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Power of refracting surfaces
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n1 n2 > n1

R

L1
L2

Fermat’s principle of least time: n1L1 + n2L2 is stationary (d(ΣnL)/dL =0)

Approximating as a spherical 
surface, refractive power = 1/f 
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This principle leads to Snell’s law          

n1 n2>n1

θ1
θ2

n1sinθ1 = n2sinθ2

n1

and gives curved surfaces focusing power



Thick lens (and lensmaker’s equation)

A lens is transmitting optic that has refractive power
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The Lensmaker’s Equation

A collimated input 
beam focuses to 
focal point f
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Types of lenses 

biconvex plano-
convex

convex-
concave

plano-
concave

biconcave

12

12

RR
RRq

−
+

=Coddington
shape factor

NIST Optoelectronics Division



A lens with negative power 

-f 

Here the radii of 
curvatures are < 0
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Curved mirrors have power 

R
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For a mirror, n = -1
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The thin lens – a useful simplification

A thin lens has radii of curvatures greater than thickness (R1, R2 > d)
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For a thin lens in air 

f is measured from the principal plane P

A thick lens may have two non-coincident principal planes
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Simple ray tracing 

An object h units high creates an image h’ units high

x

x’

object image

Can map the object to the image using two of three rays:
• Ray parallel to axis to principal plane, then though back focal point
• Ray through front focal point to principal plane, then parallel to axis
• Ray through nodal point

Points x and x’ are called conjugates

see http://www.colorado.edu/physics/phet/simulations/lens/lens.swf
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Simple two-lens system 

If lenses are separated by more than sum of focal lengths
• find an intermediate image
• map the intermediate image to the final image

Question… How does the lens diameter affect the image???
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Imaging equations
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Newtonian lens equation:
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Beam expanders 

Can expand beam by separating two lenses by the sum of their focal lengths

Keplerian telescope
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Galilean telescope 

Does the lens diameter matter?
Which telescope is better for high pulse-energy lasers?
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Beam shaping 

Non-circular beams (e.g., laser diodes) can be “circularized” in one-
dimension using cylindrical lenses or prisms

This method provides 1-d compression/expansion

To avoid the beam offset, use cylindrical lenses in a telescope
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Aberrations 

n1 n2 > n1

R

L1 L2

Ray optics assumes spherical 
surfaces…
• this only works in the “paraxial” (small 
angle, where sin x =x ) limit

• we ignored x3/3! + x5/5! -… in the 
expansion of sin x

Aberrations exist when the marginal 
rays don’t focus at the same place as 
the paraxial rays

The perfect (or “stigmatic”) imaging 
discussed before occurs for hyperboliods

The third-order aberrations are:
• spherical
• coma
• astigmatism
• field curvature
• distortion

increasing 
dependence on 
distance from 
image plane axis
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Focused spots with aberration

Spherical aberration Perfect focus
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Coma Astigmatism 

Two perpendicular
foci

Ray trace for astigmatism

Astigmatism is common in laser diodes

Ray trace for coma



Spherical aberration 

Spherical aberration  causes on-axis distortion

Transverse
spherical 
aberration

Longitudinal
spherical 
aberration

• SA causes a radially symmetric spread of the focused point

• Smallest “spot” will occur in front of paraxial focus plane
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Pictures of SA though focus

Java tutorial at http://www.olympusmicro.com/primer/anatomy/aberrationhome.html
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SA depends on lens shape 

http://optics.mellesgriot.com/opguide/fo_3_3.htm

Aberration is minimized when the incident angles to the optical surface are minimized 
α1 α2 α3

α13 + α23 <α33, so orientation 1 is better

Orientation 1 Orientation 2

Rule of thumb:  point most curved surface towards most distant conjugate
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Numerical aperture & F-number

Numerical aperture

D θmax

NA = n sin θmax
n = 1 for lens in air

One can “stop down” to reduce the NA or increase the F#

D* θ NA = n sin θ

F# = f/D

F# = f/D*
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Aberration scaling

The severity of aberrations generally depends on the aperture stop 
diameter (D) and the off-axis distance of the image point (h’)

Dependence on 
Aberration      D   h’_

Spherical aberration D3 none
Coma D2 h’
Astigmatism D h’2

High NA or low F# systems have more SA than low NA / high F# systems
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Physical optics

In geometric optics, a bundle of rays parallel to the axis will focus to a point
In real life, the spot size is finite even if aberrations are zero
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Diffraction 

Diffraction: the interference phenomena 
that describes the alteration of wave 
propagation due to optics of finite size

Ray model (no diffraction) Wave model (with diffraction)
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Wave optics 

for  r01 >> λ
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To model the general propagation of a 
wave through space…

Arago’s (or Poisson’s) spot

What do you see behind an 
illuminated opaque disk?

diffraction creates intensity distributions geometric optics cannot explain
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Fourier optics 

The diffraction pattern is very complicated and evolves with 
the distance z from the aperture…need simplifications!!

In the far field (or “Fraunhofer region”) the field math is simplified:    

Here the field is the Fourier transform of the 
wavefront in the aperture

The far field exists at distances 

or

at the focal plane of a lens

λ

22Dz >
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Fourier transform pairs 

Irradiance distribution is 
the square of the field 
distribution
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Airy function

The intensity distribution of a plane wave incident on a circular 
aperture with radius w is:
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~86% of energy is in the central lobe

Diffraction-limited spot
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Beam divergence 

2w

z

w
zd λ22.1=

θ

w
λ61.0≅Θ

Beyond the far field, the beam diverges at a constant angle

in the far field  
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Gaussian beams 

• Spherical-mirror resonator modes are Hermite-Gaussian
• Lowest-order mode is a Gaussian beam
• Hermite-Gaussians functions are self-transforms
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w is the 1/e2 radius 
(or the 1/e radius for the E field)
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Gaussian beam propagation

Gaussian beam propagation is defined by the wavelength and w0, 
the radius of the beam at the waist

w0
(waist)

w(z)

R(z)

Rayleigh rangeBeam radius at z Radius of curvature at z
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Rayleigh range

λ
π 2

0wZR =

ZR

w0 √2w0

Rayleigh range

The Rayleigh range is distance from 
waist at which beam area doubles

2ZR is know as the “confocal region” or “depth of focus”
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“collimated” beam range
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2ZR

633 nm

10.6 um

Tighter focusing 
causes a smaller 
“collimated” range



Gaussian beam divergence
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Focusing a Gaussian beam
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There is a (usually negligible) shift ∆f between the waist position and geometric focus
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Truncated Gaussian beams 

0

0.5

1

0 1 2
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Transmittance T through aperture is
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Choose lens diameter > πw 
to transmit > 99% of energy



Truncated Gaussian problems
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Truncating the Gaussian beam causes 
• Decrease in total power transmitted From last slide…

When a = πw/2
T = 99%
Paxis =84%
Ripple=17%

Result for aperture at waist (w = w0)

When a = 2.3w
Paxis = 99%
Ripple=1%

• Diffraction!!!
Decreases on-axis irradiance
Increases intensity ripple



Spatial filtering 

2w

Surface roughness, dust, etc., adds high-
spatial-frequency noise to beam profiles

Place pinhole at common foci of 
telescope to clean up the beam

Example:

rounded up!

For 1% ripple, pinhole 
diameter D ~ 4.6w0

ideal

f = 50 mm
λ = 633 nm
w = 1 mm w

fw
π
λ

≅0 w0 = 10 µm, so choose D = 50  µm
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Beam expander alignment 

Step 1. Adjust the beam to be parallel to be the optical table 
• choose an “operating height”
• have several pinholes at this height

Step 2.  Center lens 1 in the beam path

Step 3.  Center lens 2 in the beam path, ~f1+f2 from lens 1

Step 4.  Adjust lens 2 position along beam until beam diameter is 
approximately constant between lens 2 and the wall 

Use pinholes to 
define this plane

f1+f2
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Collimation test with a shearing plate

Step 5.  Do a fine adjustment of lens 2 position with a shearing plate

Top view

Beam

screen

wedged
optical flat

If collimated (R→∞ at screen), fringes 
are vertical

Fringes tilt if beam is 
converging or diverging
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Reflections, coatings, and stuff
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Fresnel reflection

ni nt

θi

θr θt

Ei

Er

Et p-polarization is in-plane

s-polarization is out-of-plane

An incident wave (Ei) will create a reflected wave (Er) and transmitted wave (Et)
The fields are decomposed with respect to the plane of incidence
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Intensity reflection coefficients depend 
on polarization, angles, and refractive 
indices

RT −= 1

Define reflectance and transmittance as
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Fresnel coefficients
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Incident angle θi (degrees)0 90
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Critical angle
θc=sin-1(ni/nt)
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Incident angle θi (degrees)0 90

Rs
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Brewster angle
θc=tan-1(nt/ni)

air-to-glass: ni = 1, nt = 1.5   glass-to-air: ni = 1.5, nt = 1   

Brewster angle incidence provides 
perfect transmission for p-polarized

Reflectance is total for θi > θc

One can modify reflectance by applying thin films to the optic
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Optical coatings – quarter wave rule

Consider a thin film of quarter-
wave optical thickness 

Incident light
If film is exactly λ/4 thick (=λ0/(4nf))
can transform to an exact two-layer 
system

niair (or ??)

nfthin film nfd =λ/4
Incident light

ninssubstrate air (or ??)

nf
2/nsequivalent

index

Now can use Fresnel reflection equations 
for the equivalent interfaces
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Optical coatings – half wave rule
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ni

nf

ns

nfd = λ/2

Incident light Incident light

niair (or ??)air (or ??)

nf λ/4
thin film thin film

substrate ns

λ/4nf

substrate

ni

nfthin film

“substrate”

air (or ??)

Incident light

λ/4

Combine 
using quarterwave rule

Incident light

niair (or ??)

nf
2/(nf

2/ns) = ns“substrate”

nf
2/ns λ/2 layer is an “absentee layer”

… acts like it isn’t there



Antireflection coatings

For normal incidence, Fresnel 
reflectance is  

Incident light

niair (or ??) 2
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Incident light
If the substrate is coated with a λ/4 film, 
we can use the quarter-wave rule…niair (or ??)
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Reflectance is zero when numerator is zero (when nf = √ ni ns )

example:  ns = 1.5 (glass), nf = 1.38 (MgF), ni =1;  R ~ 1.3%
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AR coatings – what’s the trick?

NIST Optoelectronics Division

For non-normal incidence, require δ = π
for the refracted paths

0

cos2
λ

θπδ dn
=

0

2
λ

πδ dn
=

When path difference d = λ/2, the 
phase difference δ= π
…. so the two reflected waves 
destructively interfere

θ Non-normal incidence shifts 
minimum reflectance to shorter 
wavelength



AR coating performance

Single-layer MgF coating

Multi-layer “V-coating”
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High-reflectance coatings

Incident light

niair (or ??) 2

2

2

/

/

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+

−
=

sfi

sfi

nnn

nnn
R To increase R, 

make nf largenfthin film λ/4

nssubstrate

To get higher reflectance, alternate nH and nL λ/4 layers

for x layers on nH and x-1 layers nL
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Multilayer reflector performance

Can achieve R> 99.9% off-the-shelf
five-9’s possible… limited by losses

Damage thresholds> 10 J/cm2 (10 ns pulse)

Non-normal incidence shows 
polarization dependence

Caution: may not be suitable for 
ultrafast lasers… why??
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Metallic mirror performance

NIST Optoelectronics Division

Damage thresholds 10x to 100x 
lower than dielectric stacks

Protected silver 
R > 95% from 400 nm to 20 µm

Protected aluminum

Protected gold 
R > 98% from 400 nm to 16 µm



Polarization, interference & coherence
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Wave polarization

The polarization state is defined by the direction of the transverse E-field

Any polarization can be decomposed into orthogonal components

)cos(ˆ)cos(ˆ),( 00 yyxx zktEyzktExtzE φωφω +−++−=
r

Polarization state Ex Ey phase
Linear vertical 1 0 Φx =Φy =0
Linear horizontal 0 1 Φx =Φy =0 
Linear @ 45º 1/√2 1/√2 Φx =Φy =0 
Right circular 1/√2 1/√2 Φx = 0, Φy =π/2
Left circular 1/√2 1/√2 Φx = 0, Φy = -π/2
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Eigenpolarizations

Isotropic materials: refractive index and loss is independent of direction / polarization
Anisotropic materials: properties depend on direction & polarization

e-axise-pol

o-pol

Input Plane

φ = 0 φ = π/2 φ = π φ = 3π/2 φ = 2π

length

Retardation

SOP

e-axis

o-axis
λo

λe

An eigenpolarization is a 
polarization state that 
propagates unchanged through 
optically anisotropic materials.

Any incident polarization can be 
decomposed into orthogonal 
eigenpolzarizations

e-axis: n= ne = nx

o-axis: n= no = ny

x-pol

y-pol
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Retarders (aka waveplates)

Retarders induce a phase difference ∆Φ between 
orthogonally polarized components of light

Circular retarders produce ∆Φ = Φrcp – Φlcp

• optically active chiral materials (sugar solution) with 
circular birefringence ∆n =nrcp -nlcp

• magneto-optic effects:  nrcp – nlcp = f(H)

Linear retarders produce ∆Φ = Φx – Φy

• waveplates use optically anisotropic materials with  
linear birefringence ∆n =nx -ny

• electro-optic materials (Pockel’s effect): ∆n = f(E)
• rhombs use retardance from total-internal-reflection

Retarders can rotate or transform the polarization state
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Polarizers

Birefringent crystal polarizers – extinction ratios of 10-5 to 10-7 are possible
but have limited acceptance angle

Glan-Thompson Rochon Wollaston

Air or
cement

Absorbing surface 
(epoxy or paint)

How do you determine the polarizer’s transmission axis?
look at the glare from a shiny surface…
s-polarization “skips”, p-polarization “plunges”

Dichroic polarizers –
cheap, limited power-handling capability
extinction ratio ~ 10-2 to 10-5 in visible
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Jones calculus
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Jones calculus example

QWP 
@ 45º

Polarizer
@ 0º

Linear polarization 
@ 0ºOutput??
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Polarization control

power control                _ 

Linear input attenuator
λ/2 between crossed polarizers
T = sin2θ

Linear input “pseudo-isolator”
requires unchanged reflection polarization

Optical isolator
magneto-optic rotator between crossed polarizers

polarization control          _   

Linear-to-linear
λ/2 plate rotates state by 2θ

Linear-to-arbitrary

Arbitrary-to-arbitrary

θEin

λ/2

λ/4 λ/2

Ein

λ/2 λ/4λ/4

λ/2

λ/4 @ 45º

rcp out
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Interference

Monochromatic light waves can interfere
• constructive interference when waves interfere in phase
• destructive interference when wave interfere π out of phase

Mirror

laser

detector

∆L

moving
mirror

beamsplitter

signal

I0

I0

∆L
0 λ/4

Michelson interferometer
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Why is interference 
constructive when ∆L=0??
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Etalon interference

Flat, parallel surfaces may exhibit unintended interference effects

To avoid this effect:
• use wedged flats
• use non-normal incidence
• use short coherence length sources
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Monochromatic light and coherence

Monochromatic light is coherent
)cos(ˆ)cos(ˆ),( 00 yyxx zktEyzktExtzE φωφω +−++−=

r

• For strictly monochromatic light Ex, Ey, φx, & φy are constant

f t

Remember Fourier 
transform pairs

What if laser beam is not constant (e.g., pulsed laser)?
• Light is not monochromatic… Ex, Ey, φx, & φy are constant
• For ∆ω<<ω, use “quasi-monochromatic” approximation 
• Amplitude and phase vary about mean frequency ω and mean wavenumber ko
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Coherence time and length

Coherence time τc~2π/ ∆ω ~ λ2/c∆λ
Coherence length Lc = c τc

The laser beam will be mutually coherent over times (lengths) < τc, Lc
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∆L>>Lc

∆L~Lc
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“Unpolarized” light

Monochromatic light is polarized
• Ex, Ey, φx, & φy are constant

▪ in other words, one cannot make an unpolarized monochromatic laser beam
▪ exception is spatial depolarization using ground glass or integrating spheres

For non-monochromatic light
• pairs Ex & Ey, and φx,& φy have statistical correlations 
• Correlation depends on the spectral bandwidth ∆ω of the light

Light is correlated only within the coherence time τc or coherence length Lc

Can “depolarize” broadband light with a Lyot
depolarizer

• Create delay >> Lc between eigenpolarizations

• Need thick birefringent retarders with ∆nL > Lc

L
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