Optics for laser measurements

Kent Rochford

NIST Optoelectronics Division

Outline

Geometrical optics
lenses
ray tracing
aberrations
Physical optics
diffraction and Fourier optics
Gaussian optics
reflections and coatings
More stuff
reflections
coatings
interference
polarization optics

Power of refracting surfaces

Fermat's principle of least time: $n_{1} L_{1}+n_{2} L_{2}$ is stationary $(d(\Sigma n L) / d L=0)$

Approximating as a spherical surface, refractive power $=1 / \mathrm{f}$

$$
\text { power }=\frac{1}{f}=\left(\frac{n_{2}}{n_{1}}-1\right)\left(\frac{1}{R}\right)
$$

and gives curved surfaces focusing power

R

Thick lens (and lensmaker's equation)

A lens is transmitting optic that has refractive power

$$
\text { power }=\frac{1}{f}=(n-1)\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{(n-1) d}{n R_{1} R_{2}}\right)
$$

Types of lenses

Coddington shape factor

$$
q=\frac{R_{2}+R_{1}}{R_{2}-R_{1}}
$$

A lens with negative power

$$
\text { power }=\frac{1}{f}=-(n-1)\left(\frac{1}{\left|R_{1}\right|}+\frac{1}{\left|R_{2}\right|}-\frac{(n-1) d}{n R_{1} R_{2}}\right)
$$

Curved mirrors have power

For a mirror, $\mathrm{n}=-1$

$$
\text { power }=\frac{1}{f}=(n-1)\left(\frac{1}{R}\right) \quad \text { so } \mathrm{f}=-\mathrm{R} / 2
$$

NIST Optoelectronics Division

The thin lens - a useful simplification

A thin lens has radii of curvatures greater than thickness $\left(R_{1}, R_{2}>d\right)$

For a thin lens in air

$$
\text { power }=\frac{1}{f}=(n-1)\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)
$$

f is measured from the principal plane P
A thick lens may have two non-coincident principal planes

Simple ray tracing

An object h units high creates an image h ' units high

Can map the object to the image using two of three rays:

- Ray parallel to axis to principal plane, then though back focal point
- Ray through front focal point to principal plane, then parallel to axis
- Ray through nodal point

Points x and x ' are called conjugates
see http://www.colorado.edu/physics/phet/simulations/lens/lens.swf

Simple two-lens system

If lenses are separated by more than sum of focal lengths

- find an intermediate image
- map the intermediate image to the final image

Question...How does the lens diameter affect the image???

Imaging equations

Beam expanders

Can expand beam by separating two lenses by the sum of their focal lengths

$$
\frac{D_{2}}{D_{1}}=\frac{f_{2}}{f_{1}}
$$

Galilean telescope

Does the lens diameter matter?
Which telescope is better for high pulse-energy lasers?

Beam shaping

Non-circular beams (e.g., laser diodes) can be "circularized" in onedimension using cylindrical lenses or prisms

This method provides 1-d compression/expansion
To avoid the beam offset, use cylindrical lenses in a telescope

Aberrations

The perfect (or "stigmatic") imaging discussed before occurs for hyperboliods

Ray optics assumes spherical surfaces...

- this only works in the "paraxial" (small angle, where $\sin x=x$) limit
- we ignored $x^{3} / 3!+x^{5} / 5!-\ldots$ in the expansion of $\sin x$

Aberrations exist when the marginal rays don't focus at the same place as the paraxial rays

The third-order aberrations are:

- spherical
- coma
- astigmatism
- field curvature
- distortion
increasing
dependence on
distance from
image plane axis

Focused spots with aberration

Ray trace for coma

Ray trace for astigmatism

Two perpendicular foci

Astigmatism is common in laser diodes

Spherical aberration

Spherical aberration causes on-axis distortion

- SA causes a radially symmetric spread of the focused point
- Smallest "spot" will occur in front of paraxial focus plane

SA depends on lens shape

Aberration is minimized when the incident angles to the optical surface are minimized

Rule of thumb: point most curved surface towards most distant conjugate

Pictures of SA though focus

Focal Planes with Spherical Aberration

Java tutorial at http://www.olympusmicro.com/primer/anatomy/aberrationhome.html

Numerical aperture \& F-number

Numerical aperture

$$
\begin{aligned}
& \mathrm{NA}=\mathrm{n} \sin \theta_{\max } \\
& n=1 \text { for lens in air }
\end{aligned}
$$

$F \#=f / D$

One can "stop down" to reduce the NA or increase the F\#

$N A=n \sin \theta$
F\# = f/D*

Aberration scaling

The severity of aberrations generally depends on the aperture stop diameter (D) and the off-axis distance of the image point (h')

Dependence on

Aberration	D
Spherical aberration	D^{3}
Coma	D^{2}
Astigmatism	D

$\frac{h^{\prime}}{\text { none }}$
h^{\prime}
$h^{\prime 2}$

High NA or low F\# systems have more SA than low NA / high F\# systems

Physical optics

In geometric optics, a bundle of rays parallel to the axis will focus to a point In real life, the spot size is finite even if aberrations are zero

Diffraction

Diffraction: the interference phenomena that describes the alteration of wave propagation due to optics of finite size

Ray model (no diffraction) Wave model (with diffraction)

irradiance

NIST Optoelectronics Division

Wave optics

diffraction creates intensity distributions geometric optics cannot explain

Arago's (or Poisson's) spot
To model the general propagation of a wave through space...

$$
\begin{aligned}
& U(x, y, z)=E(x, y, z) \exp [-j(\omega t+\phi(x, y, z)] \\
& U\left(x_{0}, y_{0}, z\right)=\frac{z}{j \lambda} \iint_{\text {surface }} U\left(x_{1}, y_{1}\right) \frac{\exp \left(j k r_{01}\right)}{r_{01}{ }^{2}} d x_{1} d y_{1} \\
& \text { for } r_{01} \gg \lambda
\end{aligned}
$$

Fourier optics

The diffraction pattern is very complicated and evolves with the distance z from the aperture...need simplifications!!

In the far field (or "Fraunhofer region") the field math is simplified:
Here the field is the Fourier transform of the wavefront in the aperture

The far field exists at distances

$$
z>\frac{2 D^{2}}{\lambda}
$$

or
at the focal plane of a lens

Fourier transform pairs

Airy function

The intensity distribution of a plane wave incident on a circular aperture with radius w is:

$$
I(R) \propto\left[\frac{J_{1}(k w R / z)}{k w R / z}\right]^{2}
$$

Diffraction-limited spot

Diameter of central lobe

$$
\begin{aligned}
& d=1.22 \frac{\lambda z}{w} \quad \text { for } z>\frac{2 D^{2}}{\lambda} \\
& \text { or } \\
& d=1.22 \frac{\lambda f}{w} \quad \text { at the focal plane }
\end{aligned}
$$

$\sim 86 \%$ of energy is in the central lobe

Beam divergence

Beyond the far field, the beam diverges at a constant angle

$\Theta \cong 0.61 \frac{\lambda}{w} \quad$ in the far field

Gaussian beams

- Spherical-mirror resonator modes are Hermite-Gaussian
- Lowest-order mode is a Gaussian beam
- Hermite-Gaussians functions are self-transforms

$$
I(r)=\frac{2 P}{\pi w^{2}} \exp \left[\frac{-2 r^{2}}{w^{2}}\right]
$$

w is the $1 / \mathrm{e}^{2}$ radius
(or the $1 / \mathrm{e}$ radius for the E field)

Gaussian beam propagation

Gaussian beam propagation is defined by the wavelength and w_{0}, the radius of the beam at the waist

Beam radius at z

$$
w(z)=w_{0} \sqrt{1+\left(\frac{Z}{Z_{R}}\right)^{2}}
$$

Radius of curvature at z

$$
R(z)=z+\frac{z_{R}^{2}}{z}
$$

$$
Z_{R}=\frac{\pi w_{0}^{2}}{\lambda}
$$

Rayleigh range

The Rayleigh range is distance from waist at which beam area doubles
Rayleigh range

$$
Z_{R}=\frac{\pi w_{0}^{2}}{\lambda}
$$

$Z_{R}=\frac{\pi w_{0}{ }^{2}}{\lambda}$
$2 Z_{R}$ is know as the "confocal region" or "depth of focus"

"collimated" beam range

Tighter focusing causes a smaller "collimated" range

Gaussian beam divergence

$$
w(z)=w_{0} \sqrt{1+\left(\frac{z \lambda}{\pi w_{0}^{2}}\right)^{2}} \cong \frac{z \lambda}{\pi w_{0}} \quad \text { for large } z\left(z \gg z_{R}\right)
$$

Beam divergence

$$
\theta_{1 / e}=\lim _{z \rightarrow \infty} \frac{w(z)}{z}=\frac{\lambda}{\pi w_{0}}
$$

Divergence is inversely proportional to w

Focusing a Gaussian beam

Recall $w(z) \cong \frac{z \lambda}{\pi w_{0}}$
At focus, spot radius is $w_{0} \cong \frac{\lambda f}{\pi w}$

There is a (usually negligible) shift Δf between the waist position and geometric focus

Truncated Gaussian beams

Choose lens diameter > Tw to transmit > 99\% of energy

Transmittance T through aperture is

$$
T=1-\exp \left[-\frac{2 a^{2}}{w^{2}}\right]
$$

Truncated Gaussian problems

Truncating the Gaussian beam causes

- Decrease in total power transmitted
- Diffraction!!!

Decreases on-axis irradiance Increases intensity ripple

Spatial filtering

Surface roughness, dust, etc., adds high-spatial-frequency noise to beam profiles

Place pinhole at common foci of
 telescope to clean up the beam

For 1\% ripple, pinhole diameter D ~ 4.6wo

Example:

$$
\begin{aligned}
& \mathrm{f}=50 \mathrm{~mm} \\
& \lambda=633 \mathrm{~nm} \\
& \mathrm{w}=1 \mathrm{~mm}
\end{aligned} \longrightarrow w_{0} \cong \frac{\lambda f}{\pi w} \longrightarrow w_{0}=10 \mu \mathrm{~m}, \text { so choose } \mathrm{D}=50 \mu \mathrm{~m}
$$

Beam expander alignment

Step 1. Adjust the beam to be parallel to be the optical table

- choose an "operating height"
- have several pinholes at this height

Step 2. Center lens 1 in the beam path

Step 3. Center lens 2 in the beam path, $\sim f 1+f 2$ from lens 1
Step 4. Adjust lens 2 position along beam until beam diameter is approximately constant between lens 2 and the wall

Collimation test with a shearing plate

Step 5. Do a fine adjustment of lens 2 position with a shearing plate

Reflections, coatings, polarization, and stuff

Fresnel reflection

An incident wave (E_{i}) will create a reflected wave (E_{r}) and transmitted wave (E_{t}) The fields are decomposed with repect to the plane of incidence

Fresnel coefficients

Brewster angle incidence provides perfect transmission for p-polarized

Reflectance is total for $\theta_{i}>\theta_{c}$

Optical coatings - quarter wave rule

Consider a thin film of quarterwave optical thickness

substrate

If film is exactly $\lambda / 4$ thick $\left(=\lambda_{0} /\left(4 n_{f}\right)\right)$ can transform to an exact two-layer system

Now can use Fresnel reflection equations for the equivalent interfaces

Optical coatings - half wave rule

Antireflection coatings

For normal incidence, Fresnel reflectance is

$$
R=\left[\frac{n_{i}-n_{s}}{n_{i}+n_{s}}\right]^{2}
$$

If the substrate is coated with a $\lambda / 4$ film, we can use the quarter-wave rule...

$$
R=\left[\frac{n_{i}-n_{f}^{2} / n_{s}}{n_{i}+n_{f}^{2} / n_{s}}\right]^{2}
$$

Reflectance is zero when numerator is zero (when $n_{f}=\sqrt{n_{i}} n_{s}$)
example: $\mathrm{n}_{\mathrm{s}}=1.5$ (glass), $\mathrm{n}_{\mathrm{f}}=1.38(\mathrm{MgF}), \mathrm{n}_{\mathrm{i}}=1 ; \mathrm{R} \sim 1.3 \%$

AR coatings - what's the trick?

$$
\delta=\frac{2 \pi n d}{\lambda_{0}}
$$

When path difference $\mathrm{d}=\mathrm{N} / 2$, the phase difference $\delta=\pi$ so the two reflected waves destructively interfere

For non-normal incidence, require $\delta=\pi$ for the refracted paths

$$
\delta=\frac{2 \pi n d \cos \theta}{\lambda_{0}} \quad \begin{aligned}
& \text { Non-normal incidence shifts } \\
& \text { minimum reflectance to shorter } \\
& \text { wavelength }
\end{aligned}
$$

AR coating performance

Single-layer MgF coating

Multi-layer "V-coating"

High-reflectance coatings

Incident light
$\frac{\frac{n_{i}}{n_{H}}}{\frac{n_{L}}{n_{H}}} \frac{1}{n_{L}}$ for x layers on n_{H} and $x-1$ layers n_{L}

$$
R=\left[\frac{n_{i}-\frac{n_{H}^{2 x}}{n_{L}^{2 x-2} n_{s}}}{n_{i}+\frac{n_{H}^{2 x}}{n_{L}^{2 x-2} n_{s}}}\right]^{2}
$$

$$
\text { maximize } n_{H} / n_{L}
$$

Multilayer reflector performance

Non-normal incidence shows polarization dependence

Caution: may not be suitable for ultrafast lasers

Can achieve R> 99.9\% off-the-shelf five-9's possible ... limited by losses

Damage thresholds> $10 \mathrm{~J} / \mathrm{cm}^{2}$ (10 ns pulse)

NIST Optoelectronics Division

Metallic mirror performance

Damage thresholds 10x to 100x lower than dielectric stacks

Wave polarization

The polarization state is defined by the direction of the transverse E-field

Any polarization can be decomposed into orthogonal components

Retarders (aka waveplates)

Retarders induce a phase difference $\Delta \Phi$ between orthogonally polarized components of light

Linear retarders produce $\Delta \Phi=\Phi_{\mathrm{x}}-\Phi_{\mathrm{y}}$

- waveplates use optically anisotropic materials with linear birefringence $\Delta n=n_{x}-n_{y}$
- electro-optic materials (Pockel's effect): $\Delta n=f(E)$

- rhombs use retardance from total-internal-reflection

Circular retarders produce $\Delta \Phi=\Phi_{\text {rcp }}-\Phi_{\text {Icp }}$

- optically active chiral materials (sugar solution) with circular birefringence $\Delta n=n_{\text {rcp }}-n_{\text {lpp }}$
- magneto-optic effects: $n_{\text {rep }}-n_{\text {lcp }}=f(H)$

Retarders can rotate or transform the polarization state

Polarizers

Birefringent crystal polarizers - extinction ratios of 10^{-5} to 10^{-7} are possible these operate through TIR so have limited acceptance angle

Dichroic polarizers cheap, limited power-handling capability extinction ratio $\sim 10^{-2}$ to 10^{-5} in visible

How do you determine the polarizer's transmission axis? look at the glare from a shiny surface... s-polarization "skips", p-polarization "plunges"

Jones calculus

$\begin{aligned} & \text { Jones calculus is a tool for calculating the } \\ & \text { evolution of completely polarized beams }\end{aligned}\left[\begin{array}{l}E_{x} \\ E_{y}\end{array}\right]_{\text {out }}=\left[\begin{array}{ll}a_{2} & b_{2} \\ c_{2} & d_{2}\end{array}\right]\left[\begin{array}{ll}a_{1} & b_{1} \\ c_{1} & d_{1}\end{array}\right]\left[\begin{array}{l}E_{x} \\ E_{y}\end{array}\right]_{\text {in }}$

Jones vectors (for fields)	Jones matrices (for components)
Linear along $\mathrm{x} \quad\left[\begin{array}{l}1 \\ 0\end{array}\right]$	Polarizer at $0^{\circ} \quad\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$
Linear along y $\quad\left[\begin{array}{l}0 \\ 1\end{array}\right]$	Polarizer at $\theta^{\circ} \quad\left[\begin{array}{cc}\cos ^{2} \theta & \sin \theta \cos \theta \\ \sin \theta \cos \theta & \sin ^{2} \theta\end{array}\right]$
Linear at $45^{\circ} \quad \frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ 1\end{array}\right]$	Quarter wave retarder at $0^{\circ}$$\quad\left[\begin{array}{cc}e^{i \pi / 4} & 0 \\ 0 & e^{-i \pi / 4}\end{array}\right]$
Right-circular $\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ i\end{array}\right]$	Quarter wave retarder at $45^{\circ}$$\quad \frac{1}{\sqrt{2}}\left[\begin{array}{ll}1 & i \\ i & 1\end{array}\right]$
Left circular $\frac{1}{\sqrt{2}}\left[\begin{array}{c}1 \\ -i\end{array}\right]$	Half wave retarder at $0^{\circ}$$\quad\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$

Jones calculus example

$$
\left[\begin{array}{l}
E_{x} \\
E_{y}
\end{array}\right]_{\text {out }}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \quad \frac{1}{\sqrt{2}}\left[\begin{array}{ll}
1 & i \\
i & 1
\end{array}\right] \quad\left[\begin{array}{l}
1 \\
0
\end{array}\right]_{\text {in }}
$$

$$
\begin{aligned}
& \qquad=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad I=E E^{*}=\frac{1}{2} \\
& \text { Output polarization } \\
& \text { is linear vertical }
\end{aligned} \begin{aligned}
& \text { Optical power } \\
& \text { is halved }
\end{aligned}
$$

Polarization control

Desired polarization control

Linear-to-linear
$\lambda / 2$ plate rotates state by 2θ

Linear-to-arbitrary

Arbitrary-to-arbitrary

Linear input attenuator
$\lambda / 2$ between crossed polarizers $T=\sin ^{2} \theta$

Linear input "pseudo-isolator"
requires unchanged reflection polarization

Optical isolator
magneto-optic rotatator between crossed polarizers

NIST Optoelectronics Division

"Unpolarized" light

Monochromatic light is polarized

$$
\vec{E}(z, t)=\hat{x} E_{x} \cos \left(\omega t-k_{0} z+\phi_{x}\right)+\hat{y} E_{y} \cos \left(\omega t-k_{0} z+\phi_{y}\right)
$$

- For strictly monochromatic light Ex, Ey, $\varphi x, \& \varphi y$ are constant
- in other words, one cannot make an unpolarized monochromatic laser beam
- exception is spatial depolarization using ground glass or integrating spheres

For non-monochromatic light, pairs $\mathrm{E}_{\mathrm{x}} \& \mathrm{E}_{\mathrm{y}}$, and $\varphi_{\mathrm{x}} \& \varphi_{\mathrm{y}}$ have statistical correlations that depend the spectral bandwidth $\Delta \omega$ of the light

For quasi-monochromatic (with bandwidth $\Delta \omega$ around ω_{0}) light the time scale of this correlation is the coherence time $T_{c} \sim 2 \pi / \Delta \omega$ (or coherence length $L_{c}=c T_{c}$)

Can "depolarize" broadband light with a Lyot depolarizer

Requires thick birefringent retarders with $\Delta n L>L_{c}$

References

Born and Wolf, "Principles of Optics"
Gaskill, "Linear Transforms, Fourier Transforms, and Optics"
Goodman, "Introduction to Fourier Optics"
Hecht, "Optics"
O'Shea, "Elements of Modern Optical Design"
Siegman, "Lasers"
OSA, "Handbook of Optics"
"Polarization and Polarimetry", www.boulder.nist.gov/div815/81503_pubs/ppm.htm

