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Abstract
A novel time series analysis is presented to locate damage sources in a
mechanical system, which is running in various operational environments.
The source of damage is located by solely analyzing the acceleration time
histories recorded from a structure of interest. First, a data normalization
procedure is proposed. This procedure selects a reference signal that is
‘closest’ to a newly obtained signal from an ensemble of signals recorded
when the structure is undamaged. Second, a two-stage prediction model
(combining auto-regressive (AR) and auto-regressive with exogenous inputs
(ARX) techniques) is constructed from the selected reference signal.
Then, the residual error, which is the difference between the actual
acceleration measurement for the new signal and the prediction obtained
from the AR–ARX model developed from the reference signal, is defined as
the damage-sensitive feature. This approach is based on the premise that if
there were damage in the structure, the prediction model previously
identified using the undamaged time history would not be able to reproduce
the newly obtained time series measured from the damaged structure.
Furthermore, the increase in residual errors would be maximized at the
sensors instrumented near the actual damage locations. The applicability of
this approach is demonstrated using acceleration time histories obtained
from an eight degrees-of-freedom mass–spring system.

(Some figures in this article are in colour only in the electronic version; see www.iop.org)

1. Introduction

The process of implementing a damage detection strategy
for aerospace, civil and mechanical engineering infrastructure
is referred to as structural health monitoring (SHM). Here
damage is defined as changes to the material and/or geometric
properties of these systems, including changes to the boundary
conditions and system connectivity, which adversely affect
the system’s performance. The SHM process involves
the observation of a system over time using periodically
sampled dynamic response measurements from an array of
sensors, the extraction of damage-sensitive features from
these measurements, and the statistical analysis of these
features to determine the current state of system health. For
long-term SHM, the output of this process is periodically
updated information regarding the ability of the structure to
perform its intended function in light of the inevitable aging
and degradation resulting from operational environments.

After extreme events, such as earthquakes or blast loading,
SHM is used for rapid condition screening and aims to
provide, in near real time, reliable information regarding
the integrity of the structure. A recent collapse of a
pedestrian walkway bridge in North Carolina, USA (http://
www.cnn.com/2000/US/05/21/racetrack.collapse/index.html)
has received a tremendous amount of media attention,
emphasizing the importance of health and condition
monitoring for such structures. Furthermore, major advances
in sensor technology and wireless data transmission are making
the development of such a monitoring system economically
feasible.

Based on the work of Rytter (1993), the authors
categorize the structural health monitoring process into five
stages: (1) identification of damage presence in a structure,
(2) localization of damage, (3) identification of the damage
type, (4) quantification of damage severity, and (5) prediction
of the remaining service life of the structure. Doebling et al
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Figure 1. An 8 DOF system attached to a shaker with
accelerometers mounted on each mass.

(1998) present a recent thorough review of the vibration-based
damage identification methods. While the references cited in
this review propose many different methods for identifying and
localizing damage from vibration response measurements, the
majority of the cited references rely on finite element modeling
processes and/or linear modal properties for damage diagnosis.
For practical applications these methods have not been shown
to be effective in detecting damage at an early state. To avoid
the shortcomings of the methods summarized in this review,
the authors have been tackling the damage detection problems
based exclusively on statistical analysis of time series.

The authors pose the SHM process in the context of
a statistical pattern recognition paradigm. This paradigm
can be described as a four-part process: (1) operational
evaluation, (2) data acquisition and cleansing, (3) feature
extraction and data reduction, and (4) statistical model
development. In particular, this paper focuses on parts 3
and 4 of the process. A more detailed discussion of the
statistical pattern recognition paradigm can be found in Farrar
et al (2000). It should be noted that neither sophisticated
finite element models nor the traditional modal parameters
are employed in the implementation of the proposed paradigm
because they often require labor intensive tuning and result
in significant uncertainties caused by user interaction and
modeling errors. The approach presented here is solely based
on signal analysis of the measured vibration data, making this
approach very attractive for the development of an automated
health monitoring system. This signal-only-based paradigm
has been applied to the damage identification problem by
the authors (Sohn et al 2000, Fugate et al 2001). In this
paper, the paradigm is extended to the second level damage
diagnosis, damage localization problems. The applicability
of the proposed approach is investigated using a simple eight
degrees of freedom (8 DOF) mass–spring system tested in a
laboratory environment.

2. Test structure

An 8 DOF system has been designed and constructed to study
the effectiveness of the proposed localization procedure. The
system is formed of eight translating masses connected by

Table 1. Specifications for data acquisition.

Time step 0.001 953 s
Sampling rate 512 Hz
Time period 8 s
Frequency resolution 0.125 Hz
Number of data points 4096
Filtering Uniform window
Nyquist frequency 256 Hz

springs. The system employed in this study is shown in
figure 1. Each mass is an aluminum disk 25.4 mm thick and
76.2 mm in diameter with a central hole. The hole is lined with
a Teflon bush. There are small steel collars on each end of the
disks (figure 2). The masses all slide on a highly polished steel
rod that supports the masses and constrains them to translate
only along the rod. The masses are fastened together with coil
springs epoxied to the collars that are, in turn, bolted to the
masses.

The DOF, springs and masses are numbered from the right-
hand end of the system, where the excitation is applied, to the
left-hand end, as shown in figure 1. The nominal value of
mass 1 (m1) is 559.3 g. Again, this mass is located at the
right-hand end where the shaker is attached. m1 is greater
than the others because of the hardware needed to attach the
shaker. All the other masses (m2–m8) are 419.4 g. The
spring constant for all the springs is 56.7 kN m−1 for the
initial condition. Damping in the system is caused primarily
by Coulomb friction. Every effort is made to minimize the
friction through careful alignment of the masses and springs.
A common commercial lubricant is applied between the Teflon
bushes and the support rod.

Measurements made during damage identification tests
were the excitation force applied to m1 and the acceleration
response of all masses. Random excitation was accomplished
with a 215 N peak force electro-dynamic shaker (figure 1).
The root mean square (RMS) amplitude level of the input
was varied from 3 to 7 V. A Hewlett-Packard 3566A system
was employed for data acquisition. A laptop computer was
used for data storage and for controlling the data acquisition
system. The force transducer used had a nominal sensitivity
of 22.48 mV N−1, and the accelerometers had a nominal
sensitivity of 10 mV g−1. The specifications for the data
acquisition are summarized in table 1.

The undamaged configuration of the system is the state
for which all springs are identical and have a linear spring
constant. Nonlinear damage is defined as the occurrence of
impact between two adjacent masses. Damage is simulated
by placing a bumper between two adjacent masses so that
the movement of one mass is limited relative to the other
mass. Figure 2 shows the hardware used to simulate nonlinear
damage. When one end of a bumper, which is placed on one
mass, hits the other mass, impact occurs. This impact simulates
damage caused by the impact from the closing of a crack during
vibration. The degree of damage can be controlled by changing
the amount of relative motion permitted before contact, and
changing the hardness of the bumpers on the impactors. For
all damage cases presented, the initial clearance is set to zero.
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3. Analysis procedure

When one attempts to apply the statistical pattern recognition
paradigm for SHM to data from real-world structures,
it quickly becomes apparent that the ability to normalize data
in an effort to account for operational and environmental
variability is a key implementation issue when addressing
parts 2–4 of this paradigm. For SHM strategies that rely
on vibration response measurements, the ability to normalize
the measured data with respect to varying operational and
environmental conditions is essential if one is to avoid
false-positive indication of damage. Examples of common
normalization procedures include normalizing the response
measurements by the measured inputs as is commonly done
when extracting modal parameters. When environmental
cycles influence the measured data, a temporal normalization
scheme may be employed. These strategies for SHM data
normalization fall into two general classes: (1) those employed
when measures of the varying environmental and operational
parameters are available and (2) those employed when such
measures are not available. A primary focus of this study is to
develop a data normalization procedure that can be employed
for case 2 when measures of the varying environmental and
operational conditions are not available.

The data normalization procedure begins by assuming
that a ‘pool’ of signals is acquired from various unknown
operational and environmental conditions, but from a known
structural condition of the system. The ability of this procedure
to normalize the data will be directly dependent on this pool
being representative of data measured in as many varying
environmental and operational conditions as possible. In the
example reported herein, multiple time series are recorded
from the undamaged structure (the known structural condition)
at different input force levels (various operational conditions).
The collection of these time series is called ‘the reference
database’ in this study.

A two-stage prediction model, combining an auto-
regressive (AR) model and an auto-regressive model with
exogenous inputs (ARX), is employed to compute the damage-
sensitive feature. In this case the damage-sensitive feature is
the residual error between the prediction model and measured
time series.

First, all time signals are standardized prior to fitting an
AR model such that

x̂ = x − µx

σx

(1)

where x̂ is the standardized signal and µx and σx are the mean
and standard deviation of x, respectively. This standardization
procedure is applied to all signals employed in this study.
(However, for simplicity, x is used to denote x̂ hereafter.)

For each time series x(t) in the reference database, an AR
model with p AR terms is constructed. An AR(p) model can
be written as (Box et al 1994)

x(t) =
p∑

j=1

φxjx(t − j) + ex(t). (2)

This step is repeated for all signals in the reference database.
The AR order is set to be 30 based on a partial auto-correlation
analysis described in Box et al (1994).

Employing a new segment y(t) obtained from an unknown
structural condition of the system, repeat the previous step.
Here the new segment y(t) has the same length as the signal
x(t):

y(t) =
p∑

j=1

φyjy(t − j) + ey(t). (3)

Then, the signal segment x(t) ‘closest’ to the new signal
block y(t) is defined as the one that minimizes the following
difference of AR coefficients:

Difference =
p∑

j=1

(φxj − φyj )
2. (4)

This ‘data normalization’ is a procedure to select the previously
recorded time signal from the reference database, which is
recorded under operational and/or environmental conditions
closest to those of the newly obtained signal. If the new
signal block is obtained from an operational condition close
to one of the reference signal segments and there has been no
structural deterioration or damage to the system, the dynamic
characteristics (in this case, the AR coefficients) of the new
signal should be similar or ‘closest’ to those of the reference
signal based on the Euclidean distance measure in equation (4).

When a time prediction model is constructed from the
selected reference signal, this prediction model should be able
to appropriately predict the new signal if the new signal is
‘close’ to the reference signal. On the other hand, if the
new signal was recorded under a structural condition different
from the conditions where reference signals were obtained,
the prediction model estimated from even the ‘closest’ signal
in the reference database would not reproduce the new signal
well.

For the construction of a two-stage prediction model
proposed in this study, it is assumed that the error between
the measurement and the prediction obtained by the AR model
(ex(t) in equation (2)) is mainly caused by the unknown
external input. Based on this assumption, an ARX model is
employed to reconstruct the input/output relationship between
ex(t) and x(t):

x(t) =
a∑

i=1

αix(t − i) +
b∑

j=1

βjex(t − j) + εx(t) (5)

where εx(t) is the residual error after fitting the ARX(a, b)
model to the ex(t) and x(t) pair. Our feature for damage
diagnosis will later be related to this quantity, εx(t). Note that
this AR–ARX modeling is similar to a linear approximation
method of an auto-regressive moving-average (ARMA) model
presented in Ljung (1987) and references therein. Ljung
(1987) suggested keeping the sum of a and b smaller than
p (a + b � p). ARX(5, 5) is used in this example. Although
the a and b values of the ARX model are set rather arbitrarily,
similar results are obtained for different combinations of a and
b values as long as the sum of a and b is kept smaller than p.

Next, it is investigated how well this ARX(a, b)
model estimated in equation (5) reproduces the input/output
relationship of ey(t) and y(t):

εy(t) = y(t) −
a∑

i=1

αiy(t − i) −
b∑

j=0

βjey(t − j) (6)
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where ey(t) is considered to be an approximation of the system
input estimated from equation (3). Again, note that the αi

and βj coefficients are associated with x(t) and obtained from
equation (5). Therefore, if the ARX model obtained from the
reference signal block pair x(t) and ex(t) were not a good
representation of the newly obtained signal segment pair y(t)

and ey(t), there would be a significant change in the standard
deviation of the residual error, εy(t), compared to that of εx(t).
In particular, the standard deviation ratio of the residual errors,
σ(εy)/σ (εx), is expected to reach its maximum value near
the actual damage sources revealing the location of damage.
Therefore, the standard deviation ratio of the ‘similar’ signals,
σ(εy)/σ (εx), is defined as the damage-sensitive feature and the
increase of this ratio is monitored to detect system anomalies.

First, a statistical model is developed based on the
normality assumption of underlying distributions σ(εy) and
σ(εx). The primary objective is to test the null hypothesis,
H0: σ 2(εx) = σ 2(εy), against the one-sided alternative H1:
σ 2(εx) < σ 2(εy). Here σ 2(εx) and σ 2(εy) are the variances
of εx and εy , respectively. It can be shown that the following
sample variance ratio

F = σ 2(εy)

σ 2(εx)
(7)

has an F -distribution with ny − 1 and nx − 1 DOF under the
null hypothesis H0 (Miller 1997). nx and ny are the numbers of
samples of εx(t) and εy(t), respectively. The null hypothesis
H0 is rejected when the F -statistic in equation (7) exceeds the
upper 100 × α percentile of the F -distribution:

σ 2(εy)

σ 2(εx)
> Fα

ny−1,nx−1. (8)

When the sample distribution departs from the normal
distribution, the actual significance level in equation (8) can
be considerably different from the normally stated level. For
a heavy-tailed distribution the probability of rejection under
H0 greatly exceeds α, and for a short-tailed distribution the
probability is considerably less than α.

Based on permutation theory, Box and Andersen (1955)
modified equation (8) to safely use it in more general
applications without a normality assumption. In the
Box–Andersen test, the same F -statistic is computed. This
statistic is, however, compared with a different critical point of
the F -distribution with n∗

y − 1 and n∗
x − 1 degrees of freedom:

σ 2(εy)

σ 2(εx)
> Fα

n∗
y−1,n∗

x−1 (9)

where

n∗
x − 1 = d(nx − 1) n∗

y − 1 = d(ny − 1)

d = [1 + 1
2 (b − 3)]−1 (10)

and

b = (nx + ny)(
∑

ε4
x(t) +

∑
ε4
y(t))

(
∑

ε2
x(t) +

∑
ε2
y(t))

2
. (11)

Here it is assumed that εx(t) and εy(t) are zero-mean processes.
Otherwise, their mean values should be subtracted before the
computation of the moments in equation (11). Note that when

Figure 2. A typical bumper used to simulate nonlinear damage.

εx(t) and εy(t) are normal distributions with the same variance,
equation (9) becomes identical to equation (8) since b = 3 and
d = 1.

Various studies based on Monte Carlo simulation (Miller
1997 and references therein) have demonstrated that this
Box–Andersen test maintains reasonably correct significance
levels under the null hypothesis for a variety of heavy- and
short-tailed distributions. This method also has been shown
to be superior to most other competitive tests. This modified
hypothesis test is employed to check if the new signal has
significantly changed from the closest signal selected from the
reference database.

4. Laboratory test result: an 8-DOF mass–spring
system

For the localization study of nonlinear damage, three different
damage scenarios are studied varying damage locations and
input force levels. To simulate nonlinear damage, a bumper
is placed between two masses as shown in figure 2. This
bumper is installed between m1–m2, m5–m6, and m7–m8 for
damage cases 1, 2, and 3, respectively. For each damage case,
five sets of time histories are recorded at an individual input
level and the input force varies from 3 V to 4, 5, 6, and 7 V
(except damage case 3, where the input voltage varies from
4 to 7 V). Therefore, a total of 25, 25, and 20 time series
are recorded for damage cases 1, 2, and 3, respectively. For
the undamaged case, 15 sets of time histories are recorded at
an individual input level, producing a total of 75 time series.
To construct the reference database, which represents various
operation conditions of the system, nine sets of time series were
obtained from an individual input level and the input level again
varies from 3 to 7 V. Therefore, 45 time series out of 75 time
histories are used to construct the reference database. Table 2
summarizes the time series studied in this example.

Table 3 presents the standard deviation ratio, σ(εy)/σ (εx),
for each DOF and all damage cases. The σ(εy)/σ (εx) values
shown in table 3 are the mean values of 75, 25, 25, and 20
sample standard deviation ratios for damage cases 0, 1, 2,
and 3, respectively. If a bumper were introduced at m1, the
largest increase in the residual error standard deviation would
be expected at the nearest measurement point, m1. However, as
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Table 2. List of time series employed in this study.

Case Description Input level (V) Data sets per input Total data sets

0 No bumper 3, 4, 5, 6, 7 15 75
1 Bumper between m1–m2 3, 4, 5, 6, 7 5 25
2 Bumper between m5–m6 3, 4, 5, 6, 7 5 25
3 Bumper between m7–m8 4, 5, 6, 7 5 20

Table 3. σ(εy)/σ (εx) ratio for various damage cases. Note that 15 data sets are recorded at each input level for the undamaged case, and 5
data sets are measured at an individual input level for all damage cases. The σ(εy)/σ (εx) ratios presented are the average values of all input
levels, i.e. the averages of 75, 25, 25, and 20 individual σ(εy)/σ (εx) values measured under different input levels are presented for damage
cases 0, 1, 2 and 3, respectively.

DOF

Bumper location m1 m2 m3 m4 m5 m6 m7 m8

No bumper 1.0010 0.9965 1.0000 0.9992 1.0087 0.9988 1.0072 1.0009
Between m1–m2 1.0225 3.1101 1.2500 1.0628 1.1067 1.0425 1.0065 1.0751
Between m5–m6 0.9982 1.0345 0.9988 1.0478 2.6740 1.2564 1.2415 1.1558
Between m7–m8 1.0041 1.0106 1.0196 1.0575 1.1085 1.2572 2.4658 2.7610

shown in table 3, no significant increase in σ(εy)/σ (εx) was
observed at m1. Instead, the σ(εy)/σ (εx) value in the next
adjacent measurement point, m2, was significantly increased
to 3.1101 on average. It is speculated that because m1 is rigidly
connected to the shaker by a rod, the response at this point is
masked by the direct influence of the random input. When the
bumper was placed at m5, the average σ(εy)/σ (εx) value in
m5 increased to 2.6740, marking the largest increase among
all masses (see the fourth row of table 3). A similar result is
observed when the bumper is placed at m7 (see the fifth row of
table 3). Here a simple chart of the σ(εy)/σ (εx) values with
respect to measurement points seems to reveal the approximate
locations of nonlinear damage.

Next the hypothesis test presented in equation (8) is
conducted for all test data, and summarized in table 4.
The entries in table 4 show the rejection number of
the null hypothesis H0: σ 2(εx) = σ 2(εy) out of all
hypothesis tests. For example, when the hypothesis test
is conducted on 75 time series data sets obtained from
the undamaged case, the null hypothesis is rejected twice
at m2 (2/75, as shown under the ‘m2’ column and the
‘no bumper’ row in table 4). In general, the number
of rejections is minimum when no bumper is installed in
the system, but a large number of rejections are observed
for the subsequent damage cases. In particular, the
number of rejections reaches its peak value near the actual
location.

Table 5 reveals that the amplification of the input force
introduces amplitude-dependent nonlinearity, causing the
increase in σ(εy)/σ (εx). For example, when the bumper
is placed between m1 and m2, the σ(εy)/σ (εx) value at
m2 gradually increases in accordance with the input level.
However, the input amplification alone did not cause any
noticeable increase in the standard deviation ratio without the
installation of a bumper. That is, the variation of the input force
level did not produce false-positive indication of damage by
employing an appropriate normalization procedure proposed
in this paper.

5. Summary and discussions

This paper presents a procedure for damage detection and
localization within a mechanical system solely based on
the time series analysis of vibration signals. The standard
deviation of the residual errors, which is the difference between
the actual measurement and the prediction derived from a
combination of the AR and ARX models, is used as our
damage-sensitive feature to locate damage. The premise of this
approach is that the residual error associated with the combined
AR and ARX models developed from data obtained when the
structure is undamaged will significantly increase when this
model is applied to data obtained from a damaged system.
Also, a larger increase in the standard deviation of the residual
error is expected to be observed near the actual damage regions.

To minimize false positive warning of damage, a unique
data normalization procedure is proposed to differentiate the
effects of various environmental and/or operation conditions
on the system dynamics from those caused by damage. This
normalization procedure does not assume that measures of
the environmental or operational conditions are available.
However, it does assume that the reference database
obtained when the structure is undamaged spans the various
environmental and operational conditions that might influence
the dynamics response of the system.

The proposed damage detection and localization approach
has several desirable attributes. First, a single-dimensional
data feature is used to both detect and locate damage. The use
of a single-dimensional data feature enhances the ability to
quantify the statistical variability in this feature as is discussed
in most texts on statistical pattern recognition, for example see
Bishop (1995). Also, the damage detection is conducted in an
unsupervised learning mode. That is, data from the damaged
structure are not needed to develop a classification model.
Instead, the proposed procedure can be thought of as a form of
outlier detection. The ability to perform the damage detection
in an unsupervised learning mode is very important because
data from damaged structures are typically not available for
most real-world structures.

Finally, the approach presented herein is very attractive
for the development of an automated continuous monitoring
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Table 4. Results of hypothesis tests (H0: σ 2(εx) = σ 2(εy) and H1: σ 2(εx) < σ 2(εy). This table shows the rejecting numbers of the null
hypothesis. For example, 2/75 means that the null hypothesis is rejected two times out of all tested 75 hypothesis tests. The Box–Andersen
test is conducted with α = 0.01.

DOF

Bumper location m1 m2 m3 m4 m5 m6 m7 m8

No bumper 0/75 2/75 0/75 2/75 4/75 3/75 7/75 2/75
Between m1–m2 2/25 25/25 25/25 13/25 20/25 12/25 5/25 15/25
Between m5–m6 0/25 11/25 2/25 9/25 25/25 25/25 22/25 21/25
Between m7–m8 0/20 6/20 3/20 8/20 15/20 18/20 20/20 20/20

Table 5. Variation of σ(εy)/σ (εx) ratios according to input voltage levels. Note that five data sets are recorded at each input level. The
σ(εy)/σ (εx) ratio presented is the average value of the five data sets. A bumper is placed between m1 and m2 during the acquisition of all
the time series used in this analysis.

DOF

Input force level (V) m1 m2 m3 m4 m5 m6 m7 m8

3 1.0128 2.6354 1.2283 1.0357 1.1781 1.0624 1.0075 0.9996
4 1.0160 2.9535 1.1135 1.0583 1.0523 1.0026 0.9931 1.1250
5 1.0338 3.2642 1.1902 1.0266 1.0891 1.0752 0.9894 1.1173
6 1.0268 3.2185 1.2528 1.0824 1.0786 1.0474 1.0190 1.0637
7 1.0233 3.4791 1.4652 1.1110 1.1353 1.0252 1.0235 1.0702

system because of its simplicity and because it requires min-
imal interaction with users. Furthermore, because damage
diagnosis is conducted independently at an individual sensor
level, time synchronization among the multiple sensors is not
necessary. This characteristic makes it an attractive candidate
for data interrogation with a wireless sensing system. How-
ever, it should be pointed out that the procedure developed has
only been verified on relatively simple laboratory test speci-
mens. To verify that the proposed method is truly robust, it will
be necessary to examine many time records corresponding to
a wide range of operational and environmental cases, a wide
range of damaged and undamaged structures, as well as dif-
ferent damage scenarios. Herein lies one of the fundamental
challenges for the further development and adaptation of any
SHM scheme. The cost associated with such proof-of-concept
testing is extremely high, and the access to infrastructure that
can be damaged in a realistic manner is very limited.

Acknowledgments

All members of the Los Alamos Structural Health Monitoring
Team contributed to this the study reported herein. The
team members include George Papcum, Michael L Fugate
and Donald R Hush from the Computing, Information,
and Communications Group, Norm F Hunter from the
Measurement Technology group, and Scott Doebling from
the Engineering Analysis Group. Funding for this
investigation came primarily through the Los Alamos National
Laboratory’s Director Funded Postdoctoral Fellowship
Program. The authors also would like to thank Dr Winston

Rhee for his contribution to the experimental portion of this
paper.

References

Bishop C M 1995 Neural Networks for Pattern Recognition
(Oxford: Oxford University Press)

Box G E P and Andersen S L 1995 Permutation theory in the
derivation of robust criteria and the study of departures from
assumption J. R. Statist. Soc. B 17 1–26

Box G E P, Jenkins G M and Reinsel G C 1994 Time Series
Analysis: Forecasting and Control 3rd edn (Englewood Cliffs,
NJ: Prentice-Hall)

Doebling S W, Farrar C R, Prime M B and Shevitz D W 1998 A
review of damage identification methods that examine changes
in dynamic properties Shock Vibr. Dig. 30 95–105

Farrar C R, Duffey T A, Doebling S W and Nix D A 2000 A
statistical pattern recognition paradigm for vibration-based
structural health monitoring Proc. 2nd Int. Workshop on
Structural Health Monitoring (Stanford, CA, September 8–10,
2000) pp 764–73

Fugate M L, Sohn H and Farrar C R 2001 Vibration-based damage
detection using statistical process control Mech. Syst. Signal
Proc. at press

Ljung L 1987 System Identification: Theory for the User
(Englewood Cliffs, NJ: Prentice-Hall)

Miller R G 1997 Beyond ANOVA: Basics of Applied Statistics (New
York: Chapman and Hall)

Rytter A 1993 Vibration based inspection of civil engineering
structures PhD Dissertation Department of Building
Technology and Structural Engineering, Aalborg University,
Denmark

Sohn H, Czarnecki J J and Farrar C R 2000 Structural health
monitoring using statistical process control J. Eng. Mech.,
ASCE at press

451


