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Power of refracting surfaces

Fermat’s principle of least time: n.,L, + n,L, is stationary (d(2nL)/dL =0)
This principle leads to Snell’s law

and gives curved surfaces focusing power

n,sin@, = n,sinb,

0 n, n,

Approximating as a spherical 4
surface, refractive power = 1/f

power = 1 = (& —1J(£j
f n, R
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Thick lens (and lensmaker’s equation)

A lens is transmitting optic that has refractive power

d— _ A collimated input
R | f _ beam focuses to
h focal point f
[
\| T
III II -\-\-\-\-\-\--\"'-\-\_
| | E"mﬁ_ -
____h______ﬂfﬁf ______ L____l__________;? ______ ;“:1-3.1.:;5_5
\ | | 7 _— Focal point
' | ’_,/’J_J_f"
AN _— -
N \/—
R~ .'-*’HRI .
2507 The Lensmaker’s Equation
1 1 1 (n-1)
power = —=(n—-1) —+—+
f R, R, nRR,
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A lens with negative power

o d e
. _— Here the radii of
) / - _— curvatures are < 0
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1
power = — n-1 + —
f R| |R,| nRR,
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Curved mirrors have power

For a mirror, n = -1

power = 1 — (n _1)(£j sof=-R/2
f R

NIST Optoelectronics Division



The thin lens — a useful simplification

A thin lens has radii of curvatures greater than thickness (R,, R, > d)

For a thin lens in air 1 )L 1 1 j

Rl RZ
/P\
f ]

fis measured from the principal plane P

A thick lens may have two non-coincident principal planes
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Simple ray tracing

An object h units high creates an image h’ units high

h‘f[s 1 X’
X

Can map the object to the image using two of three rays:
» Ray parallel to axis to principal plane, then though back focal point
« Ray through front focal point to principal plane, then parallel to axis
« Ray through nodal point

Points x and x’ are called conjugates

see http.//www.colorado.edu/physics/phet/simulations/lens/lens.swf
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Simple two-lens system

If lenses are separated by more than sum of focal lengths
» find an intermediate image
* map the intermediate image to the final image

h ?WA\\. X'

AN "

Question... How does the lens diameter affect the image???
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Imaging equations

P

image

- XO |- f f > Xi >
1 1 1 .
Gaussian lens equation: — 4+ Transverse magnification
S S
2 Y, S
Newtonian lens equation: Xo Xi — f 0
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Beam expanders

Can expand beam by separating two lenses by the sum of their focal lengths

Keplerian telescope

Does the lens diameter matter?
Which telescope is better for high pulse-energy lasers?
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Beam shaping

Non-circular beams (e.g., laser diodes) can be “circularized” in one-
dimension using cylindrical lenses or prisms

V

This method provides 1-d compression/expansion

To avoid the beam offset, use cylindrical lenses in a telescope
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Aberrations

Ray optics assumes spherical
surfaces...

* this only works in the “paraxial” (small
angle, where sin x =x ) limit

The perfect (or “stigmatic”) imaging
discussed before occurs for hyperboliods

» we ignored x3/3! + x%/5! -... in the
expansion of sin x

4R Aberrations exist when the marginal
rays don’t focus at the same place as
the paraxial rays

The third-order aberrations are:
 spherical

e coma
 astigmatism

« field curvature
 distortion

increasing
dependence on
distance from
image plane axis
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Focused spots with aberration

Perfect focus

( a Coma

Ray trace for coma

Two perpendicular

foci

Astigmatism is common in laser diodes
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Spherical aberration

Spherical aberration causes on-axis distortion

paraxial
/ circle of Sgﬂz
least
— _
’ confusion

— * Transverse

——— pherical
. aberration

marginal

focus

- J
Y

Longitudinal
spherical
aberration

« SA causes a radially symmetric spread of the focused point

« Smallest “spot” will occur in front of paraxial focus plane
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Pictures of SA though focus

Focal Planes with Spherical Aberration

Towards the Lens

Paraxial

Figure 1

Java tutorial at http://www.olympusmicro.com/primer/anatomy/aberrationhome.html
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SA depends on lens shape

= > i
- | |
L 4 . < |
5 3 " exact longltudinal spheridal aberration (LSA)
= =
= .
LA 3 exact transvefse spherical e,
5 aberration (TSA) )
=
% 1 : — |
= — I B
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
SHAPE FACTOR (g)

http://optics.mellesgriot.com/opguide/fo_3_3.htm

Aberration is minimized when the incident angles to the optical surface are minimized

o \{/_Gz\ _%2\
Orientation 1 \_ Orientation 2

a3 + a,3 <a33, so orientation 1 is better
Rule of thumb: point most curved surface towards most distant conjugate
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Numerical aperture & F-number

Numerical aperture

A
NA = n sin Bmax
D 0, n = 1 for lens in air
L
f F# = f/D
v

One can “stop down” to reduce the NA or increase the F#

W¥7$\\\E\\\“ NA =nsin 6
v | f

F# = f/D*
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Aberration scaling

The severity of aberrations generally depends on the aperture stop
diameter (D) and the off-axis distance of the image point (h’)

Dependence on

Aberration D _h
Spherical aberration D3 none
Coma D? h’
Astigmatism D h'2

High NA or low F# systems have more SA than low NA / high F# systems
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Physical optics

In geometric optics, a bundle of rays parallel to the axis will focus to a point
In real life, the spot size is finite even if aberrations are zero
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Diffraction

Diffraction: the interference phenomena
that describes the alteration of wave
propagation due to optics of finite size

Ray model (no diffraction) = Wave model (with diffraction)

=
_—
—_—

=

-

3

e
irradiance irradiance
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Wave optics

diffraction creates intensity distributions geometric optics cannot explain

What do you see behindan  — ‘
illuminated opaque disk? .

screen

Arago’s (or Poisson’s) spot

To model the general propagation of a

wave through space... p o \
U(x,y,2) = E(x Y, 2)exp[-jlat+4(x,y,2)] | (> Observation *
Z exp( jkr, ) ’
UG Yo 2) = [[U 0, 1) 22U gy g,
surface 01

for ry; >> A
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Fourier optics

The diffraction pattern is very complicated and evolves with
the distance z from the aperture...need simplifications!!

In the far field (or “Fraunhofer region”) the field math is simplified:

Here the field is the Fourier transform of the
wavefront in the aperture

_ 2D
The far field exists at distances Z > ——
D
or
at the focal plane of a lens incident:
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Function

DELTA

FUNCTION

O RECTAMGULAR
FUNCTION

-

2-0 RECTANGULAR

FUNCTION T

—

F-transform

CONST,

Fourier transform pairs

Function F-transform
ISOSCELES | T(sm_n}z
Tnmnm_l-:/\ "

E R

GAUSSIAN GAUSSIAN
1
- ,E‘ i

Irradiance distribution is
the square of the field
distribution
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Airy function

The intensity distribution of a plane wave incident on a circular
aperture with radius w is:

- J,(kwR/z)
kwR / z

distance z from aperture, k=211/A

| (R) oc

Diffraction-limited spot

Diameter of central lobe

2
d :1_22£ for z>Zi
; W 1
d :1_22£ at the focal plane
W

~86% of energy is in the central lobe
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Beam divergence

Beyond the far field, the beam diverges at a constant angle

———————————————————————————————————————————————— | d =1.22£
ZWI """"""""""" 5 :

QF= 061i in the far field

W
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Gaussian beams

» Spherical-mirror resonator modes are Hermite-Gaussian
* Lowest-order mode is a Gaussian beam
 Hermite-Gaussians functions are self-transforms

1) - -
2P —2r

1 (r) =——exp

7l W

w is the 1/e? radius
(or the 1/e radius for the E field)

r
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Gaussian beam propagation

Gaussian beam propagation is defined by the wavelength and w,
the radius of the beam at the waist

Beam radius at z Radius of curvature at z Rayleigh range
2 2 2
7 7 W,
W(Z):WO 14| — R(Z)IZ-I—L ZR =
Zn Z A
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Rayleigh range

The Rayleigh range is distance from

waist at which beam area doubles
Rayleigh range
2

W,
................ A

27 is know as the “confocal region” or “depth of focus”
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“collimated” beam range

"

- -

......
-----

------- <« N R T
27,

® 1000 km =

(o)}

§ / J
Tighter focusing = 100 km 633 nm/ /

ller o  10km

causes a smalle 2 / /
“collimated” range kA 1 km

g o0 _~ _~106um

g o // /

Tm / T T

1 10 100 1000

waist diameter 2Wo (mm)
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Gaussian beam divergence

2
ZA ZA
W(z) =w,,[1+ ~| =—— forlarge z (z>>zg)
W, W,
Beam divergence
. W(z A
0, =lim (2) _

o7 W,

Divergence is inversely proportional to w
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Focusing a Gaussian beam

ZA
Recall W(z) = —
0 Af

At focus, spot radius is W, = —

7TW
A \
2w — e
2 2 4
y \// _’.‘_AfEZR :7Z'WO
f A% 1
< f >

There is a (usually negligible) shift Af between the waist position and geometric focus
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Truncated Gaussian beams

2W

Choose lens diameter > TTw
to transmit > 99% of energy

Transmittance T through aperture is

T

=1—exp| ———-

0.5

diameter
' 2a=TTW

5 alw

0 1 2

NIST Optoelectronics Division



Truncated Gaussian problems

Truncating the Gaussian beam causes .
: . From last slide...
» Decrease in total power transmitted ~
] ) When a = mw/2
* Diffraction!!! o
o T =99%
Decreases on-axis irradiance A0
Increases intensity ripple Paxis =84%
Ripple=17%

Result for aperture at waist (w = w,)

E o7 1 15% &
3 0 £
e 0.6 >
s 0.5 | 1 10% =
c 04 S
:.g 0.3 - —— aperture transmittance 1 59 £
c 02 ——on axis irradiance =
w 0.1 ——ripple (%)
0 L= ‘ ‘ ‘ ~— 0% When a = 2.3w
0 0.5 1 1.5 2 2.5 3 P..is = 99%
alw Ripple=1%
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Spatial filtering

<«——ideal
Surface roughness, dust, etc., adds high-

spatial-frequency noise to beam profiles \

Place pinhole at common foci of
telescope to clean up the beam

I

\'/ For 1% ripple, pinhole
oW /'\ diameter D ~ 4.6w,

1

Example: \/

| |
f=50 mm Af
A=633nm —— Wy = — — w,=10pum, so choose D =50 pm
w=1mm al f
rounded up!
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Beam expander alignment

Step 1. Adjust the beam to be parallel to be the optical table
« choose an “operating height”
* have several pinholes at this height

Step 2. Center lens 1 in the beam path

Step 3. Center lens 2 in the beam path, ~f,+f, from lens 1

Step 4. Adjust lens 2 position along beam until beam diameter is
approximately constant between lens 2 and the wall

[
x

<« f1+f2 —

Use pinholes to
define this plane
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Collimation test with a shearing plate

Step 5. Do a fine adjustment of lens 2 position with a shearing plate

SCreen m— If collimated (R—< at screen), fringes
are vertical
Top view
Beam —
wedged
optical flat

Fringes tilt if beam is
converging or diverging
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Reflections, coatings, and stuff
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Fresnel reflection

An incident wave (E,) will create a reflected wave (E,) and transmitted wave (E,)
The fields are decomposed with respect to the plane of incidence

p-polarization is in-plane

“———— s-polarization is out-of-plane

Intensity reflection coefficients depend

on polarization, angles, and refractive
indices

— 2
n, coOs@. —n. cos @
nt R — [ I I t:|

| " | n,coséd. +n. coso,
Define reflectance and transmittance as -

— 2
EE"| | n. cosé. —n, coso
R = r—r —_r T=1-R R = | el t t
E.E. i | N; COSE, +n, COS O,
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Reflectance

Fresnel coefficients

air-to-glass: n,.=1,n,=1.5 glass-to-air: n,= 1.5, n, = 1
1
Brewster angle § Critical angle
=tan-! . 8 :
6.=tan-'(n/n,) E 8_=sin"'(n/n,)
©
Y
1 0 |
Incident angle 6, (degrees) 90 0 Incident angle 6, (degrees)
Brewster angle incidence provides Reflectance is total for 6, > 6

perfect transmission for p-polarized

One can modify reflectance by applying thin films to the optic
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Optical coatings — quarter wave rule

Consider a thin film of quarter-
wave optical thickness

Incident light If film is exactly M4 thick (=AJ/(4n,))
air (or ??) i ¢ can transform to an exact two-layer
‘ system
thin film Ng nd =\/4 _ _
Incident light
substrate  Ng air (or??) N ¢

equivalent  n2/ng
index

Now can use Fresnel reflection equations
for the equivalent interfaces
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Optical coatings — half wave rule

Incident light Incident light
air (or ??) N ¢ air (or ??) N ¢
r N4
thin film n; nd=M2| =) thinfilm - I
N4
substrate ng substrate
Combine

using quarterwave rule

Incident light

Incident light
ir (or 27) N ¢
air(orz?) T air (or??) h ¢
- n —_—
thin film f N4 ' “substrate”  n2/(n@/ng) = ng
“substrate”  nZ2/n, N2 layer is an “absentee layer”

... acts like it isn’t there
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Antireflection coatings

For normal incidence, Fresnel

Incident light )
J reflectance is
air (or ??) N, ¢ 2
Nn. — N
substrate  ng R=|— -
n. +n,
Incident light , . :
| i ¢ If the substrate is coated with a A/4 film,
air (or ??7) N, we can use the quarter-wave rule...
- 2
L 2
thin film N; )\/41 2 n. —n; /I’]S
= 2
substrate N _ni 0y /ns i

Reflectance is zero when numerator is zero (when n; = n.n. )

example: n = 1.5 (glass), n,=1.38 (MgF), n,=1;, R~ 1.3%
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AR coatings — what's the trick?

4l

e

H| |

27 Nnd When path difference d = A2, the \\ n, [m] n
_cr phase difference d= l\\f’ -
A .... SO the two reflected waves \
destructively interfere | ‘“?*'\
R, T
R:
For non-normal incidence, require & = 1T
for the refracted paths
9 2rndcosg Non-normalincidence shifts
g o= minimum reflectance to shorter
ﬂ*o wavelength
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PERCENT REFLECTAMCE

AR coating performance

typlcal reflectance curves

]
q . N . . .
normal and 45° incidence S|ng|e-|ayer MgF Coatmg
3
d‘sb
2 T r——— e
\_ - _ﬁ
1 ! { !
400 500 G0 #1000
WAVELENGTH IN NAMOMETERS
typical reflectance ouerves
100
=< |
E normal incidence
E & - e —
Multi-layer “V-coating” z |
z i |
350 ﬁm_m 650 00
WAVELENGTH IN NMANGMETERS
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Incident light

air (or??) N

v

thin film P

substrate  ng

Incident light

v

To get higher reflectance, alternate n, and n_ A/4 layers

)\/4I R=

n.—n.c/n,

n+n.°/n,

2

n,”

N =2
r]L ns

2

n,”

ni+ 2X—2
rlL ns

High-reflectance coatings

To increase R,
make n; large

for x layers on n, and x-1 layers n,
B -2

maximize n./n;
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PERCENT REFLECTAMCE

Multilayer reflector performance

typlcal reflectance curves

100 — =
Ilf_ _ | | ﬁ\.l Can achieve R> 99.9% off-the-shelf
” |' | five-9’s possible... limited by losses
60 | _ narmal In-ch.:len-l:e _ |
w0 || | | | | Damage thresholds> 10 J/cm? (10 ns pulse)
| | || I[
20 1] -
W I'u"l
0.8 09 1.0 1.1 1.2 160 B typlcal rfﬂeih_r-munﬁ
RELATIVE WAVELENGTH, g = ho/h Ir’ (T spolartzation 1 \

g

. . | 'I |
Non-normal incidence shows ! |

. | | 45° Incldence L
polarization dependence

&

\ ,ﬂ -I p—pnlarlzallm—-—l %

PERCENT REFLECTANCE
2

3

Caution: may not be suitable for
ultrafast lasers... why??

0.8 i 1.0 11 1.2
RELATIVE WAVELENGTH, g = Ao/
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Metallic mirror performance

ypical reflectance curees

100
2‘35 Protected aluminum
D |— —— _ .
& | .
s = .
i normal Incidence | ——
& an 450 incidence | _ . .
s-plane
pplane —
400 500 600 100
WANELEMGTH IM HNAMOMETERS
100 o
2 B0
v
o 60
o normal Incldence
= 40|
< Protected gold
6 20— R>98% from 400 nm to 16 ym

700 00 1100 1300 1500

Damage thresholds 10x to 100x
lower than dielectric stacks

typlcal reflectance curves

g
II
|

=3
(=
e

normal Incldence

=
(=1

Protected silver

PERCENT REFLECTANCE
2

P
]

"

R > 95% from 400 nm to 20 ym

400 500 G00 700 800
WAVELENGTH IN NAMOMETERS

WANVELENGTH IN NANOMETERS
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Polarization, interference & coherence
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Wave polarization

The polarization state is defined by the direction of the transverse E-field

=

E(z,t) = XE, cos(wt K,z +4,)+ JE, cos(wt—k,z+4,)

Ey

J'/ ~
I.‘h J"“
E!F

A7 A
f
4
= 7
r
-
th__,*’

Any polarization can be decomposed into orthogonal components

Polarization state Ex Ey phase VAVAVAVA I +_
Linear vertical 1 0 o, =, =0 .
Linear horizontal 0 1 o, =0, =0
Linear @ 45° W2 12 o =0 =0

Right circular 12 12 @ =0, ®, =1/2

Left circular 12 1h2  ©,=0,0, = -ﬂ/Z/m O,flﬁﬁﬂ;ﬁ'}
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Eigenpolarizations

|sotropic materials: refractive index and loss is independent of direction / polarization
Anisotropic materials: properties depend on direction & polarization

x-pol e-axis: n=n, = n, An eigenpolarization is a
T polarization state that
l = mmmmmd Propagates unchanged through
y-pol ____ optically anisotropic materials.
o-axis: n=n, =n,
Input Plane e Any incident polarization can be

e-axis :

decomposed into orthogonal
eigenpolzarizations

0-axis &

» length

=0 ¢ =m/2 b=m ¢ =312 Retardation

\Q/Q\
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Retarders (aka waveplates)

Retarders induce a phase difference A® between
orthogonally polarized components of light

Linear retarders produce A® = @, — ®,

« waveplates use optically anisotropic materials with
linear birefringence An =n, -n,

* electro-optic materials (Pockel’s effect): An = f(E)

* rhombs use retardance from total-internal-reflection

| A ,
Circular retarders produce A® = ® Do

- optically active chiral materials (sugar solution) with
circular birefringence An =n_ -n,
- magneto-optic effects: n, —n,, =f(H)

rcp

Retarders can rotate or transform the polarization state

NIST Optoelectronics Division



Polarizers

Birefringent crystal polarizers — extinction ratios of 10~ to 10" are possible
but have limited acceptance angle

Absorbing surface Air or
(epoxy or paint)\ cement

4 et =l
¢ - =

Glan-Thompson Rochon Wollaston

Dichroic polarizers —
cheap, limited power-handling capability
extinction ratio ~ 102 to 10-% in visible

How do you determine the polarizer’s transmission axis?

look at the glare from a shiny surface... ‘§\/
s-polarization “skips”, p-polarization “plunges”

NIST Optoelectronics Division



Jones calculus

{EX} _{az bz}{al bl}{Ex}
E, W LG dpjlc d E, in

Jones matrices (for components)

Jones calculus is a tool for calculating the
evolution of completely polarized beams

Jones vectors (for fields)

Linear along x 1 Polarizer at 0° (10
0] 0 0
— —_— [~ 2 -
Linear along y Polarizer at 6° _COS 0 Sm_gcos‘g}
1 'sindcosd  sin® o
- Quarter wave Cizla
Li t45° 1|1 retarder at 0° ° °
inear a ﬁ 1 ] 0 aizl4
0 Quarter wave i{l i}
Right-circular 1| retarder at 45° Ja2li 1
V2 i
1M1 Half wave {1 0}
1 - o
Left circular \/5{—!_ retarder at 0 0 —
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Jones calculus example

Polarize QWP
\ @ 0° @ 45°
-
Linear polarization
Output?? @ 0°

*

_ L)t | —EE" =
3l e

Output polarization / Optical power
is linear vertical is halved
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Polarization control

polarization control

Linear-to-linear
N2 plate rotates state by 20

Linear-to-arbitrary

N4 \)\/2 \

Arbitrary-to-arbitrary
N4 N2 N4

power control

Linear input attenuator
N2 between crossed polarizers A2

- 900

Linear input “pseudo-isolator”
requires unchanged reflection polarization

N4 @ 45°

!

— rcp out

Optical isolator

magneto-optic rotator between crossed polarizers
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Interference

Monochromatic light waves can interfere
« constructive interference when waves interfere in phase
« destructive interference when wave interfere 11 out of phase

Michelson interferometer l

Mirror

laser

ly

beamsplitter moving

detector ignal
| (AL) = L 1—cos£%j
2 A

ML

-N2 -Nd 0 N4 N2 3N4

Why is interference
constructive when AL=077?
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Etalon interference

Flat, parallel surfaces may exhibit unintended interference effects

Fabry-Pérot 1.0
interferometer
< g > 0.85

=

Reflectance
R Yy

@-RY
R?—-2Rcoso

TE (5) = 1+

5:2—ﬂ2nd cosd
A

T
I R max = TR
- (1+R)
R=50%
k J @90% J S
0 217 21T

To avoid this effect:
 use wedged flats

* use non-normal incidence
* use short coherence length sources
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Monochromatic light and coherence

Monochromatic light is coherent
E(z,t) = XE, cos(wt K,z +¢,)+ YE, cos(wt—k,z+¢,)
» For strictly monochromatic light Ex, Ey, ¢x, & @y are constant
Function F-transform

Remember Fourier BEESCTITMEL
transform pairs i CONST.
. f

- 1

What if laser beam is not constant (e.g., pulsed laser)?

 Light is not monochromatic... Ex, Ey, ¢x, & @y are constant
* For Aw<<w), use “quasi-monochromatic” approximation B
« Amplitude and phase vary about mean frequency @W and mean wavenumber k_

E(z,t) = XE, (z,t) cos(wt K,z + ¢, (2,t)) + VE, (z,t) cos(wt — K,z + ¢, (2, 1))
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Coherence time and length

Coherence time 1.~211/ Aw ~
Coherence lengthL_=c 1,

A2/CAN

The laser beam will be mutually coherent over times (lengths) <t L,

Mirror

laser

beamsplitter moving

mirror
signal

detector

A AR A

AL>>L
AL~L,
AL<<L,

J Y Y YL
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“Unpolarized” light

Monochromatic light is polarized
* EX, Ey, ¢x, & @y are constant
= in other words, one cannot make an unpolarized monochromatic laser beam
= exception is spatial depolarization using ground glass or integrating spheres

For non-monochromatic light

* pairs E, & E, and ¢, & ¢, have statistical correlations

» Correlation depends on the spectral bandwidth Aw of the light
Light is correlated only within the coherence time T, or coherence length L,

Can “depolarize” broadband light with a Lyot
depolarizer

» Create delay >> Lc between eigenpolarizations

* Need thick birefringent retarders with AnL > L

| —
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