	Very limited	
		Depth to		Depth to	1.00
				Seepage	0.53
				slope	0.32
BTB :					
Brayton---------	50	Very limited	1.00	\|Very limited	
		Depth to		Depth to	1.00
				Seepage	0.53
				slope	0.08
Colonel---------	35	Very limited	1.00	Very limited	
		Depth to saturated zone		Depth to	1.00
				Seepage	0.53
				slope	0.32
BW :					
Bucksport-------	55	Very limited		\| Very limited	
		Depth to	1.00	Organic matter	1.00
		saturated zone			
		Seepage, bottom layer	1.00	Depth to saturated zone	1.00
				Seepage	1.00
Wonsqueak-------	30	Very limited		Very limited	
		Depth to	1.00	Depth to saturated zone	1.00
		Slow water movement	0.72	```Seepage Organic matter content```	11.00
					1.00
BxC :					
Buxton----------	85	Very limited		Very limited	
				slope	1.00
		Slow water movement			
		Depth to	1.00	Depth to saturated zone	0.83
		Slope	0.63		
BZC:					
Buxton---------	50	Very limited		Very limited	
		Slow water movement Depth to saturated zone slope	1.00	Slope	1.00
			1.00 0.63	Depth to saturated zone	0.83

Table 18.-Sewage Disposal-continued

Map symbol and soil name	$\left\lvert\, \begin{gathered} \text { Pct. } \\ \text { of } \\ \text { map } \\ \text { unit } \end{gathered}\right.$	Septic tank absorption fields		Sewage lagoons	
		Rating class and limiting features	Value	Rating class and limiting features	Value
Lamoine-	35	\| Very limited		\| Very limited	
		Slow water	1.00	Depth to	1.00
		Depth to saturated zone	1.00	slope	0.92
ChB :					
Chesuncook------	80	Very limited		Somewhat limited	
		Depth to	1.00	slope	0.92
				Depth to	0.92
				saturated zone	
				Seepage	0.53
ChC:					
Chesuncook-------	80	Very limited		Very limited	
		Depth to	1.00	slope	1.00
		slope	0.63	Depth to	0.92
				saturated zone	
				Seepage	0.53
CKC :					
Chesuncook-------	25	Very limited		Very limited	
		Depth to	1.00	Slope	1.00
		slope	0.04	Depth to	0.92
				saturated zone	
				Seepage	0.53
Elliottsville---	25	Very limited Depth to bedrock		Very limited	
			1.00	Depth to hard	1.00
		Slow water	0.46	Slope	1.00
		movement			
		Slope	0.04	Seepage	0.53
Telos----------	20	Very limited Depth to saturated zone		Very limited	
			1.00	Depth to saturated zone	1.00
				slope	0.92
				Seepage	0.53
CLC :					
Chesuncook------	50	Very limited    Depth to    1.00		Very limited	
		Depth to saturated zone	1.00	slope	1.00
		slope	0.16	Depth to	0.92
				saturated zone Seepage	0.53
Telos----------	30	$\begin{aligned} & \text { Very limited } \\ & \text { Depth to } \\ & \text { saturated zone } \end{aligned}$		\| Very limited	
			1.00	Depth to saturated zone	11.00
				Slope	0.92
				\| Seepage	0.53

Table 18.-Sewage Disposal-continued


Table 18.-Sewage Disposal-continued

Map symbol and soil name	Pct.   of   map   unit	Septic tank absorption fields		Sewage lagoons	
		Rating class and limiting features	Value	Rating class and limiting features	\|Value
CRE:					
Colton----------	75	\| Very limited		Very limited	
		Filtering capacity	1.00	Slope	1.00
		slope	1.00	Seepage	1.00
		Seepage, bottom layer	1.00		
Adams-----------	15	Very limited		Very limited	
		Filtering capacity	1.00	Slope	1.00
		Slope	1.00	Seepage	1.00
		Seepage, bottom layer	1.00		
CSC:					
Colton----------	40	\| Very limited		Very limited	
		Filtering capacity	1.00	Seepage	1.00
		Seepage, bottom layer	1.00	Slope	1.00
		Slope	0.04		
Hermon----------	35	Very limited		Very limited	
		Filtering capacity	1.00	Seepage	1.00
		Seepage, bottom layer	1.00	Slope	1.00
		Slope	0.04		
CSD :					
Colton----------	60	Very limited		Very limited	
		Filtering capacity	1.00	slope	1.00
		Slope	1.00	Seepage	1.00
		Seepage, bottom layer	1.00		
Hermon----------	25	Very limited		Very limited	
		Filtering capacity	1.00	slope	1.00
		Slope	1.00	Seepage	1.00
		Seepage, bottom layer	1.00		
CtB:					
Creasey----------	80	Very limited		Very limited	
		Depth to bedrock	1.00	Depth to hard bedrock	1.00
		Seepage, bottom layer	1.00	Seepage	1.00
				Slope	0.92
CtC:					
Creasey---------	80	Very limited		Very limited	
		Depth to bedrock	1.00	Depth to hard bedrock	1.00
		Seepage, bottom layer	1.00	Slope	1.00
		Slope	0.63	Seepage	1.00

Table 18.-Sewage Disposal-continued

Map symbol and soil name	$\left\|\begin{array}{c} \text { Pct. } \\ \text { of } \\ \text { map } \\ \text { unit } \end{array}\right\|$	Septic tank absorption fields		Sewage lagoons	
		Rating class and limiting features	Value	Rating class and limiting features	Value
CVC :					
Creasey------------	55	Very limited		Very limited	
		Depth to bedrock	1.00	Depth to hard bedrock	1.00
		Seepage, bottom layer	1.00	Slope	1.00
		slope	0.04	Seepage	1.00
Abram--------------	20	\| Very limited		Very limited	
		Depth to bedrock	1.00	Depth to hard	1.00
		Seepage, bottom layer	1.00	slope	1.00
		slope	0.04		
CXC:   Creasey					
	55	\| Very limited		Very limited	
		Depth to bedrock	1.00	Depth to hard bedrock	1.00
		Seepage, bottom layer	1.00	Slope	1.00
		slope	0.04	Seepage	1.00
Lamoine------------	30	\|Very limited		Very limited	
		Slow water movement	1.00	Depth to saturated	1.00
		Depth to saturated zone	1.00	slope	0.68
CzB:					
Croghan------------	75	Very limited		Very limited	
		Depth to saturated zone	1.00	Seepage	1.00
		Filtering capacity	1.00	Depth to saturated zone	1.00
		$\begin{aligned} & \text { Seepage, bottom } \\ & \text { layer } \end{aligned}$	1.00	slope	0.68
DAC:					
Danforth-----------	45	Very limited ${ }^{\text {a }}$ (1.00		Very limited	
		Seepage, bottom layer	1.00	Seepage	1.00
		Slow water movement	0.46	Slope	1.00
		Slope	0.04		
Elliottsville------	30	Very limited Depth to bedrock		Very limited	
			1.00	Depth to hard bedrock	1.00
		Slow water movement	0.46	slope	1.00
		Slope	0.04	Seepage	0.53
DdC:					
Dixfield----------	80	```Very limited Depth to saturated zone slope```		Very limited	
			1.00	Slope	1.00
			0.63	Depth to saturated zone Seepage	$\left\lvert\, \begin{aligned} & 0.83 \\ & 0.53\end{aligned}\right.$

Table 18.-Sewage Disposal-continued


Table 18.-Sewage Disposal-continued

Map symbol and soil name	Pct.   of   map   unit	Septic tank absorption fields		Sewage lagoons	
		Rating class and limiting features	Value	Rating class and limiting features	Value
DMC:					
Marlow----------	30	Very limited		Very limited	
		Depth to saturated zone Slope	1.00	Slope	1.00
			0.63	Depth to	0.75
				saturated zone	
				Seepage	0.53
DRC:					
Dixfield--------	35	Very limited		Very limited	
		Depth to	1.00	slope	1.00
		slope	0.04	Depth to	0.83
				saturated zone	
				Seepage	0.53
Marlow----------	30	Very limited		Very limited	
		Depth to	1.00	slope	1.00
		Slope	0.63	Depth to	0.75
				saturated zone	
				Seepage	0.53
Rawsonville-----	20	Very limited Depth to bedrock		Very limited	
			1.00	Depth to hard	1.00
				bedrock	
		Seepage, bottom	1.00	slope	1.00
		layer			
		Slope	0.04	Seepage	1.00
DTC:					
Dixfield-------	35	Very limitedDepth to		Very limited	
			1.00	slope	1.00
		saturated zone			
		slope	0.04	Depth to	0.83
				saturated zone	
				Seepage	0.53
Marlow---------	30	```Very limited Depth to saturated zone```		\| Very limited	
			1.00	slope	1.00
		slope	0.63	Depth to	0.75
				saturated zone Seepage	0.53
Tunbridge------	20	Very limited		\| Very limited	
		Depth to bedrock	1.00	Depth to hard bedrock	1.00
		Seepage, bottom	1.00	slope	1.00
		layer			
		slope	0.04	Seepage	1.00
DUC:					
Dixfield-------	30	Very limited		\|Very limited	
		Depth to saturated zone slope	1.00	slope	1.00
		slope	0.04	Depth to saturated zone Seepage	0.83

Table 18.-Sewage Disposal-continued


Table 18.-Sewage Disposal-continued

Map symbol and soil name	Pct.   of   map   unit	Septic tank absorption fields		Sewage lagoons	
		Rating class and limiting features	Value	Rating class and limiting features	Value
EMC:					
Monson-----------	20	Very limited		Very limited	
		Depth to bedrock	1.00	Depth to hard	1.00
				bedrock	
		Slope	0.04	Slope	1.00
				Seepage	0.53
Go:					
Gouldsboro------	90	Very limited   Flooding		Very limited	
				Flooding	1.00
		Slow water movement	1.00	Depth to saturated zone	1.00
		Depth to saturated zone	1.00		
HCC :					
Hermon----------	40	Very limited		Very limited	
		Filtering capacity	1.00	Seepage	1.00
		Seepage, bottom layer	1.00	Slope	1.00
		Slope	0.04		
Colton----------	20	Very limited		Very limited	
		Filtering capacity	1.00	Seepage	1.00
		Seepage, bottom layer	1.00	Slope	1.00
		slope	0.04		
Abram-----------	15	Very limited		Very limited	
		Depth to bedrock	1.00	Depth to hard bedrock	1.00
		Seepage, bottom layer	1.00	slope	1.00
		slope	0.04		
HeB :					
Hermon----------	45	Very limited		Very limited	
		Seepage, bottom layer	1.00	Seepage	1.00
		Filtering capacity	1.00	Slope	0.92
Monadnock-------	40	Very limited		Very limited	
		Seepage, bottom layer	1.00	Seepage	1.00
				Slope	0.92
HeC:					
Hermon----------	50	Very limited		Very limited	
		Seepage, bottom layer	1.00	slope	1.00
		Filtering capacity Slope	1.00	Seepage	1.00
			0.63		
Monadnock-------	35	Very limited		Very limited	
		Seepage, bottom layer	1.00	slope	1.00
		Slope	0.63	Seepage	1.00

Table 18.-Sewage Disposal-continued

Map symbol and soil name	Pct.   of   map   unit	Septic tank absorption fields		Sewage lagoons	
		Rating class and limiting features	Value	Rating class and limiting features	Value
HkB :					
Hermon----------	40	Very limited		Very limited	
		Seepage, bottom layer	1.00	Seepage	1.00
		Filtering capacity	1.00	Slope	0.92
Monadnock-------	40	Very limited Seepage, bottom layer		\| Very limited	
			1.00	Seepage	1.00
				Slope	0.92
HkC:					
Hermon----------	50	Very limited		Very limited	
		Seepage, bottom layer	1.00	Slope	1.00
		Filtering	1.00	Seepage	1.00
		capacity			
		slope	0.63		
Monadnock-------	30	Very limited		Very limited	
		Seepage, bottom layer	1.00	Slope	1.00
		slope	0.63	Seepage	1.00
HMD :					
Hermon----------	45	Very limited		Very limited	
		Filtering    capacity 1.00		Slope	1.00
		Slope	1.00	Seepage	1.00
		Seepage, bottom layer	1.00		
Monadnock-------	35	Very limited		\| Very limited	
		Slope	1.00	Slope	1.00
		Seepage, bottom layer	1.00	Seepage	1.00
HOE:					
Hermon----------	50	Very limited    Filtering		Very limited	
		Filtering capacity	1.00	slope	1.00
		Slope	1.00	Seepage	1.00
		Seepage, bottom layer	1.00		
Monadnock-------	35	Very limited		Very limited	
		Slope	1.00	Slope	1.00
		Seepage, bottom layer	1.00	Seepage	\| 1.00
HSC:					
Hermon----------	40	Very limited		Very limited	
		Filtering    capacity 1.00		Seepage	1.00
		Seepage, bottom layer	1.00	Slope	1.00
		slope	0.04		

Table 18.-Sewage Disposal-continued


Table 18.-Sewage Disposal-continued


Table 18.-Sewage Disposal-continued

Map symbol and soil name	Pct. of	Septic tank absorption fields		Sewage lagoons	
		Rating class and limiting features	Value	Rating class and limiting features	Value
LCB :					
Lamoine------------	45	Very limited		Very limited	
		Slow water	1.00	Depth to	1.00
		Depth to saturated zone	1.00	slope	0.08
Buxton-------------	20	Very limited		Very limited	
		Slow water movement	1.00	Slope	1.00
		Depth to saturated zone	1.00	Depth to saturated zone	0.83
		slope	0.63		
Scantic------------	20	Very limited		Very limited	
		Slow water movement	1.00	Depth to saturated zone	1.00
		Depth to saturated zone	1.00		
LEB :					
Lamoine-----------	30	Very limited		Very limited	
		Slow water movement	1.00	Depth to	1.00
		Depth to saturated zone	1.00	slope	0.08
Creasey------------	30	Very limited Depth to bedrock		Very limited	
			1.00	Depth to hard bedrock	1.00
		Seepage, bottom layer	1.00	Seepage	1.00
				Slope	0.32
Scantic-----------	20	Very limited Slow water movement Depth to saturated zone		$\begin{array}{\|l} \text { Very limited } \\ \text { Depth to } \\ \text { saturated zone } \end{array}$	
			1.00		1.00
			1.00		
LHB :					
Lamoine-----------	50	Very limited Slow water movement Depth to saturated zone		Very limited	
			1.00	Depth to saturated zone	1.00
			1.00	slope	0.08
Nicholville--------	25	Very limited Depth to saturated zone Slow water movement		Somewhat limited Slope	
			1.00		0.92
			0.46	Depth to saturated zone Seepage	$\left\lvert\, \begin{aligned} & 0.92 \\ & 0.53\end{aligned}\right.$
LKB :					
Lamoine------------	30	Very limited		\| Very limited	
		Slow water movement Depth to saturated zone	1.00	Depth to saturated zone Slope	1.00
			1.00		0.08

Table 18.-Sewage Disposal-continued

Map symbol and soil name	Pct.   of   map   unit	Septic tank absorption fields		Sewage lagoons	
		Rating class and limiting features	Value	Rating class and limiting features	Value
LKB:					
Rawsonville-----	25	Depth to bedrock	1.00	Depth to hard	1.00
		Seepage, bottom layer	1.00	Seepage	1.00
				Slope	0.68
Scantic---------	20	Very limited	1.00	Very limited	1.00
		Slow water		Depth to	
		Depth to	1.00		
LmB :					
Lamoine---------		Slow water	1.00	Depth to	1.00
		movement		saturated zone	
		Depth to saturated zone	1.00	slope	0.08
Scantic--------	35	Very limited		Very limited	
		Slow water movement	1.00	Depth to saturated zone	1.00
		Depth to	1.00		
LnB :					
Lamoine	55	Very limited		Very limited	
		Slow water movement	1.00	Depth to saturated zone	1.00
		Depth to saturated zone	1.00		0.08
Scantic---------	35	Very limited		Very limited	
		slow water movement	1.00	Depth to saturated zone	1.00
		Depth to saturated zone	1.00		
LSB :					
Lamoine--------	35	Very limited		Very limited	
		slow water movement	1.00	Depth to saturated zone	1.00
		Depth to saturated zone	1.00	slope	0.08
Scantic--	20	Very limited Slow water movement Depth to saturated zone		Very limited Depth to saturated zone	
			1.00		1.00
			1.00		
Colonel---------	20	$\begin{array}{\|l} \text { Very limited } \\ \text { Depth to } \\ \text { saturated zone } \end{array}$	1.00	Very limited	
				Depth to saturated zone	1.00
				Slope	0.92
				Seepage	0.53

Table 18.-Sewage Disposal-continued

Map symbol and soil name	Pct.   of map unit	Septic tank absorption fields		Sewage lagoons	
		Rating class and limiting features	Value	Rating class and limiting features	Value
LTB :					
Lamoine---------	30	\|Very limited		Very limited	
		Slow water movement	1.00	Depth to saturated	1.00
		Depth to saturated zone	1.00	Slope	0.08
Tunbridge-------	25	Very limited Depth to bedrock	1.00	\| Very limited	
				Depth to hard bedrock	1.00
		Seepage, bottom layer	1.00	Seepage	1.00
				Slope	0.92
Scantic---------	20	Very limited	1.00	Very limited	1.00
		slow water movement		Depth to saturated zone	
		Depth to saturated zone	1.00		
LUE:					
Lyman-----------	30	Very limited Depth to bedrock		\| Very limited	1.00
		Depth to bedrock	1.00	Depth to hard bedrock	
		Slope	1.00	Slope	1.00
		Seepage, bottom layer	1.00	Seepage	1.00
Abram-----------	25	Very limited		\| Very limited	1.00
		Depth to bedrock	1.00	Depth to hard bedrock	
		Slope	1.00	slope	1.00
		Seepage, bottom layer	1.00		
Tunbridge-------	25			\| Very limited	1.00
		Depth to bedrock	1.00	Depth to hard bedrock	
		Slope	1.00	Slope	1.00
		Seepage, bottom layer	1.00	Seepage	1.00
LYC:					
Lyman	30	Very limited Depth to bedrock		Very limited	
			1.00	Depth to hard bedrock	1.00
		Seepage, bottom layer	1.00	Seepage	1.00
		Slope	0.04	Slope	1.00
Tunbridge-------	30	Very limited Depth to bedrock		Very limited	1.00
			1.00	Depth to hard bedrock	
		$\begin{aligned} & \text { Seepage, bottom } \\ & \text { layer } \\ & \text { Slope } \end{aligned}$	1.00 0.04	Slope	1.00 1.00
			0.04	Seepage	1.00

Table 18.-Sewage Disposal-continued

Map symbol and soil name	Pct.   of   map   unit	Septic tank absorption fields		Sewage lagoons	
		Rating class and limiting features	Value	Rating class and limiting features	Value
LYC:					
Abram-----------	15	Very limited Depth to bedrock	1.00	Very limited	
				Depth to hard	1.00
		Seepage, bottom layer	1.00	slope	1.00
		slope	0.04		
MaC:					
Marlow	82	Very limited		Very limited	
		Depth to saturated zone slope	1.00	slope	1.00
			0.63	Depth to	0.75
				saturated zone	
				Seepage	0.53
MbC :					
Marlow----------	80	Very limited		Very limited	
		Depth to saturated zone	1.00	Slope	1.00
		slope	0.63	Depth to	0.75
				saturated zone	
				Seepage	0.53
MDD :					
Marlow---------	55	Very limited		Very limited	
		Depth to saturated zone slope	1.00	Slope	1.00
			1.00	Depth to	0.75
				saturated zone	
				Seepage	0.53
Dixfield-------	30	\| Very limited		Very limited	
		Depth to saturated zone slope	1.00	slope	1.00
			0.63	Depth to	0.83
				saturated zone	
				Seepage	0.53
MFD :					
Marlow----------	35	Very limited		Very limited	
		Depth to saturated zone Slope	1.00	slope	1.00
			1.00	Depth to	0.75
				saturated zone Seepage	0.53
Rawsonville-----	25	Very limited Slope		Very limited	
			1.00	Depth to hard bedrock	1.00
		Depth to bedrock	1.00	slope	1.00
		Seepage, bottom layer	1.00	Seepage	1.00
Dixfield-------	20	```Very limited Depth to saturated zone Slope```		Very limited slope	
			1.00		1.00
			0.63	Depth to saturated zone Seepage	0.83 0.53

Table 18.-Sewage Disposal-continued

Map symbol and soil name	Pct.   of   map   unit	Septic tank absorption fields		Sewage lagoons	
		Rating class and limiting features	\| Value	Rating class and limiting features	\| Value
MGD :					
Marlow	35	saturated zone	11.00	slope	11.00
		Slope	\| 1.00	Depth to saturated zone Seepage	0.75 0.53
Tunbridge-------	25	Very limited Depth to bedrock		Very limited	
			\| 1.00	Depth to hard bedrock	11.00
		Slope	1.00	Slope	1.00
		Seepage, bottom layer	1.00	Seepage	1.00
Dixfield--------	20	Very limited		Very limited	
		Depth to saturated zone	\| 1.00	slope	11.00
		slope	0.63	Depth to saturated zone	0.83
				Seepage	0.53
MmA :					
Masardis-------	90	Very limited		Very limited	
		Filtering capacity	\| 1.00	Seepage	\| 1.00
		Seepage, bottom layer	\| 1.00		
MmB :					
Masardis-------	80	Very limited    Filtering 1.00		Very limited Seepage	
		capacity	\| 1.00	Seepage	11.00
		Seepage, bottom layer	1.00	Slope	0.92
MmC :					
Masardis-------	85	Very limited    Filtering 1.00		Very limited	
		Filtering capacity	\| 1.00	slope	1.00
		Seepage, bottom layer	\| 1.00	Seepage	1.00
		slope	0.63		
MmE :					
Masardis-------	90	Very limited		Very limited	
		Filtering capacity	\| 1.00	\| Slope	11.00
		Slope   Seepage, bottom layer	11.00	Seepage	1.00
			\| 1.00		
MRE :					
Masardis--------	60	Very limited Filtering capacity	11.00	Very limited Slope	11.00
		Slope	11.00	Seepage	\| 1.00
		Seepage, bottom layer	\| 1.00		

Table 18.-Sewage Disposal-continued

Map symbol and soil name	Pct.   of   map   unit	Septic tank absorption fields		Sewage lagoons	
		Rating class and limiting features	Value	Rating class and limiting features	Value
MRE :					
Adams-----------	25	Very limited		Very limited	
		Filtering	1.00	slope	1.00
		e	1.00	Seepage	1.00
		Seepage, bottom	1.00		
		layer			
MSC :					
Masardis--------	55	Very limited		Very limited	
		Filtering	1.00	Seepage	1.00
		Seepage, bottom	1.00	Slope	1.00
		layer			
		Slope	0.04		
Sheepscot-------	25	Very limited		Very limited	
		Depth to	1.00	Seepage	1.00
		Filtering capacity	1.00	Depth to saturated zone	1.00
		Seepage, bottom layer	1.00	slope	0.32
MT :					
Medomak--------	50	Very limited		Very limited	
		Flooding	1.00	Flooding	1.00
		Depth to saturated zone	1.00	Depth to saturated zone	1.00
		Seepage, bottom layer	1.00	Seepage	1.00
		Slow water movement	0.46		
Wonsqueak-------	30	Very limited		\| Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone	1.00
		Slow water movement	0.72	Seepage	1.00
				Organic matter content	1.00
Mvb :					
Monarda -	75	Very limited Depth to saturated zone		Very limited	
			1.00	Depth to	1.00
				Slope	0.32
				Seepage	0.19
MWB :					
Monarda--------	45	Very limited		Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone Seepage Slope	1.00 0.19 0.08
Telos	40	Very limited		Very limited	
		Depth to saturated zone	1.00	```Depth to saturated zone Slope Seepage```	1.00 0.92 0.53

Table 18.-Sewage Disposal-continued

Map symbol and soil name	Pct.   of map unit	Septic tank absorption fields		Sewage lagoons	
		Rating class and limiting features	Value	Rating class and limiting features	Value
MXB :					
Monarda---------	35	Very limited		Very limited	
		Depth to saturated zone	11.00	Depth to saturated zone	1.00
				Seepage	0.19
				Slope	0.08
Wonsqueak-------	30	Very limited		\| Very limited	
		Depth to saturated zone	1.00	Depth to saturated zo	1.00
		Slow water movement	0.72	Seepage	1.00
				Organic matter content	1.00
NAC:					
Naskeag---------	35	Very limited		\| Very limited	
		Depth to saturated zone	1.00	Depth to hard bedrock	1.00
		Filtering capacity	1.00	Seepage	1.00
		Seepage, bottom layer	1.00	Depth to saturated zone	1.00
		Depth to bedrock	1.00	Slope	0.32
Abram----------	25	\|Very limited Depth to bedrock		Very limited	
			1.00	Depth to hard bedrock	1.00
		Seepage, bottom	1.00	Slope	1.00
		layer			
		slope	0.04		
Ricker----------	20	Very limited		Very limited	
		Depth to bedrock	1.00	Depth to hard bedrock	1.00
		Seepage, bottom layer	1.00	Slope	1.00
		slope	0.04		
NBB :					
Naskeag--------	35	Very limited		Very limited	
		Depth to saturated zone	1.00	Depth to hard bedrock	1.00
		Filtering capacity	1.00	Seepage	1.00
		Seepage, bottom layer   Depth to bedrock	1.00	Depth to saturated zone	1.00
			1.00	slope	0.08
Rawsonville-----	25	Very limited Depth to bedrock		Very limited	
			1.00	Depth to hard bedrock	1.00
		Seepage, bottom layer	1.00	Seepage	1.00
				Slope	0.92
Hogback---------	15	Very limited Depth to bedrock		Very limited	
			1.00	Depth to hard bedrock	1.00
		Seepage, bottom layer	1.00	Seepage	1.00
				Slope	0.92

Table 18.-Sewage Disposal-continued


Table 18.-Sewage Disposal-continued

Map symbol and soil name	Pct.   of map unit	Septic tank absorption fields		Sewage lagoons		
		Rating class and limiting features	Value	Rating class and limiting features	Value	
NGC:      Nicholville--.-..... 55 Very limited						
Nicholville	55	Depth to saturated zone	1.00	slope	1.00	
		Slow water movement	0.46	Depth to saturated zone	0.92	
		Slope	0.16	Seepage	0.53	
Croghan---------	20	Very limited		Very limited		
		Depth to saturated zone	1.00	Seepage	1.00	
		Filtering capacity	1.00	Depth to saturated zone	1.00	
		Seepage, bottom layer	1.00	slope	1.00	
Pg:						
Pits, sand and gravel	90	Very limited   Filtering capacity   Seepage, bottom layer		Very limited Seepage		
			1.00		1.00	
			1.00			
RhB :						
Rawsonville-----	55	Very limited		Very limited		
		Depth to bedrock	1.00	Depth to hard bedrock	1.00	
		Seepage, bottom layer	1.00	Seepage	1.00	
				Slope	0.92	
Hogback---------	20	Very limited Depth to bedrock	1.00	Very limited		
				Depth to hard bedrock	1.00	
		Seepage, bottom layer	1.00	Seepage	1.00	
				Slope	0.92	
RhC:						
Rawsonville-----	50	Very limited Depth to bedrock	1.00	Very limited		
				Depth to hard bedrock	1.00	
		Seepage, bottom layer	1.00	Slope	1.00	
		slope	0.63	Seepage	1.00	
Hogback---------	25	Very limited Depth to bedrock		Very limited		
			1.00	Depth to hard bedrock	1.00	
		Seepage, bottom layer	\| 1.00	Slope	1.00	
		slope	0.63	Seepage	1.00	

Table 18.-Sewage Disposal-continued


Table 18.-Sewage Disposal-continued

$\begin{aligned} & \text { Map symbol } \\ & \text { and soil name } \end{aligned}$	Pct.   of map unit	Septic tank absorption fields		Sewage lagoons		
		Rating class and limiting features	Value	Rating class and limiting features	Value	
Biddeford-------		movement	1.00	Ponding	1.00	
		Ponding	1.00	Depth to	1.00	
		Depth to saturated zone	1.00	Organic matter content	1.00	
				Seepage	0.28	
SG:						
Sebago----------	50	Very limited		Very limited		
		Ponding	1.00	Ponding	1.00	
		Depth to saturated zone	1.00	Organic matter content	1.00	
		Seepage, bottom layer	1.00	Seepage	1.00	
				Depth to saturated zone	1.00	
Moosabec--------	40	Very limited		Very limited		
		Depth to saturated zone	1.00	Organic matter content	1.00	
		```Filtering capacity```	1.00	Seepage	1.00	
		Seepage, bottom layer	1.00	Depth to saturated zone	1.00	
ShB :						
Sheepscot-------	80	Very limited		Very limited		
		Depth to saturated zone	1.00	Seepage	1.00	
		Filtering capacity	1.00	Depth to saturated zone	1.00	
		Seepage, bottom layer	1.00		0.32	
SJB:						
Sheepscot-------	35	Very limited				
		Depth to saturated zone	1.00	Seepage	1.00	
		```Filtering capacity Seepage, bottom layer```	1.00	Depth to saturated zone Slope	1.00	
			1.00		0.32	
Croghan---------	25	Very limited 1.00		Very limited Seepage		
		Depth to saturated zone	1.00		1.00	
		Filtering capacity	1.00	Depth to saturated zone	1.00	
		Seepage, bottom layer	1.00	Slope	0.32	
SJB :						
Kinsman-	25	Very limited		Very limited Seepage		
		Depth to saturated zone	1.00		1.00	
		Filtering capacity Seepage, bottom layer	1.00 1.00	```Depth to saturated zone```	1.00	

Table 18.-Sewage Disposal-continued


Table 18.-Sewage Disposal-continued

Map symbol and soil name	$\left\lvert\, \begin{gathered} \text { Pct. } \\ \text { of } \end{gathered}\right.$	Septic tank absorption fields		Sewage lagoons	
		Rating class and limiting features	\|Value	Rating class and limiting features	Value
SRC:					
Rawsonville--------	20	\| Very limited		\| Very limited	
		Depth to bedrock	11.00	Depth to hard bedrock	1.00
		Seepage, bottom layer	1.00	slope	1.00
		Slope	0.04	Seepage	1.00
STC:					
Skerry-------------	35	\| Very limited		\| Very limited	
		Depth to saturated zone	\| 1.00	slope	1.00
		Slope	0.04	Depth to saturated zone	0.92
				Seepage	0.53
Colonel------------	25	\| Very limited		\| Very limited	
		Depth to saturated zone	\| 1.00	Depth to saturated zone	1.00
				Seepage	0.53
				Slope	0.32
Tunbridge----------	20	\| Very limited		\| Very limited	
		Depth to bedrock	1.00	Depth to hard bedrock	1.00
		Seepage, bottom layer	11.00	slope	1.00
		slope	0.04	Seepage	1.00
TaB:					
Telos--------------	80	\| Very limited		Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone	1.00
				Slope	0.92
				Seepage	0.53
TCB:					
Telos--------------	55	\| Very limited		\| Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone	1.00
				Seepage	0.53
				Slope	0.08
Chesuncook---------	25	$\begin{array}{\|l} \text { Very limited } \\ \text { Depth to } \\ \text { saturated zone } \end{array}$	1.00	Somewhat limited Slope	0.92
				Depth to saturated zone Seepage	0.92
TEB :					
Telos-------------	35	\| Very limited		\| Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone Seepage Slope	1.000

Table 18.-Sewage Disposal-continued


Table 18.-Sewage Disposal-continued

$\begin{aligned} & \text { Map symbol } \\ & \text { and soil name } \end{aligned}$	Pct.   of map unit	Septic tank absorption fields		Sewage lagoons	
		Rating class and limiting features	\|Value	Rating class and limiting features	Value
TuC:					
Lyman-----------	25	Very limited		Very limited	
		Depth to bedrock	1.00	Depth to hard	1.00
		Seepage, bottom	1.00	Slope	1.00
		layer		slope	
		slope	0.63	Seepage	1.00
TyC:					
Tunbridge-------	35	Very limited		Very limited	
		Depth to bedrock	1.00	Depth to hard bedrock	1.00
		Seepage, bottom	1.00	slope	1.00
		slope	0.04	Seepage	1.00
Lyman-----------	30	Very limited		Very limited	
		Depth to bedrock	1.00	Depth to hard bedrock	1.00
		Seepage, bottom layer	1.00	Seepage	1.00
		Slope	0.04	Slope	1.00
Abram----------	20	Very limited		Very limited	
		Depth to bedrock	1.00	Depth to hard bedrock	1.00
		Seepage, bottom layer	1.00	slope	1.00
		slope	0.04		
Ud:					
Udorthents---------- \|	50	Not rated		Not rated	
Urban land--------- \|	30	Not rated		Not rated	
W:					
Water--------------	100	Not rated		Not rated	
WF :					
Wonsqueak-------	50	Very limited		Very limited	
		Depth to	1.00	Depth to	1.00
		Slow water movement	0.72	Seepage	1.00
				Organic matter content	1.00
Bucksport------	25	Very limited Depth to saturated zone Seepage, bottom layer		Very limited	
			1.00	Organic matter content	1.00
			1.00	Depth to saturated zone Seepage	1.000

Table 19.-Landfills
(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00 . The larger the value, the greater the limitation. See text for further explanation of ratings in this table.)


Table 19.-Landfills-continued


Table 19.-Landfills-continued


Table 19.-Landfills-continued


Table 19.-Landfills-continued


Table 19.-Landfills-continued

Map symbol and soil name	Pct.   of map unit	Trench sanitary landfill		```Area sanitary landfill```		Daily cover for landfill	
		Rating class and limiting features	Value	Rating class and limiting features	\| Value	Rating class and limiting features	\|Value
$\begin{aligned} & \text { CSD: } \\ & \text { Colton } \end{aligned}$	60	Very limited		Very limited		Very limited	
		Slope	1.00	Slope	1.00	Slope	1.00
		Seepage, bottom layer	1.00	Seepage	1.00	Too sandy	1.00
		Too sandy	1.00			Seepage	1.00
						Gravel content	0.81
Hermon----------	25	Very limited		Very limited		Very limited	
		slope	1.00	slope	1.00	slope	1.00
		Seepage, bottom layer	1.00	Seepage	1.00	Too sandy	1.00
		Too sandy	1.00			Seepage	1.00
						Gravel content	0.35
CtB :							
Creasey--------	80	Very limited		Very limited		Very limited	
				Depth to bedrock	1.00	Depth to bedrock	
		Seepage, bottom layer	$\text { \| } 1.00$			Seepage	$0.22$
						Gravel content	0.12
CtC:							
Creasey---------	80	Very limited		Very limited		Very limited	
		Depth to bedrock	1.00	Depth to bedrock	1.00	Depth to bedrock	1.00
		Seepage, bottom layer	$1.00$	slope	0.63	slope	0.63
		slope	0.63			Seepage	0.22
						Gravel content	0.12
CVC:							
Creasey---------	55	Very limited		Very limited		Very limited	
		Depth to bedrock	1.00	Depth to bedrock	1.00	Depth to bedrock	1.00
		Seepage, bottom layer	1.00	Slope	0.04	Seepage	0.22
		slope	0.04			Gravel content	0.12
						Slope	0.04
Abram-----------	20	Very limited		Very limited		Very limited	
		Depth to bedrock	1.00	Depth to bedrock	1.00	Depth to bedrock	1.00
		Seepage, bottom layer	1.00	slope	0.04	Organic matter content	1.00
		Organic matter content	1.00			Seepage	0.88
		Slope	0.04			Slope	0.04
CxC:							
Creasey--------	55	Very limited		Very limited		Very limited	
		Depth to bedrock	1.00	Depth to bedrock	1.00	Depth to bedrock	1.00
		Seepage, bottom layer	1.00	Slope	0.04	Seepage	0.22
		Slope	0.04			Gravel content	0.12
						slope	0.04
Lamoine---------	30	```Very limited Depth to saturated zone Too clayey```		Very limited Depth to saturated zone	1.00	Very limited	
			1.00			Depth to saturated zone	1.00
			1.00			Too clayey Hard to compact	$\begin{aligned} & 1.00 \\ & 1.00 \end{aligned}$

Table 19.-Landfills-continued


Table 19.-Landfills-continued

Map symbol and soil name	Pct. of	Trench sanitary   landfill		Area sanitary landfill		Daily cover for landfill	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	Value
DMC:							
Dixfield	55	Depth to saturated zone slope	1.00 0.04	Depth to saturated zone Slope	0.83 0.04	Depth to saturated zone slope	$\left\lvert\, \begin{aligned} & 0.91 \\ & 0.04\end{aligned}\right.$
Marlow----------	30	```Very limited Depth to saturated zone slope```		Somewhat limited		Somewhat limited	
			0.99	Depth to	0.75	Depth to	0.86
			0.63	slope	0.63	slope	0.63
DRC:							
Dixfield--------	35	Very limited		Somewhat limited		Somewhat limited	
		Depth to   saturated zone	1.00	Depth to   saturated zone	0.83	Depth to saturated zone	0.91
		Slope	0.04	Slope	0.04	Slope	0.04
Marlow----------	30	```Very limited Depth to saturated zone slope```		```Somewhat limited Depth to saturated zone slope```		Somewhat limited Depth to saturated zone slope	
			0.99		0.75		0.86
			0.63		0.63		0.63
Rawsonville-----	20	Very limited		Very limited		Very limited	
		Depth to bedrock	1.00	Depth to bedrock	1.00	Depth to bedrock	1.00
		Seepage, bottom	1.00	Seepage	1.00	Seepage	0.22
		layer					
		Slope	0.04	Slope	0.04	Slope	0.04
DTC:							
Dixfield--------	35	```Very limited Depth to saturated zone slope```		```Somewhat limited Depth to saturated zone slope```		```Somewhat limited Depth to saturated zone slope```	
			1.00		0.83		0.91
			0.04		0.04		0.04
Marlow----------	30	```Very limited Depth to saturated zone slope```		```Somewhat limited Depth to saturated zone slope```		```Somewhat limited Depth to saturated zone slope```	
			0.99		0.75		0.86
			0.63		0.63		0.63
Tunbridge-------	20	Very limited Depth to bedrock Seepage, bottom layer Slope		Very limited		Very limited	
			1.00	Depth to bedrock	1.00	Depth to bedrock	1.00
			1.00	Seepage	1.00	Seepage	0.22
			0.04	Slope	0.04	Slope	0.04
DUC:   Dixfield							
	30	```Very limited Depth to saturated zone slope```		Somewhat limited   Depth to saturated zone Slope		Somewhat limited Depth to saturated zone slope	
			1.00		0.83		0.91
			0.04		0.04		0.04
Rawsonville-----	25	Very limited Depth to bedrock Seepage, bottom layer slope		Very limited Depth to bedrock Seepage		Very limited Depth to bedrock Seepage	
			1.00		1.00		1.00
			1.00		1.00		0.22
			0.04	Slope	0.04	Slope	0.04
Colonel--	20	Very limited Depth to saturated zone	1.00	Very limited Depth to saturated zone	1.00	Very limited Depth to saturated zone	1.00

Table 19.-Landfills-continued

Map symbol and soil name	Pct.   of   map   unit	Trench sanitary   landfill		Area sanitary landfill		Daily cover for landfill	
		Rating class and limiting features	Value	Rating class and limiting features	\|Value	Rating class and limiting features	Value
DWC:							
Dixfield--------	30	```Very limited Depth to saturated zone slope```	1.00 0.04	```Somewhat limited Depth to saturated zone slope```	0.83	Somewhat limited Depth to saturated zone slope	0.91 0.04
Tunbridge-------	25	Very limited		Very limited		Very limited	
		Depth to bedrock	1.00	Depth to bedrock	1.00	Depth to bedrock	1.00
		Seepage, bottom layer	1.00	Seepage	\| 1.00	Seepage	0.22
		slope	0.04	Slope	0.04	Slope	0.04
Colonel--------	20	Very limited		Very limited		Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone	\| 1.00	Depth to saturated zone	1.00
EcB :							
Elliottsville---	45	Very limited Depth to bedrock	1.00	\|Very limited Depth to bedrock	11.00	Very limited Depth to bedrock	1.00
Chesuncook------	35	Very limited Depth to saturated zone	1.00	Somewhat limited Depth to saturated zone	0.92	Somewhat limited Depth to saturated zone	0.95
EMC:							
Elliottsville---	50	\|Very limited Depth to bedrock Slope		```\|Very limited ```		\|Very limited Depth to bedrock Slope	
			1.00		1.00		1.00
			0.04		0.04		0.04
Monson---------	20	Very limited Depth to bedrock slope		\|Very limited Depth to bedrock slope		Very limited Depth to bedrock Slope	
			1.00		1.00		1.00
			0.04		0.04		0.04
Go: Gouldsboro							
	90	Very limited Flooding		$\begin{array}{\|c} \text { Very limited } \\ \text { Flooding } \end{array}$		Very limited	
			1.00		1.00	Depth to saturated zone	1.00
		Depth to saturated zone	\| 1.00	Depth to saturated zone	\| 1.00		
HCC :							
Hermon---------	40	```Very limited Seepage, bottom layer Too sandy Slope```		\|Very limited Seepage		Very limited	
			\| 1.00		\| 1.00	Too sandy	1.00
			1.00	Slope	0.04	Seepage Gravel content slope	1.00
			0.04				0.35
							0.04
Colton---------	20	Very limited		Very limited		Very limited	
		Seepage, bottom layer	11.00	Seepage	11.00	Too sandy	1.00
		Too sandy	1.00	Slope	0.04	Seepage	1.00
		Slope	0.04			Gravel content	0.81
						Slope	0.04
Abram-----------	15	Very limited		Very limited Depth to bedrock slope		Very limited Depth to bedrock	
		Depth to bedrock	1.00		1.00		1.00
		Seepage, bottom layer	\| 1.00		0.04	Organic matter content	1.00
		Organic matter content	1.00			Seepage	0.88
		Slope	0.04			Slope	0.04

Table 19.-Landfills-continued


Table 19.-Landfills-continued

Map symbol and soil name	$\left\lvert\, \begin{gathered} \text { Pct. } \\ \text { of } \end{gathered}\right.$	Trench sanitary landfill		Area sanitary landfill		Daily cover for landfill	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	Value
		Slope	1.00	slope	1.00	slope	1.00
		Seepage, bottom layer	1.00	Seepage	1.00	Seepage	0.52
		Too sandy	0.50			Too sandy	0.50
HOE:							
Hermon----------	50	Very limited		Very limited		Very limited	
		slope	1.00	slope	1.00	slope	1.00
		Seepage, bottom layer	1.00	Seepage	1.00	Too sandy	1.00
		Too sandy	1.00			Seepage	1.00
						Gravel content	0.35
Monadnock-------	35	Very limitedSlope		Very limited		Very limited	
			1.00	Slope	1.00	Slope	1.00
		Seepage, bottom layer	1.00	Seepage	1.00	Seepage	0.52
		Too sandy	0.50			Too sandy	0.50
HSC:							
Hermon----------	40	Very limited Seepage, bottom layer	1.00	Seepage	1.00	Too sandy	1.00
		Too sandy	1.00	Slope	0.04	Seepage	1.00
		slope	0.04			Gravel content	0.35
						slope	0.04
Monadnock-------	30	Very limited Seepage, bottom layer		Very limited		Somewhat limited	
			1.00	Seepage	1.00	Seepage	0.52
		\| Too sandy	0.50	Slope	0.04	Too sandy	0.50
		Slope	0.04			Slope	0.04
Skerry----------	15	$\begin{array}{\|l} \text { Very limited } \\ \text { Depth to } \\ \text { saturated zone } \end{array}$	1.00	Somewhat limited Depth to saturated zone	0.92	Somewhat limited Depth to saturated zone	0.95
HVC:							
Hermon----------	40	Very limited		Very limited		Very limited	
		Seepage, bottom layer	1.00	Seepage	1.00	Too sandy	1.00
		Too sandySlope	1.00	Slope	0.04	Seepage	1.00
			0.04			Gravel content Slope	0.35
							0.04
Monadnock-------	30	Very limited Seepage, bottom layer				Somewhat limited	
			1.00	Seepage	1.00	Seepage	0.52
		Too sandy	0.50	Slope	0.04	Too sandy	0.50
		Slope	0.04			slope	0.04
Skerry----------	15	$\begin{array}{\|l} \text { Very limited } \\ \text { Depth to } \\ \text { saturated zone } \end{array}$	1.00	Somewhat limited Depth to saturated zone	0.92	Somewhat limited Depth to saturated zone	0.95

Table 19.-Landfills-continued

Map symbol and soil name	Pct. of	Trench sanitary   landfill		Area sanitary landfill		Daily cover for landfill	
		Rating class and limiting features	\|Value	Rating class and limiting features	\| Value	Rating class and limiting features	Value
HWE :							
Hogback	30	slope	1.00	slope	1.00	Depth to bedrock	1.00
		Depth to bedrock	1.00	Depth to bedrock	1.00	Slope	1.00
		Seepage, bottom layer	1.00			Seepage	0.50
Abram-----------	25	Very limited \|,		Very limited		Very limited	
		Slope	1.00	Slope	\| 1.00	Depth to bedrock	\| 1.00
		Depth to bedrock	1.00	Depth to bedrock	\| 1.00	Slope	\| 1.00
		Seepage, bottom layer	1.00			Organic matter content	1.00
		Organic matter content	1.00			Seepage	0.88
Rawsonville-----	25	\| Very limited		Very limited		Very limited	
		Slope	1.00		\| 1.00	Slope	\| 1.00
		Depth to bedrock	1.00	Depth to bedrock	1.00	Depth to bedrock	1.00
		Seepage, bottom layer	1.00	Seepage	\| 1.00	Seepage	0.22
HXC:							
Hogback--------	30	Very limited		Very limited		Very limited	
		Depth to bedrock	1.00	Depth to bedrock	1.00	Depth to bedrock	1.00
		Seepage, bottom layer	1.00	slope	0.04	Seepage	0.50
		slope	0.04			Slope	0.04
Rawsonville-----	30	Very limited		Very limited		\| Very limited	
		Depth to bedrock	1.00	Depth to bedrock	11.00	Depth to bedrock	11.00
		Seepage, bottom layer	$1.00$	Seepage	$1.00$	Seepage	$0.22$
		slope	0.04	Slope	0.04	Slope	0.04
Abram----------	15	Very limited		Very limited Depth to bedrock Slope		Very limited	
		Depth to bedrock	1.00		1.00	Depth to bedrock	1.00
		Seepage, bottom layer	1.00		0.04	Organic matter content	\| 1.00
		Organic matter content	1.00			Seepage	0.88
		slope	0.04			Slope	0.04
Kn:							
Kinsman-	75	Very limited		\|Very limited		Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone	1.00	Depth to saturated zone	1.00
		Seepage, bottom layer	1.00	Seepage	1.00	Too sandy	1.00
		Too sandy	1.00			Seepage	1.00
KW :							
Kinsman---------	45	Very limited		Very limited		Very limited	
		Depth to saturated zone Seepage, bottom layer   Too sandy	1.00	Depth to saturated zone Seepage	$\left\lvert\, \begin{aligned} & 1.00 \\ & 1.00 \end{aligned}\right.$	```Depth to saturated zone Too sandy```	\| 1.00
			$1 \begin{aligned} & 1.00 \\ & 1.00\end{aligned}$				$1 \begin{aligned} & 1.00 \\ & 1.00\end{aligned}$

Table 19.-Landfills-continued

$\begin{aligned} & \text { Map symbol } \\ & \text { and soil name } \end{aligned}$	Pct.   of   map   unit	Trench sanitary   landfill		```Area sanitary landfill```		Daily cover for landfill	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	Value
KW :							
Wonsqueak-------	35	Very limited		Very limited		Very limited	
		Depth to	1.00	Depth to	1.00	Depth to	1.00
		Too clayey	0.50	Seepage	1.00	Too clayey	0.50
LaB:							
Lamoine---------	80	Very limited		Very limited		Very limited	
		Depth to saturated zone Too clayey	1.00	Depth to saturated zone	11.00	Depth to saturated zone	1.00
			1.00			Too clayey	11.00
						Hard to compact	1.00
LbB :							
Lamoine---------	50	Very limited		Very limited		Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone	1.00	Depth to saturated zone	1.00
		Too clayey	1.00			Too clayey	11.00
						Hard to compact	1.00
Buxton----------	35	```Very limited Depth to saturated zone Too clayey```		Somewhat limited Depth to saturated zone		Very limited	
			1.00		0.83	Too clayey	1.00
			1.00			Hard to compact	1.00
						Depth to saturated zone	0.91
LCB :							
Lamoine---------	45	Very limited		Very limited		Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone	1.00	Depth to saturated zone	1.00
		Too clayey	1.00			Too clayey	1.00
						Hard to compact	1.00
Buxton----------	20			```Somewhat limited Depth to saturated zone Slope```		Very limited Too clayey	
		Depth to saturated zone	1.00		0.83		1.00
		Too clayey	1.00		0.63	Hard to compact	1.00
		Slope	0.63			Depth to	0.91
						Slope	0.63
Scantic---------	20	```Very limited Depth to saturated zone Too clayey```		Very limited Depth to saturated zone		Very limited	
			1.00		\| 1.00	Depth to saturated zone	1.00
			1.00			Too clayey	1.00
						Hard to compact	1.00
LEB :							
Lamoine--------	30	Very limited		Very limited		Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone	1.00	Depth to saturated zone	1.00
		Too clayey	1.00			Too clayey	1.00
						Hard to compact	1.00
Creasey--------	30	Very limited Depth to bedrock Seepage, bottom layer		Very limited Depth to bedrock		Very limited	
			1.00		1.00	Depth to bedrock	1.00
			1.00			Seepage	0.22
						Gravel content	0.12

Table 19.-Landfills-continued

Map symbol and soil name	\| Pct. of	Trench sanitary landfill		```Area sanitary landfill```		Daily cover for landfill	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	Value
LEB :							
Scantic---------	20	Very limited		Very limited	\| 1.00	Very limited	1.00
		Depth to	1.00	Depth to		Depth to	
		Too clayey	1.00			Too clayey	1.00
						Hard to compact	1.00
LHB :							
Lamoine---------	50	Very limited		Very limited	\| 1.00	Very limited	
		Depth to	1.00	Depth to		Depth to	1.00
		saturated zone		saturated zone		saturated zone	
		Too clayey	1.00			Too clayey	1.00
						Hard to compact	1.00
Nicholville-----	25	Very limited Depth to saturated zone		Somewhat limited	0.92	Somewhat limited Depth to saturated zone	0.95
			1.00	Depth to saturated zone			
		Too sandy	0.50				
LKB :							
Lamoine---------	30	Very limited		Very limited	\| 1.00	Very limited	
		Depth to	1.00	Depth to		Depth to	1.00
		Too clayey	1.00			Too clayey	1.00
						Hard to compact	1.00
Rawsonville-----	25	Very limited Depth to bedrock Seepage, bottom layer		Very limited Depth to bedrock Seepage		Very limited Depth to bedrock Seepage	
			1.00		1.00		1.00
			1.00		1.00		0.22
Scantic---------	20	```Very limited Depth to saturated zone Too clayey```		$\begin{aligned} & \text { Very limited } \\ & \text { Depth to } \\ & \text { saturated zone } \end{aligned}$	1.00	\|Very limited	
			1.00			Depth to	1.00
			1.00			Too clayey	1.00
						Hard to compact	1.00
LmB :							
Lamoine---------	55	Very limited		Very limited	1.00	Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone		Depth to saturated zone	1.00
		Too clayey	1.00			Too clayey	1.00
						Hard to compact	1.00
Scantic---------	35	```Very limited Depth to saturated zone Too clayey```		Very limited		Very limited	
			1.00	Depth to saturated zone	1.00	Depth to saturated zone   Too clayey   Hard to compact	11.00
			1.00				1.00
							1.00
LnB :							
Lamoine---------	55	```Very limited Depth to saturated zone Too clayey```		Very limited		Very limited	
			1.00	Depth to saturated zone	1.00	Depth to saturated zone	1.00
			1.00			Too clayey	1.00
						Hard to compact	1.00
Scantic---------	35	```Very limited Depth to saturated zone Too clayey```		$\begin{array}{\|l} \text { Very limited } \\ \text { Depth to } \\ \text { saturated zone } \end{array}$		Very limited Depth to saturated zone Too clayey Hard to compact	
			1.00 1.00		1.00		$1 \begin{aligned} & 1.00 \\ & 1.00\end{aligned}$
							1.00

Table 19.-Landfills-continued


Table 19.-Landfills-continued

Map symbol and soil name	Pct.   of   map unit	Trench sanitary landfill		Area sanitary landfill		Daily cover for landfill	
		Rating class and limiting features	Value	Rating class and limiting features	\|Value	Rating class and limiting features	Value
LYC: Lyma	30	Very limited		Very limited		Very limited	
		Depth to bedrock	1.00	Depth to bedrock	\| 1.00	Depth to bedrock	11.00
		Seepage, bottom layer	1.00	Slope	0.04	Seepage	\| 0.52
		slope	0.04			Slope	0.04
Tunbridge-------	30	Very limited		Very limited		Very limited	
		Depth to bedrock	1.00	Depth to bedrock	1.00	Depth to bedrock	1.00
		Seepage, bottom layer	1.00	Seepage	1.00	Seepage	0.22
		slope	0.04	Slope	0.04	Slope	0.04
Abram-----------	15	Very limited		Very limited		Very limited	
		Depth to bedrock	1.00	Depth to bedrock	1.00	Depth to bedrock	1.00
		Seepage, bottom layer	1.00	Slope	0.04	Organic matter content	\| 1.00
		Organic matter content	1.00			Seepage	0.88
		slope	0.04			Slope	0.04
MaC:							
Marlow	82	Very limited		Somewhat limited		Somewhat limited	
		Depth to saturated zone	0.99	Depth to saturated zone	0.75	Depth to saturated zone	0.86
		slope	0.63	slope	0.63	slope	0.63
MbC :							
Marlow----------	80	Very limited		Somewhat limited		Somewhat limited	
		Depth to saturated zone Slope	0.99	Depth to saturated zone	0.75	Depth to saturated zone	0.86
			0.63	slope	0.63	Slope	0.63
MDD :							
Marlow----------	55	```Very limited slope Depth to saturated zone```		```Very limited Slope Depth to saturated zone```		Very limited	
			1.00		1.00	Slope	11.00
			0.99		0.75	Depth to saturated zone	\| 0.86
Dixfield-	30	```Very limited Depth to saturated zone slope```		Somewhat limited		Somewhat limited	
			1.00	Depth to saturated zone	0.83	Depth to saturated zone	0.91
			0.63	slope	0.63	slope	0.63
MFD :							
Marlow	35	```Very limited Slope Depth to saturated zone```		```\|Very limited ```		Very limited	
			1.00		1.00	slope	1.00
			0.99		0.75	Depth to saturated zone	0.86
Rawsonville-----	25	Very limited   Slope   Depth to bedrock   Seepage, bottom layer		Very limited		Very limited	
			1.00	Slope	1.00	Slope	1.00
			1.00	Depth to bedrock	1.00	Depth to bedrock	1.00
			1.00	Seepage	1.00	Seepage	\| 0.22
Dixfield--------	20	```Very limited Depth to saturated zone Slope```		Somewhat limited		Somewhat limited	
			1.00 0.63	Depth to saturated zone Slope	$\left\lvert\, \begin{aligned} & 0.83 \\ & 0.63\end{aligned}\right.$	Depth to saturated zone slope	$\left\lvert\, \begin{aligned} & 0.91 \\ & 0.63\end{aligned}\right.$

Table 19.-Landfills-continued

Map symbol and soil name	$\left\lvert\, \begin{gathered} \text { Pct. } \\ \text { of } \\ \text { map } \\ \text { unit } \end{gathered}\right.$	Trench sanitary landfill		Area sanitary landfill		Daily cover for landfill		
		Rating class and limiting features	Value	Rating class and limiting features	\|Value	Rating class and limiting features	Value	
Marlow----------	35	Very limited		Very limited		Very limited		
		slope	1.00	Slope	11.00	Slope	11.00	
		Depth to saturated zone	0.99	Depth to saturated zone	0.75	Depth to saturated zone	\| 0.86	
Tunbridge------	25	$\|$Very limited   Slope   Depth to bedrock   Seepage, bottom   layer		Very limited		Very limited		
			1.00	Slope	1.00	Depth to bedrock	1.00	
			1.00	Depth to bedrock	\| 1.00	Slope	\| 1.00	
			1.00	Seepage	\| 1.00	Seepage	\| 0.22	
Dixfield--------	20	```Very limited Depth to saturated zone Slope```		Somewhat limited		Somewhat limited		
			1.00 0.63	Depth to saturated zone	0.83	Depth to saturated zone	0.91	
			0.63	Slope	0.63	slope	0.63	
MmA :								
Masardis-------	90	\|Very limited Seepage, bottom layer	1.00	Very limited Seepage	1.00	Very limited		
						Too sandy	1.00	
		Too sandy	\| 1.00			Seepage	11.00	
						Gravel content	1.00	
MmB :								
Masardis-------	80	Very limited   Seepage, bottom layer   Too sandy	1.00	Very limited Seepage	1.00	Very limited		
						Too sandy	1.00	
			1.00			Seepage	1.00	
						Gravel content	1.00	
MmC :								
Masardis-------	85	Very limited		\| Very limited		\| Very limited		
		Seepage, bottom layer	1.00	Seepage	\| 1.00	Too sandy	11.00	
		Too sandy slope	1.00	Slope	0.63	Seepage	1.00	
			0.63			Gravel content Slope	11.00	
							0.63	
MmE :								
Masardis--------	90	Very limited		\| Very limited		Very limited		
		slope	1.00	slope	1.00	Slope	1.00	
		Seepage, bottom layer	1.00	Seepage	\| 1.00	Too sandy	1.00	
		Too sandy	11.00			Seepage Gravel content	1.00	
MRE :								
Masardis--------	60	\|Very limited			Very limited		Very limited	
		Slope	1.00	Slope	11.00	Slope	1.00	
		Seepage, bottom layer	1.00	Seepage	\| 1.00	Too sandy	1.00	
		Too sandy	1.00			Seepage	11.00	
						Gravel content	\| 1.00	
Adams-----------	25	Very limited		Very limited		Very limited		
				Slope	1.00	Slope	1.00	
		Seepage, bottom layer	1.00	Seepage	1.00	Too sandy	11.00	
		Too sandy	1.00			Seepage	1.00	

Table 19.-Landfills-continued

Map symbol and soil name	Pct.   of map unit	Trench sanitary   landfill		Area sanitary landfill		Daily cover for landfill	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	Value
```MSC: Masardis```							
	55	Very limited	1.00	Very limited	1.00	Very limited	\| 1.00
		Seepage, bottom layer		Seepage		Too sandy	
		Too sandy	1.00	Slope	0.04	Seepage	1.00
		Slope	0.04			Gravel content	\| 1.00
						Slope	0.04
Sheepscot-------	25	Very limited		Very limited		Very limited	
		Depth to	1.00	Depth to	1.00	Too sandy	\| 1.00
		$\begin{aligned} & \text { Seepage, bottom } \\ & \text { layer } \end{aligned}$	1.00	Seepage	1.00	Seepage	1.00
		Too sandy	11.00			Gravel content	0.92
						Depth to saturated zone	0.68
MT :							
Medomak---------	50	Very limited Flooding		Very limited		Very limited	1.00
			1.00	Flooding	1.00	Depth to saturated zone	
		Depth to saturated zone	1.00	Depth to saturated zone	1.00		
		Seepage, bottom layer	1.00				
Wonsqueak-	30	```Very limited Depth to saturated zone Too clayey```		```Very limited Depth to saturated zone Seepage```		Very limited	
			1.00		1.00	Depth to saturated zone	1.00
			0.50		1.00	Too clayey	0.50
Mvb :							
Monarda -	75	Very limited Depth to saturated zone		Very limited		Very limited	
			1.00	Depth to saturated zone	1.00	Depth to saturated zone	1.00
MWB :							
Monarda-	45	Very limited Depth to saturated zone	1.00	\|Very limited Depth to saturated zone	\| 1.00	$\begin{array}{\|l} \text { Very limited } \\ \text { Depth to } \\ \text { saturated zone } \end{array}$	1.00
Telos-----------	40	Very limited Depth to saturated zone	1.00	$\begin{array}{\|l} \text { Very limited } \\ \text { Depth to } \\ \text { saturated zone } \end{array}$	1.00	$\begin{array}{\|l} \text { Very limited } \\ \text { Depth to } \\ \text { saturated zone } \end{array}$	1.00
MXB :							
Monarda-	35	Very limited Depth to saturated zone	1.00	$\begin{array}{\|l} \text { Very limited } \\ \text { Depth to } \\ \text { saturated zone } \end{array}$	1.00	Very limited Depth to saturated zone	1.00
Wonsqueak-------	30	```\|Very limited Depth to saturated zone Too clayey```		```\|Very limited Depth to saturated zone Seepage```		Very limited	
			1.00		1.00	Depth to saturated zone	1.00
			0.50		11.00	Too clayey	0.50

Table 19.-Landfills-continued

Map symbol and soil name	Pct. of map unit	Trench sanitary landfill		Area sanitary landfill		Daily cover for landfill	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	\|Value
Naskeag	35	Depth to saturated zone 1.00		Depth to saturated zone Seepage	1.00	Depth to saturated zone	1.00
		Depth to bedrock	1.00		1.00	Seepage	1.00
		Seepage, bottom layer	1.00	Depth to bedrock	\| 1.00	Depth to bedrock	\| 1.00
		Too sandy	0.50			Too sandy	0.50
Abram-----------	25	Very limited		Very limited		Very limited	
		Depth to bedrock	1.00	Depth to bedrock	\| 1.00	Depth to bedrock	11.00
		Seepage, bottom layer	1.00	Slope	0.04	Organic matter content	\| 1.00
		Organic matter content	1.00			Seepage	0.88
		Slope	0.04			Slope	0.04
Ricker----------	20	Very limited		Very limited		Very limited	
		Depth to bedrock	1.00	Depth to bedrock	1.00	Depth to bedrock	1.00
		Seepage, bottom layer	1.00	Slope	0.04	Organic matter content	\| 1.00
		Organic matter content	1.00			Seepage	0.52
		Slope	0.04			Slope	0.04
NBB :							
Naskeag--------	35	Very limited		Very limited		Very limited	
		Depth to saturated zone Depth to bedrock	1.00	Depth to saturated zone Seepage	1.00	Depth to saturated zone	1.00
			1.00		1.00	Seepage	1.00
		Seepage, bottom layer	1.00	Depth to bedrock	1.00	Depth to bedrock	1.00
		Too sandy	0.50			Too sandy	0.50
Rawsonville-----	25	\|Very limited Depth to bedrock Seepage, bottom layer		Very limited Depth to bedrock Seepage		\|Very limited Depth to bedrock Seepage	
			1.00		1.00		1.00
			1.00		\| 1.00		\| 0.22
Hogback--------	15	Very limited		Very limited	\| 1.00	Very limited	
		Depth to bedrock	1.00	Depth to bedrock		Depth to bedrock	11.00
		Seepage, bottom layer	1.00			Seepage	0.50
NCB :							
Naskeag	35	Very limited		Very limited		Very limited	
		Depth to saturated zone	1.00	saturated zone Seepage	1.00	saturated zone	1.00
		Depth to bedrock	1.00		1.00	Seepage	1.00
		Seepage, bottom layer	1.00	Depth to bedrock	1.00	Depth to bedrock	1.00
		Too sandy	0.50			Too sandy	0.50
Tunbridge------	25	\|Very limited Depth to bedrock Seepage, bottom layer		Very limited Depth to bedrock Seepage		Very limited Depth to bedrock Seepage	
			1.00		1.00		1.00
			1.00		\| 1.00		0.22

Table 19.-Landfills-continued

Table 19.-Landfills-continued

Map symbol and soil name	$\left\lvert\, \begin{gathered} \text { Pct } \\ \text { of } \\ \text { map } \\ \text { unit } \end{gathered}\right.$	Trench sanitary landfill		Area sanitary landfill		Daily cover for landfill		
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	\|Value	
RhB :								
Rawsonville-----	55	Very limited		Very limited		Very limited		
		Depth to bedrock	1.00	Depth to bedrock	1.00	Depth to bedrock	1.00	
		Seepage, bottom layer	1.00	Seepage	\| 1.00	Seepage	0.22	
Hogback---------	20	Very limited		Very limited		\| Very limited		
		Depth to bedrock	1.00	Depth to bedrock	1.00	Depth to bedrock	11.00	
		Seepage, bottom layer	1.00			Seepage	0.50	
RhC:								
Rawsonville-----	50	Very limited		Very limited		Very limited		
		Depth to bedrock	1.00	Depth to bedrock	\| 1.00	Depth to bedrock	1.00	
		Seepage, bottom layer	1.00	Seepage	\| 1.00	Slope	0.63	
		slope	0.63	Slope	0.63	Seepage	0.22	
Hogback--------	25	Very limited		Very limited Depth to bedrock slope		Very limited		
		Depth to bedrock	1.00		1.00	Depth to bedrock	1.00	
		Seepage, bottom layer	1.00		0.63	Slope	0.63	
		Slope	0.63			Seepage	0.50	
RmC:								
Rawsonville-----	35	Very limited ${ }^{\text {V }}$		Very limitedDepth to bedrock		Very limited		
				1.00	Depth to bedrock	1.00		
		Seepage, bottom layer	1.00		Seepage	\| 1.00	Seepage	\| 0.22
		Slope	0.04	Slope	0.04	Slope	0.04	
Hogback--------	30	Very limited Depth to bedrock		Very limited Depth to bedrock		Very limited		
			1.00		1.00	Depth to bedrock	1.00	
		Seepage, bottom layer	1.00	Slope	0.04	Seepage	0.50	
		slope	0.04			Slope	0.04	
Abram----------	20	Very limited		Very limited		Very limited		
		Depth to bedrock	1.00	Depth to bedrock	\| 1.00	Depth to bedrock	1.00	
		Seepage, bottom layer	1.00	Slope	0.04	Organic matter content	\| 1.00	
		Organic matter content	1.00			Seepage	0.88	
		Slope	0.04			Slope	0.04	
RNC:								
Rawsonville-----	35	Very limited		Very limited		Very limited		
		Depth to bedrock	1.00	Depth to bedrock	1.00	Depth to bedrock	1.00	
		Seepage, bottom layer	1.00	Seepage	\| 1.00	Seepage	0.22	
		slope	0.04	Slope	0.04	Slope	0.04	
Lamoine--------	25	Very limited		Very limited		Very limited		
		Depth to saturated zone Too clayey	1.00	Depth to saturated zone	1.00	Depth to saturated zone Too clayey Hard to compact	1.00	
			1.00				11.00	

Table 19.-Landfills-continued

Map symbol and soil name	Pct. of map unit	Trench sanitary landfill		Area sanitary landfill		Daily cover for landfill	
		Rating class and limiting features	\|Value	Rating class and limiting features	Value	Rating class and limiting features	Value
RNC:							
Hogback--------	20	Depth to bedrock	1.00	Depth to bedrock	1.00	Depth to bedrock	1.00
		Seepage, bottom layer	1.00	Slope	0.04	Seepage	0.50
		Slope	0.04			Slope	0.04
Scantic---------	80	Very limited		Very limited		Very limited	
		Depth to	1.00	Depth to	1.00	Depth to	1.00
		Too clayey	1.00			Too clayey	1.00
						Hard to compact	1.00
SF:							
Scantic--------	50	Very limited		Very limited		Very limited	
		Depth to	1.00	Depth to	1.00	Depth to	1.00
		Too clayey	1.00			Too clayey	1.00
						Hard to compact	1.00
Biddeford-------	30	```Very limited Depth to saturated zone Ponding```		Very limited		Very limited	
			1.00	Ponding	1.00	Ponding	1.00
			1.00	Depth to	1.00	Depth to	1.00
		Too clayey	1.00			Too clayey	1.00
SG:							
Sebago----------	50	```Very limited Depth to saturated zone Ponding```		Very limited Ponding		Very limited	
			1.00	Ponding	1.00	Ponding	1.00
			1.00	Depth to	1.00	Depth to	\| 1.00
		Seepage, bottom layer	1.00	Seepage	1.00	Organic matter content	1.00
		Organic matter content	1.00			Seepage	0.52
Moosabec--------	40	Very limited Depth to saturated zone		Very limited		Very limited	
			1.00	Depth to saturated zone	1.00	Depth to saturated zone	\| 1.00
		Seepage, bottom layer	1.00	Seepage	1.00	Seepage	1.00
		Organic matter content	1.00			Organic matter content	1.00
		Too acid	1.00			Too acid	1.00
ShB :							
Sheepscot-------	80	Very limited Depth to saturated zone Seepage, bottom layer Too sandy		```Very limited Depth to saturated zone Seepage```		Very limited Too sandy	
			1.00		1.00		1.00
			1.00		1.00	Seepage	1.00
			1.00			Gravel content	0.92
						Depth to saturated zone	0.68

Table 19.-Landfills-continued

Map symbol and soil name	Pct. of map unit	Trench sanitary landfill		Area sanitary landfill		Daily cover for landfill	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	Value
		Depth to	1.00	Depth to	1.00	Too sandy	1.00
		Seepage, bottom layer	1.00	Seepage	1.00	Seepage	1.00
		Too sandy	1.00			Gravel content	0.92
						Depth to saturated zone	0.68
Croghan----------	25	Very limited Depth to saturated zone	1.00	$\begin{array}{\|l} \text { Very limited } \\ \text { Depth to } \\ \text { saturated zone } \end{array}$	1.00	Very limited Too sandy	1.00
		Seepage, bottom layer	1.00	Seepage	1.00	Seepage	1.00
		Too sandy	1.00			Depth to saturated zone	0.95
Kinsman---------	25	Very limited Depth to saturated zone Seepage, bottom layer Too sandy		```Very limited Depth to saturated zone Seepage```	1.00	Very limited	1.00
			1.00			Depth to saturated zone	
			1.00		1.00	Too sandy	1.00
			1.00			Seepage	1.00
SkB :							
Skerry----------	80	$\begin{aligned} & \text { Very limited } \\ & \text { Depth to } \\ & \text { saturated zone } \end{aligned}$	1.00	Somewhat limited Depth to saturated zone	0.92	Somewhat limited Depth to saturated zone	0.95
SmB :							
Skerry----------	80	Very limited Depth to saturated zone	1.00	Somewhat limited Depth to saturated zone	0.92	Somewhat limited Depth to saturated zone	0.95
SNC:							
Skerry----------	45	```Very limited Depth to saturated zone slope```		Somewhat limited		Somewhat limited	
			1.00 0.04	Depth to saturated zone slope	0.92	Depth to saturated zone slope	0.95 0.04
Becket----------	35	```Somewhat limited Slope Depth to saturated zone```	0.630.44	Somewhat limited Slope	0.63	```Somewhat limited Slope Depth to saturated zone```	
							0.63
							0.09
SOB :							
Skerry--	50	```Very limited Depth to saturated zone```	1.00	Somewhat limited Depth to saturated zone	0.92	Somewhat limited Depth to saturated zone	0.95
SOB :							
Colonel-	30	$\begin{array}{\|l} \text { Very limited } \\ \text { Depth to } \\ \text { saturated zone } \end{array}$	1.00	$\begin{array}{\|l} \text { Very limited } \\ \text { Depth to } \\ \text { saturated zone } \end{array}$	1.00	$\begin{array}{\|l} \text { Very limited } \\ \text { Depth to } \\ \text { saturated zone } \end{array}$	1.00

Table 19.-Landfills-continued

Table 19.-Landfills-continued

Map symbol and soil name	$\left\lvert\, \begin{gathered} \text { Pct. } \\ \text { of } \end{gathered}\right.$	Trench sanitary landfill		Area sanitary landfill		Daily cover for landfill	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	Value
TLC:							
Tunbridge----------	35	\| Very limited		Very limited		Very limited	
		Depth to bedrock	1.00	Depth to bedrock	1.00	Depth to bedrock	1.00
		Seepage, bottom layer	1.00	Seepage	1.00	Seepage	0.22
		slope	0.04	Slope	0.04	Slope	0.04
Lamoine------------	25	Very limited		Very limited		Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone	1.00	Depth to saturated zone	1.00
		Too clayey	1.00			Too clayey	1.00
						Hard to compact	1.00
Lyman--------------	20	Very limited		Very limited Depth to bedrock slope		Very limited	
		Depth to bedrock	1.00		1.00	Depth to bedrock	1.00
		Seepage, bottom layer	1.00		0.04	Seepage	0.52
		Slope	0.04			Slope	0.04
TuB :							
Tunbridge----------	55	Very limited		Very limited		Very limited	
		Depth to bedrock	1.00	Depth to bedrock	1.00	Depth to bedrock	1.00
		Seepage, bottom layer	1.00	Seepage	1.00	Seepage	0.22
Lyman--------------	20	\|Very limited		Very limited Depth to bedrock		Very limited Depth to bedrock Seepage	
		Depth to bedrock	1.00		1.00		1.00
		Seepage, bottom layer	1.00				0.52
TuC: Tunbridge							
	50	Very limited		Very limited		Very limitedDepth to bedrock	
		Depth to bedrock	1.00	Depth to bedrock	1.00		1.00
		Seepage, bottom layer	1.00	Seepage	1.00	slope	0.63
		slope	0.63	Slope	0.63	Seepage	0.22
Lyman--------------	25	Very limited		Very limitedDepth to bedrock		Very limited	
		Depth to bedrock	1.00		1.00	Depth to bedrock	1.00
		Seepage, bottom layer	1.00	slope	0.63	Slope	0.63
		Slope	0.63			Seepage	0.52
TyC:							
Tunbridge---------	35	Very limited		Very limited		Very limited	
		Depth to bedrock	1.00	Depth to bedrock	1.00	Depth to bedrock	1.00
		Seepage, bottom layer	1.00	Seepage	1.00	Seepage	0.22
		slope	0.04	Slope	0.04	Slope	0.04
Lyman--------------	30	Very limited		Very limited Depth to bedrock Slope		Very limited	
		Depth to bedrock	1.00		1.00	Depth to bedrock	1.00
		Seepage, bottom layer	1.00		0.04	Seepage	0.52
		slope	0.04			Slope	0.04
Abram-------------- \|	20	Very limited		Very limited		Very limited	
		Depth to bedrock	1.00	Depth to bedrock	1.00	Depth to bedrock	1.00
		Seepage, bottom layer	1.00 0.04	Slope	0.04	Seepage	$1 \begin{aligned} & 0.52 \\ & 0.04\end{aligned}$
		Slope	0.04			Slope	0.04

Table 19.-Landfills-continued

Table 20.-Ponds and Embankments
(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00. The larger the value, the greater the limitation. See text for further explanation of ratings in this table.)

Map symbol and soil name	Pct. of map unit	Pond reservoir areas		Embankments, dikes, and levees		Aquifer-fed excavated ponds	
		Rating class and limiting features	\|Value	Rating class and limiting features	Value	Rating class and limiting features	Value
Abram-----------	40	Very limited		Very limited		Very limited	
		Depth to bedrock	1.00	Thin layer	1.00	Depth to water	1.00
		slope	0.50	Organic matter content	1.00		
Hogback--------	35	Very limited Depth to bedrock				Very limited	1.00
			1.00	Thin layer	1.00	Depth to water	
		Slope	0.50	Piping	1.00		
AbE :							
Abram-----------	40	$\left\lvert\, \begin{aligned} & \text { Very limited } \\ & \text { Depth to bedrock } \\ & \text { Slope }\end{aligned}\right.$		Very limited		Very limited	1.00
			1.00	Thin layer	1.00	Depth to water	
			0.50	Organic matter content	1.00		
Lyman-----------	35	Very limited Depth to bedrock slope		Very limited		Very limited	
			1.00	Thin layer	1.00	Depth to water	\| 1.00
			0.50	Piping	1.00		
ACE:							
Abram-----------	30	\|Very limited		\| Very limited		Very limited	
		Depth to bedrock	1.00	Thin layer	1.00	Depth to water	1.00
		Slope	0.99	Organic matter content	1.00		
Rock outcrop----	30	Very limited Depth to bedrock slope		Not rated		Not rated	
			1.00				
			0.99				
Ricker----------	25	Very limited Depth to bedrock Slope		\|Very limited		Very limited	1.00
			1.00		1.00	Depth to water	
			0.99	Thin layer	1.00		
				Organic matter	1.00		
				content Seepage	0.02		
AdA:							
Adams -	85	Very limited Seepage	1.00	Somewhat limited Seepage	0.82	Very limited Depth to water	1.00
AdB :							
Adams -	85	Very limited Seepage	11.00	Somewhat limited Seepage	0.82	Very limited Depth to water	1.00
AdC:							
Adams -	85	Very limited Seepage Slope	$\left\lvert\, \begin{aligned} & 1.00 \\ & 0.01 \end{aligned}\right.$	Somewhat limited Seepage	0.82	Very limited Depth to water	1.00
Adams -	55	Very limited Seepage	1.00	Somewhat limited Seepage	0.82	Very limited Depth to water	1.00

Table 20.-Ponds and Embankments-continued

Table 20.-Ponds and Embankments-continued

Table 20.-Ponds and Embankments-continued

$\begin{aligned} & \text { Map symbol } \\ & \text { and soil name } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { Pct. } \\ \text { of } \\ \text { map } \\ \text { unit } \end{gathered}\right.$	Pond reservoir areas		Embankments, dikes, and levees		Aquifer-fed	
		Rating class and limiting features	\|Value	Rating class and limiting features	\| Value	Rating class and limiting features	\|Value
				Piping	1.00		
CLC: Chesuncook	50	Somewhat limited Seepage		Very limited		Very limited	
			0.72	Depth to	1.00	Depth to water	1.00
				Piping	\| 1.00		
				Thin layer	0.99		
Telos--------------	30	Somewhat limited Seepage	0.72	Very limited		Very limited	1.00
				Depth to saturated	\| 1.00	Depth to water	
				Thin layer	11.00		
				Piping	1.00		
CoA:							
Colton---------	90	\|Very limited	1.00	Somewhat limitedSeepage		\| Very limited	1.00
					0.89	Depth to water	
CoB:Colton							
	80	\|Very limited Seepage		Somewhat limited		\| Very limited	
			11.00	Seepage	0.89	Depth to water	11.00
CoC:Colton			$\left\lvert\, \begin{aligned} & 1.00 \\ & 0.01 \end{aligned}\right.$				
	85	Very limited Seepage Slope		Somewhat limited Seepage		\|Very limited Depth to water	
					0.89		1.00
CoE: Colton			1.00 0.94				
	85	\|Very limited Seepage slope		Somewhat limited Seepage	0.89	$\left\lvert\, \begin{aligned} & \text { Very limited } \\ & \text { Depth to water }\end{aligned}\right.$	1.00
CpB:Colton	75	\|Very limited Seepage	1.00	Somewhat limited Seepage			
					0.89	Very limited Depth to water	\| 1.00
CpC:Colton			$\left\lvert\, \begin{aligned} & 1.00 \\ & 0.01 \end{aligned}\right.$				
	75	$\begin{array}{\|l} \text { Very limited } \\ \text { Seepage } \\ \text { Slope } \end{array}$		Somewhat limited Seepage	0.89	Very limited Depth to water	1.00
CRC: Colton			\| 1.00				
	65	Very limited Seepage		Somewhat limited Seepage	0.89	\|Very limited Depth to water	\| 1.00
Adams--------------- \|	20	Very limited Seepage	1.00	Somewhat limited Seepage	0.82	Very limited Depth to water	1.00
CRE: Colton							
	75	Very limited Seepage slope	$\left\lvert\, \begin{aligned} & 1.00 \\ & 0.94 \end{aligned}\right.$	Somewhat limited Seepage	0.89	\|Very limited Depth to water	1.00
Adams--------------- \|	15	Very limited Seepage slope	$\left\lvert\, \begin{aligned} & 1.00 \\ & 0.94 \end{aligned}\right.$	Somewhat limited Seepage	0.82	Very limited Depth to water	1.00

Table 20.-Ponds and Embankments-continued

Table 20.-Ponds and Embankments-continued

Map symbol and soil name	\mid Pct.\mid of\mid mapunit	Pond reservoir areas		Embankments, dikes, and levees		Aquifer-fed excavated ponds	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	Value
LnB:							
Lamoine	55	Not limited		Depth to saturated zone Piping	1.00 0.25	Depth to water	1.00
Scantic------------\|	35	Not limited		```Very limited Depth to saturated zone Piping```		Very limited	1.00
					1.00	Depth to water	
LSB :							
Lamoine------------ \|	35	Not limited		```\|Very limited Depth to saturated zone Piping```		Very limited	
					1.00	Depth to water	11.00
Scantic------------	20	Not limited		```\| Very limited Depth to saturated zone Piping```		Very limited	
					1.00	Depth to water	1.00
Colonel------------ \|	20	Somewhat limited Seepage	0.72	```Very limited Depth to saturated zone Thin layer```		Very limited Depth to water	
					1.00		1.00
					0.99		
LTB :Lamoine							
	30	Not limited		```Very limited Depth to saturated zone Piping```		Very limited	
					1.00 0.25	Depth to water	1.00
Tunbridge-----------	25	$\begin{aligned} & \text { Very limited } \\ & \text { Seepage } \\ & \text { Depth to bedrock } \end{aligned}$		$\begin{array}{\|l} \text { Very limited } \\ \text { Piping } \\ \text { Thin layer } \end{array}$		Very limited Depth to water	1.00
			1.00		1.00		
			0.91		0.91		
Scantic------------	20	Not limited		```\|Very limited ```		Very limited Depth to water	1.00
					1.00		
					0.26		
LUE :Lyman							
	30	$\begin{aligned} & \text { Very limited } \\ & \text { Depth to bedrock } \\ & \text { Slope } \end{aligned}$		Very limited Thin layer Piping		Very limited Depth to water	
			1.00		1.00		1.00
			0.82		1.00		
Abram-------------- \|	25	Very limited Depth to bedrock slope		Very limited Thin layer Organic matter content		Very limited Depth to water	
			1.00		1.00		1.00
			0.82		1.00		
Tunbridge----------	25	```Very limited Seepage Depth to bedrock Slope```		Very limited Piping Thin layer		Very limited Depth to water	
			1.00		1.00		\| 1.00
			0.91		0.91		
			0.12				

Table 20.-Ponds and Embankments-continued

Table 20.-Ponds and Embankments-continued

Table 20.-Ponds and Embankments-continued

Map symbol and soil name	Pct. of map unit	Pond reservoir areas		Embankments, dikes, and levees		Aquifer-fed excavated ponds	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	Value
Mvb :							
Monarda---------	75	Seepage	0.43	Depth to saturated zone	11.00	Depth to water	1.00
				Piping	1.00		
				Thin layer	0.99		
MWB :							
Monarda---------	45	Somewhat limitedSeepage	0.43	Very limited		Very limited	
				Depth to	1.00	Depth to water	1.00
				Piping	1.00		
				Thin layer	0.99		
Telos-----------	40	Somewhat limited Seepage		Very limited		Very limited	
			0.72	Depth to saturated zone	1.00	Depth to water	1.00
				Thin layer	1.00		
				Piping	1.00		
MXB :							
Monarda--------	35	Somewhat limited Seepage	0.43	Very limited		Very limited	
				Depth to saturated zone Piping	1.00	Depth to water	1.00
					1.00		
				Thin layer	0.99		
Wonsqueak-------	30	Very limited Seepage	1.00	```Very limited Depth to saturated zone Piping```		Somewhat limited Cutbanks cave	
					1.00		0.10
					1.00		
NAC:							
Naskeag--------	35	Very limited Seepage	1.00	Very limited		Very limited	
				Depth to	1.00	Depth to hard	1.00
		Depth to bedrock	0.56	Thin layer	0.56	Cutbanks cave	1.00
				Seepage	0.08		
Abram----------	25	Very limited Depth to bedrock		Very limited Thin layer Organic matter content		Very limited	
			1.00		1.00	Depth to water	1.00
					1.00		
Ricker----------	20	Very limited Depth to bedrock		Very limited		Very limited	
			1.00	Piping	1.00	Depth to water	1.00
				Thin layer	1.00		
				Organic matter content	1.00		
				Seepage	0.02		
NBB :							
Naskeag---------	35	Very limited Seepage		Very limited		Very limited	
			1.00	Depth to saturated zone	1.00	Depth to hard bedrock	1.00
		Depth to bedrock	0.56	Thin layer	0.56	Cutbanks cave	1.00
				Seepage	0.08		
Rawsonville-----	25	$\begin{array}{\|l} \text { Very limited } \\ \text { Seepage } \\ \text { Depth to bedrock } \end{array}$		Very limited		Very limited	
			1.00	Piping	1.00	Depth to water	1.00
			0.66	Thin layer	0.66		

Table 20.-Ponds and Embankments-continued

Table 20.-Ponds and Embankments-continued

Table 20.-Ponds and Embankments-continued

Map symbol and soil name	Pct. of map unit	Pond reservoir areas		Embankments, dikes, and levees		Aquifer-fed	
		Rating class and limiting features	\|Value	Rating class and limiting features	\| Value	Rating class and limiting features	Value
				Ponding	\| 1.00	Depth to water	11.00
				Depth to	1.00		
				Piping	0.67		
SG:							
Sebago----------	50	Very limited				Somewhat limited	0.10
		Seepage	11.00	Organic matter	11.00	Cutbanks cave	
				Ponding	1.00		
				Depth to saturated zon	\| 1.00		
				Piping	1.00		
Moosabec-------	40	Very limited Seepage				Somewhat limited	0.10
		Seepage	11.00	Organic matter content	11.00	Cutbanks cave	
				Depth to saturated zone	1.00		
				Piping	1.00		
ShB :							
Sheepscot-------	80	Very limited Seepage		Somewhat limited		\| Very limited	
			11.00	Depth to saturated zon	0.95	Cutbanks cave	11.00
				Seepage	0.89	Depth to saturated zone	0.02
SJB :							
Sheepscot-------	35	Very limited Seepage	\| 1.00	Somewhat limited Depth to saturated zone Seepage		Very limited	
					0.95	Cutbanks cave	11.00
					0.89	```Depth to saturated zone```	0.02
Croghan---------	25	Very limited Seepage	1.00	$\begin{array}{\|l} \text { Very limited } \\ \text { Depth to } \\ \text { saturated zone } \end{array}$		Very limited	
					1.00	Cutbanks cave	11.00
Kinsman---------	25	Very limited Seepage		\|Very limited		Very limited	
			1.00	Depth to saturated zone Seepage	$\left\lvert\, \begin{aligned} & 1.00 \\ & 0.79\end{aligned}\right.$	Cutbanks cave	11.00
SkB :							
Skerry	80	Somewhat limited Seepage	0.72			Very limited	
				Depth to saturated zone	11.00	Depth to water	1.00
				Thin layer	0.99		
				Seepage	0.08		
				Seepage	0.82		
SmB :							
Skerry----------	80	Somewhat limited Seepage		Very limited		Very limited	
			0.72	Depth to saturated zone Thin layer Seepage	$\left\lvert\, \begin{aligned} & 1.00 \\ & 0.99 \\ & 0.08 \end{aligned}\right.$	Depth to water	1.00

Table 20.-Ponds and Embankments-continued

Table 20.-Ponds and Embankments-continued

Table 20.-Ponds and Embankments-continued

Table 21.-Engineering Properties
(Absence of an entry indicates that the data were not estimated.)

Map symbol and soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				Liquid limit	Plasticity index
			Unified	AASHTO	$\begin{aligned} & >10 \\ & \text { inches } \end{aligned}$	$\begin{gathered} 3-10 \\ \text { inches } \end{gathered}$						
							4	10	40	200		
	In				Pct	Pct					Pct	
AaE:Abram												
	0-2	Highly decomposed plant material	PT		7-34	0-14	99-100	99-100\|	60-100	53-89	---	---
	2-6	Sandy loam	GM, SM	A-1, A-4, A-2	0-1	1-15	65-95	60-95	35-80	20-50	0-35	NP-5
	6-10	Bedrock			---	---	---	---	---	---	---	--
Hogback--------	0-1	Moderately decomposed plant material	PT		0	0-14	99-100	99-100\|	60-100	53-89	---	--
	1-2	Fine sandy loam	SM, ML, CLML, CL	$\left\lvert\, \begin{gathered} \mathrm{A}-2-4, \mathrm{~A}-4, \\ \mathrm{~A}-5 \end{gathered}\right.$	1-5	5-30	85-100	70-95	55-90	30-70	20-50	\| NP-10
	2-14	```Fine sandy loam, gravelly fine sandy loam, gravelly sandy loam```	SM, ML, CLML, CL	$\left\lvert\, \begin{aligned} & \mathrm{A}-2-4, \mathrm{~A}-4, \\ & \mathrm{~A}-5 \end{aligned}\right.$	0-5	5-30	75-100	70-95	50-90	30-70	20-50	$\left\lvert\, \begin{gathered}\text { NP-10 } \\ \\ ---\end{gathered}\right.$
	14-18	Bedrock			---	---	---	---	---	---	-- -	---
AbE:Abram												
	0-2	Highly decomposed plant material	PT		7-34	0-14	99-100	99-100\|	60-100	53-89	---	-
	2-6	Sandy loam	GM, SM	A-1, A-4, A-2	0-5	1-15	65-95	60-95	35-80	20-50	0-35	NP-5
	6-10	Bedrock			---	---	---	---	---	---	-	--
Lyman----------	0-2	Highly decomposed plant material	PT		7-34	0-14	99-100	99-100\|	60-100	53-89	---	--
	$2-3$					$5-20$	$65-95$	60-90	35-80	15-75	0-30	\|NP-6
	3-17	Gravelly fine sandy loam, fine sandy loam, gravelly sandy loam	ML, GM, SM	$A-4, \quad A-2, \quad A-1$	0-10	0-20	65-95	60-90	35-85	20-80	0-30	NP-4
	17-21	Bedrock			0	0	---	---	---	-	---	---
ACE :Abram												
	0-2	Highly decomposed plant material	PT		7-34	0-14	99-100	99-100\|	60-100	53-89	---	---
	2-6	Sandy loam	GM, SM	A-1, A-4, A-2	0-5	1-15	65-95	60-95	35-80	20-50	0-35	NP-5
	6-10	Bedrock			---	---	---	---	---	--	---	---
Rock outcrop----	0-4	Bedrock			---	---	---	-	---	---	--	---

Table 21.-Engineering Properties-continued

Table 21.-Engineering Properties-continued

Table 21.-Engineering Properties-continued

Table 21.-Engineering Properties-continued

Map symbol and soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				Liquid limit	Plasticity index	
			Unified	AASHTO	$\begin{gathered} \hline>10 \\ \text { inches } \end{gathered}$	$\begin{gathered} 3-10 \\ \text { inches } \end{gathered}$							
							4	10	40	200			
BTB : Colonel	In				Pct	Pct					Pct		
	0-3	Highly decomposed plant material	PT		7-34	0-14	99-100	99-100	60-100	53-89	---	---	
	3-6	\| Gravelly fine sandy loam		$\begin{gathered} \text { CL-ML, ML, } \\ \text { SM, SC-SM } \end{gathered}$	A-4, A-2, A-1	1-5	1-15	75-95	60-90	35-85	20-70	0-25	NP-10
	6-26	$\begin{aligned} & \text { Gravelly fine sandy } \\ & \text { loam, gravelly sandy } \\ & \text { loam, loam } \end{aligned}$	ML, SM, CL- ML, SC-SM	A-4, A-2, A-1	0-10	0-10	75-95	60-90	35-85	20-70	0-25	NP-10	
	26-65	```\|Gravelly fine sandy loam, gravelly sandy loam, loam```	$\begin{array}{\|cc} \mid S M, & \text { ML, CL- } \\ \text { ML, } & \text { SC-SM } \end{array}$	A-4, A-2, A-1	0-10	0-10	75-95	60-90	35-85	20-70	0-25	NP-10	
BW : Bucksport													
	0-18	\| Muck	\| PT	A-8	0	0	100	100	100	100	0-14	NP	
	18-40	Muck	\| PT	A-8	0	0	100	100	100	100	0-14	NP	
	40-65	\| Muck	\| PT	A-8	0	0	100	100	100	100	0-14	NP	
Wonsqueak-----	0-8	Muck	PT	A-8	0	0	100	100	100	100	---	---	
	8-30	\| Muck	\| PT	A-8	0	0	100	100	100	100	--	---	
	30-65	\|Silty clay loam, fine sandy loam, silt loam	$\begin{array}{\|l} \mid S M, ~ C L-M L, ~ \\ \text { ML, CL } \end{array}$	\|A-4, A-6, A-2	0	0-5	85-100	75-100	50-100	30-95	0-40	NP-20	
BxC :													
Buxton-------	0-9	Silt loam	\| MH, ML	A-5, A-7, A-4	0	0	98-100	95-100	95-100	85-100	36-55	5-15	
	9-17	$\begin{aligned} & \text { \|Silty clay loam, silt } \\ & \text { loam, silty clay } \end{aligned}$	\| MH, ML, CL	\|A-7, A-6, A-4	0	0	98-100	95-100	95-100	85-100	28-55	8-25	
	17-22	$\begin{aligned} & \text { Silty clay, silty clay } \\ & \text { loam, silt loam } \end{aligned}$	\| MH, ML, CL	A-7, A-6, A-4	0	0	98-100	95-100	95-100	\|85-100		28-55	8-25
	22-65	$\begin{aligned} & \text { Silty clay, silty clay } \\ & \text { loam, clay } \end{aligned}$	\| CL, MH	A-7, A-6	0	0	98-100	95-100	95-100	90-100\|	30-60	10-25	
BZC:													
Buxton-------	0-9	Silt loam	\| MH, ML	\|A-5, A-7, A-4	0	0	98-100	95-100	95-100	\|85-100		36-55	5-15
	9-17	$\begin{aligned} & \text { \|Silty clay loam, silt } \\ & \text { loam, silty clay } \end{aligned}$	\| ML, MH, CL	A-7, A-6, A-4	0	0	98-100	95-100	95-100	\|85-100		28-55	8-25
	17-22	\|Silty clay, silty clay loam, silt loam	\| ML, MH, CL	\|A-7, A-6, A-4	0	0	98-100	95-100	95-100	\|85-100		28-55	8-25
	22-65	Silty clay, silty clay loam, clay	\| CL, MH	A-7, A-6	0	0	98-100	95-100	95-100	90-100\|	30-60	10-25	
Lamoine------	0-7	Silt loam	\| MH, ML	\|A-5, A-7, A-4	0	0	98-100	95-100	95-100	\|85-100		36-55	5-15
	7-16	$\begin{aligned} & \text { Silt loam, silty clay } \\ & \text { loam, silty clay } \end{aligned}$	MH, ML, CL	A-7, A-6, A-4	0	0	98-100	95-100	95-100	\|85-100		28-55	8-25
	16-21	$\begin{aligned} & \text { \|Silty clay loam, silt } \\ & \text { loam, silty clay } \end{aligned}$	MH, ML, CL	\|A-7, A-6, A-4	0	0	98-100	95-100	95-100	85-100	28-55	8-25	
	21-65	$\begin{aligned} & \text { Silty clay, silty clay } \\ & \text { loam, clay } \end{aligned}$	\| CL, MH	A-7, A-6	0	0	98-100	95-100	95-100	90-100\|	30-60	10-25	

Table 21.-Engineering Properties-continued

Table 21.-Engineering Properties-continued

Table 21.-Engineering Properties-continued

Table 21.-Engineering Properties-continued

Table 21.-Engineering Properties-continued

Map symbol and soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				$\begin{aligned} & \text { \| Liquid } \\ & \mid \text { limit } \end{aligned}$	Plasticity index		
			Unified	AASHTO	$\begin{aligned} & >10 \\ & \text { inches } \end{aligned}$	$\begin{gathered} 3-10 \\ \text { inches } \end{gathered}$								
							4	10	40	200				
CRC: Colton	In		$\left.\right\|_{\text {GP }} ^{\text {GW, }}$	A-1	Pct	Pct					Pct			
	26-65	```\| Very gravelly loamy sand, extremely gravelly sand, extremely gravelly coarse sand```												
					0-1	10-45	20-55	15-50	10-30	0-5	0-14	NP		
Adams----------	0-1	\|Highly decomposed plant material	PT		0	0	99-100\|	99-100\|	60-100	53-89	--	---		
	1-4	Loamy sand	\| SP-SM, SM	$\begin{gathered} A-2, A-4, A- \\ 3, A-1 \end{gathered}$	0	0	95-100\|	95-100	45-85	5-40	0-14	NP		
	4-22	Sand, loamy sand, loamy fine sand	SP-SM, SM	$\left\lvert\, \begin{array}{cc} A-2, A-4, & A- \\ 3, A-1 \end{array}\right.$	0	0	95-100\|	95-100	35-95	5-40	0-14	NP		
	22-65	Sand, coarse sand, fine sand	$\left\lvert\, \begin{gathered} \text { SW-SM, } \\ \mathrm{SP}-\mathrm{SM} \end{gathered}\right.$	$\|\mathrm{A}-3, \mathrm{~A}-2, \mathrm{~A}-1\|$	0	0-1	\|80-100		70-100	20-90	0-10	0-14	NP	
CRE:Colton	0-2													
		\|Highly decomposed plant material Gravelly sandy loam	\| PT		0	0	\|99-100		\|99-100		60-100	53-89	---	--
	2-3	Gravelly sandy loam	$\left\lvert\, \begin{gathered} \text { SW-SM, SM, } \\ \text { GW-GM, GM } \end{gathered}\right.$	$\|\mathrm{A}-2, \mathrm{~A}-4, \mathrm{~A}-1\|$	0	15-25	35-80	30-80	30-70	10-35	0-10	NP-2		
	3-6	$\begin{aligned} & \text { Gravelly sandy loam, } \\ & \text { very gravelly sandy } \\ & \text { loam, very gravelly } \\ & \text { sand } \end{aligned}$	$\begin{array}{\|c} \text { GW-GM, } \\ \text { GP-GM, } \\ \text { GM } \end{array}$	$\|\mathrm{A}-3, \mathrm{~A}-2, \mathrm{~A}-1\|$	0-1	5-20	30-80	25-75	20-60	5-35	0-10	NP-2		
	6-26	```\|Gravelly loamy sand, very gravelly sand, cobbly coarse sand	Very gravelly loamy sand, extremely gravelly sand, extremely gravelly coarse sand```	$\left\lvert\, \begin{aligned} & \text { GM, } \\ & \mid \mathrm{SM} \end{aligned}\right.$	A-1	0-1	5-20	30-80	25-75	20-50	2-20	0-14	NP	
	26-65		$\underset{\text { GP }}{\text { SW, }}$	A-1	0-1	10-45	20-55	15-50	10-30	0-5	0-14	NP		
Adams----------	0-1	```\| Highly decomposed plant```	PT		0	0	\|99-100		\|99-100		60-100	53-89	--	--
	1-4		\| SP-SM, SM	$\begin{gathered} A-2, A-4, A- \\ 3, A-1 \end{gathered}$	0	0	95-100	95-100	45-85	5-40	0-14	NP		
	4-22	Sand, loamy sand, loamy fine sand	SP-SM, SM	$\left\lvert\, \begin{gathered} A-2, A-4, \\ 3, A-1 \end{gathered}\right.$	0	0	95-100	95-100	35-95	5-40	0-14	NP		
	22-65	Sand, coarse sand, fine sand	$\left\lvert\, \begin{aligned} & \text { SP, } \mathrm{SW}-\mathrm{SM}, \\ & \mathrm{SP}-\mathrm{SM} \end{aligned}\right.$	$\|\mathrm{A}-3, \mathrm{~A}-2, \mathrm{~A}-1\|$	0	0-1	80-100	70-100\|	20-90	0-10	0-14	NP		

Table 21.-Engineering Properties-continued

Table 21.-Engineering Properties-continued

Table 21.-Engineering Properties-continued

Map symbol and soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				$\begin{aligned} & \mid \text { Liquid } \\ & \mid \text { limit } \end{aligned}$	Plasindex		
			Unified	AASHTO	$\begin{array}{\|c\|} \hline>10 \\ \text { inches } \end{array}$	$\left\|\begin{array}{c} 3-10 \\ \text { inches } \end{array}\right\|$								
							4	10	40	200				
CVC: Abram	In	```Highly decomposed plant material Sandy loam Bedrock```	PT	A-1, A-4, A-2	Pct	Pct					Pct			
	0-2				7-34	0-14	99-100	\|99-100	60-100	53-89	---	---		
	2-6		\| GM, SM		0-5	1-15	65-95	60-95	35-80	20-50	0-35	\|NP-5		
	6-10				---	---	---	---	---	---	---	---		
CXC: Creasey	$0-8$$8-17$	```\|ravelly silt loam	ravelly silt loam, silt loam, gravelly coarse sandy loam```	$\begin{array}{\|l\|} \mid M L, ~ G M, ~ S M \\ \text { GM, ML, } \end{array}$	$\begin{array}{lll} \mathrm{A}-4, & \mathrm{~A}-2, & \mathrm{~A}-1 \\ \mathrm{~A}-4, & \mathrm{~A}-2, & \mathrm{~A}-1 \end{array}$	$\begin{aligned} & 0-1 \\ & 0-1 \end{aligned}$	$0-5$$0-5$	$\left\lvert\, \begin{aligned} & 65-90 \\ & 65-90 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & 55-75 \\ & \\ & 55-85 \end{aligned}\right.$	$\begin{aligned} & 30-75 \\ & 30-85 \end{aligned}$	$\begin{aligned} & 15-70 \\ & 15-75 \end{aligned}$		$\begin{array}{\|l} \mid N P-8 \\ \text { NP }-8 \end{array}$	
											$0-40$			
	17-21	Bedrock			---		---	---	---	---	---	-		
Lamoine------	0-7	Silt loam		A-5, A-7, A-4	0	0	98-100	95-100	95-100	\| 85-100		36-55	5-15	
	7-16	Silt loam, silty clay loam, silty clay	\| ML, MH, CL	A-7, A-6, A-4	0	0	\| 98-100		\| 95-100	\| 95-100		85-100	28-55	8-25
	16-21	```Silty clay loam, silt loam, silty clay```	ML, MH, CL	\|A-7, A-6, A-4		0	0	98-100	95-100	95-100	85-100	28-55	8-25	
	21-65	```Silty clay, silty clay loam, clay```	\| CL, MH	A-7, A-6	0	0	\| 98-100		\| 95-100	\| 95-100		90-100	30-60	10-25
CzB:								\| 95-100	45-80					
Croghan-------	0-3	Loamy sand	$\left\lvert\, \begin{aligned} & \text { SW-SM, SP-SM, } \\ & \text { SM } \end{aligned}\right.$	$\left\lvert\, \begin{gathered} A-2, A-4, A- \\ 3, A-1 \end{gathered}\right.$	0	0	95-100			5-40	0-14	NP		
	3-23	Loamy sand, sand, loamy fine sand	$\left\lvert\, \begin{aligned} & \text { SW-SM, SP-SM, } \\ & \text { SM } \end{aligned}\right.$	$\left\lvert\, \begin{gathered} A-2, A-4, A- \\ 3, A-1 \end{gathered}\right.$	0	0	\| 80-100		75-100	45-80	5-40	0-14	NP	
	23-65	Sand, loamy sand, coarse sand	$\left\lvert\, \begin{aligned} & \text { SP-SM, SW-SM, } \\ & \mathrm{SM} \end{aligned}\right.$	$\|A-2, A-3, A-1\|$	0	0	80-100	75-100	45-75	5-30	0-14	NP		
```DAC: Danforth```														
	0-2	Highly decomposed plant material	\| PT	$\begin{aligned} & A-2, A-4 \\ & A-4, A-2, A-1 \end{aligned}$	7-34	0-14	\| 99-100	99-100	60-100	53-89	---	---		
		Silt loam	$\begin{aligned} & \text { ML, GM, SM } \\ & \text { GM, ML, SM, } \\ & \text { SW-SM } \end{aligned}$		$\begin{aligned} & 0-1 \\ & 0-5 \end{aligned}$		85-95	80-90	70-90	40-80	15-40			
	4-6	Channery fine sandy loam, very channery sandy loam, silt loam					45-90	35-85	20-85	10-75	15-40	\| NP-8		
	6-31	```Very channery fine sandy loam, very channery sandy loam, gravelly fine sandy loam```	$\begin{gathered} \text { GM, GW-GM, } \\ \text { SM, } \quad \text { SP-SM } \end{gathered}$	A-2, A-1	1-5	5-15	45-70	35-55	20-50	10-30	15-40	NP-8		
	31-65	```Very channery sandy loam, channery fine sandy loam, very channery loamy sand```	$\begin{array}{\|c} \mid \mathrm{GM}, ~ G W-G M, \\ \mathrm{SM}, ~ S W-S M \end{array}$	A-1, A-2	1-5	5-15	45-70	35-55	20-50	5-30	15-40	NP-8		

Table 21.-Engineering Properties-continued

Map symbol and soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				$\begin{aligned} & \mid \text { Liquid } \\ & \mid \text { limit } \end{aligned}$	$\begin{aligned} & \text { Plas- } \\ & \text { ticity } \\ & \text { index } \end{aligned}$		
			Unified	AASHTO	$\begin{array}{\|c\|} \hline>10 \\ \text { inches } \end{array}$	$\begin{gathered} 3-10 \\ \text { inches } \end{gathered}$								
							4	10	40	200				
	In				Pct	Pct					Pct			
DAC: Elliottsville--														
	0-2	\|Highly decomposed plant material	PT		7-34	0-14	\|99-100		\|99-100		60-100	53-89	---	---
	2-4	Silt loam	SM, GM, ML	A-4	0-1	0-5	80-95	75-90	65-90	45-80	0-40	NP-8		
	4-19	Channery silt loam, channery loam, very fine sandy loam	GM, SM, ML	A-4	0-5	0-10	65-95	55-90	45-90	35-80	0-40	NP-8		
	19-31	Channery silt loam, channery loam, very fine sandy loam	$\begin{aligned} & \text { CL-ML, SC-SM, } \\ & \text { SM, ML } \end{aligned}$	A-4	0-5	0-5	65-95	55-90	45-90	35-80	0-30	NP-8		
	31-35	Bedrock			---	---	---	---	---	---	---	---		
DdC:														
Dixfield	0-6	\|Fine sandy loam	$\begin{gathered} \text { SM, ML, CL- } \\ \text { ML, SC-SM } \end{gathered}$	A-4, A-2	0-1	0-5	85-95	80-90	50-85	25-70	0-25	NP-10		
	6-28	\|Gravelly fine sandy loam, gravelly sandy loam, loam	SM, ML, CLML, SC-SM	\|A-4, A-2, A-1	0-10	0-10	75-95	60-90	35-85	20-70	0-25	NP-10		
	28-65	\|Gravelly fine sandy loam, gravelly sandy loam, loam	$\left\lvert\, \begin{gathered} \text { SM, CL-ML, } \\ \text { ML, } \\ \hline \text { SC-SM } \end{gathered}\right.$	\|A-4, A-2, A-1	0-10	0-10	75-95	60-90	35-85	20-70	0-25	NP-10		
DfC:														
Dixfield-------	0-3	Highly decomposed plant material	PT		7-34	0-14	99-100\|	\|99-100		60-100	53-89	---	---	
	3-6	Fine sandy loam	$\begin{array}{\|c} \mid C L-M L, ~ M L, ~ \\ \text { SM, SC-SM } \end{array}$	\|A-4, A-2, A-1	0-1	0-5	85-95	80-90	50-85	25-70	0-25	NP-10		
	6-31	\|Gravelly fine sandy loam, gravelly sandy loam, loam	$\begin{array}{\|c} \text { SM, CL-ML, } \\ \mathrm{ML}, \quad \mathrm{SC}-\mathrm{SM} \end{array}$	\|A-4, A-2, A-1	0-10	0-10	75-95	60-90	35-85	20-70	0-25	NP-10		
	31-65	\|Gravelly fine sandy loam, gravelly sandy loam, loam	$\begin{array}{\|c} \mid M L, ~ C L-M L, ~ \\ S M, ~ S C-S M \end{array}$	\|A-4, A-2, A-1	0-10	0-15	75-95	60-90	35-85	20-70	0-25	NP-10		
DgB: Dixfield--------														
Dixfield-------	0-6	Fine sandy loam	$\begin{array}{\|c} \text { CL-ML, ML, } \\ \text { SM, SC-SM } \end{array}$	A-4, A-2	0-1	0-5	85-95	80-90	50-85	25-70	0-25	NP-10		
	6-28	\|Gravelly fine sandy loam, gravelly sandy loam, loam	$\begin{array}{\|c} \text { SM, CL-ML, } \\ \text { ML, } \\ \hline \end{array}$	\|A-4, A-2, A-1	0-10	0-10	75-95	60-90	35-85	20-70	0-25	NP-10		
	28-65	```Gravelly fine sandy loam, gravelly sandy loam, loam```	\|SM, ML, CL-   ML, SC-SM	$\|\mathrm{A}-4, \mathrm{~A}-2, \mathrm{~A}-1\|$	0-10	0-10	75-95	60-90	35-85	20-70	0-25	NP-10		



Table 21.-Engineering Properties-continued



Table 21.-Engineering Properties-continued


Map symbol and soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				Liquid   limit	$\begin{array}{\|l} \text { Plas- } \\ \text { ticity } \\ \text { index } \end{array}$
			Unified	AASHTO	$\left\|\begin{array}{c} \hline>10 \\ \text { inches } \end{array}\right\|$	$\begin{gathered} 3-10 \\ \text { inches } \end{gathered}$						
							4	10	40	200		
DWC:   Dixfield	In				Pct	Pct					Pct	
	0-3	Highly decomposed plant material	PT		7-34	0-14	99-100	99-100	60-100	53-89	-	---
Tunbridge------\|	3-6	Fine sandy loam	ML, CL-ML, SM, SC-SM	A-4, A-2, A-1	0-1	0-5	85-95	80-90	50-85	25-70	0-25	NP-10
	6-31	Gravelly fine sandy loam, gravelly sandy loam, loam	$\begin{array}{\|c\|} \hline \text { CL-ML, ML, } \\ \text { SM, SC-SM } \end{array}$	A-4, A-2, A-1	0-10	0-10	75-95	60-90	35-85	20-70	0-25	NP-10
	31-65	Gravelly fine sandy loam, gravelly sandy loam, loam	$\begin{array}{\|c} \mid S M, \quad C L-M L, \\ M L, \\ \text { SC-SM } \end{array}$	A-4, A-2, A-1	0-10	0-15	75-95	60-90	35-85	20-70	0-25	NP-10
	0-2	Highly decomposed plant material	PT		7-34	0-14	99-100	99-100	60-100	53-89	---	--
	2-4	Fine sandy loam	GM, ML, SM	A-4, A-2	1-5	5-25	55-100	50-95	35-90	20-60	0-20	NP-2
	4-28	Gravelly fine sandy loam, silt loam, sandy loam	SM, ML	\|A-4, A-5, A-2	0-2	0-15	70-100	60-95	35-95	20-85	0-50	\| NP-6
	28-32	Bedrock			---	---	---	---	---	---	---	---
Colonel--------	0-3	Highly decomposed plant material	PT		7-34	0-14	99-100	99-100	60-100	53-89	--	---
	3-6	Gravelly fine sandy loam\|	$\begin{array}{\|c} \mid S M, ~ C L-M L, ~ \\ \text { ML, } \\ \hline \end{array}$	\|A-4, A-2, A-1	1-5	1-15	75-95	60-90	35-85	20-70	0-25	NP-10
	6-26	Gravelly fine sandy loam, gravelly sandy loam, loam	ML, SM, CL-   ML, SC-SM	\|A-4, A-2, A-1	0-10	0-10	75-95	60-90	35-85	20-70	0-25	NP-10
	26-65	Gravelly fine sandy loam, gravelly sandy loam, loam	$\begin{array}{\|c} \text { CL-ML }, ~ M L, ~ \\ \text { SM, SC-SM } \end{array}$	\|A-4, A-2, A-1	0-10	0-10	75-95	60-90	35-85	20-70	0-25	NP-10
EcB:   Elliottsville---												
	0-7	Silt loam	SM, ML	A-4	0-1	0-5	80-95	75-90	65-90	45-80	0-40	NP-8
	7-17	Channery silt loam, channery loam, very fine sandy loam	SM, GM, ML	A-4	0-5	0-5	65-95	55-90	45-90	35-80	0-40	NP-8
	17-29	Channery silt loam, channery loam, very fine sandy loam	$\begin{aligned} & \text { CL-ML, SC-SM, } \\ & \text { SM, ML } \end{aligned}$	A-4	0-5	0-5	65-95	55-90	45-90	35-80	0-30	NP-8
	29-33	Bedrock			---	---	---	---	-	---	--	---

Table 21.-Engineering Properties-continued

Map symbol and soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				$\begin{aligned} & \text { \| Liquid } \\ & \mid \text { limit } \end{aligned}$	Plasticity index	
			Unified	AASHTO	$\begin{aligned} & >10 \\ & \text { inches } \end{aligned}$	$\begin{gathered} 3-10 \\ \text { inches } \end{gathered}$							
							4	10	40	200			
	In				Pct	Pct					Pct		
EcB:   Chesuncook													
	0-7	Silt loam	\| SM, ML	A-4, A-2	0-1	0-5	85-95	75-90	50-90	30-80	0-40	NP-10	
	7-25	Gravelly silt loam, gravelly fine sandy	SM, ML	A-4, A-2	0-5	0-10	80-95	65-90	45-90	25-80	0-40	NP-10	
	25-65	\|Gravelly silt loam, gravelly loam, silt loam	ML, SM, SC-   SM, CL-ML	A-4	0-5	0-10	75-85	60-85	50-85	35-75	0-30	\| NP-10	
EMC:   Elliottsville--													
	0-2	\|Highly decomposed plant material	PT		7-34	0-14	99-100	99-100	60-100\|	53-89	---	---	
	2-4	\|Silt loam	GM, SM, ML	A-4	0-1	0-5	80-95	75-90	65-90	45-80	0-40	NP-8	
	4-19	\|Channery silt loam, channery loam, very fine sandy loam	\|SM, GM, ML	A-4	0-5	0-10	65-95	55-90	45-90	35-80	0-40	\| NP-8	
	19-31	Channery silt loam, channery loam, very fine sandy loam	$\begin{aligned} & \text { CL-ML, SC-SM, } \\ & \text { SM, ML } \end{aligned}$	A-4	0-5	0-5	65-95	55-90	45-90	35-80	0-30	\| NP-8	
	31-35	\| Bedrock			---	---	---	---	---	---	--	---	
Monson---------	0-2	Highly decomposed plant material	\| PT		7-34	0-14	99-100	99-100	60-100\|	53-89	--	---	
	2-3	Silt loam	ML, GM, SM	A-4	1-5	1-10	65-95	55-90	45-85	35-80	0-40	NP-8	
	3-11	\|Channery loam, silt loam, very fine sandy loam	\|ML, GM, SM	A-4	0-1	0-5	65-95	55-90	45-90	35-80	0-40	\| NP-8	
	11-15	Channery loam, channery silt loam, very fine sandy loam	$\begin{array}{\|c} \mid S C-S M, \quad M L, \\ S M, \quad C L-M L \end{array}$	A-4	0-5	0-5	65-95	55-90	45-90	35-80	0-30	\| NP-8	
	15-19	Bedrock			---	-	---	---	---	---	---	---	
Go:													
Gouldsboro-----	0-6	Silt loam	\|CL, CL-ML, OL	\|A-6, A-4, A-7		0	0	100	98-100	90-100\|	70-95	25-50	5-25
	6-65	\|Silt loam, silty clay loam, mucky silt loam	\| CL, CL-ML, OL	\|A-6, A-4, A-7		0	0	100	98-100	90-100\|	70-95	25-45	5-25
HCC:Hermon													
	0-2	\|Highly decomposed plant material	PT		7-34	0-14	99-100	99-100	60-100\|	53-89	---	---	
	2-6	\|Sandy loam	\|GM, SM	\|A-2, A-4, A-1	1-5	5-30	60-95	50-90	30-80	15-45	0-40	\| NP-10	
	6-8	\|Sandy loam, fine sandy loam, very gravelly coarse sandy loam	\| SM	\|A-2, A-4, A-1		0-15	5-30	70-95	50-90	30-80	15-45	0-40	\| NP-10

Table 21.-Engineering Properties-continued


Table 21.-Engineering Properties-continued

Map symbol and soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				\|Liquid   limit	Plasticity index	
			Unified	AASHTO	$\begin{gathered} >10 \\ \text { inches } \end{gathered}$	$\begin{gathered} 3-10 \\ \text { inches } \end{gathered}$							
							4	10	40	200			
	In				Pct	Pct					Pct		
HeB:   Monadnock	0-7	Fine sandy loam	ML, SM	A-4, A-2	1-5	0-30	80-95	\|70-90	40-85	25-60	0-15	\|NP-10	
	7-14	Fine sandy loam, loam, gravelly fine sandy	ML, SM	A-4, A-2	0-1	0-10	80-95	70-90	50-85	30-60	0-12	\| NP-10	
	14-20	Gravelly loamy sand, gravelly fine sandy loam, loamy sand	$\left\lvert\, \begin{gathered} \text { SP-SM, SW-SM, } \\ \text { SM } \end{gathered}\right.$	A-4, A-2	0-1	0-10	75-100	\|60-100		30-70	20-55	0-14	NP
	20-65	\| Very gravelly loamy coarse sand, loamy sand, gravelly loamy sand	$\left\lvert\, \begin{gathered} \text { SW-SM, } S P-S M, \\ S M \end{gathered}\right.$	A-1, A-2	0-1	0-35	65-85	50-80	20-60	10-30	0-14	\| NP-10	
HeC:   Hermon													
	0-7	Sandy loam	SM	A-2, A-4	0-1	0-5	80-95	75-90	50-80	15-45	0-40	NP-10	
	7-16	Sandy loam, fine sandy loam, very gravelly coarse sandy loam	\| SM	\|A-2, A-4, A-1		0-15	5-30	70-95	50-90	30-80	15-45	0-40	NP-10
	16-30	\|Very gravelly sandy loam, gravelly fine sandy loam, very gravelly coarse sand	$\begin{aligned} & \text { SM, SP-SM, } \\ & \text { GP-GM, GM } \end{aligned}$	$\|\mathrm{A}-1, \mathrm{~A}-4, \mathrm{~A}-2\|$	5-20	10-30	40-80	30-75	15-65	10-40	0-40	NP-10	
	30-65	Very gravelly sand, gravelly loamy sand, very gravelly coarse sand	$\begin{array}{\|c} \text { GM, GP-GM, } \\ \text { SP-SM, SM } \end{array}$	\|A-1, A-3, A-2	0-20	10-30	40-80	30-75	10-55	5-25	0-14	NP	
Monadnock-----	0-7	Fine sandy loam	ML, SM	A-4, A-2	1-5	0-30	80-95	70-90	40-85	25-60	0-15	NP-10	
	7-14	\|Fine sandy loam, loam, gravelly fine sandy loam	ML, SM	A-4, A-2	0-1	0-10	80-95	70-90	50-85	30-60	0-12	\| NP-10	
	14-20	Gravelly loamy sand, gravelly fine sandy loam, loamy sand	$\begin{aligned} & \text { SP-SM, SW-SM, } \\ & \text { SM } \end{aligned}$	A-4, A-2	0-1	0-10	75-100	\|60-100		30-70	20-55	0-14	NP
	20-65	Very gravelly loamy coarse sand, loamy sand, gravelly loamy sand	$\left\lvert\, \begin{gathered} \text { SW-SM, } S P-S M, \\ S M \end{gathered}\right.$	A-1, A-2	0-1	0-35	65-85	50-80	20-60	10-30	0-14	\| NP-10	
HkB :Hermon													
	0-2	Highly decomposed plant material	\| PT		34-90	0-14	99-100	\| 99-100		60-100	53-89	---	--
	2-7	Sandy loam	GM, SM	\|A-2, A-4, A-1	1-5	5-30	60-95	150-90	30-80	15-45	0-40	\| NP-10	
	7-16	\|Sandy loam, fine sandy loam, very gravelly coarse sandy loam	\|SM	\|A-2, A-4, A-1		0-15	5-30	70-95	150-90	30-80	15-45	0-40	\| NP-10



Table 21.-Engineering Properties-continued

```Map symbol and soil name```	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				Liquid   limit	Plasticity index
			Unified	AASHTO	$\begin{gathered} >10 \\ \text { inches } \end{gathered}$	$\begin{gathered} 3-10 \\ \text { inches } \end{gathered}$						
							4	10	40	200		
	In				Pct	Pct					Pct	
HkC :												
Monadnock-	16-22	Gravelly loamy sand, gravelly fine sandy loam, loamy sand	$\left\lvert\, \begin{aligned} & \text { SP-SM, } S W-S M, ~ \\ & S M \end{aligned}\right.$	A-4, A-2	0-1	0-10	75-100	60-100	30-70	20-55	0-14	NP
	22-65	```Very gravelly loamy coarse sand, gravelly loamy sand, loamy sand```	$\left\lvert\, \begin{gathered} \text { SW-SM, } S P-S M, ~ \\ S M \end{gathered}\right.$	A-1, A-2	0-1	0-35	65-85	50-80	20-60	10-30	0-14	NP-10
HMD :												
Hermon-------	0-2	Highly decomposed plant material	PT		7-34	0-14	99-100	99-100	60-100	53-89	---	---
	2-6	Sandy loam	GM, SM	A-2, A-4, A-1	1-5	5-30	60-95	50-90	30-80	15-45	0-40	NP-10
	6-8	Sandy loam, fine sandy loam, very gravelly coarse sandy loam	SM	A-2, A-4, A-1	0-15	5-30	70-95	50-90	30-80	15-45	0-40	NP-10
	8-18	```Very gravelly sandy loam, gravelly fine sandy loam, very gravelly coarse sand```	$\begin{array}{\|c} \text { \|GP-GM, SM, } \\ \text { SP-SM, GM } \end{array}$	A-1, A-4, A-2	5-20	10-30	40-80	30-75	15-65	10-40	0-40	NP-10
	18-65	```\| Very gravelly sand, gravelly loamy sand, very gravelly coarse sand```	GM, SP-SM, GP-GM, SM	A-1, A-3, A-2	0-20	10-30	40-80	30-75	10-55	5-25	0-14	NP
Monadnock-----	0-2	\|Highly decomposed plant material	PT		7-34	0-14	99-100	99-100	60-100	53-89	---	---
	$2-5$	Fine sandy loam	ML, SM	$\mathrm{A}-4, \mathrm{~A}-2$		0-30	80-95	70-90	40-85	25-60	0-15	NP-10
	5-16	\|Fine sandy loam, loam, gravelly fine sandy loam	ML, SM	$\mathrm{A}-4, \mathrm{~A}-2$	0-1	0-10	80-95	70-90	50-85	30-60	0-12	NP-10
	16-22	Gravelly loamy sand, gravelly fine sandy loam, loamy sand	$\left\lvert\, \begin{gathered} \text { SW-SM, } S P-S M, ~ \\ S M \end{gathered}\right.$	A-4, A-2	0-1	0-10	75-100	60-100	30-70	20-55	0-14	NP
	22-65	```Very gravelly loamy coarse sand, loamy sand, gravelly loamy sand```	$\left\lvert\, \begin{gathered} \text { SW-SM, } S P-S M, ~ \\ S M \end{gathered}\right.$	A-1, A-2	0-1	0-35	65-85	50-80	20-60	10-30	0-14	NP-10
HOE :												
Hermon--------	0-2	Highly decomposed plant material	PT		7-34	0-14	99-100	99-100	60-100	53-89	---	--
	2-6	Sandy loam	GM, SM	A-2, A-4, A-1	1-5	5-30	60-95	50-90	30-80	15-45	0-40	NP-10
	6-8	Sandy loam, fine sandy loam, very gravelly coarse sandy loam	SM	A-2, A-4, A-1	0-15	5-30	70-95	50-90	30-80	15-45	0-40	NP-10
	8-18	```\| Very gravelly sandy loam, gravelly fine sandy loam, very gravelly coarse sand```	$\begin{array}{\|} \text { SP-SM, SM, } \\ \text { GP-GM, GM } \end{array}$	A-1, A-4, A-2	5-20	10-30	40-80	30-75	15-65	10-40	0-40	NP-10

Table 21.-Engineering Properties-continued

Table 21.-Engineering Properties-continued

Map symbol and soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				Liquid limit	Plasticity index
			Unified	AASHTO	$\begin{gathered} >10 \\ \text { inches } \end{gathered}$	$\begin{gathered} 3-10 \\ \text { inches } \end{gathered}$						
							4	10	40	200		
HVC: Skerry	In	Highly decomposed plant material	PT	$\left\lvert\, \begin{gathered} A-2, A-4, A- \\ 1-b \end{gathered}\right.$	Pct	Pct				Pct		
	0-2				7-34	0-14	99-100	99-100\|	60-100	53-89	---	---
	2-3	Fine sandy loam	SM, SC, SC-SM		0	0-10	80-95	75-90	60-85	30-50	0-30	NP-10
	3-24	Gravelly fine sandy loam, gravelly sandy loam, fine sandy loam	SC, SM, SC-SM	$\begin{aligned} & A-2, A-4 \\ & A-1, A-2 \end{aligned}$	0-1	5-15	75-95	60-95	50-75	20-45	0-25	NP-10
	24-65	```Gravelly loamy sand, loamy sand, gravelly fine sandy loam```	$\begin{aligned} & \mid \mathrm{GP}-\mathrm{GM}, \mathrm{SP}-\mathrm{SM}, \\ & \mathrm{GM}, \mathrm{SM} \end{aligned}$		0-1	5-25	60-85	45-75	30-70	10-35	0-14	NP
HWE : Hogback			PT	$\left\lvert\, \begin{aligned} & A-2-4, \\ & A-4, \\ & A-5 \\ & A-4, \\ & A-4, \end{aligned}\right.$	7-34	0-14	99-100	99-100\|		53-89		---
	0-1	Highly decomposed plant material							60-100			
	1-2	Fine sandy loam	$\begin{array}{\|l} \text { CL, CL-ML, } \\ \text { ML, SM } \\ \text { SM, ML, CL- } \\ \text { ML, CL } \end{array}$		1-5	5-30	85-100	70-95	55-90	30-70	20-50	NP-10
	2-14	Fine sandy loam, gravelly fine sandy loam, gravelly sandy loam			0-5	0-30	75-100	70-95	50-90	30-70	20-50	NP-10
	14-18	\| Bedrock			---	---	---	---	---	---	---	-
Abram-------	0-2	Highly decomposed plant material	PT		7-34	0-14	99-100	99-100\|	60-100	53-89	--	--
	2-6	Sandy loam	GM, SM	A-1, A-4, A-2	0-5	1-15	65-95	60-95	35-80	20-50	0-35	NP-5
	6-10	Bedrock			---	---	---	---	---	---	---	-
Rawsonville--	0-2	Highly decomposed plant material	PT		7-34	0-14	99-100	99-100\|	60-100	53-89	---	---
	2-4	Fine sandy loam	SM, ML	A-4, A-5	1-5	5-20	75-100	70-90	50-90	30-70	20-50	NP-10
	4-15	Fine sandy loam, gravelly fine sandy loam, loam	ML, SM	$\left\lvert\, \begin{gathered} \mathrm{A}-2-4, \mathrm{~A}-4, \\ \mathrm{~A}-5 \end{gathered}\right.$	0-5	0-10	75-100	70-95	50-95	30-70	20-50	NP-10
	15-36	\|Gravelly sandy loam, gravelly fine sandy loam, fine sandy loam	ML, SM	A-4, A-2	0-2	0-15	70-100	60-95	35-95	20-85	0-20	NP-2
	36-40	Bedrock			---	---	---	---	---	---	---	---
HXC:												
Hogback-----	0-1	Highly decomposed plant material	PT		7-34	0-14	99-100	99-100\|	60-100	53-89	--	---
	1-2	Fine sandy loam	$\left\lvert\, \begin{gathered} \text { CL-ML, CL, } \\ \text { ML, SM } \end{gathered}\right.$	$\left\lvert\, \begin{gathered} A-2-4, A-4, \\ A-5 \end{gathered}\right.$	1-5	5-30	85-100	70-95	55-90	30-70	20-50	NP-10
	2-14	```Fine sandy loam, gravelly fine sandy loam, gravelly sandy loam```	$\begin{array}{\|l} \mid C L \\ \text { CL }, ~ C L-M L, ~ \\ \text { ML, } \end{array}$	$\left\lvert\, \begin{aligned} & \mathrm{A}-2-4, \mathrm{~A}-4, \\ & \mathrm{~A}-5 \end{aligned}\right.$	0-5	0-30	75-100	70-95	50-90	30-70	20-50	NP-10

Table 21.-Engineering Properties-continued

Table 21.-Engineering Properties-continued

Map symbol and soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				$\begin{aligned} & \mid \text { Liquid } \\ & \mid \text { limit } \end{aligned}$	$\begin{array}{\|r} \text { Plas- } \\ \text { ticity } \\ \text { index } \\ \hline \end{array}$	
			Unified	AASHTO	$\begin{gathered} \hline>10 \\ \text { inches } \end{gathered}$	$\left\|\begin{array}{c} 3-10 \\ \text { inches } \end{array}\right\|$							
							4	10	40	200			
LaB: Lamoine	In				Pct	Pct					Pct		
	0-7	Silt loam	MH, ML	A-5, A-7, A-4	0	0	98-100	95-100\|	95-100	85-100\|	36-55	5-15	
	7-16	\|Silt loam, silty clay loam, silty clay	MH, ML, CL	$\|\mathrm{A}-7, \mathrm{~A}-6, \mathrm{~A}-4\|$	0	0	98-100	\|95-100		95-100	85-100\|	28-55	8-25
	16-21	```Silty clay loam, silt```	MH, ML, CL	\|A-7, A-6, A-4	0	0	98-100	95-100\|	95-100	85-100\|	28-55	8-25	
LbB : Lamoine	21-65	```Silty clay, silty clay loam, clay```	CL, MH	A-7, A-6	0	0	\|98-100	95-100	95-100	90-100\|	30-60	10-25	
		\|Silt loam		$A-5, A-7, A-4$	0	0	98-100	\|95-100		95-100	85-100\|	36-55	5-15
	$7-16$	Silt loam, silty clay loam, silty clay	ML, MH, CL	$A-7, A-6, A-4$	0	0	98-100	95-100\|	95-100	85-100\|	28-55	$8-25$	
	16-21	\|Silty clay loam, silt loam, silty clay	ML, MH, CL	$\|\mathrm{A}-7, \mathrm{~A}-6, \mathrm{~A}-4\|$	0	0	98-100	95-100	95-100	85-100\|	28-55	8-25	
Buxton---------	21-65	```Silty clay, silty clay loam, clay```	CL, MH	A-7, A-6	0	0	98-100	95-100\|	95-100	90-100\|	30-60	10-25	
	0-9	Silt loam	MH, ML	$\|\mathrm{A}-5, \mathrm{~A}-7, \mathrm{~A}-4\|$	0	0	98-100	95-100\|	95-100	85-100\|	36-55	5-15	
	9-17	Silty clay loam, silt loam, silty clay	MH, ML, CL	$\|\mathrm{A}-7, \mathrm{~A}-6, \mathrm{~A}-4\|$	0	0	98-100	95-100	95-100	85-100\|	28-55	8-25	
	17-22	$\begin{aligned} & \text { Silty clay, silty clay } \\ & \text { loam, silt loam } \end{aligned}$	ML, MH, CL	\|A-7, A-6, A-4		0	0	98-100	95-100	95-100	85-100\|	28-55	8-25
	22-65	```Silty clay, silty clay loam, clay```	CL, MH	A-7, A-6	0	0	98-100	95-100	95-100	90-100\|	30-60	10-25	
LCB : Lamoine													
	0-7	Silt loam	MH, ML	$\|\mathrm{A}-5, \mathrm{~A}-7, \mathrm{~A}-4\|$	0	0	98-100	95-100\|	95-100	85-100\|	36-55	5-15	
	7-16	Silt loam, silty clay loam, silty clay	ML, MH, CL	$\|\mathrm{A}-7, \mathrm{~A}-6, \mathrm{~A}-4\|$	0	0	98-100	95-100	95-100	85-100\|	28-55	8-25	
	16-21	Silty clay loam, silt loam, silty clay	ML, MH, CL	\|A-7, A-6, A-4	0	0	98-100	95-100	95-100	85-100\|	28-55	8-25	
	21-65	Silty clay, silty clay loam, clay	CL, MH	A-7, A-6	0	0	98-100	95-100	95-100	90-100\|	30-60	10-25	
Buxton---------	0-9	Silt loam	MH, ML	$\|\mathrm{A}-5, \mathrm{~A}-7, \mathrm{~A}-4\|$	0	0	98-100	95-100\|	95-100	85-100\|	36-55	5-15	
	9-17	Silty clay loam, silt loam, silty clay	MH, ML, CL	$\|\mathrm{A}-7, \mathrm{~A}-6, \mathrm{~A}-4\|$	0	0	98-100	95-100	95-100	85-100\|	28-55	8-25	
	17-22	Silty clay, silty clay loam, silt loam	ML, MH, CL	$\|\mathrm{A}-7, \mathrm{~A}-6, \mathrm{~A}-4\|$	0	0	98-100	95-100	95-100	85-100\|	28-55	8-25	
	22-65	```Silty clay, silty clay loam, clay```	CL, MH	A-7, A-6	0	0	98-100	95-100\|	95-100	90-100\|	30-60	10-25	

Table 21.-Engineering Properties-continued

Table 21.-Engineering Properties-continued

Map symbol and soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				Liquid limit	Plasticity index	
			Unified	AASHTO	$\begin{array}{c\|} \hline>10 \\ \text { inches } \end{array}$	$\begin{gathered} 3-10 \\ \text { inches } \end{gathered}$							
							4	10	40	200			
LKB: Lamoine	In				Pct	Pct					Pct		
	0-7	Silt loam	MH, ML	A-5, A-7, A-4	0	0	98-100	95-100	95-100	85-100\|	36-55	5-15	
	7-16	Silt loam, silty clay loam, silty clay	MH, ML, CL	\|A-7, A-6, A-4	0	0	98-100	95-100	\| 95-100		85-100	28-55	8-25
	16-21	Silty clay loam, silt loam, silty clay	MH, ML, CL	A-7, A-6, A-4	0	0	98-100	95-100	95-100	85-100	28-55	8-25	
	21-65	```Silty clay, silty clay loam, clay```	CL, MH	A-7, A-6	0	0	98-100	95-100	95-100	90-100	30-60	10-25	
LKB : Rawsonville													
	0-2	Highly decomposed plant material	\| PT		7-34	0-14	99-100	99-100	60-100\|	53-89	---	---	
	2-4	Fine sandy loam			1-5	5-20	75-100	70-90	50-90	30-70	20-50	NP-10	
	$4-15$	Fine sandy loam, gravelly fine sandy loam, loam	SM, ML	$\left\lvert\, \begin{gathered} \mathrm{A}-2-4, \mathrm{~A}-4, \\ \mathrm{~A}-5 \end{gathered}\right.$	$0-5$	$0-10$	75-100	70-95	50-95	$30-70$	20-50	NP-10	
	15-36	Gravelly sandy loam, gravelly fine sandy loam, fine sandy loam	ML, SM	A-4, A-2	0-2	0-15	70-100	60-95	35-95	20-85	0-20	NP-2	
	36-40	Bedrock			---	---	---	---	---	---	---	---	
Scantic------	$0-11$	Silt loam		$\|A-7, A-5, A-4\|$	0	0	100	95-100	90-100\|	70-100	36-55	5-20	
	$11-29$	$\begin{aligned} & \text { Silty clay, silt loam, } \\ & \text { clay } \end{aligned}$	MH, CL	$A-6, A-7, A-4$	0	0	100	95-100	95-100\|	85-100	25-55	$8-25$	
	29-65	Clay, silty clay loam, silty clay	CL, MH	A-7, A-6	0	0	100	95-100	95-100\|	90-100	30-60	10-25	
LmB :													
Lamoine-------		Silt loam					98-100	95-100	95-100\|	85-100	36-55	5-15	
	7-16	Silt loam, silty clay loam, silty clay	MH, ML, CL	$A-7, A-6, A-4$	0	0	98-100	95-100	95-100\|	85-100	28-55	8-25	
	16-21	Silty clay loam, silt loam, silty clay	ML, MH, CL	A-7, A-6, A-4	0	0	98-100	95-100	95-100	85-100	28-55	8-25	
	21-65	```Silty clay, silty clay loam, clay```	CL, MH	A-7, A-6	0	0	98-100	95-100	95-100	90-100	30-60	10-25	
Scantic-------	0-11	Silt loam	MH, ML	A-7, A-5, A-4	0	0	100	95-100	90-100	70-100	36-55	5-20	
	11-29	$\begin{aligned} & \text { Silty clay, silt loam, } \\ & \text { clay } \end{aligned}$	MH, CL	A-6, A-7, A-4	0	0	100	95-100	95-100	85-100	25-55	8-25	
	29-65	```Clay, silty clay loam, silty clay```	CL, MH	A-7, A-6	0	0	100	95-100	95-100	90-100	30-60	10-25	

Table 21.-Engineering Properties-continued

Table 21.-Engineering Properties-continued

Table 21.-Engineering Properties-continued

Table 21.-Engineering Properties-continued

Table 21.-Engineering Properties-continued

Table 21.-Engineering Properties-continued

Table 21.-Engineering Properties-continued

Table 21.-Engineering Properties-continued

Map symbol and soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				$\begin{array}{\|l} \mid \text { Liquid } \\ \mid \text { limit } \end{array}$	$\begin{array}{\|l} \text { Plas- } \\ \text { ticity } \\ \text { index } \end{array}$
			Unified	AASHTO	$\begin{gathered} \hline>10 \\ \text { inches } \end{gathered}$	$\begin{gathered} 3-10 \\ \text { inches } \end{gathered}$						
							4	10	40	200		
	In				Pct	Pct					Pct	
NdB :Nicholville												
	0-3	Very fine sandy loam	\| CL-ML, ML	A-4, A-6	0	0	90-100	85-100	70-100\|	60-90	20-40	2-12
	3-17	Very fine sandy loam, silt loam, loamy very fine sand	CL-ML, ML	A-4	0	0	90-100	85-100	75-100\|	60-90	15-25	\| NP-5
	17-30	Loamy very fine sand, silt loam, very fine sand	$\begin{array}{\|c} \text { CL-ML, ML, } \\ \text { SC-SM, } \end{array}$	A-4, A-2	0	0	90-100	85-100	65-100\|	30-90	15-25	\|NP-5
	30-65	Loamy very fine sand, silt loam, sandy loam	$\begin{array}{\|c} \mid S C-S M, ~ S M, \\ \text { CL-ML, ML } \end{array}$	A-4, A-2	0	0	90-100	85-100	50-100\|	25-90	15-25	NP-5
```NdC: Nicholville---```	0-3	Very fine sandy loam	ML, CL-ML	A-4, A-6	0	0	90-100	85-100	70-100	60-90	20-40	2-12
	3-17	Very fine sandy loam, silt loam, loamy very fine sand	CL-ML, ML	A-4	0	0	90-100	85-100	75-100\|	60-90	15-25	NP-5
	17-30	Loamy very fine sand, silt loam, very fine sand	$\begin{gathered} \text { SM, SC-SM, } \\ \text { ML, CL-ML } \end{gathered}$	A-4, A-2	0	0	90-100	85-100	65-100\|	30-90	15-25	\|NP-5
	30-65	Loamy very fine sand, silt loam, sandy loam	$\begin{array}{\|c} \mid S M, ~ S C-S M, \\ C L-M L, ~ M L \end{array}$	A-4, A-2	0	0	90-100	85-100	50-100\|	25-90	15-25	\|NP-5
NGB :   Nicholville	0-3	Highly decomposed plant			0							---
	0-3	Highly decomposed plant material	PT		0	0	99-100	99-100	60-100\|	53-89	---	---
	3-4	Very fine sandy loam					90-100	85-100	70-100\|	60-90	20-40	2-12
	4-17	Very fine sandy loam, silt loam, loamy very fine sand	ML, CL-ML	A-4	$0$	0	90-100	85-100	75-100\|	60-90	$15-25$	NP-5
	17-30	Loamy very fine sand, silt loam, very fine sand	$\begin{array}{\|c} \text { CL-ML, ML, } \\ \text { SC-SM, } \end{array}$	A-4, A-2	0	0	90-100	85-100	65-100\|	30-90	15-25	\| NP-5
	30-65	Loamy very fine sand, silt loam, sandy loam	$\begin{array}{\|c} \mid C L-M L, ~ M L, ~ \\ \text { SC-SM, SM } \end{array}$	A-4, A-2	0	0	90-100	85-100	50-100\|	25-90	15-25	\| NP-5
NGB :   Croghan												
	0-1	Highly decomposed plant material	PT		0	0	99-100	99-100	60-100\|	53-89	---	---
	1-3	Loamy sand	$\left\lvert\, \begin{gathered} \text { SP-SM, SW-SM, } \\ \text { SM } \end{gathered}\right.$	$\left\lvert\, \begin{gathered} A-2, A-4, A- \\ 3, A-1 \end{gathered}\right.$	0	0	95-100	95-100	45-80	5-40	0-14	NP
	3-23	$\begin{aligned} & \text { Loamy sand, sand, loamy } \\ & \text { fine sand } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { SW-SM, } S P-S M, ~ \\ S M \end{gathered}\right.$	$\begin{gathered} A-2, A-4, A- \\ 3, A-1 \end{gathered}$	0	0	80-100	75-100	45-80	5-40	0-14	NP
	23-65	$\begin{aligned} & \text { Sand, fine sand, coarse } \\ & \text { sand } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { SP-SM, SW-SM, } \\ \text { SM } \end{gathered}\right.$	A-2, A-3, A-1	0	0	80-100	75-100	45-75	5-30	0-14	NP

Table 21.-Engineering Properties-continued


Table 21.-Engineering Properties-continued



Table 21.-Engineering Properties-continued

Map symbol and soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				$\begin{aligned} & \mid \text { Liquid } \\ & \mid \text { limit } \end{aligned}$	Plasticity index	
			Unified	AASHTO	$\begin{gathered} \hline>10 \\ \text { inches } \end{gathered}$	$\begin{gathered} 3-10 \\ \text { inches } \\ \hline \end{gathered}$							
							4	10	40	200			
	In				Pct	Pct					Pct		
Sa:													
Scantic-------	0-11	Silt loam	\| MH, ML	A-7, A-5, A-4	0	0	100	\|95-100	90-100	70-100\|	36-55	5-20	
	11-29	$\begin{aligned} & \text { Silty clay, silt loam, } \\ & \text { clay } \end{aligned}$	\| MH, CL	A-6, A-7, A-4	0	0	100	\|95-100	95-100	\| 85-100	25-55	8-25	
	29-65	Clay, silty clay loam, silty clay	\| CL, MH	A-7, A-6	0	0	100	\|95-100	95-100	\|90-100		30-60	10-25
SF :													
Scantic-------	0-11	Silt loam	\| MH, ML	A-7, A-5, A-4	0	0	100	\| 95-100	90-100	70-100	36-55	5-20	
	11-29	$\begin{aligned} & \text { Silty clay, silt loam, } \\ & \text { clay } \end{aligned}$	\| MH, CL	\|A-6, A-7, A-4	0	0	100	\|95-100	95-100	85-100	25-55	8-25	
	29-65	Clay, silty clay loam, silty clay	\| CL, MH	A-7, A-6	0	0	100	95-100	95-100	\|90-100		30-60	10-25
Biddeford-----	0-12	Muck	\|PT	A-8	0	0	100	100	90-100	\| 85-100		0-14	---
	12-16	Silty clay loam, silt loam, silty clay	\| ML, CL	A-6, A-4, A-7	0	0	100	100	90-100	\| 85-100	25-50	8-20	
	16-24	Silty clay, silty clay   loam, clay	\| MH, CL	A-7, A-6	0	0	100	100	95-100	90-100	30-55	10-25	
	24-65	Silty clay, silty clay   loam, clay	\| MH, CL	A-7, A-6	0	0	100	100	95-100	90-100	30-55	10-25	
SG:													
Sebago--------	0-12		\| PT	A-8	0	0	100	100	100	100	---	NP	
	12-65	Mucky peat, peat	\| PT	A-8	0	0	100	100	100	100	---	NP	
Moosabec------	0-65	Peat	PT	A-8	0	0	100	100	100	100	---	NP	
ShB :													
Sheepscot-----	0-4	Highly decomposed plant material	PT		0	0	99-100	99-100	60-100	53-89	---	-	
	4-7	Fine sandy loam	$\left\lvert\, \begin{gathered} \mathrm{CL}-\mathrm{ML}, \mathrm{ML}, \\ \mathrm{SC}-\mathrm{SM}, \mathrm{SM} \end{gathered}\right.$	A-4, A-2, A-1	0	0-5	80-95	75-90	45-85	20-60	0-15	\|NP-5	
	7-16	\|Gravelly sandy loam, fine sandy loam, very gravelly coarse sandy loam	$\begin{aligned} & \text { SP-SM, GP-GM, } \\ & \text { GM, SM } \end{aligned}$	$\begin{gathered} A-2, A-4, A- \\ 3, A-1 \end{gathered}$	0-1	0-5	40-95	35-90	20-75	5-50	0-15	\|NP-5	
	16-29	```Very gravelly loamy sand, very gravelly sand, extremely gravelly coarse sand```	$\underset{\text { GM }}{\text { GP, }}$	A-1	0-1	5-25	20-55	15-50	5-40	1-15	0-14	NP	
	29-65	```Very gravelly sand, very gravelly loamy sand, extremely gravelly coarse sand```	$\left.\right\|_{\text {GM }} ^{\text {SM, }} \text { GP, }$	A-1	0-1	5-30	20-55	15-50	5-40	1-15	0-14	NP	

Table 21.-Engineering Properties-continued


Table 21.-Engineering Properties-continued


Table 21.-Engineering Properties-continued


Table 21.-Engineering Properties-continued


Map symbol and soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				Liquid   limit	$\begin{aligned} & \text { Plas- } \\ & \text { ticity } \\ & \text { index } \end{aligned}$
			Unified	AASHTO	$\begin{gathered} >10 \\ \text { inches } \end{gathered}$	$\left\|\begin{array}{c} 3-10 \\ \text { inches } \end{array}\right\|$						
							4	10	40	200		
TCB :   Telos	In	Gravelly silt loam, gravelly loam, silt loam	$\begin{aligned} & \text { \|CL-ML, SC-SM, } \\ & \text { SM, ML } \end{aligned}$	A-4	Pct	Pct					Pct	
	20-65											
					0-5	0-10	70-95	65-90	55-90	40-80	0-25	NP-5
Chesuncook-----	0-3	Highly decomposed plant material	PT		7-34	0-14	99-100\|	99-100	60-100	53-89	---	---
	3-5	Silt loam	SM, ML	A-4, A-2	0-1	0-5	85-95	75-90	50-90	30-80	0-40	NP-10
	5-28	Gravelly silt loam, loam, gravelly fine sandy loam	SM, ML	A-4, A-2	0-15	0-10	80-95	65-90	45-90	25-80	0-40	NP-10
	28-65	\|Gravelly silt loam, gravelly loam, silt loam	$\begin{array}{\|c} \mid M L \\ \text { SM, } \\ \text { SC-SM } \\ \hline \end{array}$	A-4	0-15	0-10	75-85	60-85	50-85	35-75	0-30	NP-10
TEB :												
Telos----------	0-1	Highly decomposed plant material	\| PT		7-34	0-14	99-100\|	99-100	60-100	53-89	---	---
		Silt loam					65-95	60-90	45-90	25-80	0-40	NP-10
	$3-20$	\|Gravelly silt loam, loam, gravelly fine sandy loam	$\begin{aligned} & \mathrm{CL}, \mathrm{ML}, \mathrm{SM}, \\ & \mathrm{CL}-\mathrm{ML} \end{aligned}$	$\mathrm{A}-4, \quad \mathrm{~A}-2$	$0-5$	$0-10$	$70-95$	$65-90$	45-90	25-80	0-30	NP-8
	20-65	\|Gravelly silt loam, gravelly loam, silt loam	$\begin{array}{\|l} \mid S C-S M, ~ C L-M L, ~ \\ \text { SM, ML } \end{array}$	A-4	0-5	0-10	70-95	65-90	55-90	40-80	0-25	NP-5
Elliottsville---	0-2	\|Highly decomposed plant material	\| PT		7-34	0-14	99-100\|	99-100	60-100	53-89	--	---
	2-4	Silt loam	GM, SM, ML	A-4	0-1	0-5	80-95	75-90	65-90	45-80	0-40	NP-8
	4-19	Channery silt loam, channery loam, very fine sandy loam	\|GM, SM, ML	A-4	0-5	0-10	65-95	55-90	45-90	35-80	0-40	NP-8
	19-31	Channery silt loam, channery loam, very fine sandy loam	$\begin{aligned} & \text { CL-ML, SC-SM, } \\ & \text { SM, ML } \end{aligned}$	A-4	0-5	0-5	65-95	55-90	45-90	35-80	0-30	NP-8
	31-35	Bedrock			---	---	---	---	---	---	-	---
Monarda--------	0-1	Highly decomposed plant material	\| PT		8-42	0-50	97-100\|	97-100	60-100	53-89	--	---
	1-10	Silt loam	$\begin{gathered} \mid \mathrm{GM}, \quad \mathrm{SM}, \mathrm{ML} \\ \mathrm{t} \mid \mathrm{ML}, \quad \mathrm{SC}-\mathrm{SM}, \\ \mathrm{SM}, \\ \hline L-M L \end{gathered}$	A-2, A-4	1-5	5-10	65-95	55-95	40-95	25-70	0-40	NP-10
	10-23	\|Gravelly silt loam, silt loam, gravelly very fine sandy loam		A-4	0-5	0-10	65-95	55-95	45-95	35-85	0-30	NP-10
	23-65	\|Gravelly silt loam, silt loam, gravelly very fine sandy loam	$\left\lvert\, \begin{gathered} \text { SM, ML, } \\ \text { SM, CL-ML } \end{gathered}\right.$	A-4	0-5	0-10	65-95	55-95	45-95	35-85	0-30	NP-10

Table 21.-Engineering Properties-continued


Table 21.-Engineering Properties-continued

(Entries under "Erosion factors-T" apply to the entire profile. Entries under "Wind erodibility group" and "Wind erodibility index" apply only to the surface layer. Absence of an entry indicates that data were not estimated. Sand \& Silt rv = representative value)

Map symbol and soil name	Depth	$\left\lvert\, \begin{array}{r} \text { Sand } \\ \text { rv } \end{array}\right.$	\|Silt	Clay	```Moist bulk density```	Saturated   hydraulic conductivity	$\begin{array}{\|c} \text { Available } \\ \text { water } \\ \text { capacity } \end{array}$	```Linear extensi- bility```	Organic   matter	Erosion factors			Wind erodi-   bility group	Wind erodi-   bility   index
										Kw	Kf	T		
	In	Pct	Pct	Pct	$\mathrm{g} / \mathrm{cc}$	um/sec	In/in	Pct	Pct					
AaE:														
Abram-----------	0-2	26	54	0-25	---	10.00-100.00	---	---	35-85	---	---	1	8	0
	2-6	60	36	1-6	0.90-1.10	14.11-42.34	0.10-0.20	0.0-2.9	2.0-4.0	. 15	. 20			
	6-10			---	---	0.00-0.00	---	---	---	---	---			
Hogback---------	0-1	26	54	0-25	---	1.40-42.30	---	---	35-85	---	---	1	8	0
	1-2	65	27	2-10	0.60-1.00	14.00-42.33	0.13-0.24	0.0-2.9	4.0-8.0	. 17	. 24			
	2-14	55	38	2-10	0.60-1.00	14.00-42.33	0.13-0.45	0.0-2.9	8.0-14	. 32	. 37			
	14-18			---	-	0.00-0.00	---	---	---	---	---			
AbE :														
Abram-----------	0-2	26	54	0-25	-	10.00-100.00	-	-	35-85	-	---	1	8	0
	2-6	60	36	1-6	0.90-1.10	14.11-42.34	0.10-0.20	0.0-2.9	2.0-4.0	. 15	. 20			
	6-10			-	-	0.00-0.00	-	---	---	--	---			
Lyman-----------	0-2	26	54	0-25	---	10.00-100.00	---	---	35-85	-	-	1	8	0
	2-3	60	34	2-10	0.75-1.20	14.11-42.34	0.22-0.33	0.0-2.9	2.0-8.0	. 20	. 28			
	$3-17$	60	34	2-10	0.90-1.40	$14.11-42.34$	0.24-0.33	0.0-2.9	2.0-10	. 32	. 37			
	17-21			---	---	$0.00-0.00$	---	---	--	---	---			
ACE :														
Abram-----------	0-2	26	54	0-25	---	10.00-100.00	---	---	35-85	---	-	1	3	86
	2-6	60	36	1-6	0.90-1.10	14.11-42.34	0.10-0.20	0.0-2.9	2.0-4.0	. 15	. 20			
	6-10			---	---	0.00-0.00	---	---	---	---	---			
Rock outcrop--	0-4			---	---	0.00-0.00	---	---	---	-	---	1	8	0
Ricker----------	0-4	26	54	0-25	0.07-0.30	14.11-42.34	0.45-0.65	0.0-2.9	80-90	-	-	1	7	38
	4-5	26	54	0-25	0.15-0.60	14.11-42.34	0.35-0.45	0.0-2.9	20-60	-	---			
	5-7	66	23	3-18	1.35-1.80	4.23-42.34	0.06-0.18	0.0-2.9	2.0-6.0	. 49	. 55			
	7-11				---	0.00-0.00	---	---	---	---	---			
AdA :														
Adams-----------	0-4	81	16	0-5	1.00-1.30	42.34-141.14\|	0.06-0.12	0.0-2.9	2.0-6.0	. 17	. 17	5	2	134
	4-22	96	2	0-5	1.10-1.45	42.34-141.14	0.05-0.07	0.0-2.9	1.0-9.0	. 17	. 17			
	22-65	96	2	0-5	1.20-1.50	$\begin{array}{\|l} 141.14- \\ 705.00 \end{array}$	0.02-0.04	0.0-2.9	0.0-0.5	. 17	. 17			


Map symbol and soil name	Depth	\| Sandrv	$\left.\right\|_{\text {Silt }} ^{\text {rv }}$	Clay	```Moist bulk density```		$\begin{array}{\|c} \text { Available } \\ \text { water } \\ \text { capacity } \end{array}$	```Linear extensi- bility```	Organic   matter	Erosion factors			Wind erodi-   \|bility   group	Wind erodi-   bility   index
										Kw	Kf	T		
	In	Pct	Pct	Pct	g/cc	um/sec	In/in	Pct	Pct					
AdB :														
Adams-----------	0-4	81	16	0-5	1.00-1.30	42.34-141.14	0.06-0.12	0.0-2.9	2.0-6.0	. 17	. 17	5	2	134
	4-22	96	2	0-5	1.10-1.45	42.34-141.14	0.05-0.07	0.0-2.9	1.0-9.0	. 17	. 17			
	22-65	96	2	0-5	1.20-1.50	141.14-	0.02-0.04	0.0-2.9	0.0-0.5	. 17	. 17			
						705.00								
AdC:														
Adams-----------	0-4	81	16	0-5	1.00-1.30	42.34-141.14	0.06-0.12	0.0-2.9	2.0-6.0	. 17	. 17	5	2	134
	4-22	96	2	0-5	1.10-1.45	42.34-141.14	0.05-0.07	0.0-2.9	1.0-9.0	. 17	. 17			
	22-65	96	2	0-5	1.20-1.50	$\text { \| } 141.14 \text { - }$	0.02-0.04	0.0-2.9	0.0-0.5	. 17	. 17			
						$705.00$								
AGB :														
Adams-----------	0-1	26	54	0-25	---	10.00-100.00	---	---	35-85	---	---	5	2	134
	1-4	81	16	0-5	1.00-1.30	42.34-141.14	0.06-0.12	0.0-2.9	2.0-6.0	. 17	. 17			
	4-22	96	2	0-5	1.10-1.45	42.34-141.14	0.05-0.07	0.0-2.9	1.0-9.0	. 17	. 17			
	22-65	96	2	0-5	1.20-1.50	$141.14-$	0.02-0.04	0.0-2.9	0.0-0.5	. 17	. 17			
						$705.00$								
Croghan---------	0-1	26	54	0-25	---	10.00-100.00	---	---	35-85	---	---	5	2	134
	1-3	81	16	0-5	1.10-1.50	42.34-141.14	0.05-0.09	0.0-2.9	2.0-6.0	. 17	. 17			
	3-23	81	16	0-5	1.20-1.50	$\begin{aligned} & 141.14- \\ & 705.00 \end{aligned}$	0.03-0.07	0.0-2.9	0.5-8.0	. 17	. 17			
	23-65	96	2	0-5	1.20-1.50	141.14-	0.03-0.06	0.0-2.9	0.0-5.0	. 17	. 17			
						$\text { \| } 705.00$								
BeC:														
Becket----------	0-2	26	54	0-25	---	10.00-100.00	---	---	35-85	---	---	5	3	86
	2-5	61	35	2-6	0.60-1.30	4.23-14.11	0.06-0.23	0.0-2.9	2.0-6.0	. 17	. 20			
	5-24	65	31	2-7	1.30-1.60	4.23-14.11	0.06-0.16	0.0-2.9	1.0-8.0	. 28	. 32			
	24-65	66	31	1-5	1.60-1.75	0.42-4.23	0.03-0.09	0.0-2.9	0.0-1.0	. 17	. 24			
BKD :														
Becket----------	0-2	26	54	0-25	---	10.00-100.00	---	---	35-85	--	---	5	3	86
	2-5	61	35	2-6	0.60-1.30	4.23-14.11	0.06-0.23	0.0-2.9	2.0-6.0	. 17	. 20			
	5-24	65	31	2-7	1.30-1.60	4.23-14.11	0.06-0.16	0.0-2.9	1.0-8.0	. 28	. 32			
	24-65	66	31	1-5	1.60-1.75	0.42-4.23	0.03-0.09	0.0-2.9	0.0-1.0	. 17	. 24			
Skerry----------	0-2	26	54	0-25	---	10.00-100.00	---	-	35-85	---	---	5	3	86
	2-3	61	35	2-6	0.60-1.30	4.23-14.11	0.06-0.23	0.0-2.9	2.0-6.0	. 20	. 24			
	3-24	61	35	2-7	1.30-1.60	4.23-14.11	0.06-0.16	0.0-2.9	1.0-8.0	. 28	. 32			
	24-65	81	16	1-5	1.60-1.75	0.42-4.23	0.03-0.09	0.0-2.9	0.0-1.0	. 17	. 24			

Table 22.-Physical Soil Properties-continued


Map symbol and soil name	Depth	$\begin{array}{r} \text { Sand } \\ \text { rv } \end{array}$	$\left.\right\|_{\text {Silt }} ^{\text {rv }}$	Clay	```Moist bulk density```	Saturated   hydraulic conductivity	$\left\|\begin{array}{c} \text { Available } \\ \text { water } \\ \text { capacity } \end{array}\right\|$	$\begin{array}{\|c} \text { Linear } \\ \text { extensi- } \\ \text { bility } \end{array}$	Organic   matter	Erosion factors			Wind erodi-   bility group	Wind erodi-   bility   index	
										Kw	Kf	T			
	In	Pct	Pct	Pct	g/cc	um/sec	In/in	Pct	Pct						
BZC:															
Buxton----------	0-9	25	53	15-30	0.90-1.20	1.41-14.11	0.25-0.30\|	0.0-2.9	3.0-8.0	. 32	. 32	3	6	48	
	9-17	20	52	20-45	1.10-1.55	0.42-4.23	0.14-0.28\|	3.0-5.9	0.5-3.0	. 49	. 49				
	17-22	8	52	20-45	1.40-1.70	0.01-1.41	0.07-0.27\|	3.0-5.9	0.0-1.0	. 49	. 49				
	22-65	7	48	35-55	1.40-1.80	0.01-1.41	0.04-0.16\|	3.0-5.9	0.0-0.5	. 49	. 49				
Lamoine---------	0-7	25	53	15-30	0.90-1.20	1.41-14.11	0.25-0.30\|	0.0-2.9	3.0-8.0	. 32	. 32	3	6	48	
	7-16	24	51	20-45	1.10-1.55	0.42-4.23	0.13-0.28\|	3.0-5.9	0.5-3.0	. 49	. 49				
	16-21	20	48	20-45	1.40-1.70	0.01-1.41	0.10-0.16\|	3.0-5.9	0.0-1.0	. 49	. 49				
	21-65	7	48	35-55	1.40-1.80	0.01-1.41	0.06-0.16\|	3.0-5.9	0.0-0.5	. 49	. 49				
ChB :															
Chesuncook------	0-7	33	57	5-15	0.70-1.20	4.23-14.11	0.20-0.40\|	0.0-2.9	3.0-8.0	. 28	. 28	3	5	56	
	$7-25$	30	56	10-18	0.90-1.60	4.23-14.11	0.18-0.30\|	0.0-2.9	0.5-3.0	. 32	. 37				
	25-65	30	56	10-18	1.60-1.90	0.01-1.41	0.16-0.25\|	0.0-2.9	0.0-0.5	. 32	. 37				
ChC:															
Chesuncook------	0-7	33	57	5-15	0.70-1.20	4.23-14.11	0.20-0.40\|	0.0-2.9	3.0-8.0	. 28	. 28	3	5	56	
	7-25	30	56	10-18	0.90-1.60	4.23-14.11	0.18-0.30\|	0.0-2.9	0.5-3.0	. 32	. 37				
	25-65	30	56	10-18	1.60-1.90	0.01-1.41	0.16-0.25\|	0.0-2.9	0.0-0.5	. 32	. 37				
CKC :															
Chesuncook------	0-3	26	54	0-25	---	10.00-100.00\|	---	---	35-85	---	---	3	8	0	
	3-5	33	57	5-15	0.70-0.90	4.23-14.11	0.16-0.27\|	0.0-2.9	2.0-6.0	. 28	. 28				
	5-28	30	56	10-18	0.70-1.60	4.23-14.11	0.18-0.30\|	0.0-2.9	1.0-10	. 32	. 37				
	28-65	30	56	10-18	1.60-1.90	0.01-1.41	0.16-0.25\|	0.0-2.9	0.0-1.0	. 32	. 37				
Elliottsville----	0-2	26	54	0-25	---	10.00-100.00\|	---	---	35-85	---	---	2	8	0	
	2-4	33	57	5-15	0.70-1.00	4.23-14.11	0.18-0.32\|	0.0-2.9	3.0-8.0	. 24	. 28				
	4-19	30	56	10-18	1.00-1.60	4.23-14.11	0.20-0.30\|	0.0-2.9	4.0-10	. 28	. 32				
	19-31	30	56	10-18	1.40-1.70	4.23-14.11	0.15-0.25	0.0-2.9	0.5-3.0	. 28	. 32				
	31-35			---		0.00-0.00	---	---	---	---	--				
Telos-----------	0-1	26	54	0-25	---	10.00-100.00\|	---	---	35-85	-	-	3	8	0	
	1-3	33	58	5-13	0.70-1.00	4.23-14.11	0.15-0.25	0.0-2.9	2.0-6.0	. 28	. 28				
	3-20	30	56	10-18	1.30-1.60	4.23-14.11	0.20-0.40\|	0.0-2.9	1.0-9.0	. 32	. 37				
	20-65	30	56	10-18	1.60-1.90	0.01-1.41	0.05-0.10\|	0.0-2.9	0.0-1.0	. 32	. 37				
CLC:															
Chesuncook------	0-3	26	54	0-25	---	10.00-100.00\|	---	---	35-85	---	--	3	8	0	
	3-5	33	57	5-15	0.70-0.90	4.23-14.11	0.16-0.27\|	0.0-2.9	2.0-6.0	. 28	. 28				
	5-28	30	56	10-18	0.70-1.60	4.23-14.11	0.18-0.30\|	0.0-2.9	1.0-10	. 32	. 37				
	28-65	30	56	10-18	1.60-1.90	0.01-1.41	0.16-0.25\|	0.0-2.9	0.0-1.0	. 32	. 37				
Telos-----------	0-1	26	54	0-25	---	\|10.00-100.00		---	---	35-85	---	---	3	8	0
	1-3	33	58	5-13	0.70-1.00	4.23-14.11	0.15-0.25	0.0-2.9	2.0-6.0	. 28	. 28				
	3-20	30	56	10-18	1.30-1.60	4.23-14.11	0.20-0.40\|	0.0-2.9	1.0-9.0	. 32	. 37				
	20-65	30	56	10-18	1.60-1.90	0.01-1.41	0.05-0.10\|	0.0-2.9	0.0-1.0	. 32	. 37				

Table 22.-Physical Soil Properties-continued



Table 22.-Physical Soil Properties-continued



Table 22.-Physical Soil Properties-continued

| Map symbol and soil name | Depth | $\text { \|rand } \begin{array}{r} \text { rv } \end{array}$ | \|Silt | Clay | ```Moist bulk density``` | ```\| Saturated``` | $\left\|\begin{array}{c} \text { Available } \\ \text { water } \\ \text { capacity } \end{array}\right\|$ | ```Linear extensi- bility``` | Organic <br> matter | Erosion factors |  |  | Wind \|erodi|bility group | Wind erodi- <br> bility <br> index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  | Kw | Kf | T |  |  |
| DHB : <br> Colonel | In | Pct | Pct | Pct | g/cc | um/sec | In/in | Pct | Pct |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 0-3 | 26 | 54 | 0-25 | --- | 10.00-100.00\| | --- | --- | 35-85 | --- | --- | 3 | 8 | 0 |
|  | 3-6 | 66 | 28 | 3-10 | 0.90-1.20 | 4.23-14.11 | 0.16-0.33 | 0.0-2.9 | 2.0-6.0 | . 17 | . 20 |  |  |  |
|  | 6-26 | 66 | 28 | 3-10 | 1.00-1.60 | 4.23-14.11 | 0.16-0.25 | 0.0-2.9 | 1.0-8.0 | . 24 | . 28 |  |  |  |
|  | 26-65 | 66 | 28 | 3-10 | 1.65-1.95 | 0.42-4.23 | 0.13-0.22 | 0.0-2.9 | 0.0-0.5 | . 20 | . 24 |  |  |  |
| DkB:Dixfiel |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 0-3 | 26 | 54 | 0-25 | --- | 10.00-100.00\| | --- | --- | 35-85 | --- | --- | 3 | 8 | 0 |
|  | 3-6 | 66 | 28 | 3-10 | 0.90-1.20 | 4.23-14.11 | 0.18-0.28 | 0.0-2.9 | 0.0-2.0 | . 17 | . 20 |  |  |  |
|  | 6-31 | 66 | 28 | 3-10 | 1.00-1.60 | 4.23-14.11 | 0.20-0.30\| | 0.0-2.9 | 0.5-4.0 | . 24 | . 28 |  |  |  |
|  | 31-65 | 66 | 28 | 3-10 | 1.65-1.95 | 0.42-4.23 | 0.08-0.20 | 0.0-2.9 | 0.0-0.5 | . 20 | . 24 |  |  |  |
| Colonel--------- | 0-3 | 26 | 54 | 0-25 | --- | 10.00-100.00\| | --- | --- | 35-85 | -- | - | 3 | 8 | 0 |
|  | 3-6 | 66 | 28 | 3-10 | 0.90-1.20 | 4.23-14.11 | 0.16-0.33 | 0.0-2.9 | 2.0-6.0 | . 17 | . 20 |  |  |  |
|  | 6-26 | 66 | 28 | 3-10 | 1.00-1.60 | 4.23-14.11 | 0.16-0.25 | 0.0-2.9 | 1.0-8.0 | . 24 | . 28 |  |  |  |
|  | 26-65 | 66 | 28 | 3-10 | 1.65-1.95 | 0.42-4.23 | 0.13-0.22\| | 0.0-2.9 | 0.0-0.5 | . 20 | . 24 |  |  |  |
| DMC:Dixfiel |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 0-3 | 26 | 54 | 0-25 | --- | 10.00-100.00\| | --- | --- | 35-85 | --- | --- | 3 | 8 | 0 |
|  | 3-6 | 66 | 28 | 3-10 | 0.90-1.20 | 4.23-14.11 | 0.18-0.28 | 0.0-2.9 | 0.0-2.0 | . 17 | . 20 |  |  |  |
|  | 6-31 | 66 | 28 | 3-10 | 1.00-1.60 | 4.23-14.11 | 0.20-0.30\| | 0.0-2.9 | 0.5-4.0 | . 24 | . 28 |  |  |  |
|  | 31-65 | 66 | 28 | 3-10 | 1.65-1.95 | 0.42-4.23 | 0.08-0.20 | 0.0-2.9 | 0.0-0.5 | . 20 | . 24 |  |  |  |
| Marlow---------- | 0-1 | 26 | 54 | 0-25 | --- | \|10.00-100.00| | --- | --- | 35-85 | --- | --- | 3 | 3 | 86 |
|  | 1-3 | 66 | 28 | 3-10 | 1.00-1.30 | 4.23-14.11 | 0.10-0.23 | 0.0-2.9 | 2.0-6.0 | . 20 | . 24 |  |  |  |
|  | 3-23 | 66 | 28 | 3-10 | 1.30-1.60 | 4.23-14.11 | 0.06-0.20 | 0.0-2.9 | 1.0-8.0 | . 32 | . 37 |  |  |  |
|  | 23-65 | 66 | 28 | 3-10 | 1.70-2.05 | 0.42-4.23 | 0.05-0.12 | 0.0-2.9 | 0.0-0.5 | . 20 | . 24 |  |  |  |
| $\begin{aligned} & \text { DRC: } \\ & \text { Dixfiel } \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 0-3 | 26 | 54 | 0-25 | --- | 10.00-100.00\| | --- | --- | 35-85 | --- | --- | 3 | 8 | 0 |
|  | 3-6 | 66 | 28 | 3-10 | 0.90-1.20 | 4.23-14.11 | 0.18-0.28 | 0.0-2.9 | 0.0-2.0 | . 17 | . 20 |  |  |  |
|  | 6-31 | 66 | 28 | 3-10 | 1.00-1.60 | 4.23-14.11 | 0.20-0.30\| | 0.0-2.9 | 0.5-4.0 | . 24 | . 28 |  |  |  |
|  | 31-65 | 66 | 28 | 3-10 | 1.65-1.95 | 0.42-4.23 | 0.08-0.20\| | 0.0-2.9 | 0.0-0.5 | . 20 | . 24 |  |  |  |
| Marlow---------- | 0-1 | 26 | 54 | 0-25 | --- | 10.00-100.00\| | --- | --- | 35-85 | - | --- | 3 | 3 | 86 |
|  | 1-3 | 66 | 28 | 3-10 | 1.00-1.30 | 4.23-14.11 | 0.10-0.23 | 0.0-2.9 | 2.0-6.0 | . 20 | . 24 |  |  |  |
|  | 3-23 | 66 | 28 | 3-10 | 1.30-1.60 | 4.23-14.11 | 0.06-0.20 | 0.0-2.9 | 1.0-8.0 | . 32 | . 37 |  |  |  |
|  | 23-65 | 66 | 28 | 3-10 | 1.70-2.05 | 0.42-4.23 | 0.05-0.12\| | 0.0-2.9 | 0.0-0.5 | . 20 | . 24 |  |  |  |
| Rawsonville----- | 0-2 | 26 | 54 | 0-25 | --- | \|10.00-100.00| | --- | --- | 35-85 | - | --- | 2 | 8 | 0 |
|  | 2-4 | 67 | 27 | 5-9 | 0.70-1.00 | 4.23-42.33 | 0.13-0.24 | 0.0-2.9 | 4.0-8.0 | . 17 | . 24 |  |  |  |
|  | 4-15 | 61 | 32 | 3-9 | 0.70-1.00 | 4.23-42.33 | 0.13-0.45 | 0.0-2.9 | 8.0-14 | . 24 | . 28 |  |  |  |
|  | 15-36 | 61 | 34 | 3-9 | 1.20-1.50 | $4.23-42.34$ | 0.13-0.17 | 0.0-2.9 | 2.0-6.0 | . 20 | . 24 |  |  |  |
|  | 36-40 |  |  | --- | --- | 0.00-0.00 | --- | --- | --- | --- |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


Map symbol and soil name	Depth	$\text { \|rand } \begin{array}{r} \text { rv } \end{array}$	$\left.\right\|_{\text {Silt }} ^{\text {rv }}$	Clay	```Moist bulk density```		$\left\|\begin{array}{c} \text { Available } \\ \text { water } \\ \text { capacity } \end{array}\right\|$	$\begin{array}{\|c} \text { Linear } \\ \text { extensi- } \\ \text { bility } \end{array}$	Organic   matter	Erosion factors			Wind erodi-   bility group	Wind erodi-   bility   index	
										Kw	Kf	T			
	In	Pct	Pct	Pct	$\mathrm{g} / \mathrm{cc}$	um/sec	In/in	Pct	Pct						
DTC:															
Dixfield--------	0-3	26	54	0-25	---	10.00-100.00\|	---	---	35-85	---	---	3	8	0	
	3-6	66	28	3-10	0.90-1.20	4.23-14.11	\|0.18-0.28		0.0-2.9	0.0-2.0	. 17	. 20			
	6-31	66	28	3-10	1.00-1.60	4.23-14.11	\|0.20-0.30		0.0-2.9	0.5-4.0	. 24	. 28			
	31-65	66	28	3-10	1.65-1.95	0.42-4.23	\|0.08-0.20		0.0-2.9	0.0-0.5	. 20	. 24			
Marlow----------	0-1	26	54	0-25	---	10.00-100.00\|	---	---	35-85	-	---	3	3	86	
	1-3	66	28	3-10	1.00-1.30	4.23-14.11	0.10-0.23\|	0.0-2.9	2.0-6.0	. 20	. 24				
	3-23	66	28	3-10	1.30-1.60	4.23-14.11	\|0.06-0.20		0.0-2.9	1.0-8.0	. 32	. 37			
	23-65	66	28	3-10	1.70-2.05	0.42-4.23	\|0.05-0.12		0.0-2.9	0.0-0.5	. 20	. 24			
Tunbridge-------	0-2	26	54	0-25	---	10.00-100.00\|	---	---	35-85	---	---	2	8	0	
	2-4	66	27 \|	5-9	0.80-1.20	4.23-42.34	\|0.11-0.21		0.0-2.9	3.0-7.0	. 20	. 24			
	4-28	60	34	3-9	1.20-1.40	4.23-42.34	\|0.10-0.21		0.0-2.9	1.0-9.0	. 20	. 24			
	28-32			---		0.00-0.00	---	---	---	---	--				
DUC:															
Dixfield--------	0-3	26	54	0-25	---	10.00-100.00\|	---	---	35-85	---	---	3	8	0	
	3-6	66	28	3-10	0.90-1.20	4.23-14.11	\|0.18-0.28		0.0-2.9	0.0-2.0	. 17	. 20			
	6-31	66	28	3-10	1.00-1.60	4.23-14.11	0.20-0.30	0.0-2.9	0.5-4.0	. 24	. 28				
	31-65	66	28	3-10	1.65-1.95	0.42-4.23	0.08-0.20	0.0-2.9	0.0-0.5	. 20	. 24				
Rawsonville-----	0-2	26	54	0-25	---	10.00-100.00\|	---	---	35-85	-	---	2	8	0	
	2-4	67	27	5-9	0.70-1.00	4.23-42.33	0.13-0.24	0.0-2.9	4.0-8.0	. 17	. 24				
	4-15	61	32	3-9	0.70-1.00	4.23-42.33	\|0.13-0.45		0.0-2.9	8.0-14	. 24	. 28			
	15-36	61	34	3-9	1.20-1.50	4.23-42.34	0.13-0.17	0.0-2.9	2.0-6.0	. 20	. 24				
	36-40			-		0.00-0.00		,	-	,	,				
Colonel---------	0-3	26	54	0-25	---	\|10.00-100.00		---	---	35-85	-	-	3	8	0
	3-6	66	28	3-10	0.90-1.20	4.23-14.11	0.16-0.33	0.0-2.9	2.0-6.0	. 17	. 20				
	6-26	66	28	3-10	1.00-1.60	4.23-14.11	\|0.16-0.25	0.0-2.9	1.0-8.0	. 24	. 28				
	26-65	66	28	3-10	1.65-1.95	0.42-4.23	0.13-0.22	0.0-2.9	0.0-0.5	. 20	. 24				
DWC:															
Dixfield--------	0-3	26	54	0-25	---	10.00-100.00\|	---	---	35-85	-	---	3	8	0	
	3-6	66	28	3-10	0.90-1.20	4.23-14.11	0.18-0.28	0.0-2.9	0.0-2.0	. 17	. 20				
	6-31	66	28	3-10	1.00-1.60	4.23-14.11	\|0.20-0.30	0.0-2.9	0.5-4.0	. 24	. 28				
	31-65	66	28	3-10	1.65-1.95	0.42-4.23	0.08-0.20	0.0-2.9	0.0-0.5	. 20	. 24				
Tunbridge-------	0-2	26	54	0-25	---	10.00-100.00\|	--	--	35-85	---	-	2	8	0	
	2-4	66	27	5-9	0.80-1.20	4.23-42.34	\|0.11-0.21	0.0-2.9	3.0-7.0	. 20	. 24				
	4-28	60	34	3-9	1.20-1.40	4.23-42.34	0.10-0.21	0.0-2.9	1.0-9.0	. 20	. 24				
	28-32			-	---	0.00-0.00	---	--	---	---	---				

Table 22.-Physical Soil Properties-continued


Table 22.-Physical Soil Properties-continued


Table 22.-Physical Soil Properties-continued



Table 22.-Physical Soil Properties-continued


Map symbol and soil name	Depth	Sand	\|Silt	Clay	```Moist bulk density```	$\left\|\begin{array}{c} \text { Saturated } \\ \text { hydraulic } \\ \text { conductivity } \end{array}\right\|$	$\left\|\begin{array}{c} \text { Available } \\ \text { water } \\ \text { capacity } \end{array}\right\|$	```Linear extensi- bility```	Organic   matter	Erosion factors			Wind erodi-   \|bility   group	Wind erodi-   bility   index
										Kw	Kf	T		
	In	Pct	Pct	Pct	g/cc	um/sec	In/in	Pct	Pct					
LCB :														
Lamoine--------	0-7	25	53	15-30	0.90-1.20	1.41-14.11	0.25-0.30\|	0.0-2.9	3.0-8.0	. 32	. 32	3	6	48
	7-16	24	51	20-45	1.10-1.55	0.42-4.23	0.13-0.28	3.0-5.9	0.5-3.0	. 49	. 49			
	16-21	20	48	20-45	1.40-1.70	0.01-1.41	0.10-0.16\|	3.0-5.9	0.0-1.0	. 49	. 49			
	21-65	7	48	35-55	1.40-1.80	0.01-1.41	0.06-0.16\|	3.0-5.9	0.0-0.5	. 49	. 49			
Buxton----------	0-9	25	53	15-30	0.90-1.20	1.41-14.11	0.25-0.30\|	0.0-2.9	3.0-8.0	. 32	. 32	3	6	48
	9-17	20	52	20-45	1.10-1.55	0.42-4.23	0.14-0.28\|	3.0-5.9	0.5-3.0	. 49	. 49			
	17-22	8	52	20-45	1.40-1.70	0.01-1.41	0.07-0.27\|	3.0-5.9	0.0-1.0	. 49	. 49			
	22-65	7	48	35-55	1.40-1.80	0.01-1.41	0.04-0.16\|	3.0-5.9	0.0-0.5	. 49	. 49			
Scantic---------	0-11	24	51	15-40	1.05-1.22	1.41-14.11	0.24-0.34	0.0-2.9	3.0-9.0	. 32	. 32	3	6	48
	11-29	8	52	20-55	1.15-1.75	0.01-1.41	0.13-0.28\|	3.0-5.9	0.5-3.0	. 49	. 49			
	29-65	7	38	35-55	1.40-1.80	0.01-1.41	0.06-0.16\|	3.0-5.9	0.0-0.5	. 49	. 49			
LEB :														
Lamoine--------	0-7	25	53	15-30	0.90-1.20	1.41-14.11	0.25-0.30\|	0.0-2.9	3.0-8.0	. 32	. 32	3	6	48
	7-16	24	51	20-45	1.10-1.55	0.42-4.23	0.13-0.28\|	3.0-5.9	0.5-3.0	. 49	. 49			
	16-21	20	48	20-45	1.40-1.70	0.01-1.41	0.10-0.16\|	3.0-5.9	0.0-1.0	. 49	. 49			
	21-65	7	48	35-55	1.40-1.80	0.01-1.41	0.06-0.16\|	3.0-5.9	0.0-0.5	. 49	. 49			
Creasey---------	0-8	30	56	9-18	1.10-1.30	4.23-42.34	0.08-0.20	0.0-2.9	4.0-6.0	. 17	. 17	1	7	38
	8-17	30	56	9-18	1.20-1.40	4.23-42.34	0.06-0.18	0.0-2.9	0.0-4.0	. 28	. 32			
	17-21					0.00-0.00	---	---	---		-			
Scantic---------	0-11	24	51	15-40	1.05-1.22	1.41-14.11	0.24-0.34	0.0-2.9	3.0-9.0	. 32	. 32	3	6	48
	11-29	8	52	20-55	1.15-1.75	0.01-1.41	0.13-0.28\|	3.0-5.9	0.5-3.0	. 49	. 49			
	29-65	7	38	35-55	1.40-1.80	0.01-1.41	0.06-0.16\|	3.0-5.9	0.0-0.5	. 49	. 49			
LHB :														
Lamoine--------		25	53	15-30	0.90-1.20	1.41-14.11	0.25-0.30\|	0.0-2.9	3.0-8.0	. 32	. 32	3	6	48
	7-16	24	51	20-45	1.10-1.55	0.42-4.23	0.13-0.28	3.0-5.9	0.5-3.0	. 49	. 49			
	16-21	20	48	20-45	1.40-1.70	0.01-1.41	0.10-0.16\|	3.0-5.9	0.0-1.0	. 49	. 49			
	21-65	7	48	35-55	1.40-1.80	0.01-1.41	0.06-0.16\|	3.0-5.9	0.0-0.5	. 49	. 49			
Nicholville-----	0-3	26	54	0-25	---	10.00-100.00	---	---	35-85	-	---	5	5	56
	3-4	62	28	2-18	1.20-1.50	4.23-14.11	0.16-0.22	0.0-2.9	2.0-6.0	. 49	. 49			
	4-17	62	28	2-18	1.20-1.50	4.23-14.11	0.15-0.20\|	0.0-2.9	2.0-8.0	. 64	. 64			
	17-30	80	12	2-18	1.45-1.65	4.23-14.11	0.10-0.20\|	0.0-2.9	1.0-2.0	. 64	. 64			
	30-65	82	10	2-18	1.45-1.65	4.23-14.11	0.12-0.20	0.0-2.9	0.0-50	. 49	. 49			
LKB :														
Lamoine---------	0-7	25	53	15-30	0.90-1.20	1.41-14.11	0.25-0.30\|	0.0-2.9	3.0-8.0	. 32	. 32	3	8	0
	7-16	24	51	20-45	1.10-1.55	0.42-4.23	0.13-0.28	3.0-5.9	0.5-3.0	. 49	. 49			
	16-21	20	48	20-45	1.40-1.70	0.01-1.41	0.10-0.16\|	3.0-5.9	0.0-1.0	. 49	. 49			
	21-65	7	48	35-55	1.40-1.80	0.01-1.41	0.06-0.16\|	3.0-5.9	0.0-0.5	. 49	. 49			

Table 22.-Physical Soil Properties-continued

Map symbol and soil name	Depth	$\begin{array}{\|r} \text { Sand } \\ \text { rv } \end{array}$	Silt	Clay	```Moist bulk density```	Saturatedhydraulicconductivity	$\left\|\begin{array}{c} \text { Available } \\ \text { water } \\ \text { capacity } \end{array}\right\|$	```Linear extensi- bility```	Organic   matter	Erosion factors			Wind erodi-   bility group	\|Wind\|erodi-bilityindex	
										Kw	Kf	T			
	In	Pct	Pct	Pct	g/cc	um/sec	In/in	Pct	Pct						
LKB :															
Rawsonville-----	0-2	26	54	0-25	---	10.00-100.00	---	---	35-85	---	---	2	8	0	
	2-4	67	27	5-9	0.70-1.00	4.23-42.33	\|0.13-0.24		0.0-2.9	4.0-8.0	. 17	. 24			
	4-15	61	32	3-9	0.70-1.00	4.23-42.33	\|0.13-0.45		0.0-2.9	8.0-14	. 24	. 28			
	15-36	61	34	3-9	1.20-1.50	4.23-42.34	\| 0.13-0.17		0.0-2.9	2.0-6.0	. 20	. 24			
	36-40			---	---	$0.00-0.00$	---	---	---	---	--				
Scantic---------	0-11	24	51	15-40	1.05-1.22	1.41-14.11	0.24-0.34	0.0-2.9	3.0-9.0	. 32	. 32	3	8	0	
	11-29	8	52	20-55	1.15-1.75	0.01-1.41	0.13-0.28	3.0-5.9	0.5-3.0	. 49	. 49				
	29-65	7	38	35-55	1.40-1.80	0.01-1.41	0.06-0.16	3.0-5.9	0.0-0.5	. 49	. 49				
LmB :															
Lamoine---------	0-7	25	53	15-30	0.90-1.20	1.41-14.11	0.25-0.30	0.0-2.9	3.0-8.0	. 32	. 32	3	6	48	
	7-16	24	51	20-45	1.10-1.55	0.42-4.23	0.13-0.28	3.0-5.9	0.5-3.0	. 49	. 49				
	16-21	20	48	20-45	1.40-1.70	0.01-1.41	0.10-0.16	3.0-5.9	0.0-1.0	. 49	. 49				
	21-65	7	48	35-55	1.40-1.80	0.01-1.41	0.06-0.16	3.0-5.9	0.0-0.5	. 49	. 49				
Scantic---------	0-11	24	51	15-40	1.05-1.22	1.41-14.11	0.24-0.34	0.0-2.9	3.0-9.0	. 32	. 32	3	6	48	
	11-29	8	52	20-55	1.15-1.75	0.01-1.41	0.13-0.28	3.0-5.9	0.5-3.0	. 49	. 49				
	29-65	7	38	35-55	1.40-1.80	0.01-1.41	0.06-0.16	3.0-5.9	0.0-0.5	. 49	. 49				
LnB :															
Lamoine--------		25	53	15-30	0.90-1.20	1.41-14.11	0.25-0.30	0.0-2.9	3.0-8.0	. 32	. 32	3	8	0	
	$7-16$	24	51	20-45	1.10-1.55	0.42-4.23	0.13-0.28	3.0-5.9	0.5-3.0	. 49	. 49				
	16-21	20	48	20-45	1.40-1.70	0.01-1.41	0.10-0.16	3.0-5.9	0.0-1.0	. 49	. 49				
	21-65	7	48	35-55	1.40-1.80	0.01-1.41	0.06-0.16	3.0-5.9	0.0-0.5	. 49	. 49				
Scantic---------	0-11	24	51	15-40	1.05-1.22	1.41-14.11	0.24-0.34	0.0-2.9	3.0-9.0	. 32	. 32	3	8	0	
	11-29	8	52	20-55	1.15-1.75	0.01-1.41	0.13-0.28	3.0-5.9	0.5-3.0	. 49	. 49				
	29-65	7	38	35-55	1.40-1.80	0.01-1.41	0.06-0.16	3.0-5.9	0.0-0.5	. 49	. 49				
LSB :															
Lamoine---------	0-7	25	53	15-30	0.90-1.20	1.41-14.11	0.25-0.30	0.0-2.9	3.0-8.0	. 32	. 32	3	8	0	
	7-16	24	51	20-45	1.10-1.55	0.42-4.23	0.13-0.28	3.0-5.9	0.5-3.0	. 49	. 49				
	16-21	20	48	20-45	1.40-1.70	0.01-1.41	0.10-0.16	3.0-5.9	0.0-1.0	. 49	. 49				
	21-65	7	48	35-55	1.40-1.80	0.01-1.41	0.06-0.16	3.0-5.9	0.0-0.5	. 49	. 49				
Scantic---------	0-11	24	51	15-40	1.05-1.22	1.41-14.11	0.24-0.34	0.0-2.9	3.0-9.0	. 32	. 32	3	8	0	
	11-29	8	52	20-55	1.15-1.75	0.01-1.41	0.13-0.28	3.0-5.9	0.5-3.0	. 49	. 49				
	29-65	7	38	35-55	1.40-1.80	0.01-1.41	0.06-0.16	3.0-5.9	0.0-0.5	. 49	. 49				
Colonel----------	0-3	26	54	0-25	---	10.00-100.00	-	--	35-85	---	---	3	8	0	
	3-6	66	28	3-10	0.90-1.20	4.23-14.11	0.16-0.33	0.0-2.9	2.0-6.0	. 17	. 20				
	6-26	66	28	3-10	1.00-1.60	4.23-14.11	0.16-0.25	0.0-2.9	1.0-8.0	. 24	. 28				
	26-65	66	28	3-10	1.65-1.95	0.42-4.23	0.13-0.22	0.0-2.9	0.0-0.5	. 20	. 24				


Map symbol and soil name	Depth	$\text { \| } \begin{array}{r} \text { Sand } \\ \mathrm{rv} \end{array}$	Silt	Clay	```Moist bulk density```		$\left\|\begin{array}{\|c} \text { Available } \\ \text { water } \\ \text { capacity } \end{array}\right\|$	```Linear extensi- bility```	Organic   matter	Erosion factors			Wind erodi-   bility group	Wind erodi-   bility   index	
										Kw	Kf	T			
	In	Pct	Pct	Pct	g/cc	um/sec	In/in	Pct	Pct						
LTB :															
Lamoine---------	0-7	25	53	15-30	0.90-1.20	1.41-14.11	\|0.25-0.30		0.0-2.9	3.0-8.0	. 32	. 32	3	8	0
	7-16	24	51	20-45	1.10-1.55	0.42-4.23	\|0.13-0.28		3.0-5.9	0.5-3.0	. 49	. 49			
	16-21	20	48	20-45	1.40-1.70	0.01-1.41	\|0.10-0.16		3.0-5.9	0.0-1.0	. 49	. 49			
	21-65	7	48	35-55	1.40-1.80	0.01-1.41	\|0.06-0.16		3.0-5.9	0.0-0.5	. 49	. 49			
Tunbridge-------	0-2	26	54	0-25	---	10.00-100.00	\| ---	---	35-85	---	---	2	8	0	
	2-4	66	27	5-9	0.80-1.20	4.23-42.34	0.11-0.21	0.0-2.9	3.0-7.0	. 20	. 24				
	4-28	60	34	3-9	1.20-1.40	4.23-42.34	0.10-0.21	0.0-2.9	1.0-9.0	. 20	. 24				
	28-32			---	---	0.00-0.00	---	---	---	---	---				
Scantic---------	0-11	24	51	15-40	1.05-1.22	1.41-14.11	0.24-0.34	0.0-2.9	3.0-9.0	. 32	. 32	3	8	0	
	11-29	8	52	20-55	1.15-1.75	0.01-1.41	0.13-0.28	3.0-5.9	0.5-3.0	. 49	. 49				
	29-65	7	38	35-55	1.40-1.80	0.01-1.41	0.06-0.16	3.0-5.9	0.0-0.5	. 49	. 49				
LUE:															
Lyman-----------	0-2	26	54	0-25	---	10.00-100.00	-	---	35-85	-	-	1	8	0	
	2-3	60	34	2-10	0.75-1.20	14.11-42.34	0.22-0.33	0.0-2.9	2.0-8.0	. 20	. 28				
	3-17	60	34	2-10	0.90-1.40	14.11-42.34	0.24-0.33	0.0-2.9	2.0-10	. 32	. 37				
	17-21			---	---	0.00-0.00	---	---	-	---	---				
Abram-----------	0-2	26	54	0-25	---	10.00-100.00	\| ---	---	35-85	---	---	1	8	0	
	2-6	60	36	1-6	0.90-1.10	14.11-42.34	\|0.10-0.20		0.0-2.9	2.0-4.0	. 15	. 20			
	6-10			---	---	0.00-0.00	---	---	---	---					
Tunbridge-------	0-2	26	54	0-25	---	10.00-100.00	---	---	35-85	-	--	2	8	0	
	2-4	66	27	5-9	0.80-1.20	4.23-42.34	0.11-0.21	0.0-2.9	3.0-7.0	. 20	. 24				
	4-28	60	34	3-9	1.20-1.40	4.23-42.34	0.10-0.21	0.0-2.9	1.0-9.0	. 20	. 24				
	28-32			-	---	0.00-0.00	-	---	,	-	---				
LYC:															
Lyman-----------	0-2	26	54	0-25	---	10.00-100.00	\| ---	---	35-85	-	---	1	8	0	
	2-3	60	34	2-10	0.75-1.20	14.11-42.34	0.22-0.33	0.0-2.9	2.0-8.0	. 20	. 28				
	3-17	60	34	2-10	0.90-1.40	14.11-42.34	0.24-0.33	0.0-2.9	2.0-10	. 32	. 37				
	17-21			-	---	0.00-0.00	---	---	---	---	---				
Tunbridge-------	0-2	26	54	0-25	---	10.00-100.00	\| ---	---	35-85	---	--	2	8	0	
	2-4	66	27	5-9	0.80-1.20	4.23-42.34	0.11-0.21	0.0-2.9	3.0-7.0	. 20	. 24				
	4-28	60	34	3-9	1.20-1.40	4.23-42.34	0.10-0.21	0.0-2.9	1.0-9.0	. 20	. 24				
	28-32			---	---	0.00-0.00	-	---	---	---	---				
Abram-----------	0-2	26	54	0-25	---	10.00-100.00	---	---	35-85	---	--	1	8	0	
	2-6	60	36	1-6	0.90-1.10	14.11-42.34	0.10-0.20	0.0-2.9	2.0-4.0	. 15	. 20				
	6-10			---	---	0.00-0.00	---	---	---	-	,				

Table 22.-Physical Soil Properties-continued

Map symbol and soil name	Depth	$\text { \|rand } \begin{array}{r} \text { rv } \end{array}$	\|Silt	Clay	```Moist bulk density```		```Available```	```Linear extensi- bility```	Organic   matter	Erosion factors			Wind erodi-   bility group	Wind erodi-   bility   index
										Kw	Kf	T		
	In	Pct	Pct	Pct	g/cc	um/sec	In/in	Pct	Pct					
MaC:														
Marlow	0-7	66	28	3-10	1.00-1.30	4.23-14.11	0.10-0.23	0.0-2.9	2.0-6.0	. 24	. 24	3	3	86
	7-22	66	28	3-10	1.30-1.60	4.23-14.11	0.06-0.20	0.0-2.9	1.0-6.0	. 32	. 37			
	22-65	66	28	3-10	1.70-2.05	0.42-4.23	0.05-0.12	0.0-2.9	0.0-0.5	. 20	. 24			
MbC :   Marlow														
	0-1	26	54	0-25	---	10.00-100.00	---	---	35-85	---	---	3	3	86
	1-3	66	28	3-10	1.00-1.30	4.23-14.11	0.10-0.23	0.0-2.9	2.0-6.0	. 20	. 24			
	3-23	66	28	3-10	1.30-1.60	4.23-14.11	0.06-0.20	0.0-2.9	1.0-8.0	. 32	. 37			
	23-65	66	28	3-10	1.70-2.05	0.42-4.23	0.05-0.12	0.0-2.9	0.0-0.5	. 20	. 24			
MDD :														
Marlow----------	0-1	26	54	0-25	---	10.00-100.00	---	---	35-85	---	-	3	3	86
	1-3	66	28	3-10	1.00-1.30	4.23-14.11	0.10-0.23	0.0-2.9	2.0-6.0	. 20	. 24			
	3-23	66	28	3-10	1.30-1.60	4.23-14.11	0.06-0.20	0.0-2.9	1.0-8.0	. 32	. 37			
	23-65	66	28	3-10	1.70-2.05	0.42-4.23	0.05-0.12	0.0-2.9	0.0-0.5	. 20	. 24			
Dixfield--------	0-3	26	54	0-25	---	10.00-100.00	---	---	35-85	-	-	3	8	0
	3-6	66	28	3-10	0.90-1.20	4.23-14.11	0.18-0.28	0.0-2.9	0.0-2.0	. 17	. 20			
	6-31	66	28	3-10	1.00-1.60	4.23-14.11	0.20-0.30	0.0-2.9	0.5-4.0	. 24	. 28			
	31-65	66	28	3-10	1.65-1.95	0.42-4.23	0.08-0.20	0.0-2.9	0.0-0.5	. 20	. 24			
MFD :														
Marlow----------	0-1	26	54	0-25	---	10.00-100.00	---	---	35-85	---	---	3	3	86
	1-3	66	28	3-10	1.00-1.30	4.23-14.11	0.10-0.23	0.0-2.9	2.0-6.0	. 20	. 24			
	3-23	66	28	3-10	1.30-1.60	4.23-14.11	0.06-0.20	0.0-2.9	1.0-8.0	. 32	. 37			
	23-65	66	28	3-10	1.70-2.05	0.42-4.23	0.05-0.12	0.0-2.9	0.0-0.5	. 20	. 24			
Rawsonville-----	0-2	26	54	0-25	---	10.00-100.00	---	---	35-85	-	---	2	8	0
	2-4	67	27	5-9	0.70-1.00	4.23-42.33	0.13-0.24	0.0-2.9	4.0-8.0	. 17	. 24			
	4-15	61	32	3-9	0.70-1.00	4.23-42.33	0.13-0.45	0.0-2.9	8.0-14	. 24	. 28			
	15-36	61	34	3-9	1.20-1.50	4.23-42.34	0.13-0.17	0.0-2.9	2.0-6.0	. 20	. 24			
	36-40			---	---	0.00-0.00	---	---	---	-	---			
Dixfield--------	0-3	26	54	0-25	---	10.00-100.00	---	---	35-85	---	-	3	8	0
	3-6	66	28	3-10	0.90-1.20	4.23-14.11	0.18-0.28	0.0-2.9	0.0-2.0	. 17	. 20			
	6-31	66	28	3-10	1.00-1.60	4.23-14.11	0.20-0.30	0.0-2.9	0.5-4.0	. 24	. 28			
	31-65	66	28	3-10	1.65-1.95	0.42-4.23	0.08-0.20	0.0-2.9	0.0-0.5	. 20	. 24			
MGD :														
Marlow----------	0-1	26	54	0-25	---	10.00-100.00	---	---	35-85	-	--	3	3	86
	1-3	66	28	3-10	1.00-1.30	4.23-14.11	0.10-0.23	0.0-2.9	2.0-6.0	. 20	. 24			
	3-23	66	28	3-10	1.30-1.60	4.23-14.11	0.06-0.20	0.0-2.9	1.0-8.0	. 32	. 37			
	23-65	66	28	3-10	1.70-2.05	0.42-4.23	0.05-0.12	0.0-2.9	0.0-0.5	. 20	. 24			

Table 22.-Physical Soil Properties-continued

Map symbol and soil name	Depth	Sand rv	Silt	Clay	```Moist bulk density```	Saturated   hydraulic conductivity	$\left\|\begin{array}{\|c\|} \text { Available } \\ \text { water } \\ \text { capacity } \end{array}\right\|$	```Linear extensi- bility```	Organic   matter	Erosion factors			Wind erodi-   bility group	\|Wind erodi-   bility   index	
										Kw	Kf	T			
	In	Pct	Pct	Pct	g/cc	um/sec	In/in	Pct	Pct						
MGD :															
Tunbridge------	0-2	26	54	0-25	---	10.00-100.00	---	---	35-85	---	---	2	8	0	
	2-4	66	27	5-9	0.80-1.20	4.23-42.34	\|0.11-0.21		0.0-2.9	3.0-7.0	. 20	. 24			
	4-28	60	34	3-9	1.20-1.40	4.23-42.34	\|0.10-0.21		0.0-2.9	1.0-9.0	. 20	. 24			
	28-32			---	---	0.00-0.00	---	---	---	-	-				
Dixfield--------	0-3	26	54	0-25	---	10.00-100.00	---	---	35-85	---	---	3	8	0	
	3-6	66	28	3-10	0.90-1.20	4.23-14.11	\|0.18-0.28		0.0-2.9	0.0-2.0	. 17	. 20			
	6-31	66	28	3-10	1.00-1.60	4.23-14.11	\|0.20-0.30		0.0-2.9	0.5-4.0	. 24	. 28			
	31-65	66	28	3-10	1.65-1.95	0.42-4.23	\|0.08-0.20		0.0-2.9	0.0-0.5	. 20	. 24			
MmA :															
Masardis-------	0-2	65	27	5-12	0.85-1.15	14.11-42.34	\|0.16-0.28		0.0-2.9	2.0-6.0	. 17	. 17	2	3	86
	2-16	65	27	5-12	0.90-1.20	\| 14.11-42.34	\|0.14-0.24		0.0-2.9	1.0-8.0	. 10	. 15			
	16-65	96	2	0-5	1.40-1.70	42.34-705.00	0.01-0.06	0.0-2.9	0.0-0.5	. 05	. 17				
MmB :															
Masardis--------	0-2	65	27	5-12	0.85-1.15	14.11-42.34	\|0.16-0.28		0.0-2.9	2.0-6.0	. 17	. 17	2	3	86
	2-16	65	27	5-12	0.90-1.20	14.11-42.34	\|0.14-0.24		0.0-2.9	1.0-8.0	. 10	. 15			
	16-65	96	2	0-5	1.40-1.70	42.34-705.00	\|0.01-0.06		0.0-2.9	0.0-0.5	. 05	. 17			
MmC :															
Masardis--------	0-2	65	27	5-12	0.85-1.15	14.11-42.34	\|0.16-0.28		0.0-2.9	2.0-6.0	. 17	. 17	2	3	86
	2-16	65	27	5-12	0.90-1.20	14.11-42.34	\|0.14-0.24		0.0-2.9	1.0-8.0	. 10	. 15			
	16-65	96	2	0-5	1.40-1.70	42.34-705.00	0.01-0.06	0.0-2.9	0.0-0.5	. 05	. 17				
MmE :															
Masardis--------		65	27	5-12	0.85-1.15	14.11-42.34	\|0.16-0.28		0.0-2.9	2.0-6.0	. 17	. 17	2	3	86
	2-16	65	27	5-12	0.90-1.20	\|4.11-42.34	\|0.14-0.24		0.0-2.9	1.0-8.0	. 10	. 15			
	16-65	96	2	0-5	1.40-1.70	42.34-705.00	0.01-0.06	0.0-2.9	0.0-0.5	. 05	. 17				
MRE :															
Masardis--------	0-1	26	54	0-25	---	10.00-100.00	-	---	35-85	-	---	2	3	86	
	1-2	65	27	5-12	0.85-1.15	14.11-42.34	\|0.16-0.28		0.0-2.9	2.0-6.0	. 17	. 17			
	2-16	65	27	5-12	0.90-1.20	\|14.11-42.34	\|0.14-0.24		0.0-2.9	1.0-8.0	. 10	. 15			
	16-65	96	2	0-5	1.40-1.70	42.34-705.00	\|0.01-0.06		0.0-2.9	0.0-0.5	. 05	. 17			
Adams-----------	0-1	26	54	0-25	---	10.00-100.00	---	---	35-85	---	---	5	2	134	
	1-4	81	16	0-5	1.00-1.30	42.34-141.14	\|0.06-0.12		0.0-2.9	2.0-6.0	. 17	. 17			
	4-22	96	2	0-5	1.10-1.45	42.34-141.14	\|0.05-0.07		0.0-2.9	1.0-9.0	. 17	. 17			
	22-65	96	2	0-5	1.20-1.50	$\begin{aligned} & 141.14- \\ & 705.00 \end{aligned}$	\|0.02-0.04		0.0-2.9	0.0-0.5	. 17	. 17			

Table 22.-Physical Soil Properties-continued


Map symbol and soil name	Depth	$\left\lvert\, \begin{array}{r} \text { Sand } \\ \text { rv } \end{array}\right.$	$\left.\right\|_{\text {Silt }} ^{\text {rv }}$	Clay	```Moist bulk density```	```\| Saturated```	$\begin{array}{\|c} \text { Available } \\ \text { water } \\ \text { capacity } \end{array}$	```Linear extensi- bility```	Organic   matter	Erosion factors			Wind \|erodi-   \|bility   group	Wind erodi-   bility   index
										Kw	Kf	T		
	In	Pct	Pct	Pct	g/cc	um/sec	In/in	Pct	Pct					
MXB :														
Wonsqueak-------	0-8	26	54	0-25	0.10-0.30	1.41-42.34	0.20-0.40	---	80-99	---	---	2	8	0
	8-30	26	54	0-25	0.10-0.30	1.41-42.34	0.20-0.40	---	80-99	---				
	30-65	20	53	5-30	1.50-1.70	1.41-14.11	0.06-0.16	0.0-2.9	0.0-2.0	. 49	. 49			
NAC:														
Naskeag---------	0-3	26	54	0-25	---	10.00-100.00	---	---	35-85	---	---	2	8	0
	3-11	65	31	2-6	0.95-1.20	42.34-141.14	0.07-0.15	0.0-2.9	0.0-8.0	. 10	. 15			
	11-38	81	16	1-5	1.00-1.30	42.34-141.14	0.05-0.11	0.0-2.9	0.0-4.0	. 10	. 15			
	38-42			---	---	0.00-0.00	---	---	--	-	---			
Abram-----------	0-2	26	54	0-25	---	10.00-100.00	---	---	35-85	---	---	1	8	0
	2-6	60	36	1-6	0.90-1.10	14.11-42.34	0.10-0.20	0.0-2.9	2.0-4.0	. 15	. 20			
	6-10			-	-	0.00-0.00	-	---		-	---			
Ricker----------	0-4	26	54	0-25	0.07-0.30	14.11-42.34	0.45-0.65	0.0-2.9	80-90	---	---	1	7	38
	4-5	26	54	0-25	0.15-0.60	14.11-42.34	0.35-0.45	0.0-2.9	20-60	-	---			
	5-7	66	23	3-18	1.35-1.80	4.23-42.34	0.06-0.18	0.0-2.9	2.0-6.0	. 49	. 55			
	7-11				1.3	0.00-0.00	---	.	.	---	,			
NBB :														
Naskeag---------	0-3	26	54	0-25	-	10.00-100.00	---	---	35-85	---	---	2	8	0
	3-11	65	31	2-6	0.95-1.20	42.34-141.14	0.07-0.15	0.0-2.9	0.0-8.0	. 10	. 15			
	11-38	81	16	1-5	1.00-1.30	42.34-141.14	0.05-0.11	0.0-2.9	0.0-4.0	. 10	. 15			
	38-42			---	---	0.00-0.00	---	---	---	---	--			
Rawsonville-----	0-2	26	54	0-25	---	10.00-100.00	---	---	35-85	-	---	2	8	0
	2-4	67	27	5-9	0.70-1.00	4.23-42.33	0.13-0.24	0.0-2.9	4.0-8.0	. 17	. 24			
	4-15	61	32	3-9	0.70-1.00	4.23-42.33	0.13-0.45	0.0-2.9	8.0-14	. 24	. 28			
	15-36	61	34	3-9	1.20-1.50	4.23-42.34	0.13-0.17	0.0-2.9	2.0-6.0	. 20	. 24			
	36-40			---		0.00-0.00		---	-	---	---			
Hogback---------	0-1	26	54	0-25	-	10.00-100.00	---	---	35-85	--	---	1	8	0
	1-2	65	27	2-10	0.60-1.00	14.00-42.33	0.13-0.24	0.0-2.9	4.0-8.0	. 17	. 24			
	2-14	55	38	2-10	0.60-1.00	14.00-42.33	0.13-0.45	0.0-2.9	8.0-14	. 32	. 37			
	14-18			,	.	0.00-0.00	0.13-0.45	0.0	-	.	.			
NCB :														
Naskeag---------	0-3	26	54	0-25	---	10.00-100.00	---	---	35-85	--	---	2	8	0
	3-11	65	31	2-6	0.95-1.20	42.34-141.14	0.07-0.15	0.0-2.9	0.0-8.0	. 10	. 15			
	11-38	81	16	1-5	1.00-1.30	42.34-141.14	0.05-0.11	0.0-2.9	0.0-4.0	. 10	. 15			
	38-42			---	---	0.00-0.00	---	-	---	---	---			

Table 22.-Physical Soil Properties-continued



Table 22.-Physical Soil Properties-continued


Map symbol and soil name	Depth	$\left\lvert\, \begin{array}{r} \text { Sand } \\ \text { rv } \end{array}\right.$	$\begin{array}{r} \text { Silt } \\ \text { rv } \end{array}$	Clay	```Moist bulk density```	```Saturated hydraulic conductivity```	$\begin{array}{\|c} \text { Available } \\ \text { water } \\ \text { capacity } \end{array}$	```Linear extensi- bility```	Organic   matter	Erosion factors			Wind erodi-   \|bility   group	Wind erodi-   bility   index
										Kw	Kf	T		
	In	Pct	Pct	Pct	g/cc	um/sec	In/in	Pct	Pct					
ShB :														
Sheepscot-------	0-4	26	54	0-25	---	10.00-100.00	---	---	35-85	---	---	3	3	86
	4-7	61	35	3-5	1.00-1.30	4.23-42.34	0.11-0.21	0.0-2.9	2.0-6.0	. 17	. 17			
	7-16	66	31	1-5	1.20-1.50	4.23-42.34	0.06-0.15	0.0-2.9	2.0-8.0	. 10	. 15			
	16-29	82	16	0-3	1.45-1.70	42.34-705.00	0.02-0.09	0.0-2.9	0.5-2.0	. 10	. 20			
	29-65	97	2	0-3	1.45-1.70	42.34-705.00	0.01-0.06	0.0-2.9	0.0-0.5	. 05	. 17			
SJB :														
Sheepscot-------	0-4	26	54	0-25	---	10.00-100.00	---	---	35-85	---	---	3	3	86
	4-7	61	35	3-5	1.00-1.30	4.23-42.34	0.11-0.21	0.0-2.9	2.0-6.0	. 17	. 17			
	7-16	66	31	1-5	1.20-1.50	4.23-42.34	0.06-0.15	0.0-2.9	2.0-8.0	. 10	. 15			
	16-29	82	16	0-3	1.45-1.70	42.34-705.00	0.02-0.09	0.0-2.9	0.5-2.0	. 10	. 20			
	29-65	97	2	0-3	1.45-1.70	42.34-705.00	0.01-0.06	0.0-2.9	0.0-0.5	. 05	. 17			
Croghan----------	0-1	26	54	0-25	---	10.00-100.00	-	---	35-85	---	---	5	2	134
	1-3	81	16	0-5	1.10-1.50	42.34-141.14	0.05-0.09	0.0-2.9	2.0-6.0	. 17	. 17			
	3-23	81	16	0-5	1.20-1.50	141.14-	0.03-0.07	0.0-2.9	0.5-8.0	. 17	. 17			
						705.00								
	23-65	96	2	0-5	1.20-1.50	$\left\lvert\, \begin{aligned} & 141.14- \\ & 705.00 \end{aligned}\right.$	0.03-0.06	0.0-2.9	0.0-5.0	. 17	. 17			
Kinsman---------	0-4	26	54	0-25	---	10.00-100.00	---	---	35-91	-	---	5	2	134
	4-8	96	2	1-5	1.10-1.50	42.34-141.14	0.05-0.09	0.0-2.9	3.0-7.0	. 17	. 17			
	8-42	96	2	1-5	1.20-1.50	42.34-141.14	0.05-0.08	0.0-2.9	1.0-10	. 17	. 17			
	42-65	96	2	1-5	1.45-1.65	42.34-141.14	0.04-0.06	0.0-2.9	0.0-0.5	. 17	. 20			
SkB :														
Skerry---------	0-3	61	35	2-6	0.60-1.30	4.23-14.11	0.06-0.23	0.0-2.9	2.0-6.0	. 20	. 24	5	3	86
	3-24	61	35	2-7	1.30-1.60	4.23-14.11	0.06-0.16	0.0-2.9	1.0-8.0	. 28	. 32			
	24-65	81	16	1-5	1.60-1.75	0.42-4.23	0.03-0.09	0.0-2.9	0.0-1.0	. 17	. 24			
Skerry----------	0-3	61	35	2-6	0.60-1.30	4.23-14.11	0.06-0.23	0.0-2.9	2.0-6.0	. 20	. 24	5	3	86
	3-24	61	35	2-7	1.30-1.60	4.23-14.11	0.06-0.16	0.0-2.9	1.0-8.0	. 28	. 32			
	24-65	81	16	1-5	1.60-1.75	0.42-4.23	0.03-0.09	0.0-2.9	0.0-1.0	. 17	. 24			
SNC:														
Skerry----------	0-2	26	54	0-25	---	10.00-100.00	---	---	35-85	---	---	5	3	86
	2-3	61	35	2-6	0.60-1.30	4.23-14.11	0.06-0.23	0.0-2.9	2.0-6.0	. 20	. 24			
	3-24	61	35	2-7	1.30-1.60	4.23-14.11	0.06-0.16	0.0-2.9	1.0-8.0	. 28	. 32			
	24-65	81	16	1-5	1.60-1.75	0.42-4.23	0.03-0.09	0.0-2.9	0.0-1.0	. 17	. 24			
Becket----------	0-2	26	54	0-25	---	10.00-100.00	---	---	35-85	---	---	5	3	86
	2-5	61	35	2-6	0.60-1.30	4.23-14.11	0.06-0.23	0.0-2.9	2.0-6.0	. 17	. 20			
	5-24	65	31	2-7	1.30-1.60	4.23-14.11	0.06-0.16	0.0-2.9	1.0-8.0	. 28	. 32			
	24-65	66	31	1-5	1.60-1.75	0.42-4.23	0.03-0.09	0.0-2.9	0.0-1.0	. 17	. 24			

Table 22.-Physical Soil Properties-continued

Map symbol and soil name	Depth	Sand rv	$\left.\right\|_{\text {Silt }} ^{\text {rv }}$	Clay	```Moist bulk density```	Saturated   hydraulic conductivity	$\begin{array}{\|c} \text { Available } \\ \text { water } \\ \text { capacity } \end{array}$	```Linear extensi- bility```	Organic   matter	Erosion factors			Wind erodi-   bility group	Wind erodi-   bility   index
										Kw	Kf	T		
	In	Pct	Pct	Pct	g/cc	um/sec	In/in	Pct	Pct					
SOB:   Skerry														
	0-2	26	54	0-25	---	10.00-100.00	---	---	35-85	---	---	5	3	86
	2-3	61	35	2-6	0.60-1.30	4.23-14.11	0.06-0.23	0.0-2.9	2.0-6.0	. 20	. 24			
	3-24	61	35	2-7	1.30-1.60	4.23-14.11	0.06-0.16\|	0.0-2.9	1.0-8.0	. 28	. 32			
	24-65	81	16	1-5	1.60-1.75	0.42-4.23	0.03-0.09	0.0-2.9	0.0-1.0	. 17	. 24			
Colonel---------	0-3	26	54	0-25	---	10.00-100.00	-	---	35-85	---	---	3	8	0
	3-6	66	28	3-10	0.90-1.20	4.23-14.11	0.16-0.33	0.0-2.9	2.0-6.0	. 17	. 20			
	6-26	66	28	3-10	1.00-1.60	4.23-14.11	0.16-0.25	0.0-2.9	1.0-8.0	. 24	. 28			
	26-65	66	28	3-10	1.65-1.95	0.42-4.23	0.13-0.22	0.0-2.9	0.0-0.5	. 20	. 24			
SRC:														
Skerry----------	0-2	26	54	0-25	---	10.00-100.00	---	---	35-85	-	---	5	3	86
	2-3	61	35	2-6	0.60-1.30	4.23-14.11	0.06-0.23	0.0-2.9	2.0-6.0	. 20	. 24			
	3-24	61	35	2-7	1.30-1.60	4.23-14.11	0.06-0.16	0.0-2.9	1.0-8.0	. 28	. 32			
	24-65	81	16	1-5	1.60-1.75	0.42-4.23	0.03-0.09	0.0-2.9	0.0-1.0	. 17	. 24			
Colonel---------	0-3	26	54	0-25	---	10.00-100.00	---	---	35-85	---	---	3	8	0
	3-6	66	28	3-10	0.90-1.20	4.23-14.11	0.16-0.33	0.0-2.9	2.0-6.0	. 17	. 20			
	6-26	66	28	3-10	1.00-1.60	4.23-14.11	0.16-0.25	0.0-2.9	1.0-8.0	. 24	. 28			
	26-65	66	28	3-10	1.65-1.95	0.42-4.23	0.13-0.22	0.0-2.9	0.0-0.5	. 20	. 24			
Rawsonville-----	0-2	26	54	0-25	---	10.00-100.00	---	---	35-85	---	---	2	8	0
	2-4	67	27	5-9	0.70-1.00	4.23-42.33	0.13-0.24	0.0-2.9	4.0-8.0	. 17	. 24			
	4-15	61	32	3-9	0.70-1.00	4.23-42.33	0.13-0.45	0.0-2.9	8.0-14	. 24	. 28			
	15-36	61	34	3-9	1.20-1.50	4.23-42.34	0.13-0.17	0.0-2.9	2.0-6.0	. 20	. 24			
	36-40			---	---	0.00-0.00	---	---	---	---	---			
STC:														
Skerry----------	0-2	26	54	0-25	---	10.00-100.00	---	---	35-85	---	-	5	3	86
	2-3	61	35	2-6	0.60-1.30	4.23-14.11	0.06-0.23	0.0-2.9	2.0-6.0	. 20	. 24			
	3-24	61	35	2-7	1.30-1.60	4.23-14.11	0.06-0.16	0.0-2.9	1.0-8.0	. 28	. 32			
	24-65	81	16	1-5	1.60-1.75	0.42-4.23	0.03-0.09	0.0-2.9	0.0-1.0	. 17	. 24			
Colonel---------	0-3	26	54	0-25	---	10.00-100.00	---	---	35-85	--	---	3	8	0
	3-6	66	28	3-10	0.90-1.20	4.23-14.11	0.16-0.33	0.0-2.9	2.0-6.0	. 17	. 20			
	6-26	66	28	3-10	1.00-1.60	4.23-14.11	0.16-0.25	0.0-2.9	1.0-8.0	. 24	. 28			
	26-65	66	28	3-10	1.65-1.95	0.42-4.23	0.13-0.22	0.0-2.9	0.0-0.5	. 20	. 24			
Tunbridge-------	0-2	26	54	0-25	---	10.00-100.00	---	---	35-85	--	---	2	8	0
	2-4	66	27	5-9	0.80-1.20	4.23-42.34	0.11-0.21	0.0-2.9	3.0-7.0	. 20	. 24			
	4-28	60	34	3-9	1.20-1.40	$4.23-42.34$	0.10-0.21	0.0-2.9	1.0-9.0	. 20	. 24			
	28-32				---	0.00-0.00	---	---	---	---	-			


Map symbol and soil name	Depth	$\begin{array}{r} \text { Sand } \\ \text { rv } \end{array}$	Silt	Clay	```Moist bulk density```	```Saturated hydraulic conductivity```	$\begin{array}{\|c} \text { Available } \\ \text { water } \\ \text { capacity } \end{array}$	```Linear extensi- bility```	Organic   matter	\|Erosion factors			Wind erodi-   bility group	Wind erodi-   bility   index
										Kw	Kf	T		
	In	Pct	Pct	Pct	$\mathrm{g} / \mathrm{cc}$	um/sec	In/in	Pct	Pct					
TaB:														
Telos-----------	0-7	33	58	5-13	0.90-1.20	4.23-14.11	0.20-0.35	0.0-2.9	3.0-8.0	. 28	. 28	3	5	56
	7-18	30	56	10-18	1.30-1.60	4.23-14.11	0.20-0.40	0.0-2.9	0.5-3.0	. 32	. 37			
	18-65	30	56	10-18	1.60-1.90	0.01-1.41	0.05-0.10	0.0-2.9	0.0-0.5	. 32	. 37			
TCB :														
Telos-----------	0-1	26	54	0-25	---	10.00-100.00	---	---	35-85	---	--	3	8	0
	1-3	33	58	5-13	0.70-1.00	4.23-14.11	0.15-0.25	0.0-2.9	2.0-6.0	. 28	. 28			
	3-20	30	56	10-18	1.30-1.60	4.23-14.11	0.20-0.40	0.0-2.9	1.0-9.0	. 32	. 37			
	20-65	30	56	10-18	1.60-1.90	0.01-1.41	0.05-0.10	0.0-2.9	0.0-1.0	. 32	. 37			
Chesuncook------	0-3	26	54	0-25	---	10.00-100.00	---	---	35-85	---	---	3	8	0
	3-5	33	57	5-15	0.70-0.90	4.23-14.11	0.16-0.27\|	0.0-2.9	2.0-6.0	. 28	. 28			
	5-28	30	56	10-18	0.70-1.60	4.23-14.11	0.18-0.30	0.0-2.9	1.0-10	. 32	. 37			
	28-65	30	56	10-18	1.60-1.90	0.01-1.41	0.16-0.25	0.0-2.9	0.0-1.0	. 32	. 37			
TEB :														
Telos-----------		26	54	0-25	---	10.00-100.00\|	---	---	35-85	---	---	3	8	0
	1-3	33	58	5-13	0.70-1.00	4.23-14.11	0.15-0.25	0.0-2.9	2.0-6.0	. 28	. 28			
	3-20	30	56	10-18	1.30-1.60	4.23-14.11	0.20-0.40	0.0-2.9	1.0-9.0	. 32	. 37			
	20-65	30	56	10-18	1.60-1.90	0.01-1.41	0.05-0.10	0.0-2.9	0.0-1.0	. 32	. 37			
Elliottsville----	0-2	26	54	0-25	---	10.00-100.00\|	---	---	35-85	---	--	2	8	0
	2-4	33	57	5-15	0.70-1.00	4.23-14.11	0.18-0.32	0.0-2.9	3.0-8.0	. 24	. 28			
	4-19	30	56	10-18	1.00-1.60	4.23-14.11	0.20-0.30	0.0-2.9	4.0-10	. 28	. 32			
	19-31	30	56	10-18	1.40-1.70	4.23-14.11	0.15-0.25	0.0-2.9	0.5-3.0	. 28	. 32			
	31-35				1.40-1.70	0.00-0.00	0.15	0.0	.	.	.			
Monarda---------		26	54	0-25	---	10.00-100.00\|	---	---	35-85	---	---	3	8	0
	1-10	30	56	10-18	1.00-1.30	4.23-42.34	0.15-0.30	0.0-2.9	0.0-8.0	. 20	. 28			
	10-23	30	56	10-18	1.30-1.70	0.00-14.11	0.15-0.25	0.0-2.9	0.0-4.0	. 28	. 32			
	23-65	30	56	10-18	1.70-1.95	0.00-1.41	0.05-0.10	0.0-2.9	0.0-0.5	. 28	. 32			
TLC:														
Tunbridge-------	0-2	26	54	0-25	---	10.00-100.00	---	---	35-85	---	---	2	8	0
	2-4	66	27	5-9	0.80-1.20	4.23-42.34	0.11-0.21	0.0-2.9	3.0-7.0	. 20	. 24			
	4-28	60	34	3-9	1.20-1.40	4.23-42.34	0.10-0.21	0.0-2.9	1.0-9.0	. 20	. 24			
	28-32			---	---	0.00-0.00	---	---	---	-	--			
Lamoine---------	0-7	25	53	15-30	0.90-1.20	1.41-14.11	0.25-0.30	0.0-2.9	3.0-8.0	. 32	. 32	3	8	0
	7-16	24	51	20-45	1.10-1.55	0.42-4.23	0.13-0.28	3.0-5.9	0.5-3.0	. 49	. 49			
	16-21	20	48	20-45	1.40-1.70	0.01-1.41	0.10-0.16	3.0-5.9	0.0-1.0	. 49	. 49			
	21-65	7	48	35-55	1.40-1.80	0.01-1.41	0.06-0.16	3.0-5.9	0.0-0.5	. 49	. 49			

Table 22.-Physical Soil Properties-continued


Table 22.-Physical Soil Properties-continued

Map symbol and soil name	Depth	$\text { \| } \begin{array}{r} \text { Sand } \\ \text { rv } \end{array}$	$\left\lvert\, \begin{array}{r} \text { Silt } \\ \text { rv } \end{array}\right.$	Clay	```Moist bulk density```	Saturated   hydraulic conductivity	$\begin{array}{\|c\|} \text { Available } \\ \text { water } \\ \text { capacity } \\ \hline \end{array}$	```Linear extensi- bility```	Organic   matter	\|Erosion factors			Wind erodi-   bility group	\|Wind   \|erodi-   \|bility   index
										Kw	Kf	T		
	In	Pct	Pct	Pct	g/cc	um/sec	In/in	Pct	Pct					
W: Water	-			-	---	---	---	-	--	---	---	--	---	--
WF :														
Wonsqueak--	0-8	26	54	0-25	0.10-0.30	1.41-42.34	0.20-0.40	---	80-99	---	---	2	8	0
	8-30	26	54	0-25	0.10-0.30	1.41-42.34	\|0.20-0.40	---	80-99	---	---			
	30-65	20	53	5-30	1.50-1.70	1.41-14.11	0.06-0.16	0.0-2.9	0.0-2.0	. 49	. 49			
Bucksport-	0-18	26	54	0-25	0.10-0.30	1.41-42.34	0.20-0.50	---	80-99	---	---	3	8	0
	18-40	26	54	0-25	0.10-0.30	1.41-42.34	0.20-0.50	---	80-99	---	---			
	40-65	26	54	0-25	0.10-0.30	1.41-42.34	0.20-0.50	---	80-90	---	---			

Table 23.-Chemical Soil Properties
(Absence of an entry indicates that data were not estimated.)


Table 23.-Chemical Soil Properties-continued


Table 23.-Chemical Soil Properties-continued

Map symbol and soil name	Depth	Cation exchange capacity	```Effective cation exchange capacity```	$\begin{gathered} \text { Soil } \\ \text { reaction } \end{gathered}$	Calcium carbonate	Gypsum	Salinity	Sodium adsorption ratio
	Inches	meq/100 g	meq/100 g	pH	Pct	Pct	mmhos/cm	
BZC:Buxto								
	0-9	17-23	---	4.5-6.5	0	0	0	0
	9-17	15-29	---	5.1-7.3	0	0	0	0
	17-22	11-20	---	5.1-7.3	0	0	0	0
	22-65	3.0-17	-- -	5.6-7.3	0	0	0	0
Lamoine---------	0-7	7.0-16	---	4.5-6.5	0	0	0	0
	7-16	7.0-17	---	5.1-7.3	0	0	0	0
	16-21	7.0-15	-	5.1-7.3	0	0	0	0
	21-65	3.0-15	-	5.6-7.3	0	0	0	0
ChB :								
Chesuncook------	0-7	---	9.0-19	3.6-6.0	0	0	0	0
	7-25	---	2.0-14	3.6-6.0	0	0	0	0
	25-65	1.0-3.0	---	4.5-6.5	0	0	0	0
ChC:								
Chesuncook------	0-7	---	9.0-19	3.6-6.0	0	0	0	0
	7-25	---	2.0-14	3.6-6.0	0	0	0	0
	25-65	1.0-3.0	-	4.5-6.5	0	0	0	0
CKC:								
Chesuncook------	0-3	---	8.0-28	2.7-4.8	0	0	0	0
	3-5	---	10-15	3.6-6.0	0	0	0	0
	5-28	---	2.0-14	3.6-6.0	0	0	0	0
	28-65	1.0-3.0	-- -	4.5-6.5	0	0	0	0
Elliottsville----	0-2	---	8.0-28	2.7-4.8	0	0	0	0
	2-4	---	6.0-13	3.6-5.5	0	0	0	0
	4-19	---	2.0-15	3.6-5.5	0	0	0	0
	19-31	---	1.0-3.0	4.5-6.0	0	0	0	0
	31-35	-- -	-	,	0	0	0	0
Telos-----------	0-1	---	8.0-28	2.7-4.8	0	0	0	0
	1-3	---	2.0-10	3.6-6.0	0	0	0	0
	3-20		1.0-2.0	3.6-6.0	0	0	0	0
	20-65	1.0-2.0	---	5.1-6.5	0	0	0	0
CLC:								
Chesuncook------	0-3	---	8.0-28	2.7-4.8	0	0	0	0
	3-5	-	10-15	3.6-6.0	0	0	0	0
	5-28	---	2.0-14	3.6-6.0	0	0	0	0
	28-65	1.0-3.0	---	4.5-6.5	0	0	0	0
Telos-----------	0-1	---	8.0-28	2.7-4.8	0	0	0	0
	1-3	---	2.0-10	3.6-6.0	0	0	0	0
	3-20	---	1.0-2.0	3.6-6.0	0	0	0	0
	20-65	1.0-2.0	---	5.1-6.5	0	0	0	0
CoA:								
Colton----------	0-3	10-25	2.0-6.0	3.6-6.0	0	0	0	0
	3-6	15-40	1.0-4.0	3.6-6.0	0	0	0	0
	6-26	5.0-30	1.0-2.0	3.6-6.0	0	0	0	0
	26-65	1.0-5.0	---	4.5-6.5	0	0	0	0
CoB:								
Colton----------	0-3	10-25	2.0-6.0	3.6-6.0	0	0	0	0
	3-6	15-40	1.0-4.0	3.6-6.0	0	0	0	0
	6-26	5.0-30	1.0-2.0	3.6-6.0	0	0	0	0
	26-65	1.0-5.0	---	4.5-6.5	0	0	0	0

Table 23.-Chemical Soil Properties-continued

Map symbol and soil name	Depth	Cation exchange capacity	Effective cation exchange capacity	$\begin{gathered} \text { Soil } \\ \text { reaction } \end{gathered}$	Calcium carbonate	Gypsum	Salinity	```Sodium adsorp- tion ratio```
	Inches	meq/100 g	meq/100 g	pH	Pct	Pct	mmhos/cm	
CoC:Colton								
	0-3	10-25	2.0-6.0	3.6-6.0	0	0	0	0
	3-6	15-40	1.0-4.0	3.6-6.0	0	0	0	0
	6-26	5.0-30	1.0-2.0	3.6-6.0	0	0	0	0
	26-65	1.0-5.0	---	4.5-6.5	0	0	0	0
CoE:								
Colton----------	0-3	10-25	2.0-6.0	3.6-6.0	0	0	0	0
	3-6	15-40	1.0-4.0	3.6-6.0	0	0	0	0
	6-26	5.0-30	1.0-2.0	3.6-6.0	0	0	0	0
	26-65	1.0-5.0	---	4.5-6.5	0	0	0	0
CpB :								
Colton----------	0-2	---	8.0-28	2.7-4.8	0	0	0	0
	2-3	---	10-25	3.6-6.0	0	0	0	0
	3-6	---	15-40	3.6-6.0	0	0	0	0
	6-26	---	5.0-30	3.6-6.0	0	0	0	0
	26-65	1.0-5.0	-	4.5-6.5	0	0	0	0
CpC:								
Colton----------	0-2	---	8.0-28	2.7-4.8	0	0	0	0
	2-3	---	10-25	3.6-6.0	0	0	0	0
	3-6	---	15-40	3.6-6.0	0	0	0	0
	6-26	-	5.0-30	3.6-6.0	0	0	0	0
	26-65	1.0-5.0	---	4.5-6.5	0	0	0	0
CRC :								
Colton----------	0-2	---	8.0-28	2.7-4.8	0	0	0	0
	2-3	---	10-25	3.6-6.0	0	0	0	0
	3-6	---	15-40	3.6-6.0	0	0	0	0
	6-26	---	5.0-30	3.6-6.0	0	0	0	0
	26-65	1.0-5.0	---	4.5-6.5	0	0	0	0
Adams-----------	0-1	-	8.0-28	2.7-4.8	0	0	0	0
	1-4	12-26	3.0-9.0	3.6-6.0	0	0	0	0
	4-22	10-23	2.0-4.0	4.5-6.0	0	0	0	0
	22-65	1.0-5.0	-	4.5-6.5	0	0	0	0
CRE:								
Colton----------		---	8.0-28	2.7-4.8			0	0
	2-3	---	10-25	3.6-6.0	0	0	0	0
	3-6	---	15-40	3.6-6.0	0	0	0	0
	6-26	---	5.0-30	3.6-6.0	0	0	0	0
	26-65	1.0-5.0	-	4.5-6.5	0	0	0	0
Adams-----------	0-1	---	8.0-28	2.7-4.8	0	0	0	0
	1-4	12-26	3.0-9.0	3.6-6.0	0	0	0	0
	4-22	10-23	2.0-4.0	4.5-6.0	0	0	0	0
	22-65	1.0-5.0	---	4.5-6.5	0	0	0	0
CSC:								
Colton---------	0-2	---	8.0-28	2.7-4.8	0	0	0	0
	2-3	---	10-25	3.6-6.0	0	0	0	0
	3-6	--	15-40	3.6-6.0	0	0	0	0
	6-26		5.0-30	3.6-6.0	0	0	0	0
	26-65	1.0-5.0	---	4.5-6.5	0	0	0	0
Hermon----------	0-2	---	8.0-28	2.7-4.8	0	0	0	0
	2-6	---	3.0-8.0	3.6-5.5	0	0	0	0
	6-8	-- -	2.0-4.0	3.6-5.5	0	0	0	0
	8-18	---	1.0-6.0	3.6-6.0	0	0	0	0
	18-65	0.0-1.0	---	5.1-6.0	0	0	0	0

Table 23.-Chemical Soil Properties-continued

Map symbol and soil name	Depth	Cation exchange capacity	```Effective cation exchange capacity```	$\begin{gathered} \text { Soil } \\ \text { reaction } \end{gathered}$	Calcium carbonate	Gypsum	Salinity	Sodium adsorption ratio
	Inches	meq/100 g	meq/100 g	pH	Pct	Pct	mmhos/cm	
CSDColto								
	0-2	---	8.0-28	2.7-4.8	0	0	0	0
	2-3	-- -	10-25	3.6-6.0	0	0	0	0
	3-6	--	15-40	3.6-6.0	0	0	0	0
	6-26	---	5.0-30	3.6-6.0	0	0	0	0
	26-65	1.0-5.0	---	4.5-6.5	0	0	0	0
Hermon----------	0-2	---	8.0-28	2.7-4.8	0	0	0	0
	2-6	---	3.0-8.0	3.6-5.5	0	0	0	0
	6-8	-	2.0-4.0	3.6-5.5	0	0	0	0
	8-18	-	1.0-6.0	3.6-6.0	0	0	0	0
	18-65	0.0-1.0	---	5.1-6.0	0	0	0	0
CtB :								
Creasey---------	0-8	---	3.0-8.0	4.5-6.0	0	0	0	0
	8-17	---	2.0-6.0	4.5-6.0	0	0	0	0
	17-21	-	---	---	0	0	0	0
CtC:								
Creasey---------	0-8	---	3.0-8.0	4.5-6.0	0	0	0	0
	8-17	---	2.0-6.0	4.5-6.0	0	0	0	0
	17-21	---	---	-	0	0	0	0
CVC:								
Creasey---------	0-8	---	3.0-8.0	4.5-6.0	0	0	0	0
	8-17	---	2.0-6.0	4.5-6.0	0	0	0	0
	17-21	---			0	0	0	0
Abram-----------	0-2	---	8.0-28	2.7-4.8	0	0	0	0
	2-6	---	2.0-4.0	3.6-5.5	0	0	0	0
	6-10	-- -	-	,	0	0	0	0
CXC:								
Creasey---------	0-8	---	3.0-8.0	4.5-6.0	0	0	0	0
	8-17	---	2.0-6.0	4.5-6.0	0	0	0	0
	17-21	---	---	-	0	0	0	0
Lamoine---------	0-7	7.0-16	---	4.5-6.5			0	0
	7-16	7.0-17	---	5.1-7.3	0	0	0	0
	16-21	7.0-15	---	5.1-7.3	0	0	0	0
	21-65	3.0-15	---	5.6-7.3	0	0	0	0
CzB:								
Croghan---------	0-3	5.0-20	3.0-9.0	3.6-6.0	0	0	0	0
	3-23	15-40	1.0-6.0	4.5-6.0	0	0	0	0
	23-65	2.0-10	0.5-1.0	4.5-6.0	0	0	0	0
DAC:								
Danforth--------	0-2	---	8.0-28	2.7-4.8	0	0	0	0
	2-4	---	4.0-5.0	3.6-5.5	0	0	0	0
	4-6	---	3.0-4.0	3.6-5.5	0	0	0	0
	6-31	---	2.0-3.0	3.6-5.5	0	0	0	0
	31-65	---	0.0-3.0	4.5-6.0	0	0	0	0
Elliottsville----	0-2	---	8.0-28	2.7-4.8	0	0	0	0
	2-4	---	6.0-13	3.6-5.5	0	0	0	0
	4-19	---	2.0-15	3.6-5.5	0	0	0	0
	19-31	---	1.0-3.0	4.5-6.0	0	0	0	0
	31-35	---	---	---	0	0	0	0

Table 23.-Chemical Soil Properties-continued

Map symbol and soil name	Depth	Cation exchange capacity	```Effective cation exchange capacity```	$\begin{gathered} \text { Soil } \\ \text { reaction } \end{gathered}$	Calcium carbonate	Gypsum	Salinity	```Sodium adsorp- tion ratio```
	Inches	meq/100 g	meq/100 g	pH	Pct	Pct	mmhos/cm	
DdC:   Dixfield								
	0-6	---	3.0-8.0	3.6-6.5	0	0	0	0
	6-28	1.0-6.0	---	4.5-6.5	0	0	0	0
	28-65	0.0-3.0	---	4.5-6.5	0	0	0	0
DfC:								
Dixfield------------	0-3	---	8.0-28	2.7-4.8	0	0	0	0
	3-6	-	3.0-6.0	3.6-6.5	0	0	0	0
	6-31	1.0-10	-	4.5-6.5	0	0	0	0
	31-65	0.0-3.0	---	4.5-6.5	0	0	0	0
DgB :								
Dixfield------------	0-6	---	3.0-8.0	3.6-6.5	0	0	0	0
	6-28	1.0-6.0	---	4.5-6.5	0	0	0	0
	28-65	0.0-3.0	-	4.5-6.5	0	0	0	0
Colonel--------------	0-7	-	4.0-8.0	3.6-6.5	0	0	0	0
	7-23	---	2.0-8.0	3.6-6.5	0	0	0	0
	23-65	1.0-2.0	-	4.5-6.5	0	0	0	0
DHB :								
Dixfield------------	0-3	---	8.0-28	2.7-4.8	0	0	0	0
	3-6	---	3.0-6.0	3.6-6.5	0	0	0	0
	6-31	1.0-10	---	4.5-6.5	0	0	0	0
	31-65	0.0-3.0	---	4.5-6.5	0	0	0	0
Colonel-------------	0-3	---	8.0-28	2.7-4.8	0	0	0	0
	3-6	-	4.0-8.0	3.6-6.5	0	0	0	0
	6-26	---	2.0-12	3.6-6.5	0	0	0	0
	26-65	1.0-2.0	-	4.5-6.5	0	0	0	0
DkB :								
Dixfield-----------	0-3	-	8.0-28	2.7-4.8	0	0	0	0
	3-6	---	3.0-6.0	3.6-6.5	0	0	0	0
	6-31	1.0-10	---	4.5-6.5	0	0	0	0
	31-65	0.0-3.0	---	4.5-6.5	0	0	0	0
Colonel--------------	0-3	---	8.0-28	2.7-4.8	0	0	0	0
	3-6	---	4.0-8.0	3.6-6.5	0	0	0	0
	6-26	---	2.0-12	3.6-6.5	0	0	0	0
	26-65	1.0-2.0	---	4.5-6.5	0	0	0	0
DMC:Dixfield------------								
	0-3	---	8.0-28	2.7-4.8	0	0	0	0
	3-6	---	3.0-6.0	3.6-6.5	0	0	0	0
	6-31	1.0-10	---	4.5-6.5	0	0	0	0
	31-65	0.0-3.0	---	4.5-6.5	0	0	0	0
Marlow--------------	0-1	---	8.0-28	2.7-4.8	0	0	0	0
	1-3	-	9.0-11	3.6-6.0	0	0	0	0
	3-23	--	6.0-8.0	3.6-6.0	0	0	0	0
	23-65	---	3.0-5.0	3.6-6.0	0	0	0	0
DRC:								
Dixfield------------		---	8.0-28	2.7-4.8			0	0
	3-6	---	3.0-6.0	3.6-6.5	0	0	0	0
	6-31	1.0-10	---	4.5-6.5	0	0	0	0
	31-65	0.0-3.0	---	4.5-6.5	0	0	0	0

Table 23.-Chemical Soil Properties-continued

Map symbol and soil name	Depth	Cation exchange capacity	```Effective cation exchange capacity```	$\begin{gathered} \text { Soil } \\ \text { reaction } \end{gathered}$	Calcium carbonate	Gypsum	Salinity	Sodium adsorption ratio
	Inches	meq/100 g	meq/100 g	pH	Pct	Pct	mmhos/cm	
DRC:Marlow								
	0-1	---	8.0-28	2.7-4.8	0	0	0	0
	1-3	---	9.0-11	3.6-6.0	0	0	0	0
	3-23	---	6.0-8.0	3.6-6.0	0	0	0	0
	23-65	-- -	3.0-5.0	3.6-6.0	0	0	0	0
Rawsonville-----	0-2	---	8.0-28	2.7-4.8	0	0	0	0
	2-4	---	2.2-9.0	3.6-5.5	0	0	0	0
	4-15	---	2.2-9.0	3.6-5.5	0	0	0	0
	15-36	---	2.2-8.2	4.5-5.5	0	0	0	0
	36-40	-- -	---	---	0	0	0	0
DTC:								
Dixfield--------	0-3	---	8.0-28	2.7-4.8	0	0	0	0
	3-6	---	3.0-6.0	3.6-6.5	0	0	0	0
	6-31	1.0-10	---	4.5-6.5	0	0	0	0
	31-65	0.0-3.0	---	4.5-6.5	0	0	0	0
Marlow----------	0-1	---	8.0-28	2.7-4.8	0	0	0	0
	1-3	---	9.0-11	3.6-6.0	0	0	0	0
	3-23	---	6.0-8.0	3.6-6.0	0	0	0	0
	23-65	---	3.0-5.0	3.6-6.0	0	0	0	0
Tunbridge-------	0-2	---	8.0-28	2.7-4.8	0	0	0	0
	2-4	20-50	5.0-7.0	3.6-6.0	0	0	0	0
	4-28	5.0-15	1.0-2.0	3.6-6.5	0	0	0	0
	28-32	---	---	---	0	0	0	0
DUC:								
Dixfield--------	0-3	-	8.0-28	2.7-4.8	0	0	0	0
	3-6	-	3.0-6.0	3.6-6.5	0	0	0	0
	6-31	1.0-10	---	4.5-6.5	0	0	0	0
	31-65	0.0-3.0	---	4.5-6.5	0	0	0	0
Rawsonville-----	0-2	---	8.0-28	2.7-4.8	0	0	0	0
	2-4	---	2.2-9.0	3.6-5.5	0	0	0	0
	4-15	-	2.2-9.0	3.6-5.5	0	0	0	0
	15-36	-	2.2-8.2	4.5-5.5	0	0	0	0
	36-40	---	---	---	0	0	0	0
Colonel---------	0-3	---	8.0-28	2.7-4.8	0	0	0	0
	3-6	---	4.0-8.0	3.6-6.5	0	0	0	0
	6-26		2.0-12	3.6-6.5	0	0	0	0
	26-65	1.0-2.0		4.5-6.5	0	0	0	0
DWC:								
Dixfield--------	0-3	---	8.0-28	2.7-4.8	0	0	0	0
	3-6	---	3.0-6.0	3.6-6.5	0	0	0	0
	6-31	1.0-10	---	4.5-6.5	0	0	0	0
	31-65	0.0-3.0	---	4.5-6.5	0	0	0	0
Tunbridge-------	0-2	---	8.0-28	2.7-4.8	0	0	0	0
	2-4	20-50	5.0-7.0	3.6-6.0	0	0	0	0
	4-28	5.0-15	1.0-2.0	3.6-6.5	0	0	0	0
	28-32	---	---	---	0	0	0	0
Colonel---------	0-3	---	8.0-28	2.7-4.8	0	0	0	0
	3-6	---	4.0-8.0	3.6-6.5	0	0	0	0
	6-26	---	2.0-12	3.6-6.5	0	0	0	0
	26-65	1.0-2.0	---	4.5-6.5	0	0	0	0

Table 23.-Chemical Soil Properties-continued

Map symbol and soil name	Depth	Cation exchange capacity	Effective cation exchange capacity	$\begin{gathered} \text { Soil } \\ \text { reaction } \end{gathered}$	Calcium carbonate	Gypsum	Salinity	```Sodium adsorp- tion ratio```
	Inches	$\overline{\mathrm{meq} / 100 \mathrm{~g}}$	meq/100 g	pH	Pct	Pct	mmhos/cm	
EcB:Elliottsvill								
	0-7	---	8.0-15	3.6-5.5	0	0	0	0
	7-17	-	2.0-15	3.6-5.5	0	0	0	0
	17-29	---	1.0-3.0	4.5-6.0	0	0	0	0
	29-33	---	---		0	0	0	0
Chesuncook------	0-7	---	9.0-19	3.6-6.0	0	0	0	0
	7-25	---	2.0-14	3.6-6.0	0	0	0	0
	25-65	1.0-3.0	---	4.5-6.5	0	0	0	0
EMC:								
Elliottsville----	0-2	-	8.0-28	2.7-4.8	0	0	0	0
	2-4	-	6.0-13	3.6-5.5	0	0	0	0
	4-19	---	2.0-15	3.6-5.5	0	0	0	0
	19-31	---	1.0-3.0	4.5-6.0	0	0	0	0
	31-35	---	---	---	0	0	0	0
Monson----------	0-2	---	8.0-28	2.7-4.8	0	0	0	0
	2-3	---	6.0-13	3.6-6.0	0	0	0	0
	3-11	---	8.0-15	3.6-6.0	0	0	0	0
	11-15	---	2. 0-10	3.6-6.0	0	0	0	0
	15-19	-	---	---	0	0	0	0
Go:								
Gouldsboro------		$15-50$	---	5.1-6.5	0	0	0	0
	6-65	10-18	-	5.6-8.4	0	0	0	0
HCC:								
Hermon----------	0-2	---	8.0-28	2.7-4.8	0	0	0	0
	2-6	---	3.0-8.0	3.6-5.5	0	0	0	0
	6-8	-	2.0-4.0	3.6-5.5	0	0	0	0
	8-18	---	1.0-6.0	3.6-6.0	0	0	0	0
	18-65	0.0-1.0	---	5.1-6.0	0	0	0	0
Colton----------	0-2	---	8.0-28	2.7-4.8	0	0	0	0
	2-3	---	10-25	3.6-6.0	0	0	0	0
	3-6	---	15-40	3.6-6.0	0	0	0	0
	6-26	-	5.0-30	3.6-6.0	0	0	0	0
	26-65	1.0-5.0	---	4.5-6.5	0	0	0	0
Abram-----------	0-2	-	8.0-28	2.7-4.8	0	0	0	0
	2-6	-	2.0-4.0	3.6-5.5	0	0	0	0
	6-10	---	---	---	0	0	0	0
HeB :								
Hermon----------	0-7	---	3.0-8.0	3.6-5.5	0	0	0	0
	7-16	---	2.0-4.0	3.6-5.5	0	0	0	0
	16-30	---	1.0-6.0	3.6-6.0	0	0	0	0
	30-65	0.0-1.0	--	5.1-6.0	0	0	0	0
Monadnock-------	0-7	---	1.0-2.5	3.5-6.0	0	0	0	0
	7-14	-- -	0.2-1.0	3.5-6.0	0	0	0	0
	14-20	---	0.4-2.6	3.6-6.0	0	0	0	0
	20-65	---	0.4-2.6	3.5-6.0	0	0	0	0
HeC:								
Hermon----------	0-7	---	4.0-10	3.6-5.5	0	0	0	0
	7-16	---	2. 0-4.0	3.6-5.5	0	0	0	0
	16-30	---	1.0-6.0	3.6-6.0	0	0	0	0
	30-65	0.0-1.0	---	5.1-6.0	0	0	0	0

Table 23.-Chemical Soil Properties-continued

Map symbol and soil name	Depth	Cation exchange capacity	Effective cation exchange capacity	$\begin{array}{\|c} \text { Soil } \\ \text { reaction } \end{array}$	Calcium carbonate	Gypsum	Salinity	Sodium adsorption ratio
	Inches	$\overline{\mathrm{meq} / 100 \mathrm{~g}}$	meq/100 g	pH	Pct	Pct	mmhos/cm	
HeC:Monadnock								
	0-7	---	1.0-2.5	3.5-6.0	0	0	0	0
	7-14	---	0.2-1.0	3.5-6.0	0	0	0	0
	14-20	---	0.4-2.6	3.6-6.0	0	0	0	0
	20-65	---	0.4-2.6	3.5-6.0	0	0	0	0
HkB :								
Hermon----------	0-2	--	8.0-28	2.7-4.8	0	0	0	0
	2-7	-- -	3.0-8.0	3.6-5.5	0	0	0	0
	7-16	---	2.0-4.0	3.6-5.5	0	0	0	0
	16-30	---	1.0-6.0	3.6-6.0	0	0	0	0
	30-65	0.0-1.0	---	5.1-6.0	0	0	0	0
Monadnock-------	0-2	--	8.0-28	2.7-4.8	0	0	0	0
	2-5	---	1.0-2.5	3.5-6.0	0	0	0	0
	5-16	---	0.2-1.0	3.5-6.0	0	0	0	0
	16-22	-	0.4-2.6	3.6-6.0	0	0	0	0
	22-65	-- -	0.4-2.6	3.5-6.0	0	0	0	0
HkC :								
Hermon----------	0-2	-	8.0-28	2.7-4.8	0	0	0	0
	2-7	---	3.0-8.0	3.6-5.5	0	0	0	0
	7-16	---	2.0-4.0	3.6-5.5	0	0	0	0
	16-30	---	1.0-6.0	3.6-6.0	0	0	0	0
	30-65	0.0-1.0	---	5.1-6.0	0	0	0	0
Monadnock-------	0-2	---	8.0-28	2.7-4.8	0	0	0	0
	2-5	-	1.0-2.5	3.5-6.0	0	0	0	0
	5-16	---	0.2-1.0	3.5-6.0	0	0	0	0
	16-22	---	0.4-2.6	3.6-6.0	0	0	0	0
	22-65	---	0.4-2.6	3.5-6.0	0	0	0	0
HMD :								
Hermon----------	0-2	---	8.0-28	2.7-4.8	0	0	0	0
	2-6	---	3.0-8.0	3.6-5.5	0	0	0	0
	6-8	-	2.0-4.0	3.6-5.5	0	0	0	0
	8-18	---	1.0-6.0	3.6-6.0	0	0	0	0
	18-65	0.0-1.0	---	5.1-6.0	0	0	0	0
Monadnock-------	0-2	---	8.0-28	2.7-4.8			0	0
	2-5	-	1.0-2.5	3.5-6.0	0	0	0	0
	5-16	---	0.2-1.0	3.5-6.0	0	0	0	0
	16-22	-	0.4-2.6	3.6-6.0	0	0	0	0
	22-65	---	0.4-2.6	3.5-6.0	0	0	0	0
HOE:								
Hermon----------		---					0	0
	2-6	---	3.0-8.0	3.6-5.5	0	0	0	0
	6-8	---	2.0-4.0	3.6-5.5	0	0	0	0
	8-18	---	1.0-6.0	3.6-6.0	0	0	0	0
	18-65	0.0-1.0	---	5.1-6.0	0	0	0	0
Monadnock-------	0-2	---	8.0-28	2.7-4.8	0	0	0	0
	2-5	---	1.0-2.5	3.5-6.0	0	0	0	0
	5-16	---	0.2-1.0	3.5-6.0	0	0	0	0
	16-22	---	0.4-2.6	3.6-6.0	0	0	0	0
	22-65	---	0.4-2.6	3.5-6.0	0	0	0	0

Table 23.-Chemical Soil Properties-continued

Map symbol and soil name	Depth	Cation exchange capacity	Effective cation exchange capacity	$\begin{gathered} \text { Soil } \\ \text { reaction } \end{gathered}$	Calcium carbonate	Gypsum	Salinity	```Sodium adsorp- tion ratio```
	Inches	$\overline{\mathrm{meq} / 100 \mathrm{~g}}$	meq/100 g	pH	Pct	Pct	mmhos/cm	
HSC:								
Hermon----------	0-2	---	8.0-28	2.7-4.8	0	0	0	0
	2-6	---	3.0-8.0	3.6-5.5	0	0	0	0
	6-8	---	2.0-4.0	3.6-5.5	0	0	0	0
	8-18	---	1.0-6.0	3.6-6.0	0	0	0	0
	18-65	0.0-1.0	---	5.1-6.0	0	0	0	0
Monadnock------	0-2	---	8.0-28	2.7-4.8	0	0	0	0
	2-5	---	1.0-2.5	3.5-6.0	0	0	0	0
	5-16	---	0.2-1.0	3.5-6.0	0	0	0	0
	16-22	-	0.4-2.6	3.6-6.0	0	0	0	0
	22-65	---	0.4-2.6	3.5-6.0	0	0	0	0
Skerry----------	0-2	---	8.0-28	2.7-4.8	0	0	0	0
	2-3	1.9-4.6	---	4.5-6.5	0	0	0	0
	3-24	5.2-14	---	4.5-6.5	0	0	0	0
	24-65	3.7-4.5	---	4.5-7.3	0	0	0	0
HVC:								
Hermon----------	0-2	---	8.0-28	2.7-4.8	0	0	0	0
	2-6	---	3.0-8.0	3.6-5.5	0	0	0	0
	6-8	---	2.0-4.0	3.6-5.5	0	0	0	0
	8-18	---	1.0-6.0	3.6-6.0	0	0	0	0
	18-65	0.0-1.0	---	5.1-6.0	0	0	0	0
Monadnock-------	0-2	---	8.0-28	2.7-4.8	0	0	0	0
	2-5	---	1.0-2.5	3.5-6.0	0	0	0	0
	5-16	---	0.2-1.0	3.5-6.0	0	0	0	0
	16-22	---	0.4-2.6	3.6-6.0	0	0	0	0
	22-65	---	0.4-2.6	3.5-6.0	0	0	0	0
Skerry----------	0-2	---	8.0-28	2.7-4.8	0	0	0	0
	2-3	1.9-4.6	---	4.5-6.5	0	0	0	0
	3-24	5.2-14	---	4.5-6.5	0	0	0	0
	24-65	3.7-4.5	-	4.5-7.3	0	0	0	0
HWE :								
Hogback---------	0-1	---	8.0-28	2.7-4.8	0	0	0	0
	1-2	---	4.0-10	3.6-5.5	0	0	0	0
	2-14	---	2.7-9.3	3.6-5.5	0	0	0	0
	14-18	-- -	---	---	0	0	0	0
Abram-----------	0-2	-	8.0-28	2.7-4.8	0	0	0	0
	2-6	---	2.0-4.0	3.6-5.5	0	0	0	0
	6-10	-	---	---	0	0	0	0
Rawsonville-----		---	8.0-28	2.7-4.8		0	0	0
	2-4	---	2.2-9.0	3.6-5.5	0	0	0	0
	4-15	-	2.2-9.0	3.6-5.5	0	0	0	0
	15-36	--	2.2-8.2	4.5-5.5	0	0	0	0
	36-40	---	---	---	0	0	0	0
HXC:								
Hogback---------	0-1	---	8.0-28	2.7-4.8	0	0	0	0
	1-2	---	4.0-10	3.6-5.5	0	0	0	0
	2-14	---	2.7-9.3	3.6-5.5	0	0	0	0
	14-18	---	---	---	0	0	0	0

Table 23.-Chemical Soil Properties-continued


Table 23.-Chemical Soil Properties-continued

Map symbol and soil name	Depth	Cation exchange capacity	Effective cation \|exchange capacity	$\begin{gathered} \text { Soil } \\ \text { reaction } \end{gathered}$	Calcium carbonate	Gypsum	Salinity	```Sodium adsorp- tion ratio```
	Inches	meq/100 g	meq/100 g	pH	Pct	Pct	mmhos/cm	
LEB :								
Lamoine---------	0-7	7.0-16	---	4.5-6.5	0	0	0	0
	7-16	7.0-17	---	5.1-7.3	0	0	0	0
	16-21	7.0-15	--	5.1-7.3	0	0	0	0
	21-65	3.0-15	---	5.6-7.3	0	0	0	0
Creasey---------	0-8	---	3.0-8.0	4.5-6.0	0	0	0	0
	8-17	---	2.0-6.0	4.5-6.0	0	0	0	0
	17-21	---	---	--	0	0	0	0
Scantic---------	0-11	15-19	--	4.5-6.5	0	0	0	0
	11-29	11-17	---	5.1-7.3	0	0	0	0
	29-65	3.0-15	---	5.6-7.3	0	0	0	0
LHB :								
Lamoine---------	0-7	7.0-16	---	4.5-6.5	0	0	0	0
	7-16	7.0-17	---	5.1-7.3	0	0	0	0
	16-21	7.0-15	---	5.1-7.3	0	0	0	0
	21-65	3.0-15	-	5.6-7.3	0	0	0	0
Nicholville-----	0-3	---	8.0-28	2.7-4.8	0	0	0	0
	3-4	-	8.0-28	3.6-6.0	0	0	0	0
	4-17	---	3.3-10	4.5-6.0	0	0	0	0
	17-30	---	1.1-10	4.5-6.5	0	0	0	0
	30-65	5.0-8.2	---	4.5-6.5	0	0	0	0
LKB :								
Lamoine--------	0-7	7.0-16	---	4.5-6.5	0	0	0	0
	7-16	7.0-17	-	5.1-7.3	0	0	0	0
	16-21	7.0-15	---	5.1-7.3	0	0	0	0
	21-65	3.0-15	---	5.6-7.3	0	0	0	0
Rawsonville-----	0-2	---	8.0-28	2.7-4.8	0	0	0	0
	2-4	---	2.2-9.0	3.6-5.5	0	0	0	0
	4-15	---	2.2-9.0	3.6-5.5	0	0	0	0
	15-36	-	2.2-8.2	4.5-5.5	0	0	0	0
	36-40	---	. 2 -8.2	.	0	0	0	0
Scantic---------	0-11	15-19	---	4.5-6.5	0	0	0	0
	11-29	11-17	---	5.1-7.3	0	0	0	0
	29-65	3.0-15	-	5.6-7.3	0	0	0	0
LmB :								
Lamoine--------		7.0-16	---	4.5-6.5	0	0	0	0
	7-16	7.0-17		5.1-7.3	0	0	0	0
	16-21	7.0-15	---	5.1-7.3	0	0	0	0
	21-65	3.0-15	---	5.6-7.3	0	0	0	0
Scantic---------	0-11	15-19	---	4.5-6.5	0	0	0	0
	11-29	11-17	---	5.1-7.3	0	0	0	0
	29-65	3.0-15	---	5.6-7.3	0	0	0	0
LnB :								
Lamoine--------	0-7	7.0-16	---	4.5-6.5	0	0	0	0
	7-16	7.0-17	---	5.1-7.3	0	0	0	0
	16-21	7.0-15	---	5.1-7.3	0	0	0	0
	21-65	3.0-15	---	5.6-7.3	0	0	0	0
Scantic---------	0-11	15-19	---	4.5-6.5		0	0	0
	11-29	11-17	---	5.1-7.3	0	0	0	0
	29-65	3.0-15	---	5.6-7.3	0	0	0	0

Table 23.-Chemical Soil Properties-continued


Table 23.-Chemical Soil Properties-continued

Map symbol and soil name	Depth	Cation exchange capacity	Effective cation exchange capacity	$\begin{gathered} \text { Soil } \\ \text { reaction } \end{gathered}$	Calcium carbonate	Gypsum	Salinity	```Sodium adsorp- tion ratio```
	Inches	meq/100 g	meq/100 g	pH	Pct	Pct	mmhos/cm	
Marlow----------	0-7	---	9.0-11	3.6-6.0	0	0	0	0
	7-22	---	6.0-8.0	3.6-6.0	0	0	0	0
	22-65	---	3.0-5.0	3.6-6.0	0	0	0	0
MbC :								
Marlow----------	0-1	--	8.0-28	2.7-4.8	0	0	0	0
	1-3	---	9.0-11	3.6-6.0	0	0	0	0
	3-23	---	6.0-8.0	3.6-6.0	0	0	0	0
	23-65	--	3.0-5.0	3.6-6.0	0	0	0	0
MDD :								
Marlow----------	0-1	---	8.0-28	2.7-4.8	0	0	0	0
	1-3	---	9.0-11	3.6-6.0	0	0	0	0
	3-23	---	6.0-8.0	3.6-6.0	0	0	0	0
	23-65	---	3.0-5.0	3.6-6.0	0	0	0	0
Dixfield--------	0-3	---	8.0-28	2.7-4.8	0	0	0	0
	3-6	---	3.0-6.0	3.6-6.5	0	0	0	0
	6-31	1.0-10	---	4.5-6.5	0	0	0	0
	31-65	0.0-3.0	---	4.5-6.5	0	0	0	0
MFD :								
Marlow----------	0-1	---	8.0-28	2.7-4.8	0	0	0	0
	1-3	---	9.0-11	3.6-6.0	0	0	0	0
	3-23	---	6.0-8.0	3.6-6.0	0	0	0	0
	23-65	---	3.0-5.0	3.6-6.0	0	0	0	0
Rawsonville-----	0-2	---	8.0-28	2.7-4.8	0	0	0	0
	2-4	---	2.2-9.0	3.6-5.5	0	0	0	0
	4-15	---	2.2-9.0	3.6-5.5	0	0	0	0
	15-36	-	2.2-8.2	4.5-5.5	0	0	0	0
	36-40	-	-	-	0	0	0	0
Dixfield--------	0-3	---	8.0-28	2.7-4.8	0	0	0	0
	3-6	---	3.0-6.0	3.6-6.5	0	0	0	0
	6-31	1.0-10	---	4.5-6.5	0	0	0	0
	31-65	0.0-3.0	-	4.5-6.5	0	0	0	0
MGD :								
Marlow----------	0-1	---	8.0-28	2.7-4.8	0	0	0	0
	1-3	---	9.0-11	3.6-6.0	0	0	0	0
	3-23	---	6.0-8.0	3.6-6.0	0	0	0	0
	23-65	---	3.0-5.0	3.6-6.0	0	0	0	0
Tunbridge-------	0-2	---	8.0-28	2.7-4.8	0	0	0	0
	2-4	20-50	5.0-7.0	3.6-6.0	0	0	0	0
	4-28	5.0-15	1.0-2.0	3.6-6.5	0	0	0	0
	28-32	---	---	-	0	0	0	0
Dixfield--------	0-3	---	8.0-28	2.7-4.8	0	0	0	0
	3-6	---	3.0-6.0	3.6-6.5	0	0	0	0
	6-31	1.0-10	---	4.5-6.5	0	0	0	0
	31-65	0.0-3.0	---	4.5-6.5	0	0	0	0
MmA :								
Masardis--------	0-2	---	8.0-18	3.6-6.0	0	0	0	0
	2-16	---	1.0-6.0	3.6-6.0	0	0	0	0
	16-65	---	0.0-1.0	4.5-6.0	0	0	0	0

Table 23.-Chemical Soil Properties-continued


Table 23.-Chemical Soil Properties-continued

Map symbol and soil name	Depth	Cation exchange capacity	Effective cation exchange capacity	$\begin{array}{\|c} \text { Soil } \\ \text { reaction } \end{array}$	Calcium carbonate	Gypsum	Salinity	Sodium adsorption ratio
	Inches	meq/100 g	meq/100 g	pH	Pct	Pct	mmhos/cm	
MWB :Tel								
	0-1	---	8.0-28	2.7-4.8	0	0	0	0
	1-3	--	2.0-10	3.6-6.0	0	0	0	0
	3-20	---	1.0-2.0	3.6-6.0	0	0	0	0
	20-65	1.0-2.0	---	5.1-6.5	0	0	0	0
MXB :								
Monarda---------	0-1	---	8.0-28	2.7-4.8	0	0	0	0
	1-10	---	2.0-7.0	3.6-6.0	0	0	0	0
	10-23	-	1.0-6.0	4.5-6.0	0	0	0	0
	23-65	4.0-8.0	---	5.1-7.3	0	0	0	0
Wonsqueak-------	0-8	---	20-50	3.6-6.5	0	0	0	0
	8-30	20-50	---	4.5-6.5	0	0	0	0
	30-65	1.0-3.0	---	5.1-7.3	0	0	0	0
NAC:								
Naskeag---------	0-3	---	8.0-28	2.7-4.8	0	0	0	0
	3-11	---	5.0-10	3.6-5.5	0	0	0	0
	11-38	---	0.0-2.0	4.5-5.5	0	0	0	0
	38-42	---	-		0	0	0	0
Abram-----------	0-2	---	8.0-28	2.7-4.8	0	0	0	0
	2-6	---	2.0-4.0	3.6-5.5	0	0	0	0
	6-10	---	,		0	0	0	0
Ricker----------	0-4	---	8.0-28	3.6-4.4	0	0	0	0
	4-5	---	8.0-28	3.6-4.4	0	0	0	0
	$5-7$	---	12-16	3.6-5.0	0	0	0	0
	7-11	---	---	---	---	---	---	---
NBB :								
Naskeag---------	0-3	---	8.0-28	2.7-4.8	0	0	0	0
	3-11	---	5.0-10	3.6-5.5	0	0	0	0
	11-38	---	0.0-2.0	4.5-5.5	0	0	0	0
	38-42	-	.	.	0	0	0	0
Rawsonville-----	0-2	---	8.0-28	2.7-4.8	0	0	0	0
	2-4	---	2.2-9.0	3.6-5.5	0	0	0	0
	4-15	---	2.2-9.0	3.6-5.5	0	0	0	0
	15-36	---	2.2-8.2	4.5-5.5	0	0	0	0
	36-40	-	---	---	0	0	0	0
Hogback---------	0-1	---	8.0-28	2.7-4.8	0	0	0	0
	1-2	---	4.0-10	3.6-5.5	0	0	0	0
	2-14	-	2.7-9.3	3.6-5.5	0	0	0	0
	14-18	---	---	---	0	0	0	0
NCB :								
Naskeag---------	0-3	---	8.0-28	2.7-4.8	0	0	0	0
	3-11	---	5.0-10	3.6-5.5	0	0	0	0
	11-38	---	0.0-2.0	4.5-5.5	0	0	0	0
	38-42	---	--	---	0	0	0	0
Tunbridge-------	0-2	---	8.0-28	2.7-4.8	0	0	0	0
	2-4	20-50	5.0-7.0	3.6-6.0	0	0	0	0
	4-28	5.0-15	1.0-2.0	3.6-6.5	0	0	0	0
	28-32	---	---	---	0	0	0	0
Lyman-----------	0-2	--	8.0-28	2.7-4.8	0	0	0	0
	2-3	---	8.0-28	3.6-6.0	0	0	0	0
	3-17	---	2.0-5.0	3.6-6.0	0	0	0	0
	17-21	---	---	---	0	0	0	0

Table 23.-Chemical Soil Properties-continued

Map symbol and soil name	Depth	Cation exchange capacity	Effective cation exchange capacity	$\begin{gathered} \text { Soil } \\ \text { reaction } \end{gathered}$	Calcium carbonate	Gypsum	Salinity	```Sodium adsorp- tion ratio```
	Inches	meq/100 g	meq/100 g	pH	Pct	Pct	mmhos/cm	
NdB:Nicholville								
	0-3	---	8.0-28	3.6-6.0	0	0	0	0
	3-17	---	3.3-10	4.5-6.0	0	0	0	0
	17-30	-	1.1-10	4.5-6.5	0	0	0	0
	30-65	5.0-8.2	---	4.5-6.5	0	0	0	0
NdC:								
Nicholville---------	0-3	---	8.0-28	3.6-6.0	0	0	0	0
	3-17	---	3.3-10	4.5-6.0	0	0	0	0
	17-30	---	1.1-10	4.5-6.5	0	0	0	0
	30-65	5.0-8.2	---	4.5-6.5	0	0	0	0
NGB :								
Nicholville---------	0-3	---	8.0-28	2.7-4.8	0	0	0	0
	3-4	---	8.0-28	3.6-6.0	0	0	0	0
	4-17	---	3.3-10	4.5-6.0	0	0	0	0
	17-30	---	1.1-10	4.5-6.5	0	0	0	0
	30-65	5.0-8.2	---	4.5-6.5	0	0	0	0
Croghan--------------	0-1	---	8.0-28	2.7-4.8	0	0	0	0
	1-3	5.0-20	3.0-9.0	3.6-6.0	0	0	0	0
	3-23	15-40	1.0-6.0	4.5-6.0	0	0	0	0
	23-65	2.0-10	0.5-1.0	4.5-6.0	0	0	0	0
NGC:								
Nicholville---------	0-3	---	8.0-28	2.7-4.8	0	0	0	0
	3-4	-	8.0-28	3.6-6.0	0	0	0	0
	4-17	---	3.3-10	4.5-6.0	0	0	0	0
	17-30	---	1.1-10	4.5-6.5	0	0	0	0
	30-65	5.0-8.2	---	4.5-6.5	0	0	0	0
Croghan--------------	0-1	-	8.0-28	2.7-4.8	0	0	0	0
	1-3	5.0-20	3.0-9.0	3.6-6.0	0	0	0	0
	3-23	15-40	1.0-6.0	4.5-6.0	0	0	0	0
	23-65	2.0-10	0.5-1.0	4.5-6.0	0	0	0	0
Pg:								
	0-6	---	---	---	0	0	0	0
	6-60	---	---	---	0	0	0	0
RhB :								
Rawsonville---------	0-6	-	2.2-9.0	3.6-5.5	0	0	0	0
	6-13	-	2.2-9.0	3.6-5.5	0	0	0	0
	13-34	---	2.2-8.2	4.5-5.5	0	0	0	0
	34-38	---	,	.	0	0	0	0
Hogback-------------	0-1	---	21-33	3.1-4.8	0	0	0	0
	1-2	---	4.0-10	3.6-5.5	0	0	0	0
	2-14	---	2.7-9.3	3.6-5.5	0	0	0	0
	14-18	---	---	--	0	0	0	0
RhC:								
Rawsonville---------	0-6	---	2.2-9.0	3.6-5.5	0	0	0	0
	6-13	---	2.2-9.0	3.6-5.5	0	0	0	0
	13-34	---	2.2-8.2	4.5-5.5	0	0	0	0
	34-38	---	-		0	0	0	0
Hogback--------------	0-1	---	21-33	3.1-4.8	0	0	0	0
	1-2	---	4.0-10	3.6-5.5	0	0	0	0
	2-14	---	2.7-9.3	3.6-5.5	0	0	0	0
	14-18	---	---	---	0	0	0	0

Table 23.-Chemical Soil Properties-continued


Table 23.-Chemical Soil Properties-continued

Map symbol and soil name	Depth	Cation exchange capacity	Effective cation exchange capacity	$\begin{gathered} \text { Soil } \\ \text { reaction } \end{gathered}$	Calcium carbonate	Gypsum	Salinity	Sodium adsorption ratio
	Inches	meq/100 g	meq/100 g	pH	Pct	Pct	mmhos/cm	
SJB :Sheep								
	0-4	---	8.0-28	2.7-4.8	0	0	0	0
	4-7	---	8.0-18	3.6-6.5	0	0	0	0
	7-16	---	1.0-6.0	3.6-6.5	0	0	0	0
	16-29	---	1.0-2.0	3.6-6.5	0	0	0	0
	29-65	0.0-1.0	---	4.5-6.5	0	0	0	0
Croghan---------	0-1	---	8.0-28	2.7-4.8	0	0	0	0
	1-3	5.0-20	3.0-9.0	3.6-6.0	0	0	0	0
	3-23	15-40	1.0-6.0	4.5-6.0	0	0	0	0
	23-65	2.0-10	0.5-1.0	4.5-6.0	0	0	0	0
Kinsman---------	0-4	---	8.0-28	2.7-4.8	0	0	0	0
	4-8	10-20	3.0-9.0	3.6-6.0	0	0	0	0
	8-42	15-40	1.0-6.0	3.6-6.0	0	0	0	0
	42-65	1.0-5.0	0.5-1.0	4.5-6.0	0	0	0	0
SkB :								
Skerry----------	0-3	1.9-4.6	---	4.5-6.5	0	0	0	0
	3-24	5.2-14	---	4.5-6.5	0	0	0	0
	24-65	3.7-4.5	---	4.5-7.3	0	0	0	0
SmB :								
Skerry----------	0-3	1.9-4.6	---	4.5-6.5	0	0	0	0
	3-24	5.2-14	---	4.5-6.5	0	0	0	0
	24-65	3.7-4.5	-	4.5-7.3	0	0	0	0
SNC:								
Skerry----------	0-2	---	8.0-28	2.7-4.8	0	0	0	0
	2-3	1.9-4.6	---	4.5-6.5	0	0	0	0
	3-24	5.2-14	---	4.5-6.5	0	0	0	0
	24-65	3.7-4.5	---	4.5-7.3	0	0	0	0
Becket----------	0-2	---	8.0-28	2.7-4.8	0	0	0	0
	2-5	20-22	2.8-5.4	3.6-6.5	0	0	0	0
	5-24	3.9-24	2.7-4.7	3.6-6.5	0	0	0	0
	24-65	2.7-5.3	---	4.5-7.3	0	0	0	0
SOB :								
Skerry----------	0-2	---	8.0-28	2.7-4.8		0	0	0
	2-3	1.9-4.6	---	4.5-6.5	0	0	0	0
	3-24	5.2-14	---	4.5-6.5	0	0	0	0
	24-65	3.7-4.5	-	4.5-7.3	0	0	0	0
SOB :								
Colonel---------	0-3	---	8.0-28	2.7-4.8	0	0	0	0
	3-6	---	4.0-8.0	3.6-6.5	0	0	0	0
	6-26	---	2.0-12	3.6-6.5	0	0	0	0
	26-65	1.0-2.0	---	4.5-6.5	0	0	0	0
SRC:								
Skerry----------	0-2	---	8.0-28	2.7-4.8	0	0	0	0
	2-3	1.9-4.6	---	4.5-6.5	0	0	0	0
	3-24	5.2-14	---	4.5-6.5	0	0	0	0
	24-65	3.7-4.5	---	4.5-7.3	0	0	0	0
Colonel---------	0-3	---	8.0-28	2.7-4.8	0	0	0	0
	3-6	---	4.0-8.0	3.6-6.5	0	0	0	0
	6-26	---	2.0-12	3.6-6.5	0	0	0	0
	26-65	1.0-2.0	---	4.5-6.5	0	0	0	0

Table 23.-Chemical Soil Properties-continued


Table 23.-Chemical Soil Properties-continued

Map symbol and soil name	Depth	Cation exchange capacity	Effective cation exchange capacity	$\left\lvert\, \begin{gathered} \text { Soil } \\ \text { reaction } \end{gathered}\right.$	Calcium carbonate	Gypsum	Salinity	```Sodium adsorp- tion ratio```
	Inches	meq/100 g	meq/100 g	pH	Pct	Pct	mmhos/cm	
TLC:								
Lamoine---------	0-7	7.0-16	---	4.5-6.5	0	0	0	0
	7-16	7.0-17	---	5.1-7.3	0	0	0	0
	16-21	7.0-15	---	5.1-7.3	0	0	0	0
	21-65	3.0-15	---	5.6-7.3	0	0	0	0
Lyman-----------	0-2	---	8.0-28	2.7-4.8	0	0	0	0
	2-3	---	8.0-28	3.6-6.0	0	0	0	0
	3-17	---	2.0-5.0	3.6-6.0	0	0	0	0
	17-21	-- -	-	-	0	0	0	0
TuB :								
Tunbridge-------	0-6	20-50	5.0-7.0	3.6-6.0	0	0	0	0
	6-28	5.0-15	1.0-2.0	3.6-6.5	0	0	0	0
	28-32	---	-	---	0	0	0	0
Lyman-----------	0-6	-	8.0-28	3.6-6.0	0	0	0	0
	6-15	---	2.0-5.0	3.6-6.0	0	0	0	0
	15-25	---	---	---	0	0	0	0
TuC:								
Tunbridge-------	0-6	20-50	5.0-7.0	3.6-6.0	0	0	0	0
	6-28	5.0-15	1.0-2.0	3.6-6.5	0	0	0	0
	28-32	---	---	---	0	0	0	0
Lyman-----------	0-6	---	8.0-28	3.6-6.0	0	0	0	0
	6-15	---	2.0-5.0	3.6-6.0	0	0	0	0
	15-25	---	---	---	0	0	0	0
TyC:								
Tunbridge-------	0-2	---	8.0-28	2.7-4.8	0	0	0	0
	2-4	20-50	5.0-7.0	3.6-6.0	0	0	0	0
	4-28	5.0-15	1.0-2.0	3.6-6.5	0	0	0	0
	28-32	-		-	0	0	0	0
Lyman-----------	0-2	---	8.0-28	2.7-4.8	0	0	0	0
	2-3	---	8.0-28	3.6-6.0	0	0	0	0
	3-17	---	2.0-5.0	3.6-6.0	0	0	0	0
	17-21	---	---	---	0	0	0	0
Abram----------	$0-6$	---	4.0-6.0	3.6-5.5	$0$	$0$		
	6-10	---	---	---	0	0	0	0
Ud:								
Udorthents-----	0-65	---	---	4.5-7.8	0	0	0	0
Urban land-----	0-6	---	---	---	0	0	0	0
W :								
Water----------	---	---	---	---	---	---	---	-- -
WF:								
Wonsqueak-------	0-8	---	20-50	3.6-6.5	0	0	0	0
	8-30	20-50	---	4.5-6.5	0	0	0	0
	30-65	1.0-3.0	---	5.1-7.3	0	0	0	0
Bucksport-------	0-18	---	20-50	3.6-5.5	0	0	0	0
	18-40	---	20-50	3.6-6.0	0	0	0	0
	40-65	20-50	---	4.5-6.5	0	0	0	0

(Depths of layers are in feet. See text for definitions of terms used in this table. Absence of an entry indicates that the feature is not a concern or that data were not estimated.

Map symbol and soil name	Hydro-   logic   group	Month	Water table			Ponding			Flooding	
			Upper   limit	Lower   limit	Kind	Surface water depth	Duration	Frequency	Duration	Frequency
AaE:										
Abram--------	D	Jan-Dec	>6.0	>6.0	---	---	---	None	---	None
Hogback------	C	Jan-Dec	>6.0	>6.0	---	---	---	None	---	None
AbE :										
Abram--------	D	Jan-Dec	>6.0	>6.0	---	---	---	None	---	None
Lyman--------	C/D	Jan-Dec	>6.0	>6.0	---	-	---	None	---	None
ACE :										
Abram----	D	Jan-Dec	>6.0	>6.0	---	---	-	None	---	None
Rock outcrop--	D	Jan-Dec	>6.0	>6.0	--	---	---	---	---	None
Ricker--------	A	Jan-Dec	>6.0	>6.0	-	---	--	None	--	None
AdA :										None
AdB :										None
AdC:										
Adams--------	A	Jan-Dec	>6.0	>6.0	---	---	-	None	-	None
AGB :										
Adams--------	A	Jan-Dec	>6.0	>6.0	---	---	---	None	--	None
Croghan-------	B	Jan-May	1.5-2.0	>6.0	Apparent	-	---	None	---	None
		Jun-Oct	-	-	- --	---	---	None	---	None
		Nov-Dec	1.5-2.0	>6.0	Apparent	---	---	None	---	None
BeC:										
Becket--------	C	Jan-Feb	---	---	---	---	---	None	---	None
		Mar-Apr	2.5-3.5	3.0-3.5	Perched	---	---	None	---	None
		May-Dec	---	---	---	---	---	None	---	None
BKD :										
Becket--------	C	Jan-Feb	---	---	--	---	---	None	---	None
		Mar-Apr	2.5-3.5	3.0-3.5	Perched	---	--	None	--	None
		May-Dec	---	---	---	---	---	None	---	None
Skerry--------	C	Jan-May	1.5-2.0	2.0-3.0	Perched	---	---	None	-	None
		Jun-Oct	---	---	---	---	---	None	---	None
		Nov-Dec	1.5-2.0	2.0-3.0	Perched	---	---	None	---	None

Table 24.-Water Features-continued

Map symbol and soil name	$\begin{aligned} & \text { Hydro- } \\ & \text { logic } \\ & \text { group } \end{aligned}$	Month	Water table			Ponding			Flooding		
			Upper   limit	Lower   limit	Kind	Surface water depth	Duration	Frequency	Duration	Frequency	
BnB:Brayton----.-	C										
		Jan-Jul	0.0-1.0	1.0-2.0\|	Perched	---	---	None	--	None	
		Aug-Sep	---	---	---	---	---	None	---	None	
		Oct-Dec	0.0-1.0	\|1.0-2.0		Perched	---	---	None	--	None
BRB:	C										
Brayton------		Jan-Jul	0.0-1.0	1.0-2.0\|	Perched	---	---	None	---	None	
		Aug-Sep	---	---	---	---	---	None	---	None	
		Oct-Dec	0.0-1.0	1.0-2.0\|	Perched	---	---	None	---		
Colonel-----	C	Jan-Jun	0.5-1.5	1.5-2.5\|	Perched	---	--	None	--	None	
		Jul-Sep	---	---	---	---	---	None	---	None	
		Oct-Dec	0.5-1.5	1.5-2.5\|	Perched	---	---	None	---	None	
BTB:   Brayton	C										
		Jan-Jul	0.0-1.0	1.0-2.0\|	Perched	---	---	None	---	None	
		Aug-Sep	---	---	---	---	---	None	--	None	
		Oct-Dec	0.0-1.0	1.0-2.0\|	Perched	---	---	None	---		
Colonel-------	C	Jan-Jun	0.5-1.5	1.5-2.5\|	Perched	---	---	None	---	None	
		Jul-Sep	0.5-1.5	1.5-2.5	Perched	---	---	None	---	None	
		Oct-Dec	0.5-1.5	1.5-2.5	Perched	---	---	None	---	None	
BW :	D										
Bucksport-----		Jan-Jul	0.0-0.5	>6.0	Apparent	---	---	None	---	None	
		Aug-Sep	---	---	---	---	---	None	---	None	
		Oct-Dec	0.0-0.5	>6.0	Apparent	---	---	None	--	None	
Wonsqueak-----	D	Jan-Jul	0.0-0.5	>6.0	Apparent	---	---		---		
		Aug-Sep	-	--	---	---	---	None	-	None	
		Oct-Dec	0.0-0.5	>6.0	Apparent	---	---	None	---	None	
BxC:	C										
Buxton------		Jan-May	1.5-2.5	1.5-3.0\|	Perched	---	---	None	---	None	
		Jun-Oct	---	---	---	---	---	None	---	None	
		Nov-Dec	1.5-2.5	1.5-3.0	Perched	---	---	None	---		
BZC:	C										
Buxton-------		Jan-May	1.5-2.5	1.5-3.0	Perched	---	---	None	---	None	
		Jun-Oct		---	---	---	---	None	---	None	
		Nov-Dec	1.5-2.5	1.5-3.0	Perched	---	---	None	--	None	
Lamoine------	D	Jan-Jun	0.5-1.5	1.0-2.5	Perched	---	---	None	---	None	
		Jul-Sep	---	\| ---	---	---	---	None	---	None	
		Oct-Dec	0.5-1.5	1.0-2.5	Perched	-	---	None	---	None	



Table 24.-Water Features-continued

Map symbol and soil name	Hydrologic group	Month	Water table			Ponding			Flooding	
			$\begin{aligned} & \text { Upper } \\ & \text { limit } \end{aligned}$	Lower   limit	Kind	Surface water depth	Duration	Frequency	Duration	Frequency
CpB:   Colton	A	Jan-Dec	>6.0	>6.0	---	-	-	None	---	None
CpC:										
Colton-------	A	Jan-Dec	>6.0	>6.0	---	---	-	None	---	None
CRC:										
Colton-------	A	Jan-Dec	>6.0	>6.0	---	---	--	None	---	None
Adams--------	A	Jan-Dec	>6.0	>6.0	---	---	---	None	---	None
CRE :										
Colton-------	A	Jan-Dec	>6.0	>6.0	---	---	-	None	---	None
Adams---------	A	Jan-Dec	>6.0	>6.0	---	---	---	None	---	None
CSC:										
Colton-------	A	Jan-Dec	>6.0	>6.0	---	---	--	None	---	None
Hermon-------	A	Jan-Dec	>6.0	>6.0	---	---	---	None	---	None
CSD :										
Colton-------	A	Jan-Dec	>6.0	>6.0	---	---	-	None	---	None
Hermon-------	A	Jan-Dec	>6.0	>6.0	---	---	---	None	---	None
CtB: Creasey	CtB:									None
CtC:   Creasey	C/D	Jan-Dec	>6.0	>6.0	---	---	-	None	-	None
CVC:										
Creasey------	$C / D$	Jan-Dec	>6.0	>6.0	---	-	--	None	--	None
Abram--------	D	Jan-Dec	>6.0	>6.0	---	-	---	None	---	None
CxC:										
Creasey-------	C/D	Jan-Dec	>6.0	>6.0	---	---	--	None	-	None
Lamoine------	D	Jan-Jun   Jul-Sep   Oct-Dec	$\left\lvert\, \begin{gathered} 0.5-1.5 \\ -- \\ 0.5-1.5 \end{gathered}\right.$	$1.0-2.5$ $--2-2.5$ $1.0-2$	$\left\lvert\, \begin{gathered} \text { Perched } \\ --- \\ \text { Perched } \end{gathered}\right.$	----	---	None None None	---	None None None



Table 24.-Water Features-continued

Map symbol and soil name	Hydrologic group	Month	Water table			Ponding			Flooding	
			Upper   limit	Lower   limit	Kind	Surface water depth	Duration	Frequency	Duration	Frequency
DMC:   Dixfield	C									
		Jan-May	1.5-2.5	2.5-3.0	Perched	---	---	None	---	None
		Jun-Oct	---	---	---	---	---	None	---	None
		Nov-Dec	1.5-2.5	2.5-3.0	Perched	---	---	None	---	None
Marlow-------	C	Jan-Feb	---	---	---	---	---	None	-	None
		Mar-Apr	1.5-2.5	2.0-3.0	Perched	---	---	None	---	None
		May-Dec	---	---	-	---	---	None	---	None
DRC: Dixfield	C									
		Jan-May	1.5-2.5	2.5-3.0	Perched	---	---	None	---	None
		Jun-Oct	---	---	---	---	-	None	---	None
		Nov-Dec	1.5-2.5	2.5-3.0	Perched	---	---	None	---	None
Marlow--------	c	Jan-Feb	---	---	---	---	---	None	---	None
		Mar-Apr	1.5-2.5	2.0-3.0	Perched	---	-- -	None	---	None
		May-Dec	---	---	---	---	---	None	---	None
Rawsonville---	C	Jan-Dec	>6.0	>6.0	---	---	---	None	---	None
DTC:   Dixfield	C									
			1.5-2.5	2.5-3.0	Perched	---	---			
		Jun-Oct	--	---	---	---	---	None	- -	None
		Nov-Dec	1.5-2.5	2.5-3.0	Perched	---	---	None	---	None
Marlow--------	C	Jan-Feb	---	---		---	---	None	---	None
		Mar-Apr	1.5-2.5	2.0-3.0	Perched	---	---	None	---	None
		May-Dec	---	---	---	---	---	None	---	
Tunbridge----	C	Jan-Dec	>6.0	>6.0	---	---	---	None	-	None
DUC:Dixfield	C									
		Jan-May	1.5-2.5	2.5-3.0	Perched	---	---	None	---	None
		Jun-Oct	---	---	---	---	---	None	---	None
		Nov-Dec	1.5-2.5	2.5-3.0	Perched	---	-	None	---	None
Rawsonville---	C	Jan-Dec	>6.0	>6.0	---	-	-	None	---	None
Colonel-------	C	Jan-Jun	0.5-1.5	1.5-2.5	Perched	---	---	None	---	None
		Jul-Sep	---	---	---	---	---	None	---	None
		Oct-Dec	0.5-1.5	1.5-2.5	Perched	---	---	None	--	None
DWC:   Dixfield-	C									
		Jan-May	1.5-2.5	2.5-3.0	Perched	---	---	None	---	None
		Jun-Oct	---	---	--	---	---	None	---	None
		Nov-Dec	1.5-2.5	2.5-3.0	Perched	--	---	None	---	None


Map symbol and soil name	Hydro-   logic   group	Month	Water table			Ponding			Flooding	
			Upper   limit	Lower   limit	Kind	Surface water depth	Duration	Frequency	Duration	Frequency
DWC:										
Tunbridge-----	C	Jan-Dec	>6.0	>6.0	---	---	---	None	---	None
Colonel------	C	Jan-Jun	0.5-1.5	1.5-2.5	Perched	-	---	None	---	None
		Jul-Sep	---	---	---	---	---	None	---	None
		Oct-Dec	0.5-1.5	1.5-2.5	Perched	---	---	None	---	None
EcB:										
Elliottsville-	B	Jan-Dec	>6.0	>6.0	---	---	---	None	---	None
Chesuncook----	C	Jan-May	1.5-2.0	2.0-2.5	Perched	---	-	None	---	None
		Jun-Oct	---	---	---	---	---	None	---	None
		Nov-Dec	1.5-2.0	2.0-2.5	Perched	---	---	None	---	None
EMC:										
Elliottsville-	B	Jan-Dec	>6.0	>6.0	---	---	-	None	---	None
Monson------	C/D	Jan-Dec	>6.0	>6.0	---	---	---	None	--	None
Go:										
Gouldsboro--	D	Jan-Dec	0	0.0-0.5	Perched	---	-	None	Very brief	Frequent
HCC :										
Hermon-------	A	Jan-Dec	>6.0	>6.0	---	-	-	None	---	None
Colton-------	A	Jan-Dec	>6.0	>6.0	---	---	---	None	-	None
Abram-----	D	Jan-Dec	>6.0	>6.0	---	-	---	None	---	None
HeB:										
Hermon-------	A	Jan-Dec	>6.0	>6.0	---	-	-	None	---	None
Monadnock-----	B	Jan-Dec	>6.0	>6.0	---	-	-	None	---	None
HeC :										
Hermon-------	A	Jan-Dec	>6.0	>6.0	---	-	-	None	---	None
Monadnock-----	B	Jan-Dec	>6.0	>6.0	--	--	---	None	---	None
HkB :										
Hermon-------	A	Jan-Dec	>6.0	>6.0	-	-	---	None	---	None
Monadnock-----	B	Jan-Dec	>6.0	>6.0	---	---	---	None	---	None
HkC:										
Hermon-------	A	Jan-Dec	>6.0	>6.0	---	---	---	None	---	None

Table 24.-Water Features-continued

Map symbol and soil name	Hydrologic group	Month	Water table			Ponding			Flooding	
			Upper   limit	Lower   limit	Kind	$\begin{array}{\|l} \hline \text { Surface } \\ \text { water } \\ \text { depth } \end{array}$	Duration	Frequency	Duration	Frequency
DWC:   Monadnock	B	Jan-Dec	>6.0	>6.0	---	---	---	None	--	None
HMD :   Hermon	A	Jan-Dec	>6.0	>6.0	---	---	---	None	---	None
Monadnock---	B	Jan-Dec	>6.0	>6.0	---	---	---	None	--	None
HOE:   Hermon	A	Jan-Dec	>6.0	>6.0	---	---	-	None	---	None
Monadnock--	B	Jan-Dec	>6.0	>6.0	---	---	---	None	---	None
HSC:   Hermon	A	Jan-Dec	>6.0	>6.0	---	---	---	None	---	None
Monadnock--	B	Jan-Dec	>6.0	>6.0	---	---	-	None	---	None
Skerry-----	C	Jan-May   Jun-Oct   Nov-Dec	$1.5-2.0$ --- $1.5-2.0$	$2.0-3.0$ -- $2.0-3.0$	$\left\lvert\, \begin{gathered} \text { Perched } \\ --- \\ \text { Perched } \end{gathered}\right.$	---	---	None None None	---	None None None
HVC:   Hermon	A	Jan-Dec	>6.0	>6.0	---	---	-	None	---	None
Monadnock---	B	Jan-Dec	>6.0	>6.0	---	---	---	None	---	None
Skerry------	C	Jan-May   Jun-Oct   Nov-Dec	$\left\lvert\, \begin{gathered} 1.5-2.0 \\ --- \\ 1.5-2.0 \end{gathered}\right.$	$2.0-3.0$ --- $2.0-3.0$	$\left\lvert\, \begin{gathered} \text { Perched } \\ \text {--- } \\ \text { Perched } \end{gathered}\right.$	---	---	None None None	---	None None None
HWE : Hogback	C	Jan-Dec	>6.0	>6.0	---	---	---	None	-	None
Abram-------	D	Jan-Dec	>6.0	>6.0	---	-	-	None	---	None
Rawsonville---	C	Jan-Dec	>6.0	>6.0	---	-	-	None	---	None
HXC:   Hogback	C	Jan-Dec	>6.0	>6.0	---	-	---	None	---	None
Rawsonville---	C	Jan-Dec	>6.0	>6.0	---	---	---	None	---	None
Abram--------	D	Jan-Dec	>6.0	>6.0	---	---	---	None	---	None



Map symbol and soil name	Hydrologic group	Month	Water table			Ponding			Flooding	
			Upper   limit	Lower   limit	Kind	Surface water depth	Duration	Frequency	Duration	Frequency
LEB : Creasey	C/D	Jan-Dec	>6.0	>6.0	---	---	---	None	---	None
Scantic-------	D	Jan-Jun	0.0-1.0	1.0-2.0	Perched	---	---	None	---	None
		Jul-Sep	---	-	---	---	-	None	---	None
		Oct-Dec	0.0-1.0	1.0-2.0	Perched	---	---	None	---	None
LHB :										
Lamoine------	D	Jan-Jun	0.5-1.5	1.0-2.5	Perched	---	---	None	---	None
		Jul-Sep	---	---	---	---	---	None	---	None
		Oct-Dec	0.5-1.5	1.0-2.5	Perched	---	-	None	---	None
Nicholville---	c	Jan-May	1.5-2.0	2.0-2.5	Perched	-	---	None	---	
		Jun-Oct	---	---	---	---	---	None	---	None
		Nov-Dec	1.5-2.0	2.0-2.5	Perched	---	--	None	- -	None
LKB :										
Lamoine------	D	Jan-Jun	0.5-1.5	1.0-2.5	Perched	---	--	None	---	None
		Jul-Sep	---	---	---	---	---	None	---	None
		Oct-Dec	0.5-1.5	1.0-2.5	Perched	---	---	None	---	None
Rawsonville---	C	Jan-Dec	>6.0	>6.0	---	---	-	None	---	None
Scantic-------	D	Jan-Jun	0.0-1.0	1.0-2.0	Perched	---	-	None	---	None
		Jul-Sep	---	---	---	---	---	None	---	None
		Oct-Dec	0.0-1.0	1.0-2.0	Perched	---	---	None	---	
LmB :										
Lamoine------	D		0.5-1.5	1.0-2.5	Perched	---	---			
		Jul-Sep	---	---	---	---	---	None	--	None
		Oct-Dec	0.5-1.5	1.0-2.5	Perched	---	---	None	---	None
Scantic------	D	Jan-Jun	0.0-1.0	1.0-2.0	Perched	---	---	None	--	None
		Jul-Sep	---	---	- --	---	---	None	---	None
		Oct-Dec	0.0-1.0	1.0-2.0	Perched	---	---	None	---	
LnB :										
Lamoine-------	D	Jan-Jun	0.5-1.5	1.0-2.5	Perched	---	---	None	--	None
		Jul-Sep	---	---	---	- - -	-- -	None	---	None
		Oct-Dec	0.5-1.5	1.0-2.5	Perched	---	---	None	---	None
Scantic------	D	Jan-Jun	0.0-1.0	1.0-2.0	Perched	---	-	None	-	None
		Jul-Sep	---	--	---	---	---	None	---	None
		Oct-Dec	0.0-1.0	1.0-2.0	Perched	---	---	None	---	None


Map symbol and soil name	Hydrologic group	Month	Water table			Ponding			Flooding			
			Upper   limit	Lower   limit	Kind	$\begin{array}{\|l} \text { Surface } \\ \text { water } \\ \text { depth } \end{array}$	Duration	Frequency	Duration	Frequency		
LSB :   Lamoine												
	D	Jan-Jun	0.5-1.5	1.0-2.5\|	Perched	---	---	None	---	None		
		Jul-Sep	---	---	---	---	---	None	---	None		
		Oct-Dec	0.5-1.5	1.0-2.5\|	Perched	---	---	None	---	None		
Scantic------	D	Jan-Jun	0.0-1.0	\|1.0-2.0		Perched	---	---	None	-	None	
		Jul-Sep	---	---	---	---	---	None	---	None		
		Oct-Dec	0.0-1.0	1.0-2.0\|	Perched	---	---	None	---	None		
Colonel------	C	Jan-Jun	0.5-1.5	1.5-2.5\|	Perched	---	---	None	---	None		
		Jul-Sep	---		---	---	---	None	--	None		
		Oct-Dec	0.5-1.5	1.5-2.5	Perched	---	---	None	---	None		
LTB :   Lamoine												
	D		0.5-1.5	1.0-2.5	Perched	---	---		---	None		
		Jul-Sep	---	---		---	---	None	--	None		
		Oct-Dec	0.5-1.5	1.0-2.5\|	Perched	---	---	None	---	None		
Tunbridge-----	C	Jan-Dec	>6.0	>6.0	---	---	---	None	---	None		
Scantic------	D	Jan-Jun	0.0-1.0	1.0-2.0\|	Perched	---	---	None	---	None		
		Jul-Sep	,	---	---	---	---	None	---	None		
		Oct-Dec	0.0-1.0	1.0-2.0\|	Perched	-	---	None	---	None		
LUE:												
Lyman--------	C/D	Jan-Dec	>6.0	>6.0	---	---	---	None	-	None		
Abram---------	D	Jan-Dec	>6.0	>6.0	---	---	-	None	---	None		
Tunbridge-----	C	Jan-Dec	>6.0	>6.0	---	---	---	None	---	None		
LYC:												
Lyman---------	C/D	Jan-Dec	>6.0	>6.0	---	---	---	None	---	None		
Tunbridge-----	C	Jan-Dec	>6.0	>6.0	-	-	-	None	---	None		
Abram---------	D	Jan-Dec	>6.0	>6.0	-	-	---	None	---	None		
Marlow--------	C	Mar-Apr	1.5-2.5	2.0-3.0	Perched	-	---	None	---	None		
		May-Dec	---		---	---	---	None	---	None		
MbC :												
Marlow-------	C	Jan-Feb	---	---	---	---	---	None	---	None		
		Mar-Apr	1.5-2.5	2.0-3.0	Perched	---	---	None	---	None		
		May-Dec	---	---	---	---	---	None	---	None		

Table 24.-Water Features-continued



Table 24.-Water Features-continued

Map symbol and soil name	Hydro-   logic   group	Month	Water table			Ponding			Flooding	
			Upper   limit	Lower   limit	Kind	Surface water depth	Duration	Frequency	Duration	Frequency
NAC :										
Ricker-------	A	Jan-Dec	>6.0	>6.0	---	---	---	None	---	None
NBB :   Naskeag	C	Jan-May	0.0-1.5	>6.0	Apparent	---	---	None	--	None
		Jun-Sep	---	---	-	---	---	None	---	None
		Oct-Dec	0.0-1.5	>6.0	Apparent	---	---	None	---	None
Rawsonville---	C	Jan-Dec	>6.0	>6.0	---	---	---	None	---	None
Hogback------	C	Jan-Dec	>6.0	>6.0	---	---	---	None	---	None
NCB :										
Naskeag-------	C	Jan-May	0.0-1.5	>6.0	Apparent	---	---	None	--	None
		Jun-Sep	---	---	---	---	---	None	---	None
		Oct-Dec	0.0-1.5	>6.0	Apparent	---	---	None	---	None
Tunbridge-----	C	Jan-Dec	>6.0	>6.0	---	---	---	None	---	None
Lyman--------	C/D	Jan-Dec	>6.0	>6.0	---	---	---	None	---	None
NdB : Nicholville	C									
		Jan-May	1.5-2.0	2.0-2.5	Perched	---	---	None	---	None
		Jun-Oct	---	---	---	---	---	None	---	None
		Nov-Dec	1.5-2.0\|	2.0-2.5	Perched	---	---	None	---	None
```NdC: Nicholville```	C									
		Jan-May	1.5-2.0	2.0-2.5	Perched	---	---	None	---	None
		Jun-Oct	---	---	---	---	---	None	---	None
		Nov-Dec	1.5-2.0	2.0-2.5	Perched	---	---	None	---	None
NGB : Nicholville										
	C	Jan-May	1.5-2.0\|	2.0-2.5	Perched	---	---	None	---	None
		Jun-Oct	-	---	---	---	---	None	---	None
		Nov-Dec	1.5-2.0	2.0-2.5	Perched	---	---	None	---	None
Croghan-------	B	Jan-May	1.5-2.0	>6.0	Apparent	---	---	None	--	None
		Jun-Oct	5	---	Appar	---	-- -	None	---	None
		Nov-Dec	1.5-2.0	>6.0	Apparent	-	-- -	None	---	None

Map symbol and soil name	Hydro- logic group	Month	Water table			Ponding			Flooding	
			Upper limit	Lower limit	Kind	Surface water depth	Duration	Frequency	Duration	Frequency
NGC: Nicholville-	C	Jan-May	1.5-2.0	2.0-2.5	Perched	---	---	None	---	None
		Jun-Oct	---	---	---	---	---	None	--	None
		Nov-Dec	1.5-2.0	2.0-2.5	Perched	---	---	None	---	None
Croghan------	B	Jan-May	1.5-2.0	>6.0	Apparent	---	---	None	---	None
		Jun-Oct	---	-	- --	---	---	None	---	None
		Nov-Dec	1.5-2.0	>6.0	Apparent	---	---	None	---	None
Pg:										
Pits, sand and gravel	A	Jan-Dec	>6.0	>6.0	---	---	---	---	---	None
RhB :										
Rawsonville---	C	Jan-Dec	>6.0	>6.0	---	---	-	None	---	None
Hogback-------	C	Jan-Dec	>6.0	>6.0	---	---	---	None	-	None
RhC:										
Rawsonville----	C	Jan-Dec	>6.0	>6.0	---	---	---	None	---	None
Hogback-------	C	Jan-Dec	>6.0	>6.0	-	-	--	None	---	None
RmC:										
Rawsonville---	C	Jan-Dec	>6.0	>6.0	---	---	---	None	---	None
Hogback-------	C	Jan-Dec	>6.0	>6.0	---	---	-	None	---	None
Abram---------	D	Jan-Dec	>6.0	>6.0	---	-	---	None	--	None
RNC:										
Rawsonville---	C	Jan-Dec	>6.0	>6.0	---	-	---	None	---	None
Lamoine------	D	Jan-Jun	0.5-1.5	1.0-2.5	Perched	-	---	None	---	None
		Jul-Sep	---	---	---	---	---	None	---	None
		Oct-Dec	0.5-1.5	1.0-2.5	Perched	---	-	None	---	None
Hogback-------	C	Jan-Dec	>6.0	>6.0	-	-	-	None	---	None
Sa:	D									
Scantic-------		Jan-Jun	0.0-1.0	1.0-2.0	Perched	---	---	None	---	None
		Jul-Sep	---	---		---	---	None	---	None
		Oct-Dec	0.0-1.0	1.0-2.0	Perched	---	---	None	---	None

Table 24.-Water Features-continued

Map symbol and soil name	Hydrologic group	Month	Water table			Ponding			Flooding	
			$\begin{aligned} & \text { Upper } \\ & \text { limit } \end{aligned}$	Lower limit	Kind	Surface water depth	Duration	Frequency	Duration	Frequency
SF: Scantic	D									
		Jan-Jun	0.0-1.0	1.0-2.0	Perched	---	---	None	---	None
		Jul-Sep	---	---	---	---	---	None	---	None
		Oct-Dec	0.0-1.0	1.0-2.0	Perched	---	---	None	---	None
Biddeford-----	D	Jan-Jul	0.0-0.5	1.5-3.0	Perched	0.0-1.0	Long	Frequent	---	None
		Aug-Sep	---	--	---	--	---	---	---	None
		Oct-Dec	0.0-0.5	1.5-3.0	Perched	0.0-1.0	Long	Frequent	---	None
SG: Sebago	D									
		$\begin{gathered} \text { Jan-Jul } \\ \text { Aug } \end{gathered}$	0.0-0.5	>6.0 .--	Apparent	0.0-1.0	Long	Frequent	---	None None
		Sep-Dec	0.0-0.5	>6.0	Apparent	0.0-1.0	Long	Frequent	---	None
Moosabec-----	D	Jan-Jul	0.0-2.0	>6.0	Apparent	---	--	None	---	None
		Aug-Oct	---	---	---	---	---	None	---	None
		Nov-Dec	0.0-2.0	>6.0	Apparent	---	---	None	---	None
ShB : Sheepscot	B									
		Jan-May	1.5-3.0	>6.0	Apparent	---	-		---	None
		Jun-Oct	---	---	---	---	---	None	---	None
		Nov-Dec	1.5-3.0	>6.0	Apparent	---	---	None	---	None
SJB:	B									
Sheepscot-----		Jan-May	1.5-3.0	>6.0	Apparent	---	--	None	---	None
		Jun-Oct	--	---	---	---	---	None	---	None
		Nov-Dec	1.5-3.0	>6.0	Apparent	---	--	None	---	None
Croghan------	B	Jan-May	1.5-2.0	>6.0	Apparent	---	-	None	---	
		Jun-Oct	--	---	---	---	-	None	---	None
		Nov-Dec	1.5-2.0	>6.0	Apparent	---	---	None	---	None
Kinsman------	C	Jan-Jun	0.0-1.5	>6.0	Apparent	---	---	None	---	None
		Jul-Sep	---	---	$---$	---	---	None	---	None
		Oct-Dec	0.0-1.5	>6.0	Apparent	---	-	None	---	None
SkB :Skerry	C									
		Jan-May	1.5-2.0	2.0-3.0	Perched	---	---		---	None
		Jun-Oct	---	---	---	---	---	None	---	None
		Nov-Dec	1.5-2.0	2.0-3.0	Perched	---	---	None	--	None
SmB :Skerry	C									
		Jan-May	1.5-2.0	2.0-3.0	Perched	---	---	None	---	None
		Jun-Oct	---	---	---	---	---	None	---	None
		Nov-Dec	1.5-2.0	2.0-3.0	Perched	---	---	None	---	None

Map symbol and soil name	$\begin{aligned} & \text { Hydro- } \\ & \mid \text { logic } \\ & \text { group } \end{aligned}$	Month	Water table			Ponding			Flooding	
			Upper limit	Lower limit	Kind	Surface water depth	Duration	Frequency	Duration	Frequency
SNC:										
Skerry---	C	Jan-May	1.5-2.0\|	2.0-3.0	Perched	---	---	None	--	None
		Jun-Oct	---	---	---	---	---	None	---	None
		Nov-Dec	1.5-2.0\|	2.0-3.0	Perched	-	-	None	---	None
Becket-------	C	Jan-Feb	---	---	---	---	---	None	---	None
		Mar-Apr	2.5-3.5\|	3.0-3.5	Perched	-	--	None	---	None
		May-Dec		,		---	---	None	---	None
SOB :										
Skerry-------	C	Jan-May	1.5-2.0\|	2.0-3.0	Perched	---	---	None	--	None
		Jun-Oct	---	---	---	---	---	None	--	None
		Nov-Dec	1.5-2.0\|	2.0-3.0	Perched	---	---	None	---	None
Colonel------	C	Jan-Jun	0.5-1.5\|	1.5-2.5	Perched	---	---	None	---	None
		Jul-Sep	,		-	---	---	None	---	None
		Oct-Dec	0.5-1.5\|	1.5-2.5	Perched	---	---	None	---	None
SRC: Skerry	C									
		Jan-May	1.5-2.0\|	2.0-3.0	Perched	---	---	None	--	
		Jun-Oct	---	---	---	---	---	None	---	None
		Nov-Dec	1.5-2.0\|	2.0-3.0	Perched	---	---	None	--	None
Colonel-------	C	Jan-Jun	0.5-1.5\|	1.5-2.5	Perched	-	-		---	
		Jul-Sep	---	---		-	---	None	---	None
		Oct-Dec	0.5-1.5	1.5-2.5	Perched	---	---	None	---	None
Rawsonville--	C	Jan-Dec	>6.0	>6.0	---	---	-	None	---	None
STC:										
Skerry-------	C		1.5-2.0\|	2.0-3.0	Perched	---			---	
		Jun-Oct	---	---	- ---	---	---	None	---	None
		Nov-Dec	1.5-2.0\|	2.0-3.0	Perched	---	---	None	---	None
Colonel------	C		0.5-1.5\|	1.5-2.5	Perched	---			---	None
		Jul-Sep	---	---		---	---	None	-	None
		Oct-Dec	0.5-1.5	1.5-2.5	Perched	---	---	None	---	None
Tunbridge----	C	Jan-Dec	>6.0	>6.0	---	---	---	None	---	None
TaB:										
Telos--------	C	Jan-Jun	0.5-1.5\|	1.5-2.5	Perched	---	---	None	---	None
		Jul-Sep				---	---	None	---	None
		Oct-Dec	0.5-1.5\|	1.0-2.5	Perched	---	---	None	---	None

Table 24.-Water Features-continued

Map symbol and soil name	Hydrologic group	Month	Water table			Ponding			Flooding	
			Upper limit	Lower limit	Kind	Surface water depth	Duration	Frequency	Duration	Frequency
TCB: Telos	C									
		Jan-Jun	0.5-1.5	1.5-2.5	Perched	---	---	None	---	None
		Jul-Sep	-	--	---	---	---	None	---	None
		Oct-Dec	0.5-1.5	1.0-2.5	Perched	---	---	None	---	None
Chesuncook----	C	Jan-May	1.5-2.0	2.0-2.5	Perched	---	---	None	---	
		Jun-Oct	---	---		---	---	None	--	None
		Nov-Dec	1.5-2.0	2.0-2.5	Perched	---	---	None	---	None
TEB: Telos	C									
		Jan-Jun	0.5-1.5	1.5-2.5	Perched	---	---	None	--	None
		Jul-Sep	---	---	---	---	---	None	---	None
		Oct-Dec	0.5-1.5	1.0-2.5	Perched	---	---	None	---	None
Elliottsville-	B	Jan-Dec	>6.0	>6.0	---	-	-	None	--	None
Monarda------	D	Jan-Jul	0.0-1.0	1.0-2.0	Perched	---	---	None	---	None
		Aug-Sep	---	---	---	---	---	None	---	None
		Oct-Dec	0.0-1.0	1.0-2.0	Perched	---	---		---	
TLC: Tunbridge	C									
		Jan-Dec	>6.0	>6.0	---	---	---	None	---	None
Lamoine------	D	Jan-Jun	0.5-1.5	1.0-2.5	Perched	---	---	None	--	None
		Jul-Sep	---	---	---	---	---	None	--	None
		Oct-Dec	0.5-1.5	1.0-2.5	Perched	---	-	None	---	None
Lyman-----	C/D	Jan-Dec	>6.0	>6.0	---	---	---	None	--	None
TuB: Tunbridge	C									
		Jan-Dec	>6.0	>6.0	---	---	-	None	---	None
Lyman-----	C/D	Jan-Dec	>6.0	>6.0	---	-	-	None	---	None
TuC: Tunbridge	C									
		Jan-Dec	>6.0	>6.0	---	---	---	None	---	None
Lyman--------	C/D	Jan-Dec	>6.0	>6.0	---	-	---	None	---	None
TYC:	C									
Tunbridge----		Jan-Dec	>6.0	>6.0	-	-	-	None	---	None
Lyman--------	C/D	Jan-Dec	>6.0	>6.0	--	---	---	None	---	None
Abram---	D	Jan-Dec	>6.0	>6.0	---	---	---	None	---	None

Map symbol and soil name	Hydrologic group	Month	Water table			Ponding			Flooding	
			Upper limit	Lower limit	Kind	Surface water depth	Duration	Frequency	Duration	Frequency
Ud:										
Udorthents----	-	Jan-Dec	>6.0	>6.0	---	---	---	None	---	None
Urban land----	---	Jan-Dec	>6.0	>6.0	---	---	-	---	--	None
WF:										
Wonsqueak-----	D	Jan-Jul	0.0-0.5	>6.0	Apparent	---	---	None	---	None
		Aug-Sep	---	---		---	---	None	---	None
		Oct-Dec	0.0-0.5	>6.0	Apparent	---	---	None	---	
Bucksport-----	D	Jan-Jul	0.0-0.5	>6.0	Apparent	---	--	None	---	None
		Aug-Sep	---	---		---	---	None	---	None
		Oct-Dec	0.0-0.5	>6.0	Apparent	---	--	None	---	None

Table 25.-Soil Features
(See text for definitions of terms used in this table. Absence of an entry indicates that the feature is not a concern or that data were not estimated.)

Table 25.-Soil Features-continued

Table 25.-Soil Features-continued

Map symbol and soil name	Restrictive layer				Subsidence		Potentialforfrost action	Risk of corrosion	
	Kind	Depth to top	Thickness	Hardness	Initial	Total		Uncoated steel	Concrete
		In	In		In	In			
Pits, sand and gravel--	---	---	---	---	0	--	None	---	---
RhB :									
Rawsonville-----------	Lithic bedrock	20-40	---	Indurated	---	---	Moderate	High	\| High
Hogback---------------	Lithic bedrock	10-18	---	Indurated	---	-	Moderate	High	\| High
RhC:									
Rawsonville-----------	Lithic bedrock	20-40	---	Indurated	---	---	Moderate	High	\| High
Hogback---------------	Lithic bedrock	10-18	-	Indurated	---	--	Moderate	High	High
RmC:									
Rawsonville-----------	Lithic bedrock	20-40	---	Indurated	---	---	Moderate	High	High
Hogback---------------	Lithic bedrock	10-18	---	Indurated	---	--	Moderate	High	\| High
Abram-----------------	Lithic bedrock	1-10	-	Indurated	0	---	Low	Low	\| High
RNC: Rawsonville	Lithic bedrock	20-40	---	Indurated	-	---	Moderate	High	\| High
Lamoine--------------	---	---	---	---	0	--	High	High	Moderate
Hogback---------------	Lithic bedrock	10-18	---	Indurated	---	---	Moderate	High	\| High
Sa: Scantic	-	---	-	-	0	--	High	High	Moderate
SF:									
Scantic---------------	---	---	---	-	0	---	High	High	Moderate
Biddeford-------------	---	---	---	-	0	-	High	High	Moderate
SG:									
Sebago---------------	---	---	---	-	0	---	High	High	High
Moosabec--------------	---	---	---	-	0	---	High	High	High
ShB: Sheepscot-------------	---	---	-	--	0	---	Low	Low	High
SJB:									
Sheepscot------------	---	---	-	--	0	---	Low	Low	High
Croghan---------------	---	---	---	---	0	---	Moderate	Low	High
Kinsman---------------	---	---	---	---	0	---	Moderate	High	High

Table 25.-Soil Features-continued

Table 26.-Hydric Soils

Table 26.-Hydric Soils-continued

Map symbol and map unit name	Component	```Percent of map unit```	Landform	Hydric rating	Hydric criteria
MWB : Brayton-Colonel association, 0 to 8 percent slopes, very stony	Monarda	45	Till plains	yes	2B3
```MXB : Monarda-Wonsqueak complex, 0 to 8 percent slopes, very stony```	Monarda	35	Till plains	yes	2B3
	Wonsqueak	30	Swamps	yes	1
NAC:   Naskeag-Abram-Ricker complex, 0 to 5 percent slopes, very stony	Naskeag	35	Till plains	yes	2A
NBB :   Naskeag-Abram-Ricker complex	Naskeag	35	Till plains	yes	2A
NCB :   Naskeag-Tunbridge-Lyman complex, 0 to 8 percent slopes, very stony					
	Naskeag	35	Till plains	yes	2A
Sa:   Scantic silt loam	Scantic	80	Coastal plains	yes	2B3
```SF: Scantic-Biddeford association, O to 3 percent slopes```	Scantic	50	Coastal plains	yes	2B3
	Biddeford	30	Coastal plains	yes	2B3, 3
```SG: Sebago and Moosabec soils 0 to 8 percent slopes, very stony```					
	Sebago	50	Bogs	yes	1, 3
	Moosabec	40	Raised bogs	yes	1
```SJB: Sheepscot-Croghan-Kinsman complex O to 8 percent slopes```					
	Kinsman	25	Outwash plains	yes	2B2
```TEB : Telos-Elliotsville-Monarda complex O to 8 percent slopes, very stony```					
	Monarda	20	Till plains	yes	2B3
WF:   Wonsqueak and Bucksport soils, frequently flooded					
	Wonsqueak	50	Swamps	yes	1, 4
	Bucksport	25	Swamps	yes	1, 4

Explanation of hydric criteria codes:

1. All Histels except for Folistels, and Histosols except for Folists.
2. Soils in Aquic suborders, great groups, or subgroups, Albolls suborder, Historthels great group, Histoturbels great group, Pachic subgroups, or Cumulic subgroups that:
A. are somewhat poorly drained and have a water table at the surface (0.0 feet) during the growing season, or
B. are poorly drained or very poorly drained and have either:
1.) a water table at the surface ( 0.0 feet) during the growing season if textures are coarse sand, sand, or fine sand in all layers within a depth of 20 inches, or
2.) a water table at a depth of 0.5 foot or less during the growing season if permeability is equal to or greater than 6.0 in/hr in all layers within a depth of 20 inches, or
3.) a water table at a depth of 1.0 foot or less during the growing season if permeability is less than $6.0 \mathrm{in} / \mathrm{hr}$ in any layer within a depth of 20 inches.
3. Soils that are frequently ponded for long or very long duration during the growing season.
4. Soils that are frequently flooded for long or very long duration during the growing season.

Table 27.-Taxonomic Classification of the Soils
(An asterisk in the first column indicates a taxadjunct to the series. See text for a description of those characteristics that are outside the range of the series.)

Soil name	Family or higher taxonomic class
Abram	Loamy, mixed, frigid Lithic Haplorthods
Adams	Sandy, mixed, frigid Typic Haplorthods
Becke	Coarse-loamy, mixed, frigid Oxyaquic Haplorthods
Biddefor	Fine, illitic, nonacid, frigid Histic Humaquepts
Brayton	Coarse-loamy, mixed, nonacid, frigid Aeric Epiaquepts
Buckspo	Euic Typic Borosaprists
Buxton	Fine, illitic, frigid Aquic Dystric Eutrochrepts
Chesuncook	Coarse-loamy, mixed, frigid Aquic Haplorthods
Colonel	Coarse-loamy, mixed, frigid Aquic Haplorthods
Colton	Sandy-skeletal, mixed, frigid Typic Haplorthods
Creasey	Loamy, mixed, frigid Lithic Haplorthods
Croghan	Sandy, mixed, frigid Aquic Haplorthods
Danforth	Loamy-skeletal, mixed, frigid Typic Haplorthods
Dixfield	Coarse-loamy, mixed, frigid Aquic Haplorthods
Elliottsville	Coarse-loamy, mixed, frigid Typic Haplorthods
Gouldsboro	Fine-silty, mixed, nonacid, frigid Typic Sulfaquents
Hermon	Sandy-skeletal, mixed, frigid Typic Haplorthods
Hogback	Loamy, mixed, frigid Lithic Haplohumods
Kinsma	Sandy, mixed, frigid Typic Endoaquods
Lamoin	Fine, illitic, nonacid, frigid Aeric Epiaquepts
Lyman	Loamy, mixed, frigid Lithic Haplorthods
Marlow	Coarse-loamy, mixed, frigid Oxyaquic Haplorthods
Masardis	Sandy-skeletal, mixed, frigid Typic Haplorthods
Medomak	Coarse-silty, mixed, nonacid, frigid Fluvaquentic Humaquepts
Monadnock	Coarse-loamy over sandy or sandy-skeletal, mixed, frigid Typic Haplorthods
Monarda	Coarse-loamy, mixed, acid, frigid Aeric Epiaquepts
Mons	Loamy, mixed, frigid Lithic Haplorthods
Moosabe	Dysic, frigid Typic Sphagnofibrists
Naskeag	Sandy, mixed, frigid Typic Endoaquods
Nicholville	Coarse-silty, mixed, frigid Aquic Haplorthods
Rawsonvill	Coarse-loamy, mixed, frigid Typic Haplohumods
Ricker	Dysic Lithic Borofolists
Scanti	Fine, illitic, nonacid, frigid Typic Epiaquepts
Sebago	Dysic Fibric Borohemists
Sheepsco	Sandy-skeletal, mixed, frigid Aquic Haplorthods
Skerry	Coarse-loamy, mixed, frigid Aquic Haplorthods
Telos	Coarse-loamy, mixed, frigid Aquic Haplorthods
Tunbridg	Coarse-loamy, mixed, frigid Typic Haplorthods
Udorthen	Udorthents
Wonsqueak	Loamy, mixed, euic Terric Borosaprists

Table 28.-Relationship of the Soil Series in the Survey Area to Landscape Position, Parent Material, and Drainage
The soil catena concept is a useful guide to understand the complex nature of soils that blanket the landscape. A soil catena is a sequence of soil series that extend across relief positions and are developed from similar parent material. Relief influences soil formation primarily through its effect on drainage, runoff, and erosion. The key that follows uses the catena concept by matching parent material and drainage, for each series. This is helpful in identifying the relationship of one series to others. It is intended to be used only as a guide.

Parent material of the soils catena and selected characteristics of the deepest, best drained member	Excessively   drained	Somewhat excessively drained	Well   drained	Moderately well   drained	Somewhat poorly drained	Poorly drained	Very poorly drained

## A. Soils formed in Glacial Till

## 1. Dark gray fine-grained quartzite, slate, phyllite, and some calcareous sandstone

a. Loamy-skeletal soils
b. Coarse-loamy soils with dense basal till
. Red sandstone and conglomerate
[| | Creasey
3. Mica schist and phyllite with some granite and gneiss
a. Coarse-loamy soils with a spodic horizon
b. Coarse-loamy soils with a spodic horizon and dense basal till
c. Coarse-loamy soils with a spodic horizon having $>6 \%$ organic carbon
Abram $_{1}$
|l|

Tunbridge 3			
Marlow	Dixfield	Colonel	Brayton
Hogback   Rawsonville			

## 4. Granite, gneiss and some schist

a. Sandy-skeletal soils with a spodic horizon
b. Coarse-loamy soils with a spodic horizon and dense basal till
c. Coarse-loamy over sandy or sandyskeletal soils
Hermon

Table 28.-Relationship of the Soil Series in the Survey Area to Landscape Position, Parent Material, and Drainage-continued

Parent material of the soils catena and selected characteristics of the deepest, best drained member

Excessively   drained	Somewhat excessively drained	Well   drained	Moderately well   drained	Somewhat poorly drained	Poorly   drained	Very poorly drained

B. Soils formed in Glaciofluvial Material (mainly on deltas, terraces, eskers, kames and beaches)

1. Granite, gneiss, some sandstone and lesser amounts of slate and phyllite
a. Sandy-skeletal soils with a spodic
horizon
b. Sandy soils with a spodic horizon
2. Slate, shale, phyllite and lesser amounts of granite, gneiss and limestone
a. Sandy-skeletal soils
gneiss and limestone
Masardis $\mid$
C. Soils formed in Glaciomarine and Glaciolacustrine Deposits


## D. Soils formed in Alluvial Deposits


E. Organic Soils (pH given in 0.01M CaCl2)

## 1. Folists

a. Very shallow and shallow to bedrock soils, pH < 4.5


Table 28.-Relationship of the Soil Series in the Survey Area to Landscape Position, Parent Material, and Drainage-continued


All these organic soils are very deep (>60 inches) to bedrock unless otherwise noted. These Terric organic soils range from 16 to 51 inches in thickness over mineral soil.

Footnotes are for mineral soils:
1 Very shallow (<10 inches of mineral soil above bedrock)
2 Shallow (10 to <20 inches of mineral soil above bedrock)
3 Moderately deep ( 20 to <40 inches of mineral soil above bedrock)
4 Deep ( 40 to $<60$ inches of mineral soil above bedrock)
All others are very deep ( $\geq 60$ inches of mineral soil above bedrock)

## NRCS Accessibility Statement

The Natural Resources Conservation Service (NRCS) is committed to making its information accessible to all of its customers and employees. If you are experiencing accessibility issues and need assistance, please contact our Helpdesk by phone at 1-800-457-3642 or by e-mail at ServiceDesk-FTC @ftc.usda.gov. For assistance with publications that include maps, graphs, or similar forms of information, you may also wish to contact our State or local office. You can locate the correct office and phone number at http://offices.sc.egov.usda.gov/locator/app.

