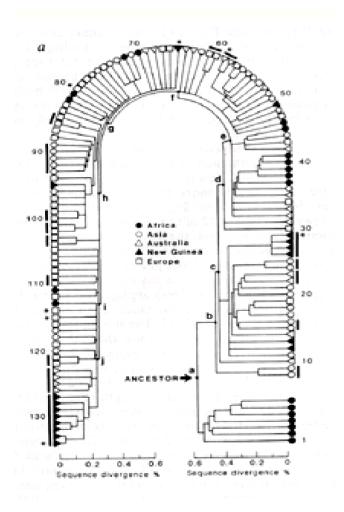

Identification of SNPs in the Mitochondrial Genome to Resolve Common HV1/HV2 Types in Caucasian Populations.

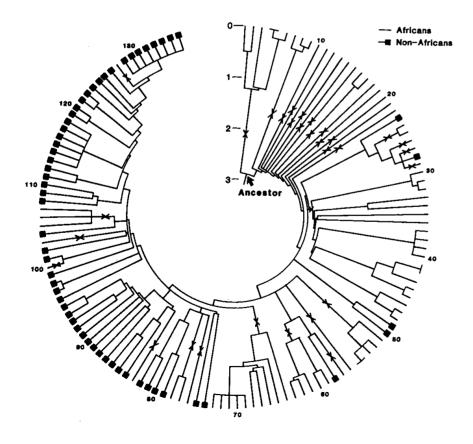
<u>Michael D. Coble¹</u>, Rebecca S. Just², Jessica L. Saunier²; Jennifer E. O'Callaghan²; Ilona H. Letmanyi², Christine T. Peterson², Jodi A. Irwin²; Peter M. Vallone¹, John M. Butler¹, and Thomas J. Parsons².


¹National Institute of Standards and Technology, Gaithersburg, MD, USA ²The Armed Forces DNA Identification Laboratory, Rockville, MD, USA

The Mitochondrial Genome

http://www.mitomap.org/

mtDNA as a Genetic Marker

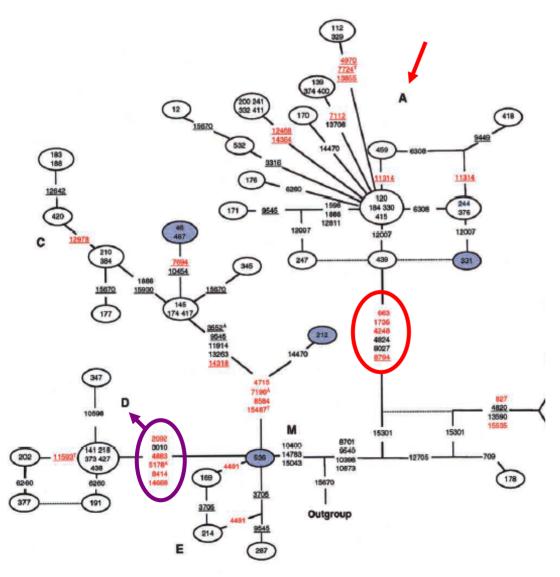


RFLP analysis of 134 individuals

Cann et al. 1987

"Out of Africa"

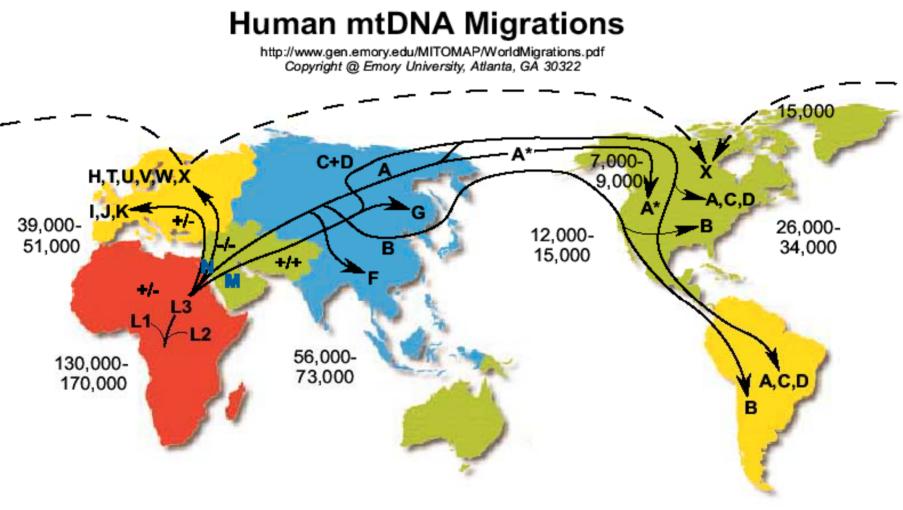
mtDNA as a Genetic Marker



Control Region Sequence Analysis of 189 individuals

Vigilant et al. 1991

Mitochondrial Haplogroups


Herrnstadt et al.: Network Analysis of mtDNA Haplogroups

Haplogroup - A group of related haplotypes.

Each haplogroup cluster is defined by a set of specific, shared polymorphisms.

mtDNA Haplogroups (RFLP)

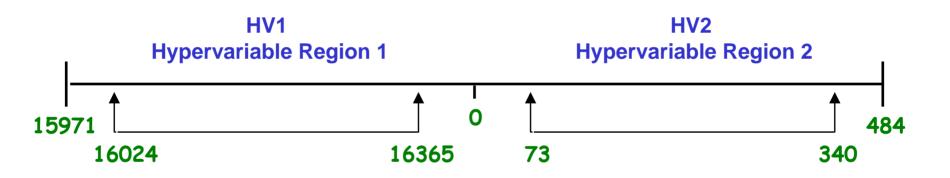
+/-, +/+, or -/- = Dde | 10394 / Alu | 10397 * = Rsa | 16329 Mutation rate = 2.2 - 2.9 % / MYR Time estimates are YBP

Caucasian mtDNA Haplogroups (HV1/HV2)

- H CRS +/- variants
- J 16069 C-T 16126 T-C 73 A-G 295 C-T
- T 16126 T-C 16294 C-T 73 A-G
- V 16298 T-C 72 T-C

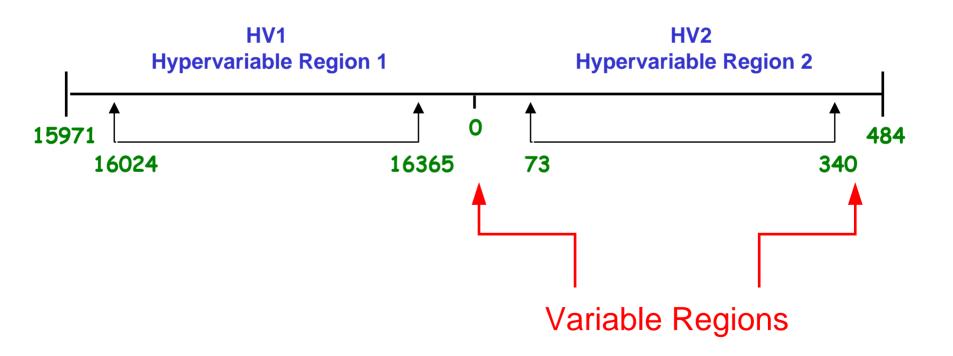
Macaulay et al. (1999) *AJHG* **64:** 232-249. Allard et al. (2002) *JFS* **47:** 1215-1223.

mtDNA as a Forensic Tool

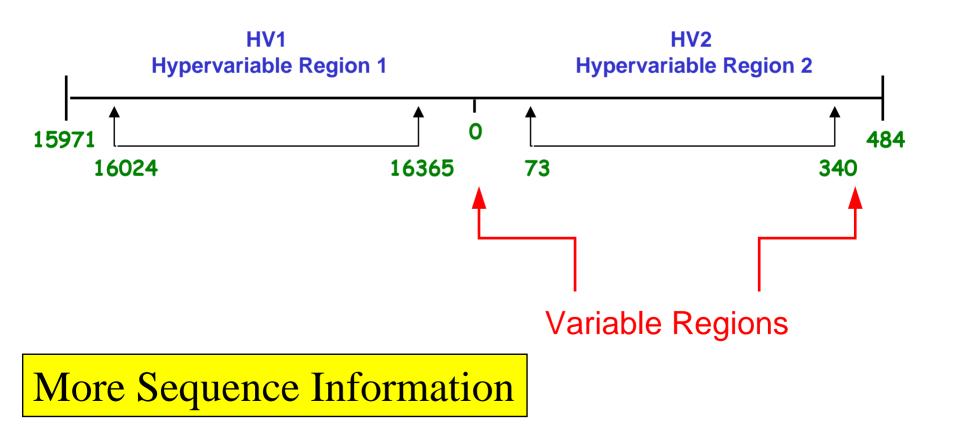

Advantages of Using mtDNA

- •Maternal Inheritance
- •Lack of Recombination
- •High Copy Number
- •Cases where:
 - •DNA is degraded
 - •Only maternal references are available
 - •Samples with little or no Nuclear DNA •Shed Hairs •Fingernails

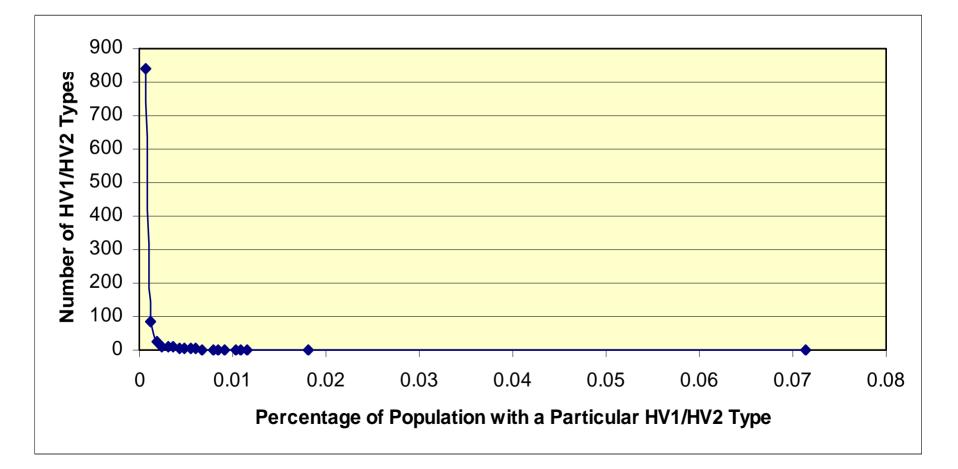
mtDNA as a Forensic Tool Disadvantages of Using mtDNA

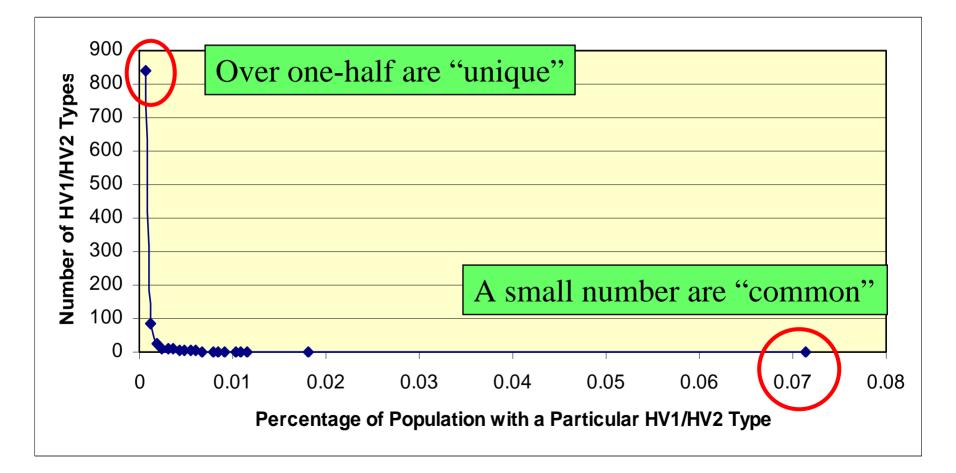

- •Maternal Inheritance You have many!
- •Not a unique identifier
- •Some mtDNA types are common in the population

Current mtDNA Amplification & Sequencing Strategy



$$HV1 + HV2 = 610 bp$$


Current mtDNA Amplification & Sequencing Strategy


Current mtDNA Amplification & Sequencing Strategy

mtDNA Population Distribution Caucasians (n=1665)

mtDNA Population Distribution Caucasians (n=1665)

Framing the Problem

The greatest limitation for mtDNA testing lies with the small number of common types for which the power of discrimination is low.

~20% of the time, the Forensic Scientist encounters a HV1/HV2 type that occurs at greater than ~0.5% of the population

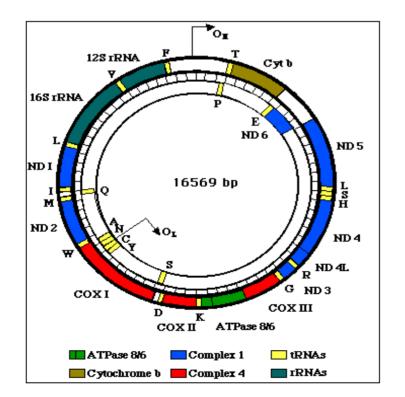
In database or mass fatality comparisons: multiple hits will occur for these common types.

 September 15, 1943 - B17F Bomber returning from a mission to Port Moresby, New Guinea

• The plane crashes in the Owen Stanley Mountain range due to "adverse weather."

• Subsequent searches proved negative.

• 11 crewmen declared non-recoverable on July 22, 1949.


- October 9, 1992 A private company helicopter discovers crash site.
- mtDNA testing reveals that 3/11 crewmen share the same HV type (263 A-G, 315.1 C).
- Further VR testing could distinguish 1 of the 3 crewmen (16519 T-C). However, 2 crewmen still matched.

Partial dental records were used to associate 3 teeth among the 2 crewmen matching in the CR.

• One L femur could not be associated with either crewmen, and was buried in a grave containing group remains

Central Effort of the Project

• Sequence variation outside of HV1/HV2 can be used to distinguish Caucasian individuals sharing common types.

Coding Region – evolutionary rate is 4-fold less than the control region.

However...15X Amount of DNA

Ethical Considerations

 More than 100 characterized diseases associated with mtDNA mutations (Mitomap – www.mitomap.org)

• To avoid having forensic testing from evolving into genetic counseling, we focused on neutral SNPs in the mtGenome.

SNPs for Discrimination

• Non-coding sites in the control region (outside of HV1/HV2).

• Non-coding "spacer" regions throughout the mtGenome.

• Silent mutations in protein coding genes.

SNPs for Discrimination

- Practical application A set of SNP sites that can be rapidly assayed to provide maximal discrimination.
- Avoids further sequencing.
- SNaPShotTM (ABI) small amplicons, multiplexed can conserve template.

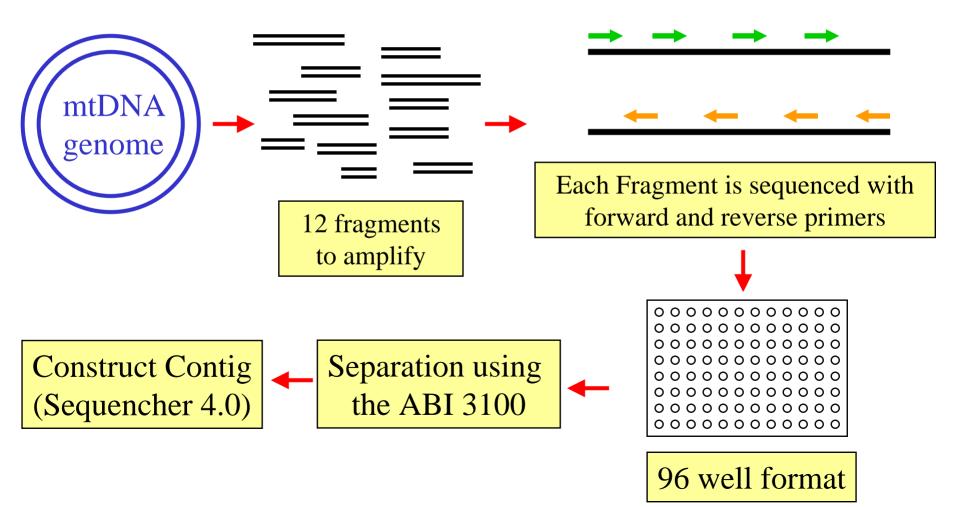
Strategy for SNP Identification

 Sequence the entire genome of unrelated individuals sharing common HV1/HV2 types in the Caucasian population (focus on 18 of 22 common types that occur at a frequency of 0.5% or greater).

Common mtDNA Haplogroups

Com	Haplo	Seq (+ CRS)
31	H1	CRS	
25	H2	152 C	
11	H3	16129 A	
8	H4	16263 C	
12	H5	16304 C	
11	H6	73 G	
7	H7	16162 G 1	6209 C 73 G

Length Variation in HV2 C-stretch – ignored (see Stewart et al., 2001)


Common mtDNA Haplogroups

Com	Haplo	Seq (+ CRS)		
15	J1	16069 T 16126 C 73 G 185 A 228 A 295 T		
6	J2	16069 T 16126 C 73 G 228 A 295 T		
12	JЗ	16069 T 16126 C 73 G 185 A 188G 228 A 295 T		
3	J4	16069 T 16126 C 16145 A 16172 C 16222 T 16261 T 73 G 242 T 295 T		
20	T1	16126 C 16294 T 16296 T 16304 C 73 G		
10	T2	16126 C 16163 G 16186 T 16189 C 16294 T 73 G 152 C 195 C		
8	T3	16126 C 16294 T 16296 T 73 G		
25	V1	16298 C		
14	K1	16224 C 16311 C 73 G 146 C 152 C		
8	K2	16093 C 16224 C 16311 C 73 G		
7	K3	16224 C 16311 C 73 G		

241 total genomes from 18 common HV1/HV2 types (~14% of the total database)

Whole Genome Sequencing Strategy

• Human mtDNA standard reference material (Levin et al., 1999)

High Throughput Sequencing MWG RoboAmp 4200

High Throughput Sequencing from NIJ Support

Jennifer O'CallaghanRebecca JustJessica SaunierFormer Team Members – Christine Peterson and Ilona Letmanyi

Criteria for SNP Selection

• Neutral.

• Should be shared (within or among individuals sharing the common types).

• Non-redundant

• Would the SNPs that resolve one group be useful for resolving other closely related groups?

Com	Haplo	Seq (+ CRS)	
31	H1	CRS	
25	H2	152 C	
11	H3	16129 A	"Hot Spots"
8	H4	16263 C	
12	H5	16304 C	
11	H6 (73 G	
7	H7	16162 G 162	09 C 73 G

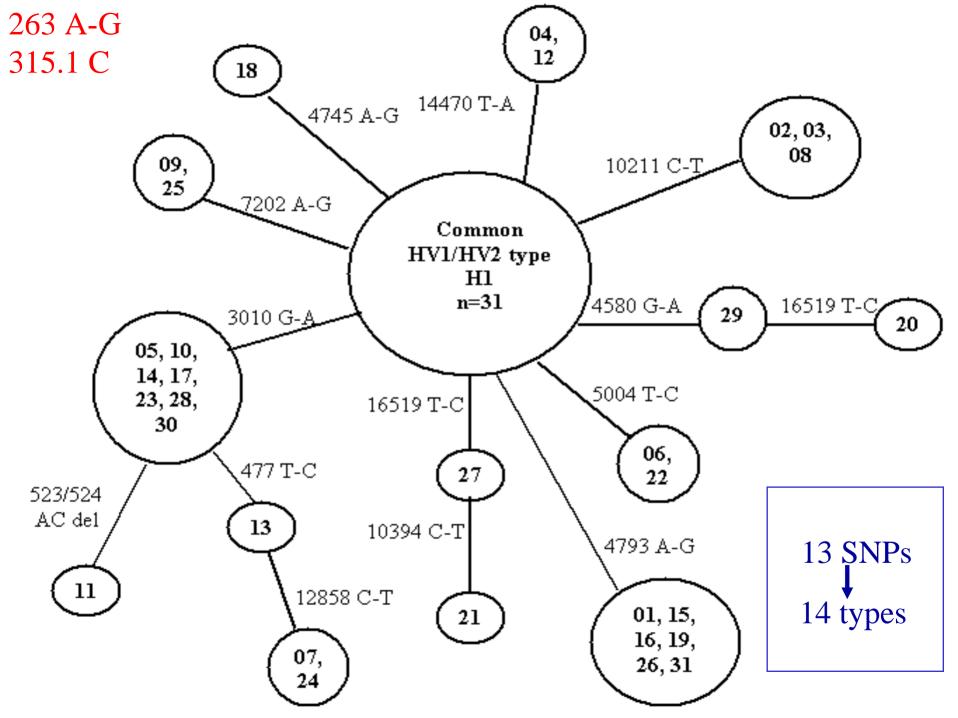
• Are resolving SNPs **slow**, **rare polymorphisms** that occurred once during the evolution of a haplogroup?

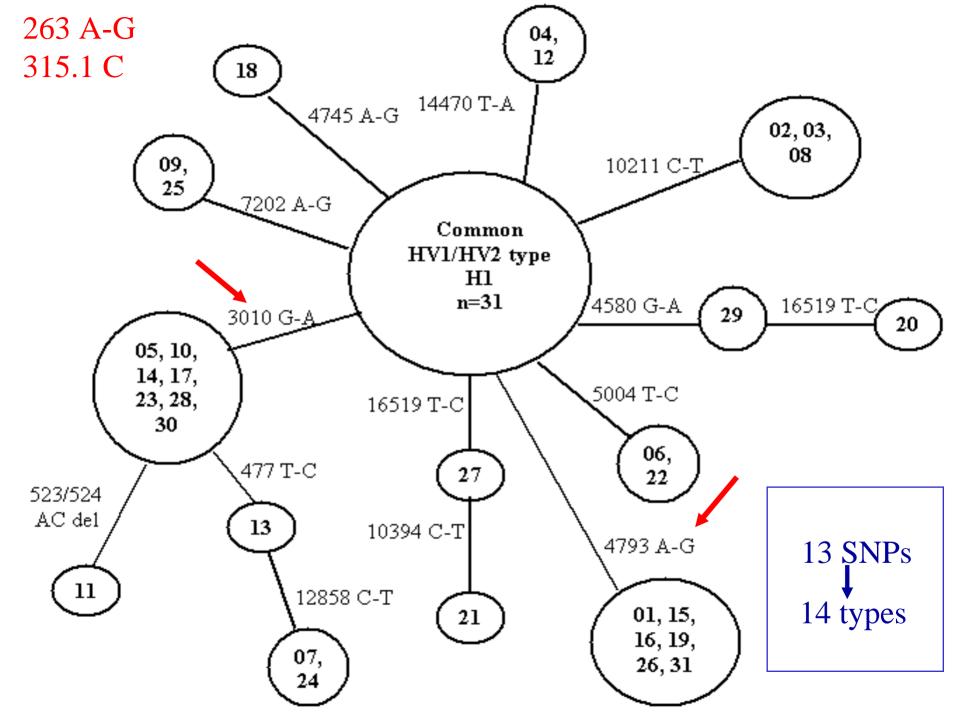
OR....

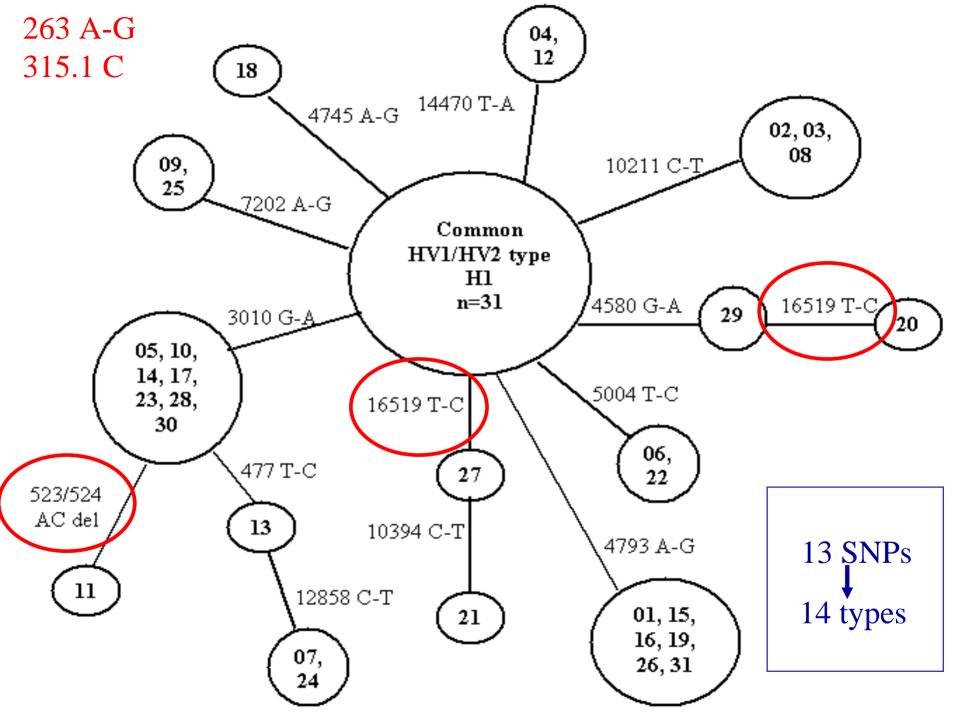
• Are resolving SNPs **slow, rare polymorphisms** that occurred once during the evolution of a haplogroup?

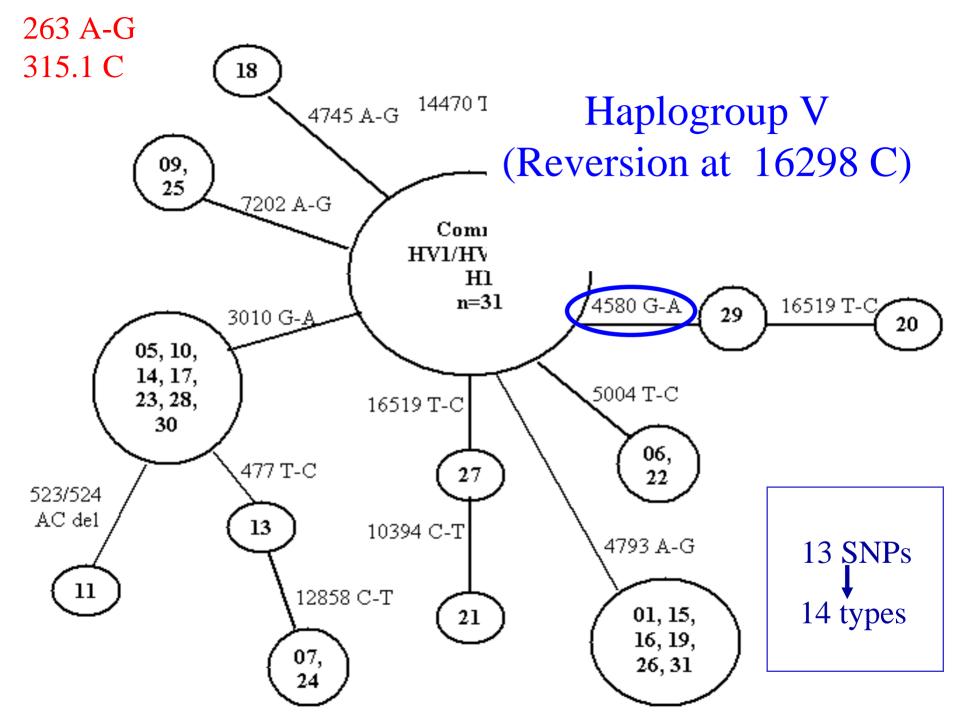
• Are resolving SNPs "universally" **fast hot spots**, useful for all haplogroups (L, M, N)?

OR....

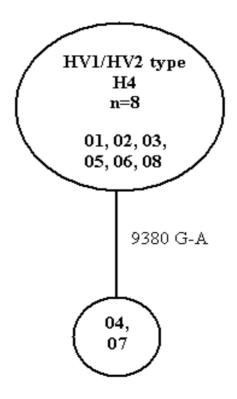

• Are resolving SNPs **slow**, **rare polymorphisms** that occurred once during the evolution of a haplogroup?

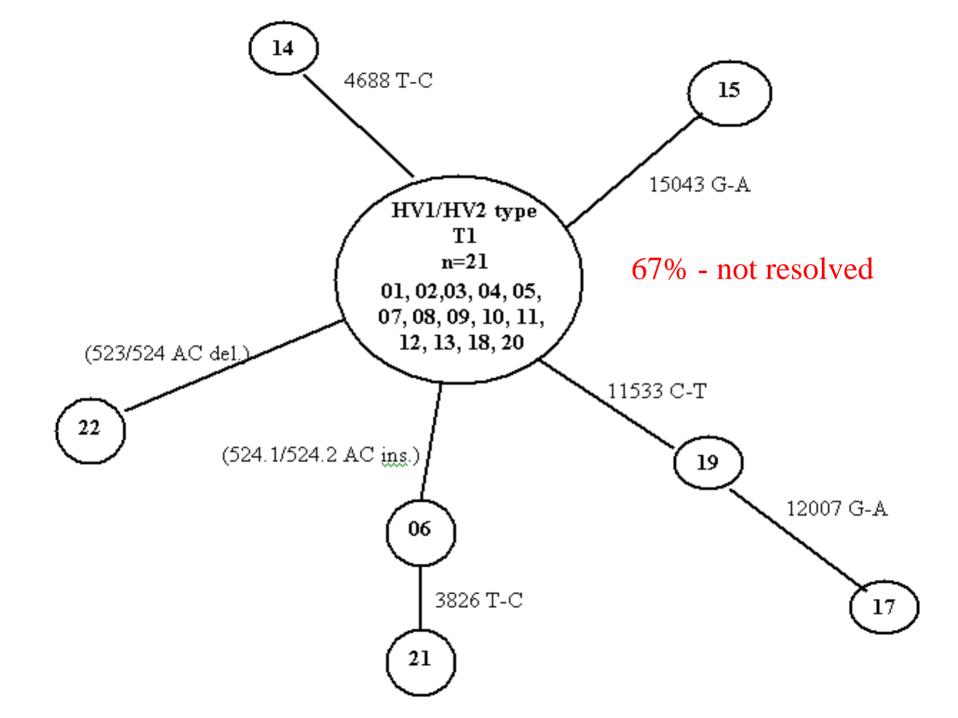



• Are resolving SNPs "universally" **fast hot spots**, useful for all haplogroups (L, M, N)?


OR....

• Are resolving SNPs a combination of the two?





H4 - CRS + 16263 T-C

Summary

- 241 mtGenomes 420 polymorphic sites in the coding region.
- 32/241 matched one or more individuals over the entire mtGenome (0/12 H5 individuals matched; 4/8 H7 individuals matched).
- Homoplasies common in HV1/HV2.

Summary

• Percentage of sites that varied ranged from 1.0% (16S rRNA) to 6.6% (non-coding regions outside of the control region).

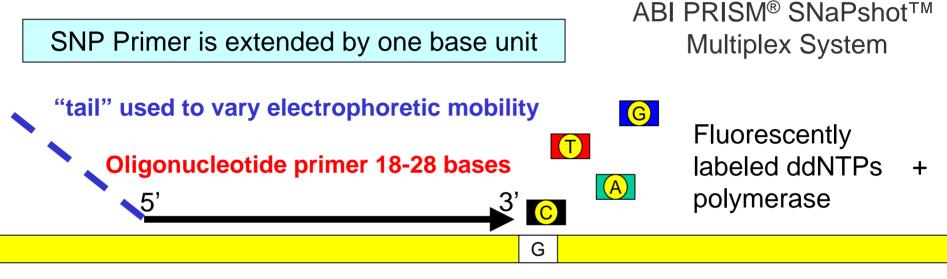
 ATP Synthase 8 (4.8%) and ATP Synthase
 6 (3.7%) showed the greatest variation in the protein coding genes.

Synonymous and Nonsynonymous mutations, by Gene

Gene	Length	Synonymous	Nonsynonymous	Total	% NonSyn.
ND1	956	14	8	22	36.4%
ND2	1,042	25	11	36	30.6%
CO1	1,542	29	9	38	23.7%
CO2	684	14	4	18	22.2%
ATP8	207	3	5	8	62.5%
ATP6	681	7	20	27	74.1%
CO3	784	14	4	18	22.2%
ND3	346	5	2	7	28.6%
ND4L	297	5	1	6	16.7%
ND4	1,378	30	7	37	18.9%
ND5	1,812	39	15	54	27.8%
ND6	525	8	7	15	46.7%
CYB	1,141	23	15	38	39.5%
Total	11,341	216	108	324	33.1%

c.f. Mishmar et al. (2003) PNAS

- 59 SNPs that met our criteria (neutral, shared, non-redundant).
 - 49 Protein coding (silent)
 - 8 Control Region (outside HV1/2)
 - 1 Non-coding spacer region
 - 1 16S rRNA*

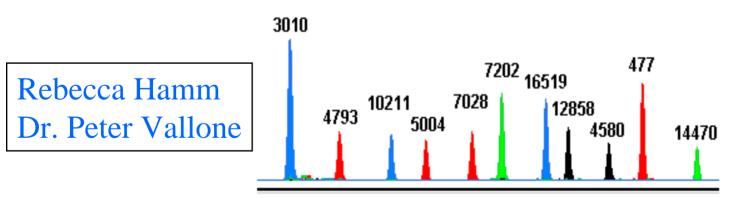


Α	В	С	D	E	F	G	Н
477	477	72	482	4808	64	3826	64
3010	3010	513	5198	5147	4745	3834	4688
4580	3915	4580	6260	9380	10211	4688	11377
4793	5004	5250	9548	9899	10394	6293	12795
5004	6776	11719	9635	11914	10685	7891	13293
7028	8592	12438	11485	15067	11377	11533	14305
7202	10394	12810	11914	16519	14470	12007	16519
10211	10754	14770	15355		14560	12795	
12858	11864	15833	15884		16390	15043	
14470	15340	15884	16368		14869	16390	
16519	16519	16519				16519	
H1	H2 H3 H6	V1 H5	J1 J2 K2 K3	J4 T2 T3 H4	V1 H1 H2 H3	J1 J3 T1	К1

A	В	С	D	Е	F	G	н
477	477	72	482	4808	64	3826	64
3010	3010	513	5198	5147	4745	3834	4688
4580	3915	4580	6260	9380	10211	4688	11377
4793	5004	5250	9548	9899	10394	6293	12795
5004	6776	11719	9635	11914	10685	7891	13293
7028	8592	12438	11485	15067	11377	11533	14305
7202	10394	12810	11914	16519	14470	12007	16519
10211	10754	14770	15355		14560	12795	
12858	11864	15833	15884		16390	15043	
14470	15340	15884	16368		14869	16390	
16519	16519	16519				16519	
H1	H2 H3 H6	V1 H5	J1 J2 K2 K3	J4 T2 T3 H4	V1 H1 H2 H3	J1 J3 T1	K1

					\frown		
Α	В	С	D	Е	F	G	н
477	477	72	482	4808	64	3826	64
3010	3010	513	5198	5147	4745	3834	4688
4580	3915	4580	6260	9380	10211	4688	11377
4793	5004	5250	9548	9899	10394	6293	12795
5004	6776	11719	9635	11914	10685	7891	13293
7028	8592	12438	11485	15067	11377	11533	14305
7202	10394	12810	11914	16519	14470	12007	16519
10211	10754	14770	15355		14560	12795	
12858	11864	15833	15884		16390	15043	
14470	15340	15884	16368		14869	16390	
16519	16519	16519				16519	
H1	H2 H3 H6	V1 H5	J1 J2 K2 K3	J4 T2 T3 H4	V1 H1 H2 H3	J1 J3 T1	K1

Allele-Specific Primer Extension



PCR Amplified DNA Template

Products can be electrophoretically separated on an ABI 310, 3100

The SNaPShotTM Platform

Locus	SNP Primer Sequence	Length
3010-F	TCAGAAGTGAAAGGGGGC	18/na
4763-R	TTTTTTTGTTGGATCAGGACATCCC	19/26
10211-R	TT TT TT TT TT AC TAAGAAGAATT TTATGGA	20/30
5004-F	TT TT TT TT TT TT A GACCCAGC TACGCAAAATC	20/34
7028-F	TTTTTTTTTTTTTTTTGACACGTACTACGTTGTAGC	20/38
7202-F	TT TTT TTT TTT TTT TTT TTT CCACAACAC TTTCTC GGCCT	20/42
16519-R	TTTTTTTTTTTTTTTTTTTTTTTTTGTGGGCTATTTAGGCTTTATG	22/46
12858-F	TTTTTTTTTTTTTTTTTTTTTTTTTTGCAGCCATTCAAGCAATCCTATA	23/ <mark>50</mark>
4580-R	TT TTT TTT TTT TTT TTT TTT TTT TTT G GT TA GAAC TG GAA TAAAAGC TAG	25/54
477-F	TT TTT TTT TTT TTT TTT TTT TTT TTT TTT	20/58
14470-R	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTGGGAATGATG	21/62

Vallone et al. *IJLM* (2004) **118:** 147-157.

18 common HV1/HV2 types, 241 individuals

18 common HV1/HV2 types, 241 individuals

+8 Multiplexes (59 SNPs)

105 types (55 "unique")

18 common HV1/HV2 types, 241 individuals

+8 Multiplexes (59 SNPs) +8 Multiplexes (with AC indel) 105 types (55 "unique") 112 types (64 "unique")

18 common HV1/HV2 types, 241 individuals

<u>+8 Multiplexes (59 SNPs)</u> <u>+8 Multiplexes (with AC indel)</u> 105 types (55 "unique") 112 types (64 "unique")

6-fold improvement!

The Nature of the SNPs

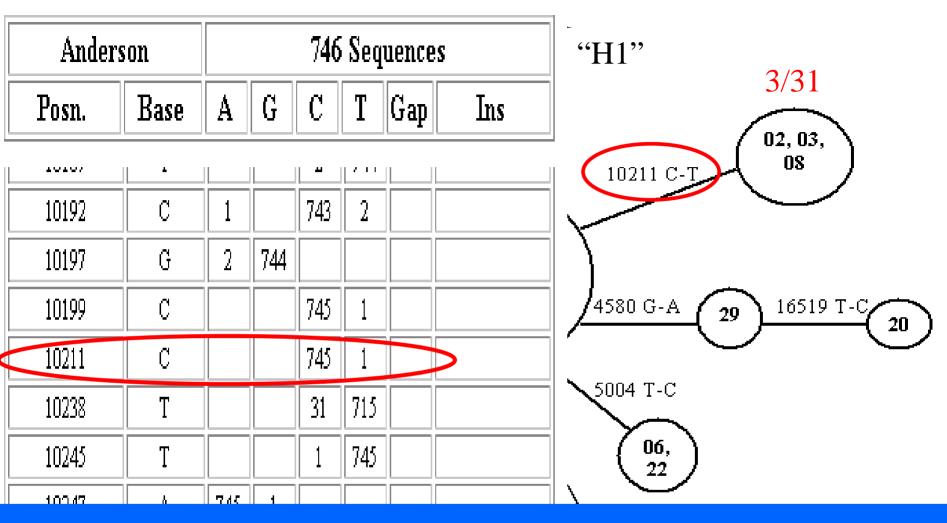
Α	В	С	D	E	F	G	Н
477	477	72	482	4808	64	3826	64
3010	3010	513	5198	5147	4745	3834	4688
4580	3915	4580	6260	9380	10211	4688	11377
4793	5004	5250	9548	9899	10394	6293	12795
5004	6776	11719	9635	11914	10685	7891	13293
7028	8592	12438	11485	15067	11377	11533	14305
7202	10394	12810	11914	16519	14470	12007	16519
10211	10754	14770	15355		14560	12795	
12858	11864	15833	15884		16390	15043	
14470	15340	15884	16368		14869	16390	
16519	16519	16519				16519	
H1	H2 H3 H6	V1 H5	J1 J2 K2 K3	J4 T2 T3 H4	V1 H1 H2 H3	J1 J3 T1	К1

The Nature of the SNPs

• Are the SNPs useful for discrimination mostly slow, rare types restricted to a particular HV1/HV2 type

(OR)

- Do the SNPs have a general utility across many different haplotypes?
- How should one proceed to identify SNPs to resolve common HV1/HV2 types in other forensically relevant populations (e.g. African American)?


Why not survey the literature for Polymorphisms?

- Prior to Dec. 2000 handful of complete human genomes (mostly RFLP data ~20% of the genome)
- Dec. 2000 Ingman et al. (53 complete)
- June 2001 Finnila et al. (192 genomes CSGE)
- August 2001 Maca-Myer et al. (42 complete)
- May 2002 Herrnstadt et al. (560 coding only)

Why not survey the literature for Polymorphisms?

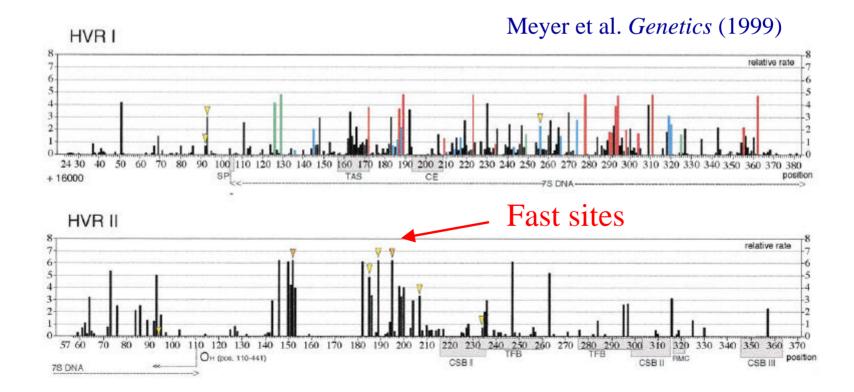
- Prior to Dec. 2000 handful of complete human genomes (mostly RFLP data ~20% of the genome)
- Dec. 2000 Ingman et al. (53 complete)
- June 2001 Finnila et al. (192 genomes CSGE)
- August 2001 Maca-Myer et al. (42 complete)
- May 2002 Herrnstadt et al. (560 coding only)

Problem - Very Few Common Types

• mtDB - Human Mitochondrial Genome Database

http://www.genpat.uu.se/mtDB/

Recent recommendations to increase forensic discrimination


- Andreasson et al. (2002) Sequenced short fragments of the mtGenome that are most informative
- Lee et al. (2002) Sequenced the CytB gene for Koreans
- Lutz-Bonengel et al. (2003) Sequenced the ATPase and ND4 genes (highly variable genes)
- Poetsch et al. (2003) Sequenced the ATPase genes

Flaws with this approach

- Variation in one gene is not guaranteed (or likely) to resolve *common* types.
- Focus on one segment could miss SNPs scattered throughout the mtGenome.
- Unintended effect of revealing medically significant information.

Mutation Rate Analysis in the mtDNA Coding Region

Mutation rate heterogeneity – the variation of mutation rates among sites.

Mutation Rate Analysis in the mtDNA Control Region

Mutation rate heterogeneity – has been well characterized in the control region using a variety of methods for analysis (Parsimony, Maximum Likelihood, Pairwise Distance methods). Mutation Rate Analysis in the mtDNA Coding Region – Previous Assumptions (I)

- Eyre-Walker et al. *Proc. R. Soc. Lond B* 1999. Using partial DNA sequences of the human mtDNA genome (filled with errors), this group observed a significant amount of recurrent mutations (homoplasy) in their data.
- Conclusion **Recombination!** (between paternal and maternal mtDNA)

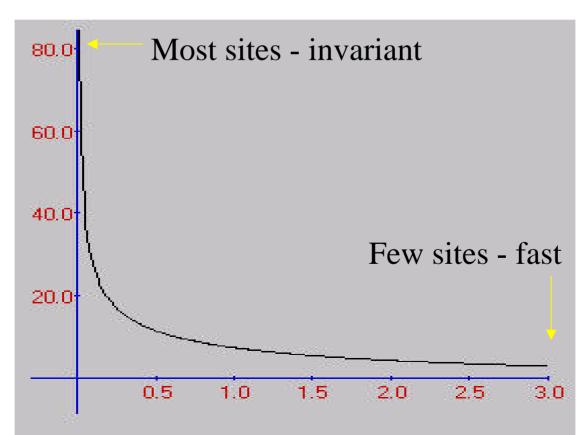
Mutation Rate Analysis in the mtDNA Coding Region – Previous Assumptions (I)

- Eyre-Walker et al. assume mutation rate *Homo* geneity...
- "There is no evidence of variation in the mutation rate."
- (Mostly discredited for their poor data choice and method of calculating LD)

Mutation Rate Analysis in the mtDNA Coding Region – Previous Assumptions (II)

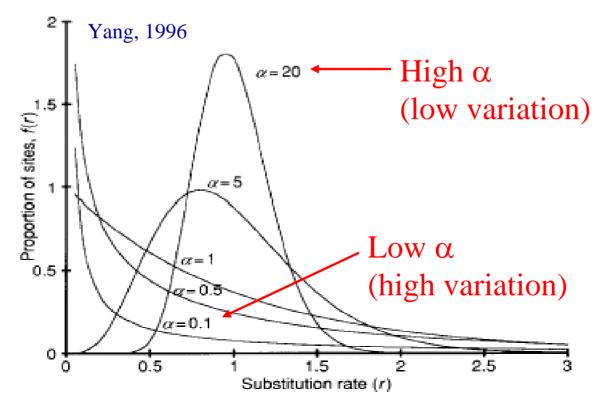
• Herrnstadt et al. (2002) *AJHG* – 560 coding region sequences.

"One important result to emerge from these studies is the *relatively large number of sites* at which *homoplasic events* have occurred."
 (Referring to their Table 2)


Mutation Rate Analysis in the mtDNA Coding Region – Previous Assumptions (II)

• Yao et al. (2003) *AJHG* – in response to an Amerindian paper filled with sequence errors.

 "Homoplasy in the coding region is much less than in the control region and may have only a few hot spots (see, e.g., table 2 of Herrnstadt et al. [2002])"


How is Mutation Rate Variation Measured?

• Control region rates follow a negative binomial distribution (gamma distribution).

How is Mutation Rate Variation Measured?

• The SHAPE of the curve (α) is inversely related to the amount of heterogeneity

Current Literature

•Only one study has examined the mutation rate heterogeneity in the coding region.

•Meyer and von Haeseler (2003) *Mol. Biol Evol.* Analyzed the 53 mtGenomes from Ingman et al. (2000).

Methods

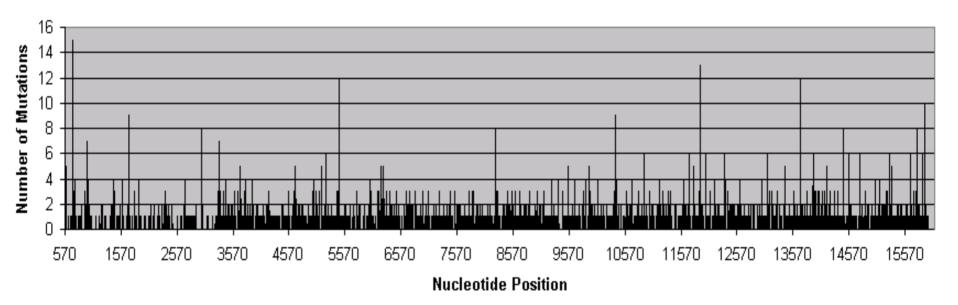
- Parsimony analysis of phylogenetic trees (646 coding region sequences).
- Count the number of character changes mapped upon the MPT to determine the relative mutation rate.
- Calculate the α parameter using the method of Yang and Kumar (1996).

Results

• Analysis of 646 coding region genomes.

D '	
Parsimo	nv
I ai sinto	11 y

NJ


Data Set (# genomes)	Tree Length	$\underline{\alpha}$ estimation	Tree Length	$\underline{\alpha}$ estimation
Ingman HV1 (53)	144	0.2091	144	0.2081
Ingman Control Region (53)	273	0.0038	281	0.0036
Ingman Coding Region (53)	588	0.0075	588	0.0074
Ingman Full Data (53)	873	0.0050	876	0.0067
Total Coding Data (646)	2352	0.0086	2353	0.0083

Meyer and von Haeseler – α estimation = 0.002 (full data)

Extreme rate variation exists in the coding region

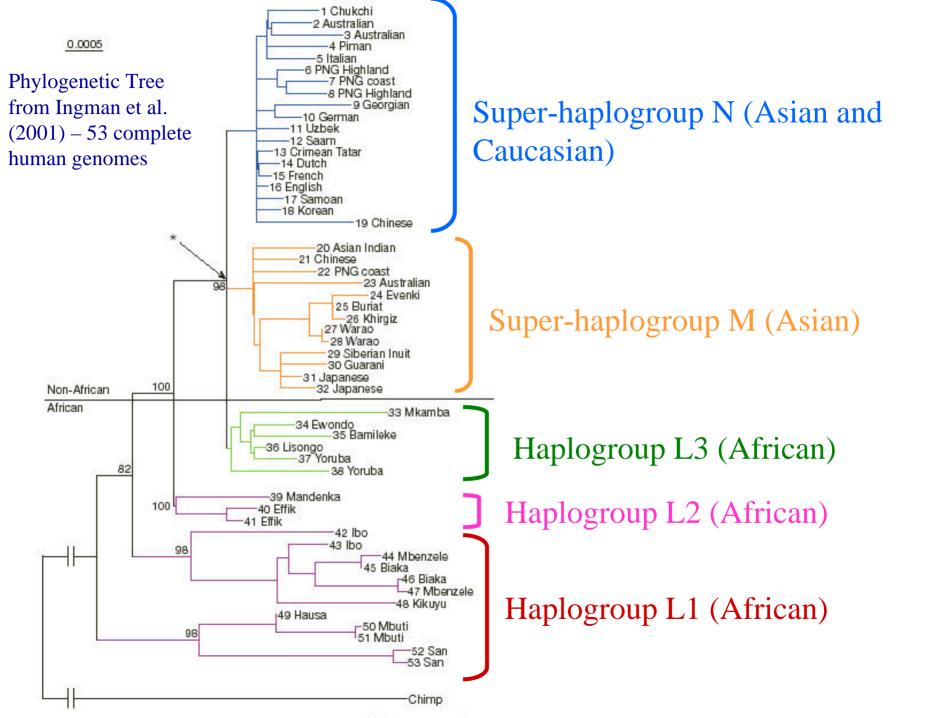
Relative Mutation Rates

Relative Mutation Rates in the Coding Region

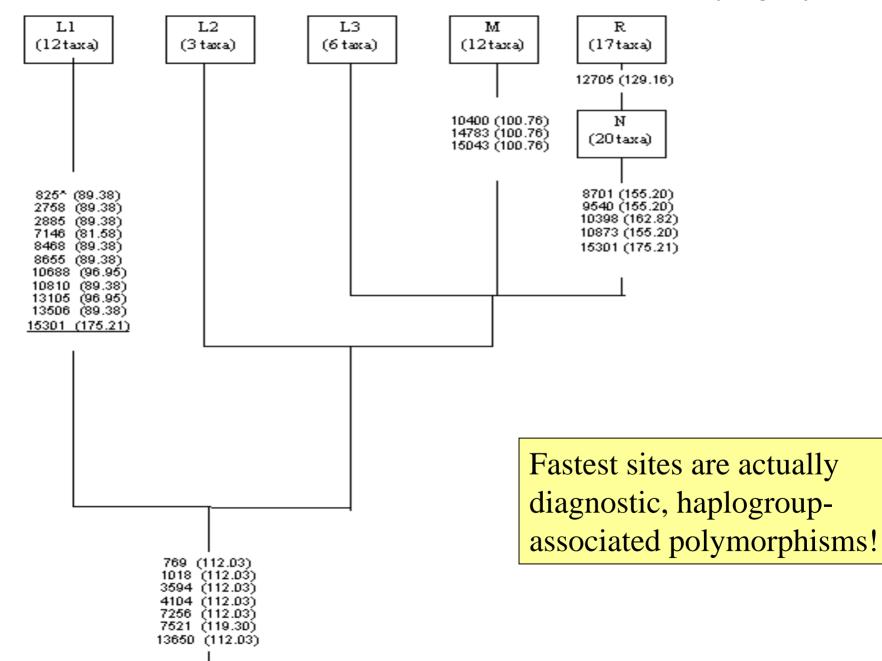
Length	Character	Gene	<u>codon</u>
15	709	128	*
13	11914	ND4	3
12	5460	ND2	1
12	13708	ND5	1
10	15924	tRNA(thr)	*
	10721		
9	1719	16S	*
9	10398	ND3	1
8	3010	16S	*
8	8251	COII	3
8	14470	ND6	3
8	15784	С ҮТВ	3
	0.61	100	.1.
7	961	12S	*
7	3316	ND1	1
6	5237	ND2	3
6	10915	ND4	3
6	11719	ND4	3
6	12007	ND4	3
6	12346	ND5	1
6	13105	ND5	1
6	13928	ND5	2
6	14569	ND6	3
6	14766	C YTB	2
6	15301	C YTB	3
6	15670	C YTB	3
6	15884	NC	-

19/25 – Protein Coding

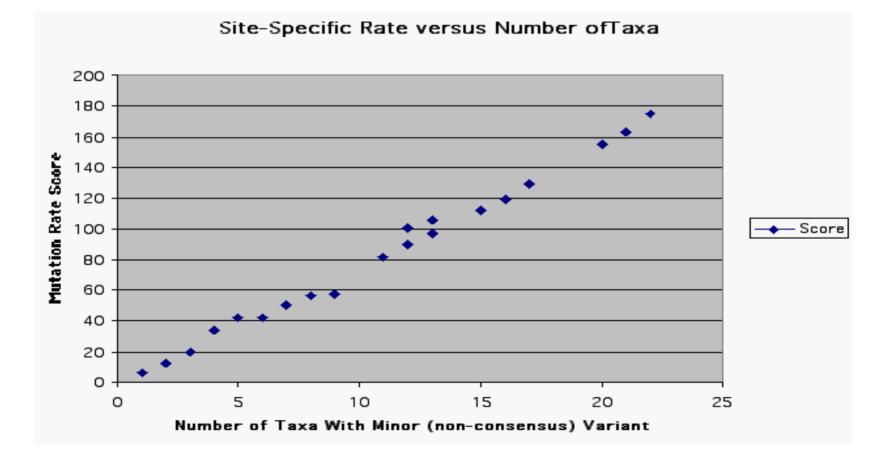
Synonymous sites = 11 Non-synonymous = 8

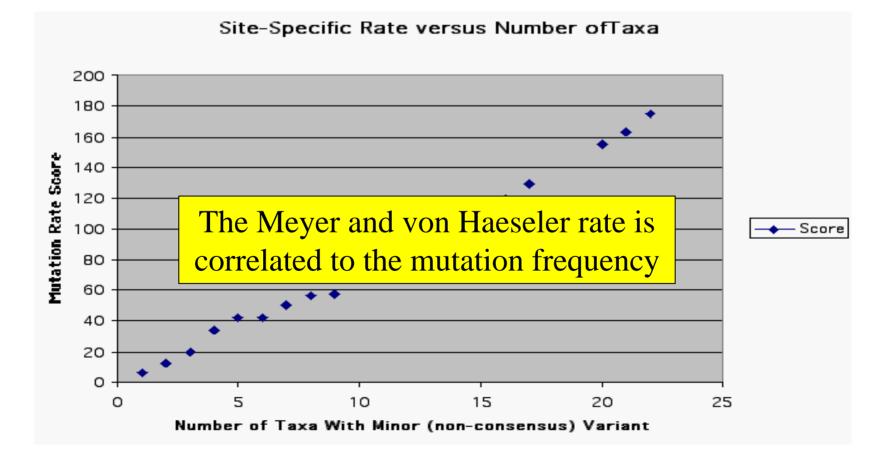

• How does our rate spectrum compare to the rate spectrum of sites determined by the method of Meyer and von Haeseler (2003)?

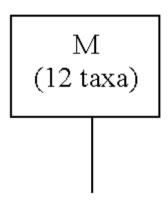
Rate Score	Character	Length	
		i	
175.21	15301	6	
162.82	10398	9	
155.20	8701	2	
155.20	9540	1	
155.20	10873	1	
129.16	12705	2	
127.10	12705	2	
119.30	7521	3	
112.03	769	1	
112.03	1018	1	
112.03	3594	1	
112.03	4104	2	
112.03	7256	3	
112.03	13650	1	
105.84	11914	13	
100.77	10400	1	
100.77	14783	1	
100.77	14783	4	
100.77	15045		
96.96	10688	2	
96.89	13105	7	
89.38	825	1	
89.38	2758	1	
89.38	2885	1	
89.38	8468	1	
89.38	8655	1	
89.38	10810	2	
89.38	13506	1	


Only 4 sites shared among the top 26 fastest sites as determined by Meyer and von Haeseler (2003)

Most of the "fastest" sites change once on our MPT


?????


Skeleton Tree based on Human mtDNA Phylogeny


Pairwise Genetic Distances to Estimate Mutation Rates

Pairwise Genetic Distances to Estimate Mutation Rates

"It is hard to believe that 10400 has actually mutated ... because *no single homoplasious change* at this site has been observed in >900 coding-region sequences or fragments that cover site 10400..." (Yao et al. *AJHG* 2003 – in response to Silva et al. 2002).

10400 (100.76) 14783 (100.76) 15043 (100.76)

Length	<u>Character</u>	Gene	<u>codon</u>	241 Caucasians
15	709	128	*	Yes
13	(11914)	ND4	3	Yes-SNP
12	5460	ND2	1	Yes
12	13708	ND5	1	Ye s
10	15924	tRNA(thr)	*	Yes
9	1719	16S	*	Ye s
9	10398	ND3	1	Yes
8	3010	16S	*	Yes-SNP
8	8251	COII	3	
8	14470	ND6	3	Yes-SNP
8	15784	C YTB	3	
7	961	128	*	
7	3316	ND1	1	
6	5237	ND2	3	Yes
6	10915	ND2 ND4	3	Yes
6	11719	ND4	3	Yes-SNP
6	12007	ND4	3	Yes-SNP
6	12346	ND5	1	
6	13105	ND5	1	Yes
6	13928	ND5	2	
6	14569	ND6	3	
6	14766	C YTB	2	
6	15301	C YTB	3	
6	15670	C YTB	3	
6	15884	C YTB	nc	Yes-SNP

Only 6 of the 59 SNPs are among the "fastest" sites

Length	Character	Gene	<u>codon</u>	<u>241 Caucasians</u>	-
15	709	128	*	Yes	
]
13	11914	ND4	3	Yes-SNP	
12	5460	ND2	1	Yes	•
12	13708	ND5	1	Ye s	
10	15924	tRNA(thr)	*	Yes	<
9	1719	165	*	Yes	-
9	10398	ND3	1	Yes	
	2010	1.60	*	N CND	-
8	<u>3010</u> 8251	16S COII	* 3	Yes-SNP	-
8	14470	ND6	3	Yes-SNP	-
8	15784	СҮТВ	3		
7	961	128	*		
7	3316	ND1	1		-
6	5237	ND2	3	Yes	-
6	10915	ND4	3	Ye s	
6	11719	ND4	3	Yes-SNP	
6	12007	ND4	3	Yes-SNP	
6	12346	ND5	1		
6	13105	ND5	1	Ye s	
6	13928	ND5	2		
6	14569	ND6	3		
6	14766	C YTB	2		
6	15301	C YTB	3		
6	15670	C YTB	3		
6	15884	C YTB	nc	Yes-SNP	

What about
These highly
polymorphic
mutations?

• How much information is lost by focusing only on mutations not associated with a potential for changing the phenotype?

• How much information is lost by focusing only on mutations not associated with a potential for changing the phenotype?

ALL shared polymorphisms (241 individuals)

59 "neutral" SNPs plus the AC indel

112 Haplotypes(77% of the total discrimination)

• How much information is lost by focusing only on mutations not associated with a potential for changing the phenotype?

ALL shared polymorphisms (241 individuals)

59 "neutral" SNPs plus the AC indel 112 Haplotypes(77% of the total discrimination)

Additional SNP panels with fast, non-synonymous sites that vary widely in the population have been developed.

Skeletal remains - "H1" in the HV1/HV2 region.

Thought to belong to one of two individuals (Smith or Jones)

Family references for Smith and Jones were obtained.

Smith Family 263 A-G 315.1 C

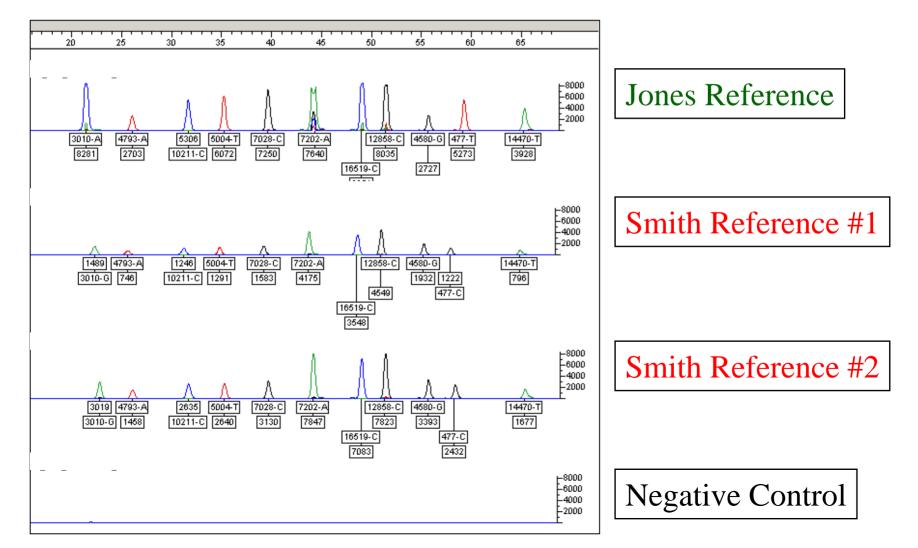
Jones Family 263 A-G 315.1 C

Skeletal remains - "H1" in the HV1/HV2 region.

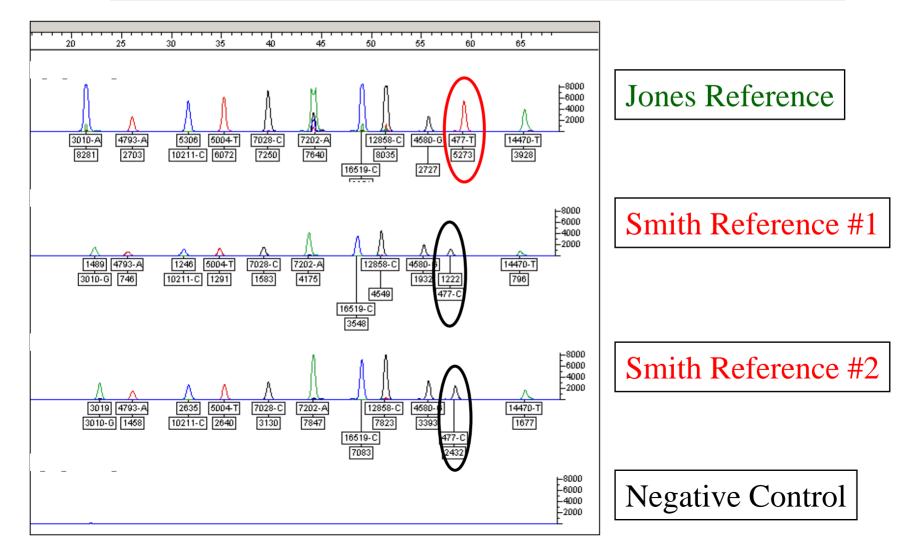
Thought to belong to one of two individuals (Smith or Jones)

Family references for Smith and Jones were obtained.

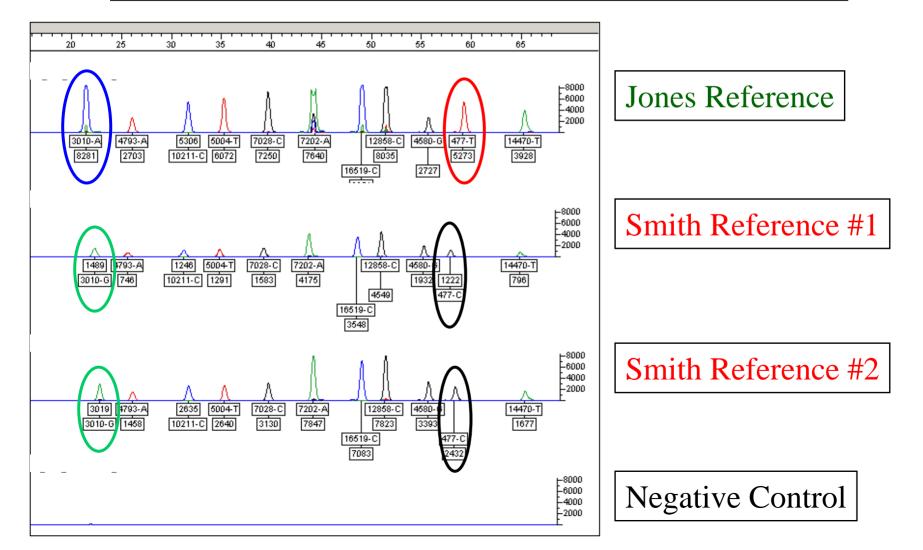
Smith Family 263 A-G 315.1 C 477 T-C 16519 T-C Jones Family 263 A-G 315.1 C 16519 T-C

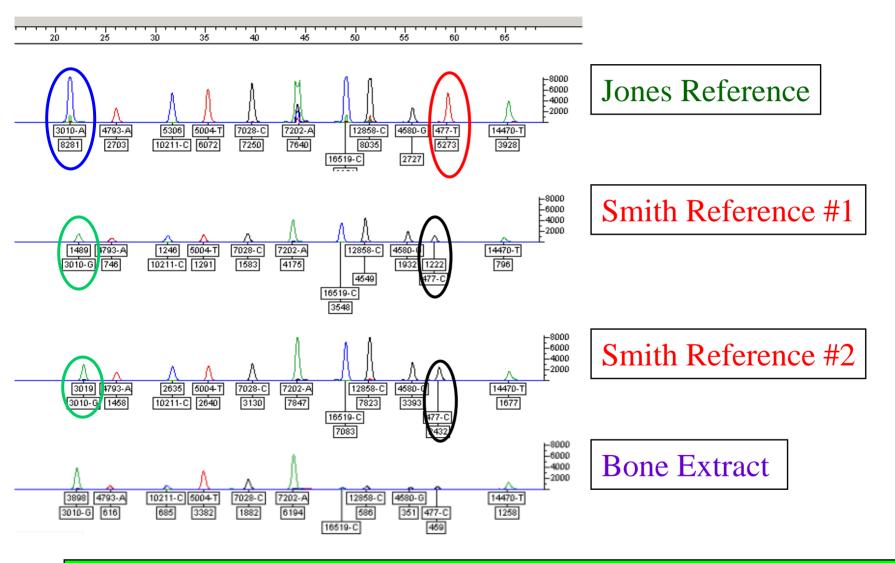

Remains tested for VR region: 477 T-C and 16519 T-C

Smith Family 263 A-G 315.1 C 477 T-C 16519 T-C Jones Family 263 A-G 315.1 C 16519 T-C

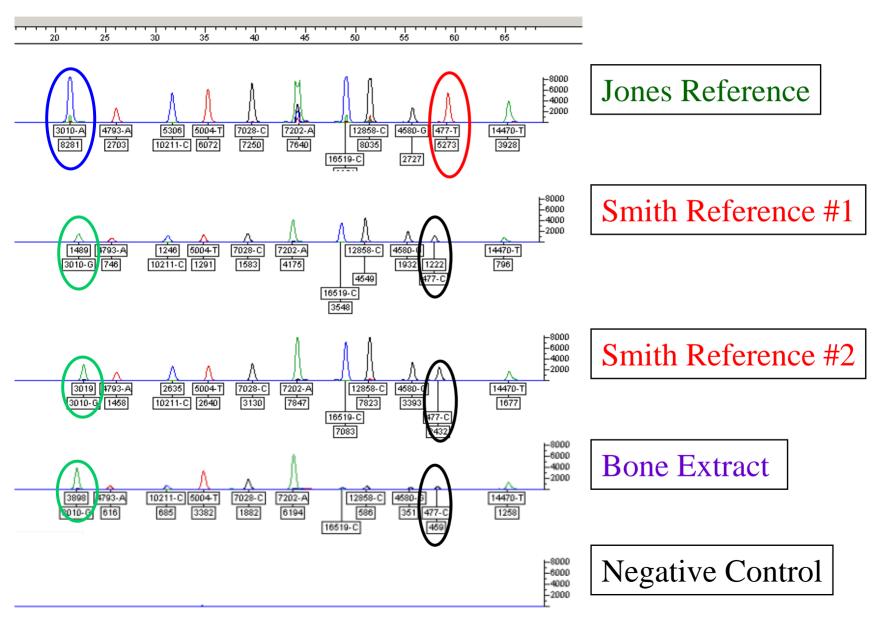

Remains tested for VR region: 477 T-C and 16519 T-C

Since there was a single difference between the remains and the Jones family, AFDIL could not make an exclusion


The remains and the family references were typed with multiplex A



Reference extracts confirmed the polymorphism at 477.



An additional difference was observed at position 3010.

15uL Reaction; 0.07Units/uL Taq; 31 cycles --- 100 RFU cutoff

Smith Family 263 A-G 315.1 C 477 T-C 3010 A-G 16519 T-C Skeletal Remains 263 A-G 315.1 C 477 T-C 3010 A-G 16519 T-C

Jones Family 263 A-G 315.1 C 16519 T-C

Remains – match exactly the Smith family, now 2 differences from the Jones family – can be excluded.

Summary

• Purpose – Maximize Discrimination.

• A supplement to current HV1/HV2 testing.

• When the Forensic Scientist encounters a common type, select the most discriminating SNP panel.

Summary

- We focused on sites that are not associated with the potential for phenotypic change.
- Most of the informative sites are rare, slow polymorphisms that are useful for discrimination in a particular common type.
- A few SNP sites may be useful for resolving common HV1/HV2 types from various backgrounds.

Summary

• Mutation rate analysis of the coding region using parsimony-evaluated phylogenetic trees revealed extreme rate variation using a relatively large data set.

• Parsimony distinguished fast sites from slow, haplogroup-associated polymorphisms (compared to Meyer and von Haeseler, 2003).

Summary/Future Goals

 Future efforts to identify discriminatory SNPs to resolve common types in other populations

 will require whole genome sequencing.

• Evaluation of non-synonymous sites that are not associated with diseases and are useful for forensic discrimination.

Publications

Michael D. Coble · Rebecca S. Just Jennifer E. O'Callaghan · Ilona H. Letmanyi Christine T. Peterson · Jodi A. Irwin · Thomas J. Parsons

Single nucleotide polymorphisms over the entire mtDNA genome that increase the power of forensic testing in Caucasians

IJLM (2004) **118:** 137-146.

Peter M. Vallone \cdot Rebecca S. Just \cdot Michael D. Coble John M. Butler \cdot Thomas J. Parsons

A multiplex allele-specific primer extension assay for forensically informative SNPs distributed throughout the mitochondrial genome

IJLM (2004) **118:** 147-157.

http://www.cstl.nist.gov/biotech/strbase/NISTpub.htm

Acknowledgements

National Institutes of Justice 2000-1J-CX-K010 and Dr. Lois Tully

The Armed Forces DNA Identification Laboratory

Co-Authors

(AFDIL) Dr. Thomas Parsons Rebecca Just Jessica Saunier Jennifer O'Callaghan Christine Peterson Ilona Letmanyi Jodi Irwin

(NIST) Dr. Peter Vallone Dr. John Butler

Research Interns

Rachel Barry Trina Bersola Serena Filosa Victoria Glynn Carrie Guyan William Ivory Devon Pierce

Administration (AFDIL)

Col. Brion Smith James Canik Scott Carroll

Casework Section (AFDIL)

Suzie Barritt

<u>ILM – Innsbruck, Austria</u> Dr. Walther Parson Harold Niederstaetter

http://www.cstl.nist.gov/biotech/strbase/Coble.htm michael.coble@nist.gov