Consensus-based Weight-of-Evidence Approach as a Tool for Developing a Risk-based Remedial Footprint: Case Study - Hunters Point Shipyard

> Jennifer Holder, Ph.D. ENTRIX, Inc. Michael Pound Southwest Division Naval Facilities Engineering Command

Navy's San Francisco Bay Sediment Work Group (SWG)

- Formed to develop and apply a consistent approach to investigating and identifying remedial action alternatives for Naval sediment sites in San Francisco Bay
- One approach developed by the SWG is a weight-of-evidence (WOE) approach

WOE Approach

• Objective of WOE

- To integrate results from various lines of evidence from the risk assessment to identify areas requiring further investigation in the FS
- Part of the risk characterization stage of the risk assessment
- Visual tool to present risk drivers and areas of concern

Characteristics of WOE Approach

- Flexible for each site
- Semi-quantitative
- Select highest quality data and endpoints with strongest links to sediments
- Use other endpoints in an ancillary or supporting role
- Visual

WOE Approach

- Approach developed through consensus-based process with regulatory technical team
- First applied successfully at NFD Point Molate
- Loosely based on concepts developed for the State of Massachusetts (Menzie et al 1996)
- Best if developed as part of the work plan, but flexible enough to be used to interpret historical data.

WOE Case Study: Hunters Point Shipyard (HPS)

- Developed in a consensus process as part of the planning for the Validation Study (VS)
 - Objective is to more clearly define the extent of sediments that pose an unacceptable risk to the environment and that require evaluation in the FS
- Four Endpoints:
 - sediment chemistry
 - amphipod bulk sediment bioassay
 - sediment-water interface larval bioassay
 - bioaccumulation evaluation

HPS WOE Approach

- Determine weight of endpoint
 - For HPS it was decided that all endpoints will be weighted evenly
- Determine finding of result (positive or negative) and magnitude of result
 - Indicates whether a single line of evidence supports inclusion or exclusion of the sample location in the footprint
- Integrate weight, finding and magnitude for a given endpoint result
- Integrate all endpoint results for a given station
- Map all station results

WOE Finding and Magnitude Criteria: Amphipod Bioassay

Score	Attribute	Amphipod Bioassay
+2	High Positive	≤ 50% survival relative to control
+1	Low Positive	<pre>> 50% but ≤ 69.5% survival relative to control</pre>
-1	Low Negative	<pre>> 69.5% but < 80% survival relative to control</pre>
-2	High Negative	> 80% survival relative to control

WOE Finding and Magnitude Criteria:Sediment Chemistry

Score	Attribute	Sediment Chemistry
+2	High Positive	 ERM-Q >1.25 or 7 or more COPECs >ER-Ms or Any one COPEC >10X its ER-M
+1	Low Positive	 •ERM-Q >0.5 but ≤1.25 or •4-6 COPECs >ER-Ms or •Any one COPEC >5X its ER-M
-1	Low Negative	 •ERM-Q ≤0.5 but >UTL of ambient ERM-Q (0.3) or •1-3 COPECs >ER-Ms excluding Ni
-2	High Negative	 •ERM-Q ≤UTL of ambient ERM-Q (0.3) or •All individual COPECs <er-ms< li=""> </er-ms<>

WOE Finding and Magnitude Criteria:Sediment-Water Interface Bioassay

Score	Attribute	SWI Larval Bioassay
+2	High Positive	≤ 50% normal development relative to control response
+1	Low Positive	> 50% but ≤ 60% normal development relative to control response
-1	Low Negative	> 60% but ≤ 80% normal development relative to control response
-2	High Negative	> 80% normal development relative to control response

WOE Finding and Magnitude Criteria:Bioaccumulation

Score	Attribute	Bioaccumulation
+2	High Positive	•One or more priority COPECs or two or more non- priority COPECs exceed reference and •HQ _{low} >10 or HQ _{high} >1.
+1	Low Positive	•One or more priority COPECs or two or more non- priority COPECs exceed reference and •HQ _{low} ≤10 and HQ _{high} ≤1.
-1	Low Negative	No priority COPECs or no more than one non-priority COPEC exceeds reference and HQ _{low} ≤1
-2	High Negative	No COPEC concentrations in HPS tissues exceed reference

Integrate Endpoint Results for a Given Station

- Integrate all endpoints at a given sampling station to determine the appropriate action
 - integrated score is the average score for all the endpoints
 - represent the finding and magnitude score for each endpoint and the integrated score on a bar chart
- The height of the bar for each endpoint reflects the level of certainty for validating a footprint
- A positive integrated score represents a positive finding of risk based on all endpoints; conversely, a negative integrated score is a negative finding of risk

WOE Scores for South Basin (Area X)

Environmental Consultants

Consensus-based "bright-line criteria"

- Integrated WOE scores ≤ -1 mapped as white and identified as not requiring additional evaluation in the FS
- WOE scores > 0.5 mapped as black and identified as requiring evaluation in the FS
- WOE scores between -1 and 0.5 mapped as shades of gray and evaluated further with ancillary data to decide whether station should be included or excluded in the FS

Development of Remedial Footprint for South Basin

- All areas mapped either white or gray
- WOE and ancillary data (field-collected data) evaluated to identify risk drivers
- Bioaccumulation of PCBs identified as the main risk driver in South Basin
- Safe sediment values then developed for PCBs and receptors at site to finalize footprint for FS

Pros and Cons to Consensus-based Approach

Pros

- Upfront agreement on data interpretation
- Efficient evaluation and interpretation of data
- Frequent communication on project objectives and goals as criteria are developed

Cons

- Time-intensive
- Requires participation of all parties
- Possible wasted effort, if product of the approach does not match "perceived" threat

