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Grazing incidence telescopes 
 
Large number of grazing incidence telescope configurations have been designed and 
studied. Wolter1 telescopes are commonly used in astronomical applications. Wolter 
telescopes consist of a paraboloidal primary mirror and a hyperboloidal or an ellipsoidal 
secondary mirror.  There are 8 possible combinations of Wolter telescopes2. Out of these 
possible designs only type 1 and type 2 telescopes are widely used. Type 1 telescope is 
typically used for x-ray applications and type 2 telescopes are used for EUV applications. 
 
Wolter-Schwarzshild (WS) telescopes3 offer improved image quality over a small field of 
view. The WS designs are stigmatic and free of third order coma and, therefore, the PSF 
is significantly better over a small field of view.  Typically the image is more symmetric 
about its centroid. As for the Wolter telescopes there are 8 possible combinations of WS 
telescopes2. These designs have not been widely used because the surface equations are 
complex parametric equations complicating the analysis and typically the resolution 
requirements are too low to take full advantage of the WS designs. 
 
There are several other design options. Most notable are wide field x-ray telescope 
designs.  Polynomial designs were originally suggested by Burrows4 and hyperboloid-
hyperboloid designs for solar physics applications were designed by Harvey5. 
 
No general aberration theory exists for grazing incidence telescopes that would cover all 
the design options. Several authors have studied the aberrations of grazing incidence 
telescopes6-9. A comprehensive theory of Wolter type 1 and 2 telescopes has been 
developed10, 11.  Later this theory was expanded to include all possible combinations of 
grazing incidence and also normal incidence paraboloid-hyperboloid and paraboloid-
ellipsoid telescopes12. In this article the aberration theory of Wolter type telescopes is 
briefly reviewed. 
 
Surface equations 
 
 The surface equations of the grazing incidence telescopes can be combined to a general 
form covering large number of design options. General surface equations have been 
developed for grazing incidence telescopes2. Unfortunately these equations are too 
complex to base the aberration theory on.  The equations of the Wolter telescopes 
presented in the cylindrical coordinate system are relatively simple.  Assuming an 
incoming ray hits the telescope entrance aperture at radial and azimuthal location (h,β), it 
strikes the primary mirror at a location A, the secondary mirror at a location B, and the 
focal plane at a location F, as shown in Figures 1 and 2. The extension of the ray which 



hits the secondary at the location B would intersect the optical axis at F1, at the common 
focus of the paraboioid and hyperboloid.    
 
Assuming the primary and the secondary mirror are surfaces of revolution and the 
primary mirror focus coincides with the secondary mirror focus, then the surface equation 
of the primary mirror can be written as: 
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where ρ is the distance from the paraboloid-hyperboloid focus F1 to a point on the 
primary mirror, θ is an angle this ray makes with the optical axis, and R1 is the vertex 
radius of curvature of the primary mirror. The secondary hyperboloid can be expressed 
either as a function of angle α or θ 
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where q is the distance from the focus F to the point B on the secondary mirror and α is 
an angle q makes with the optical axis, R2 is the vertex radius of curvature of the 
secondary mirror, ε is the eccentricity of the secondary, r is the distance from the point B 
on the secondary to the focus F1 of the primary.  
 
The principal surface13, 14 of the Wolter telescopes is defined by the intersection points of 
the extensions of the incoming rays and the extensions of the rays reflected on the 
secondary (q). The principal surface goes through the intersection points of the primary 
mirror and secondary mirror. The principal surface of the Wolter telescopes is always a 
paraboloid13. It is useful to define the focal length (f) of the telescope to be the distance 
from the vertex of the principal surface to the telescope focus (F). Quite often the focal 
length is defined as the axial distance from telescope focus to the primary-secondary 
surface intersection plane. 
 
A useful relation for the paraboloid-hyperboloid or paraboloid-ellipsoid telescopes is the 
following relation15: 
 

)2/tan(2 αfh = .        (4) 
 
This equation ties the telescope object side to the image side. The equation (4) shows that 
the Wolter telescopes do not satisfy the Abbe’s sine condition  
 

)sin(αfh = .         (5) 
 
If the angle α is small, as is the case in x-ray optical systems, then the trigonometric terms 
could be expanded in α. The difference in Eqs.(4) and (5) would be in the third order term 



indicating that the third order coma should be small in the Wolter telescopes and the 
telescopes nearly satisfy the Abbe’s sine condition. 
 
Transverse ray aberration expansions 
 
Transverse ray aberration (TRA) expansions are expressed as functions of entrance 
aperture coordinates (h, β) shown in Figure 2. The expansions presented here are based 
on the format introduced by Cox16. The derivation is simple but rather lengthy. In the 
derivation an off-axis ray making an angle δ is mathematically traced from the primary 
mirror to the secondary mirror and to the focal plane. The surface intersection points on 
the primary and on the secondary are solved with respect to an on-axis ray and expanded 
in δ and h. The image plane intersection point (Hx, Hy) of this ray are the final image 
coordinates. They are then expressed as functions of entrance aperture coordinates (h, β) 
and image height H0 (=ftan(δ))  The TRA expansions of Wolter telescopes are: 
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In the derivation and resulting expansions only significant terms for grazing incidence 
telescopes are kept. The image height terms (H0) higher than third order are dropped. The 
radial height (h) terms higher than fourth order are also dropped. The parameters of the 
TRA expansions are listed below in equations (8) through (19) as functions of the 
telescope basic parameters f, R1, R2, ε, and L. The parameter L is the length of the 
telescope from the entrance aperture to the focal plane. 
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The Wolter telescopes are stigmatic on-axis and, therefore, the designs are free on all 
orders of spherical aberration terms. The first term in the expansion is the third order 



coma. The coma coefficient is proportional to the inverse square of the focal length and 
the coma term is inversely proportional to the square of the telescope f-number. It does 
not depend on the location of the entrance aperture or the other parameters. 
 
The third-order aberration terms A3 and A4 are proportional to second order of the image 
height (H0) and first order aperture height h. Both terms depend on the location of the 
entrance aperture.  Astigmatism and field curvature can be derived from these terms10. 
 
All fifth-order terms are represented in the expansions relative to Cox’s work16.  As the 
third-order spherical aberration, the fifth-order spherical aberration term is zero since the 
Wolter telescopes are stigmatic. Coefficients B2 and λ1 represent fifth order circular 
coma.  The term including the B3, B4 , and λ2  is the so-called astralate aberration16.  If 
coefficient B4 = 0, the term is called fifth-order oblique spherical aberration. The terms 
represented by B5 coefficient is the fifth-order elliptical coma aberration. Approximations 
suitable for grazing incidence telescopes were made in the derivation of B5 coefficient. 
 
Two seventh-order terms C1 and C2 proportional to H0

2h5 and H0
3h4 are approximations.  

Exact solutions are very complex formulas of the basic parameters. 
 
Typically the seventh-order terms and the fifth order terms become more important when 
the grazing angles of the surfaces decrease. Expanding the TRA equations as a function 
of radial height h is not the best choice in case of grazing incidence systems. For 
example, expanding the TRA equations as a function of Δh (=h – hint), where hint is the 
radial height at the primary secondary intersection plane, could lead to fewer terms and 
aberration coefficients more meaningful for the grazing incidence telescopes. 
 
The RMS image size can be represented as a function of the aberrations coefficients17. 
The resulting equation is rather complex function of the aberration coefficients and the 
field angle.   
 
Curvature of the best focal surface 
 
All combinations of Wolter telescopes suffer from large curvature of the best focal 
surface. This limits the field of view of the telescopes. The shape of the best focal surface 
is parabolic. The radius of curvature Rd of this surface can be estimated from the TRA 
equations11  
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where Rmax and Rmin are the maximum and minimum radial heights of the entrance 
aperture, respectively. If only the third-order terms A3 and A4 are included, the equation 
represents third-order field curvature10.  In case of grazing incidence telescopes the fifth-
order term (B3+B4+λ2 ) is comparable to the third-order term. If the grazing angles are 
small, even the seventh-order term C1 cannot be omitted. 
 
Alternative equation for the shape of the best focal surface is given by Shealy17. In this 
paper the RMS image radius is formally calculated from the TRA equations (6) and (7). 



 
Aberration balancing 
 
In case of Wolter type1 telescopes the aberration equations suggest that for the optimum 
design the primary and the secondary should be as close to each other as possible. 
Separating the primary and the secondary, increase the radial heights on the primary and, 
therefore the image size. 
 
The best focal surface of the Wolter type 1 telescopes always curves towards the 
telescope. The largest term in the aberration coefficients is the sum of the inverse of the 
radii of curvatures (1/R1+1/R2). For Wolter type 1 telescopes, the radii of curvatures are 
both negative and these quantities in the terms A3, A4, and B3 cannot cancel each other. 
 
In case of Wolter type 2 telescopes, R1 is negative and R2 is positive. The radius of 
curvature can be optimized. It turns out that for all the practical designs the R2 is always 
smaller than R1 and the radius of curvature of the best focal surface is negative and 
curving towards the telescope. The aberrations are optimized when the primary and 
secondary are as close to the primary-secondary surface intersection point as possible.  
 
The field curvature could be improved by moving the entrance aperture away from the 
telescope. The K parameter would get bigger since the length L of the telescope would 
increase. Having the entrance aperture far in front of the telescope may not be practical 
design. For example, the vignetting would increase rapidly as a function of the off-axis 
angle. 
 
The aberration equations presented in this paper are derived in terms of conventional 
parameters. The equations are shown as functions of the entrance aperture coordinates 
using the formulation introduced by Cox16. The TRA polynomials and the OPD-
polynomial have also been derived as functions of the exit pupil coordinates12 using the 
traditional formulation shown for example in Handbook of Optics18. The derivation 
includes all the terms shown in this paper (as a function of entrance aperture coordinates). 
The expansions are valid for all the combinations of Wolter telescopes and also for all the 
combinations of normal incidence paraboloid-hyperboloid or paraboloid-ellipsoid 
telescopes.  
 
On-axis aberrations  
 
Rigid-body motions 
 
Rigid-body motions of the primary and the secondary and the low spatial frequency 
errors of the primary and secondary are the most important on-axis image aberrations. 
These errors typically degrade the on-axis resolution of the grazing incidence telescopes 
and limit the encircled energy performance of the telescopes. Glenn19 introduced an 
orthonormal set of Legendre-Fourier (L-F) polynomials for cylindrical mirrors which are 
used to describe the low order errors of the primary and secondary mirrors. The L-F 



polynomials have been implemented in the Optical Surface Analysis Code (OSAC) ray 
trace code20. 
 
The TRA aberration expansions have been derived for the rigid body motions and low 
order L-F polynomials21. The rigid-body motions of the primary and secondary mirror are 
despace, decenter, tilt, and defocus errors. The TRA equations can be derived following 
the similar principle used in the derivation of TRA expansions of off-axis aberrations 
shown in the previous section. 
 
The defocus term (Δz) can be expressed as11, 21: 
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In the equations only the first order term in radial height h is kept and the higher order 
terms are omitted. The defocus terms are proportional to the radial height h. Therefore, 
this term can be used to optimize the off-axis aberrations terms that are also proportional 
to h sin(β) - h cos(β) pair . This principle was used to find the best focal surface and the 
radius of curvature of the best focal surface.  
 
Despace surface errors of the primary (n=1) and secondary (n=2) can be expressed as 
surface radial height errors Δhn and surface axial errors Δzn as: 
 

0=Δ nh         (23) 
=Δ nz constant,       (24)  

 
The despace image terms of the primary mirror can be approximated by: 
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The desapce image terms of the secondary mirror are: 
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The leading term in the expansions is now proportional to inverse of h3. The off-axis 
aberrations shown above do not have terms proportional to inverse of h. This is because 
the primary mirror and secondary mirror are stigmatic and confocal. 
 



Decentering the mirror leads to radial height error of the primary (=1) and secondary 
(n=2) that can be written in terms of radial error as: 
 

)sin()cos( 0101 ββ nnn feh +=Δ ,     (29) 
 
where e01n and f01n are the amount of decenter error. The approximate TRA aberrations of 
the decentered primary mirror for the cosine component are: 
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The equations of decentered secondary are similar: 
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The tilt error of the mirrors can also be expressed in terms of radial height error and axial 
translation of the primary (n=1) and secondary (n=2). The radial and axial errors are: 
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where E11n and F11n are the amount of tilt error in radians when the mirror is rotated about 
x-axis and y-axis, respectively. The approximate expansions of the primary mirror are: 
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where h10 is the radial height of the primary mirror at the center of the mirror. The 
equations of the secondary mirror are: 
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where h20 is the radial height of the secondary mirror at the center of the mirror. 
 
The sin(2β) - cos(2β) relationship of the primary and secondary components shown in the 
equations for the decenter and tilt errors is typical of coma. Note that the components are 
now inversely proportional to h2. The off-axis coma term is directly proportional to h2.  



 
Axial and circumferential slope errors and TRA equations 
 
Assuming the primary mirror figure error Δh1 and the secondary mirror figure error Δh2 
are known as functions of the surface axial coordinate and circumferential coordinate.  
Then, if the grazing angles of the mirrors are small, the on-axis aberrations can be 
evaluated easily from the surface slope errors.  The TRA equations of the primary mirror 
of the axial surface errors are:   
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where ∂Δh1/∂z1 is its axial slope error. The secondary mirror TRA equations for the axial 
slope errors are:  
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where q is the distance from the secondary to the telescope focus and ∂Δh2/∂z2 is the 
axial slope error of the secondary. The q variable can by approximated by q0 that is the 
distance from the center point of the surface to the telescope focus. 
 
The approximated TRA equations for the primary mirror circumferential slope errors are: 
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where I1 is the grazing angle on the primary and ∂Δh1/(h∂β) is the circumferential slope 
error of the primary mirror. The approximate TRA equations of the secondary for the 
circumferential slope error are: 
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Where I2 is the grazing angle of the surface, h2 is the radial height of the surface, and 
∂Δh2/h2∂β is the circumferential slope of the surface. The variables I2 and h2 can be 
approximated by the grazing angle and radial height at the midpoint on the surface. 
 
The TRA equations of the circumferential errors include the grazing angle I1 or I2. 
Typically, the grazing angles are small (0.5 to few degrees). Therefore, the 
circumferential errors have miniscule effect on the image at the focal plane compared to 
he axial slope errors and, in many cases, can be ignored.  
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Figure 1. Cross-section of Wolter type 1 telescope showing the optical componets, ray paths and the 
parameters. 
 

 
Figure 2. Primary mirror of the grazing incidence telescope showing entrance aperture and incoming 
off-axis ray. 
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