
A NESTED DISSECTION APPROACH TO SPARSE MATRIX
PARTITIONING FOR PARALLEL COMPUTATIONS

ERIK G. BOMAN∗ AND MICHAEL M. WOLF†

Abstract. We consider how to distribute sparse matrices among processes to reduce com-
munication costs in parallel sparse matrix computations, specifically, sparse matrix-vector multi-
plication. Our main contributions are: (i) an exact graph model for communication with general
(two-dimensional) matrix distribution, and (ii) a recursive partitioning algorithm based on nested
dissection (substructuring). We show that the communication volume is closely linked to vertex
separators.

We have implemented our algorithm using hypergraph partitioning software to enable a fair
comparison with existing methods. We present numerical results for sparse matrices from several
application areas, with up to 9 million nonzeros. The results show that our new approach is superior
to traditional 1d partitioning and comparable to a current leading partitioning method, the fine-
grain hypergraph method, in terms of communication volume. Our nested dissection method has
two advantages over the fine-grain method: it is faster to compute, and the resulting distribution
requires fewer communication messages.

Keywords: Parallel data distributions, sparse matrix computations, graph par-
titioning, nested dissection, matrix-vector multiplication.

AMS subject classifications. 05C50, 05C85, 65F50, 65Y05, 68R10

1. Introduction. Sparse matrix-vector multiplication (SpMV) is a common ker-
nel in many computations, e.g., iterative solvers for linear systems of equations and
PageRank computation (power method) for ranking web pages. Often the same ma-
trix is used for many iterations. An important combinatorial problem in parallel com-
puting is how to distribute the matrix and the vectors among processes to minimize
the communication cost. Such “communication” is also important on serial computers
with deep memory hierarchies, where slow memory is typically much slower than fast
memory. Since CPU performance increases more rapidly than memory, we expect
memory latency and bandwith to grow in importance. Our present work is relevant
to both parallel computation on distributed memory computers and serial computa-
tion on machines with hierarchical memory, but we phrase our work in the context of
parallel computing. Our work also applies to Jacobi and Gauss-Seidel iterations and
the more general computation y = F (x), where x is an input vector, y is an output
vector, and F is a sparse (possibly nonlinear) operator that is “decomposable” such
that partial evaluations can be computed independently and then combined.

Sparse matrix-vector multiplication y = Ax is usually parallelized such that the
process that owns element aij computes the contribution aijxj . This is a local op-
eration if xj , yi and aij all reside on the same process; otherwise communication is
required. In general, the following four steps are performed [7, 21]:

1. Expand: Send entries xj to processes with a nonzero aij for some i.
2. Local multiply-add: yi := yi + aijxj .
3. Fold: Send partial y values to relevant processes.

∗Scalable Algorithms Dept, Sandia National Labs, Albuquerque, NM 87185-1318,
egboman@sandia.gov. Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the DOE’s National Nuclear Security Administration under
contract number DE-AC-94AL85000.

†Dept. of Computer Science, Univ. of Illinois at Urbana-Champaign, mmwolf@illinois.edu, and
Scalable Algorithms Dept, Sandia National Labs.

1



2 ERIK G. BOMAN AND MICHAEL M. WOLF

4. Sum: Sum up the partial y values.
In this paper, we address sparse matrix-vector partitioning, where both the ma-

trix nonzeros and vector elements are partitioned into different parts. For parallel
computing, this data is mapped to different processes based on this part assignment.

Definition 1.1. Sparse matrix-vector partitioning: Given a sparse matrix A,
an integer k > 1, and ε > 0, compute

(i) a matrix partition A =
∑k

i=1 Ai where each Ai contains a subset of the nonze-
ros of A, such that nnz(Ai) ≤ (1 + ε)nnz(A)/k, ∀i, where nnz denotes the
number of nonzeros,

(ii) partitions of the input and output vectors,
such that when the data is distributed across processes based on these partitions, the
communication volume in sparse matrix-vector multiply, y = Ax, is minimized.

This problem is NP-hard since it contains as a special case hypergraph partition-
ing. Stated above is a very general form. We first consider a special version for
symmetric matrices where the input and output vectors must have the same distri-
bution. It has been observed [7, 4] that the matrix and vector partitioning problems
can be separated. For any given matrix distribution (partition), it is easy to find
a “compatible” vector partition and these together give a solution to the combined
matrix-vector problem. Additional objectives can be minimized in the vector par-
titioning phase [4, 5]. We focus on the matrix partitioning step but simultaneously
obtain a compatible vector partitioning as well.

By far, the most common way to partition a sparse matrix is to use a 1d scheme
where each part is assigned the nonzeros for a set of rows or columns. This approach
has two advantages: simplicity for the user and only one communication phase (not
two). The simplest 1d method is to assign ≈ n/k consecutive rows (or columns)
to each part, where n denotes the number of rows and k the number of parts in a
partition (Figure 1.1). However, it is often possible to reduce the communication by
partitioning the rows in a better (non-contiguous) way, using graphs, bipartite graphs,
or hypergraphs to model this problem (Subsections 2.1 - 2.3) [16, 7].

Fig. 1.1. 1d row and column partitioning of a matrix. Each color denotes a part that is assigned
a different process.

Recently, several 2d decompositions have been proposed [8, 21]. The idea is
to reduce the communication volume further by giving up the simplicity of the 1d
structure. The fine-grain distribution [8] is of particular interest since it is the most
general and is theoretically optimal (though not in practice). We introduce a graph
model that also accurately describes communication in fine-grain distribution. This
leads to a new graph-based algorithm, a “nested dissection partitioning algorithm,”
which we describe in Section 4. (A preliminary version, without analysis, appeared
in [6].) This nested dissection partitioning algorithm is related to previous nested
dissection work for parallel Cholesky factorization [14, 15]. An important aspect to
both our partitioning method and the previous parallel Cholesky factorization work
is that communication is limited to separator vertices in the corresponding graph.

The rest of this paper is organized as follows. In Section 2 we discuss 1d and



NESTED DISSECTION APPROACH TO SPARSE MATRIX PARTITIONING 3

2d data distribution, while in Section 3 we present a new graph model for symmetric
partitioning. In Section 4 we present an algorithm based on this model, and in
Section 5 we discuss the nonsymmetric case. We present numerical results in Section 6
that validate our approach.

2. Background: 1d and 2d Distributions.

2.1. 1d Graph Model. The standard graph model is limited to structurally
symmetric matrices. In this case, the graph G is defined such that the adjacency
matrix of G has the same nonzero pattern as the matrix A. Each row (or column) in
A corresponds to a vertex in G. A partitioning of the vertices in G gives a partitioning
of the rows (columns) in A. The standard objective is to minimize the number of
cut edges, but this does not accurately reflect communication volume. Figure 2.1
illustrates this. Twice the number of cut edges (highlighted in magenta) yields a
communication volume of 6 words, which overcounts the correct volume of 4 words.
The problem is that vertices 1 and 8 are counted twice in the metric but each only
contributes one word to the volume. The communication required is associated with
the boundary vertices, so a better metric is to minimize the boundary vertices (4
words for Figure 2.1, which is correct). This is an exact metric for bisection, while
for k > 2 one should also take into account the number of adjacent parts.

3

4
5

6

1
2

7

1 873 542 6
1

3
2

8
7
6
5
4

8

Fig. 2.1. 1d graph partitioning of matrix into two parts. Correct communication volume is 4
words. Communication of highlighted vertices is overcounted in edge metric.

2.2. 1d Bipartite Graph Model. The graph model works poorly on nonsym-
metric square matrices because they need be symmetrized, and does not apply to
rectangular matrices. The bipartite graph model was designed to rectify this [16].
The bipartite graph G = (R,C,E) is defined such that vertices R correspond to rows,
vertices C correspond to columns, and edges E correspond to nonzeros. The standard
(simplest) objective is to partition both R and C such that the number of cut edges is
minimized. Only one of the vertex partitionings (either R for rows, or C for columns)
is used to obtain a 1d matrix partitioning. Again, the cut edges do not correctly count
communication volume, and boundary vertices should be used instead.

2.3. 1d Hypergraph Model. Aykanat and Catalyurek introduced the hyper-
graph model to count communication volume accurately [7]. A hypergraph generalizes
a graph. Whereas a graph edge contains exactly two vertices, a hyperedge can con-
tain an arbitrary set of vertices [2, 3]. There are two 1d hypergraph models. In
the row-net model, each column is a vertex and each row a hyperedge, while in the
column-net model, each row is a vertex and each column a hyperedge. The objective
is to find a balanced vertex partitioning and minimize the number of cut hyperedges.
The communication volume is

∑
i(λi−1), where λi is the number of parts that touch



4 ERIK G. BOMAN AND MICHAEL M. WOLF

hyperedge i. Finding the optimal balanced vertex partitioning is NP-hard but in
practice good partitions can be found in (near-linear) polynomial time [7].

2.4. 2d Matrix Distributions. Although the simplicity of 1d distributions
may be desirable, the communication volume can often be reduced by using 2d dis-
tributions. Figure 2.2 shows an example where 1d partitioning will always be poor.
Consider the arrowhead matrix of dimension n, and bisection (k = 2). Due to a single
dense row and column, any load balanced 1d partitioning will have a communication
volume of approximately (3/4)n words. The optimal volume is actually 2 words as
demonstrated in the 2d partitioning of Figure 2.2 (right).

Fig. 2.2. Arrowhead matrix with 1d (left) and 2d (right) distribution, for two parts (red and
blue). The communication volumes in this example are eight and two words, respectively.

2.5. Current 2d Methods. Two-dimensional partitioning is a more flexible al-
ternative to one-dimensional partitioning. For dense matrices, it was realized that a 2d
block (checkerboard) distribution reduces communication since communication is lim-
ited to process rows and columns. For sparse matrices, the situation is more complex.
Several algorithms have been proposed to take advantage of the flexibility afforded
by a two-dimensional partitioning but none have become dominant. Catalyurek and
Aykanat proposed both a fine-grain [8] and a coarse-grain [9] decomposition, while
Bisseling and Vastenhouw later developed the Mondriaan method [21]. The coarse-
grain method is similar to the 2d block (checkerboard) decomposition in the dense
case, but is difficult to compute (requires multiconstraint hypergraph partitioning)
and often gives relatively high communication volume. The fine-grain method gives
low communication volume but is also expensive to compute. The Mondriaan method
tries to find a middle ground. It is based on recursive 1d hypergraph partitioning and
thus is relatively fast but still produces partitions with low communication cost.

The most flexible approach to matrix partitioning is to allow any nonzero to be
assigned any part. This is the idea underlying the fine-grain method [8]. The authors
propose a hypergraph model that exactly represents communication volume. In the
fine-grain hypergraph model, each nonzero corresponds to a vertex, and each row and
each column corresponds to a hyperedge. A matrix A with m rows, n colums, and z
nonzeros yields a hypergraph with z vertices and m + n hyperedges. Catalyurek and
Aykanat proved that this fine-grain hypergraph model yields a minimum volume parti-
tion when optimally solved [8]. As with the 1d hypergraph model, finding the optimal
partition of the fine-grain model is NP-hard. This hypergraph can be partitioned into
k approximately equal parts cutting few hyperedges using standard one-dimensional
partitioning algorithms and software. This usually takes significantly longer than a
one-dimensional partitioning of a typical matrix since the fine-grain hypergraph is
larger than a 1d hypergraph model of the original matrix. However, there is special
structure in this hypergraph (each vertex is incident to exactly two hyperedges) that



NESTED DISSECTION APPROACH TO SPARSE MATRIX PARTITIONING 5

1 873 542 6
1

3
2

8
7
6
5
43

4

56

1 2

7 8

Fig. 3.1. 2d graph bisection for symmetrically partitioned matrix and resulting matrix parti-
tioning. Part (color) of graph edge corresponds to symmetric pair of off-diagonal nonzeros.

potentially can be exploited to reduce runtime. In general, the partitioning of the
fine-grain method with the one-dimensional algorithms produces good quality parti-
tions but can be slow. Thus, our goal in developing new two-dimensional methods is
to produce similar quality partitions to fine-grain in a shorter runtime.

3. An Exact Graph Model for Structurally Symmetric Matrices. We
present an accurate graph model for communication volume in matrix-vector multi-
plication. In this section we study structurally symmetric matrices, while the non-
symmetric case is analyzed in Section 5. We restrict our attention here to symmetric
partitioning schemes, where aij and aji are assigned the same part. One advantage
of this is that we can save storage (e.g., only store the lower triangular half for nu-
merically symmetric matrices). A second advantage is that we can work with the
undirected graph G(V,E), where the vertices correspond to the vectors and the edges
correspond to the nonzeros. We partition both the vertices and edges, that is, assign
vector elements and matrix nonzeros to parts. We allow arbitrary assignment of both
vertices and edges, which distinguishes our approach from the 1d graph model and
allows for 2d partitioning. A vertex incurs communication iff there are incident edges
that belong to a different part. The volume depends on how many parts are repre-
sented among the incident edges.

Theorem 3.1. Let G(V,E) be the graph of a symmetric sparse matrix. Let E(v)
denote the set of edges incident to vertex v. Let π(v) and π(e) denote the parts to
which v and e belong, respectively. Then the communication volume in matrix-vector
multiplication is 2

∑
v∈V (|π(v) ∪ π(E(v))| − 1).

The factor two arises because any communication occurs in both phases (expand and
fold). This exact graph model yields a minimum volume balanced partition for sparse
symmetric matrix-vector multiplication when optimally solved.

Figure 3.1 shows an example of the exact graph model for 2d symmetric partition-
ing of matrices. The graph on the left corresponds to the symmetric matrix (showed
partitioned on the right). The edges and vertices in the graph are partitioned into two
parts (represented by cyan and red). The vertices that have incident edges belonging
to a different part (and thus incur communication) are highlighted in green. Each
contributes two words to the communication volume in the resulting matrix-vector
multiplication. The matrix on the right shows the 2d symmetric matrix partition
obtained from the partitioned graph. The partition of the diagonal entries (as well as
the vector entries) corresponds to the partition of the graph vertices. The partition
of the off-diagonal entries corresponds to the partition of the edges in the graph.



6 ERIK G. BOMAN AND MICHAEL M. WOLF

V0 S V1

Fig. 4.1. Bisection. Vertex separator (gray vertices) used to partition vertices into three disjoint
subsets (V0, V1, S).

4. A Vertex Separator Partitioning Algorithm. In Section 3, we intro-
duced an exact graph model for 2d partitioning of symmetric matrices. If we solved
this model optimally, we would obtain a balanced partition to minimize communi-
cation volume for resulting matrix-vector multiplication. However, this problem is
NP-hard. In this section, we introduce an algorithm for solving this exact graph
model suboptimally in polynomial time (assuming the vertex separator is found in
polynomial time). An edge separator in the fine-grain hypergraph model corresponds
to a vertex separator in the graph. Thus, we can derive a fine-grain decomposition
from a vertex separator for the graph. One constraint that we impose on our algo-
rithm is that the vertex and edge partitions are compatible. A vertex partition is
compatible with an edge partition if every vertex belongs to the same part as one of
its incident edges. Similarly, an edge partition is compatible with a vertex partition
if every edge belongs to the same part as one of its two vertices. There is no reason
to violate this constraint since it will only increase the communication volume.

4.1. Bisection. For simplicity, we consider bisection first. In the next subsection
we generalize to k-way partitioning for k > 2 using recursive bisection. First we
compute a small balanced vertex separator S for the graph using any vertex separator
algorithm. This partitions the vertices into three disjoint subsets (V0, V1, S). Let
Ej := {e ∈ E|e ∩ Vj 6= ∅} for j = 0, 1, that is, Ej is the set of edges with at least
one endpoint in Vj . Vj and Ej are assigned to part Pj for j = 0, 1. An example of a
graph partitioned using this algorithm is shown in Figure 4.1.

The procedure above intentionally does not specify how to distribute the vertices
in S and the edges therein. The partitioning of these vertices and edges does not affect
the communication volume as long as the partitions are compatible. There are several
ways to exploit this flexibility, yielding several variations on our basic algorithm.

1. If load balance in the matrix is of primary concern, distribute the vertices in
S (and edges therein) in such a way to obtain balance.

2. To improve balance in the vector distribution, assign more vertices in S to
the process with the fewest vector elements.

3. One can also try to minimize a secondary objective, such as minimizing the
maximum communication volume for any process. This is similar to the vector
partitioning problem posed in [4, 5].

Since a primary goal is load balance in the matrix nonzeros, we seek to balance the
edges in the graph. A balanced vertex separator normally balances the number of
vertices; to achieve edge balance we can weight each vertex by its degree.



NESTED DISSECTION APPROACH TO SPARSE MATRIX PARTITIONING 7

4.1.1. Analysis of Separator Assignment. For a minimal separator S, each
vertex in S must have at least one non-separator neighbor in V0 and one in V1. We
assume this to be the case for the (possibly non-minimal) separator used in our al-
gorithm. This is a reasonable assumption since otherwise a smaller separator could
be trivially obtained by moving the problematic vertex to the set of its non-separator
neighbor vertex, and most vertex separator implementations would do this. Commu-
nication in SpMV is limited to the vertices in S. This follows from the above method
of assigning all edges that have at least one non-separator vertex to the part of this
non-separator vertex, such that each non-separator vertex is only incident to edges of
its part. Thus, non-separator vertices do not incur communication.

Lemma 4.1. Suppose S is a separator where each vertex in S has at least one
non-separator neighbor in V0 and one in V1. Then the communication in SpMV is
limited to the vertices in S, and the volume is 2|S|. Furthermore, the assignment of
vertices in S and edges therein does not matter as long as compatibility is maintained.

Proof. Each vertex in S is incident to at least one edge assigned to P0 and one
edge assigned to P1. Thus, the part assignment of the edges connecting vertices in S
does not affect the communication volume. Each separator vertex will incur 1 word
of communication for each phase whether it is assigned to P0 or P1. Thus, the com-
munication volume is exactly |S| in each phase or 2|S| total.

Theorem 4.2. For bisection, the vertex separator partitioning algorithm with a
minimal balanced vertex separator minimizes communication volume in sparse matrix-
vector multiplication (for a balanced partition).

Proof. Since each vertex incurring communication (in bisection) incurs 1 word of
communication (in each phase), finding the minimum set of vertices that incur com-
munication will minimize the communication in matrix-vector multiplication. This
minimum set of vertices is the minimum vertex separator.

This shows that the vertex separator method is optimal for k = 2, just like the
fine-grain hypergraph method.

4.2. Nested Dissection Partitioning Algorithm. In practice, one wishes to
partition into k > 2 parts. If we knew a method to compute a balanced k-separator, a
set S such that the removal of S breaks G into k disjoint subgraphs, we could assign
each subgraph to a different part. However, we do not know efficient methods to
compute a k-separator and do not consider this option any further. A more practical
approach is to use recursive bisection. In fact, the procedure to compute a k−separator
via recursive bisection is known as “nested dissection” and well studied [13, 19] since
it is important for sparse matrix factorization.

The procedure is illustrated in Figures 4.2 and 4.3. In this example there are four
parts. We show the recursive procedure on a mesh, a generic graph, and the corre-
sponding matrix. The striped and gray areas correspond to separators and separator-
separator edges, respectively. We have not specified how to partition this data. It
is important to note that it is not necessary to use the nested dissection ordering to
permute the matrix, as shown in Figure 4.3. We only do this in illustrations to make
the partitioning method more clear. Figure 4.4(a) shows the actual partitioning of
the cage5 matrix [11] with the corresponding nested dissection ordered partitioning
in Figure 4.4(b) for easier visualization of our method.

Algorithm 1 summarizes our recursive algorithm. Note that if k is a power of



8 ERIK G. BOMAN AND MICHAEL M. WOLF

(a) 5-by-5 grid (b) Generic graph

Fig. 4.2. Graphs partitioned using nested dissection. Striped areas are separators.

Fig. 4.3. Matrix reordered and partitioned with nested dissection. Striped areas represent
nonzeros corresponding to separators in Figure 4.2 where we have some flexibility in assignment.
Gray blocks of nonzeros correspond to separator-separator edges in the the graph for which we also
have flexibility in assignment.

(a) Actual partitioning. (b) Permuted partitioning.

Fig. 4.4. cage5 matrix partitioned using nested dissection. (a) shows how the matrix actually
looks after being partitioned. (b) is a symmetric permutation of (a) for visualization purposes.



NESTED DISSECTION APPROACH TO SPARSE MATRIX PARTITIONING 9

Algorithm 1 Nested Dissection Graph Partitioning
1: procedure NDPartition(G, k, ε, i, part)
2: // Input: G = (V,E), the graph of a structurally symmetric matrix
3: // Input: k, the desired number of parts
4: // Input: ε, the allowed imbalance
5: // Input: i, the label for the first part (in this bisection)
6: // Output: part, a map of vertices and edges to parts (processes)
7: if k > 1 then
8: k0 := dk/2e
9: k1 := bk/2c

10: [V0, V1, S] := sep(G, k0/k, ε/(log k))) . Find balanced separator.
11: G0 := G|V0 . G restricted to V0

12: G1 := G|V1 . G restricted to V1

13: NDPartition(G0, k0, ε, i, part(G0))
14: NDPartition(G1, k1, ε, i + k0, part(G1))
15: for each edge e with one endpoint, v, in V0 or V1 but not the other do
16: part(e) := part(v)
17: end for
18: Assign vertices in S to compatible parts
19: Assign edges with both endpoints in S to compatible parts
20: else . Base case; simply assign part number to vertices and edges.
21: part(V ) := i
22: part(E) := i
23: end if
24: end procedure

two, then balanced separators are sufficient, but for general k, α-balanced separators
are required, where α < 1 indicates the fraction of vertices in the larger subset. The
subroutine sep finds an α−balanced separator. After the separator S is found, the
recursive subproblems for G0 and G1 can be solved independently, possibly in parallel.
This is an advantage of using recursive bisection.

One could optionally dynamically adjust the imbalance tolerance in the recursion,
following the strategy in [21], but we did not explore this.

4.2.1. Vertex Separator Algorithms. Computing a minimal (balanced) ver-
tex separator is NP-hard. We do not propose any new algorithms but rather leverage
existing methods. Many application graphs are known to have good separators. For
example, well-shaped meshes in d dimensions have separators of size O(n1−1/d). The
most effective separator heuristics for large, irregular graphs are multilevel algorithms
such as those implemented in METIS [18] and Scotch [10]. It is also possible to con-
struct vertex separators from edge separators. This allows the use of graph partition-
ing software, but the quality is often not as good as a more direct method. A third
option is to derive a vertex separator from hypergraph partitioning.

4.3. Variations. In nested dissection algorithms, there is a choice how to handle
the separator at each level. Say V has been partitioned into V0, V1, and S, where S
is the separator. The question is whether S should be included in the subproblems or
not. In the original nested dissection by George [13] and also the generalized nested
dissection method [19], it was included in the recursion, but in many implementations
it is not. We have chosen not to include the separator vertices in the subproblems



10 ERIK G. BOMAN AND MICHAEL M. WOLF

in the recursion since it simplified our implementation. A complication for us is that
if the separator is not included, additional rules are needed to decide how to assign
vertices and edge adjacent to the separators. However, this can be advantageous if
this flexibility is used properly. We also found it useful to formulate a slightly more
general non-recursive algorithm, which has the following steps:

1. Compute non-overlapping separators. This yields k disjoint subdomains di-
vided by a hierarchy of k − 1 separators.

2. Let Vi be the vertices in the subdomain i. Assign the vertices in Vi to part
Pi.

3. Let Ei be the edges that contain a vertex in Vi. Assign the edges in Ei to Pi.
4. Assign separator vertices to parts.
5. Assign edges connecting vertices of the same separator to parts.
6. Assign edges connecting vertices of two different separators to parts. By

design these separators will be at different levels.
The algorithm does not depend on any particular method for calculating the vertex
separators in step 1. However, in general, smaller separators will tend to yield lower
communication volumes. Steps 2 and 3 are fully expounded in the description above.
However, there are many different ways to do the part assignment in steps 4-6 and
we leave this decision to the particular implementation.

In our initial implementation, we assign all the vertices in a given separator (step
4) to a part in the range of parts belonging to one half of the subdomain. The half
is chosen to keep the vertex partitioning as balanced as possible. We assigned each
separator vertex (step 4) to the part of the first traversed neighbor vertex in the correct
range that had already been assigned a part. This greedy heuristic can be improved
but had the advantage of being simple to implement and yielding better results than
some more complicated heuristics. For the part assignment of edges interior to a
separator (step 5), we assigned these edges to the part of the lowered numbered of
the two vertices. We assigned edges connecting vertices from two different separators
(step 6) to the part of the vertex of the lower-level separator. There were two reasons
for this choice: It is consistent with Algorithm 1, and empirically it yielded better
results. The rules in steps 4-6 are reasonable but not always optimal, so there may
be room for improvement.

4.4. Communication Volume Analysis. For our analysis of our implementa-
tion, we assume that the number of parts is a power of two (k = 2i). It follows that
there are k− 1 separators. We number the separators S1, S2, . . . , Sk−1 in order of the
level of the separators. We define S to be the union of the separators (S =

⋃k−1
i=1 Si)

and know that
⋂k−1

i=1 Si = ∅ since the separators are non-overlapping. We show lower
and upper bounds on the communication volume, Vol.

Theorem 4.3. The communication volume in SpMV with partitioning produced
by Algorithm 1 satisfies Vol(G, k) ≥ 2|S|.

Proof. Each separator vertex vs ∈ S is connected to edges of at least two different
parts. Thus, for any partitioning of vs, vs will incur at least one word of communica-
tion for each of the two communication phases.

It is important to note that this bound is valid for the general algorithm as well as
our particular implementation.

Theorem 4.4. The communication volume in SpMV with partitioning produced



NESTED DISSECTION APPROACH TO SPARSE MATRIX PARTITIONING 11

by our implementation outlined in Subsection 4.3 satisfies

Vol(G, k) ≤ 2
k−1∑
i=1

|Si|
(

k

2blog2 ic − 1
)

.

Proof. With our implementation choice of assigning edges connecting vertices
from two different separators to the part of the lower level separator, a separator
vertex does not incur communication from its connection with higher level separator
vertices. Thus, a given separator vertex vs of separator Si can be incident to edges of
at most k

2blog2 ic different parts since the edge partition is compatible with the vertex
partition. Thus, vs incurs at most k

2blog2 ic − 1 words of communication for each com-
munication phase.

It is important to note that this bound does not apply to the general nested dissection
partitioning algorithm (step steps above) but for our slightly more specific algorithm
(Algorithm 1) that assigns edges connecting vertices from two different separators the
part of the lower level separator. Without this edge partitioning rule, our bound would
not be as tight (Vol(G, k) ≤ 2

∑k−1
i=1 |Si| (k − 1)). This justifies our implementation

choice.

4.5. Relation to Nested Dissection for Parallel Cholesky Factorization.
As previously mentioned, the dissection partitioning algorithm presented in this sec-
tion is related to previous nested dissection work for parallel Cholesky factorization
[14, 15]. The elimination tree used in Cholesky factorization is equivalent to a tree
that can be formed from our hierarchy of separators and with the non-separator ver-
tices as leaves of the tree. Also in both usages of nested dissection, communication is
limited to separator vertices in the corresponding graph.

However, there are a few important distinctions between the partitioning for par-
allel Cholesky factorization and our partitioning for parallel matrix-vector multiplica-
tion. In parallel Cholesky, the elimination tree represents dependency constraints in
the elimination order, but there are no such dependency constraints in matrix-vector
multiplication. Also in the parallel Cholesky factorization work, there are additional
fill nonzeros to take into account (and to partition) but no such additional nonzeros
occur in our partitioning for matrix-vector multiplication. Related to this, permuting
the matrix is important to Cholesky in order to reduce the fill. For our objective of
reducing communication volume in matrix-vector multiplication, it is not important
to impose the nested dissection ordering on the matrix since vertex orderings will have
no effect on the communication volume. Also, the parallel Cholesky factorization as-
sumes that the nonzeros in each column of lower triangular L will be assigned to one
process (1d partitioning). This column partitioning with subtree task assignment will
be a special case of the partitioning allowed in our general matrix partitioning algo-
rithm. We do not specify that the separator-separator blocks (gray blocks in Figure
4.3) are partitioned in this column-wise manner and thus allow for a 2d partitioning
of the lower triangular portion of the matrix.

5. Nonsymmetric Case. The undirected graph model is limited to structurally
symmetric graphs. In the nonsymmetric case, we can use a directed graph or a
bipartitite graph. First we show how we can apply our nested dissection partitioning
algorithm to bipartite graphs to partition nonsymmetric matrices. Then we discuss
previous related work of the doubly bordered block diagonal (DBBD) form.



12 ERIK G. BOMAN AND MICHAEL M. WOLF

1
1

2

2

3

3

4

4 5

5

6 7

Fig. 5.1. Rectangular matrix.

5.1. Bipartite Graph Model. We generalize our symmetric communication
(graph) model to the nonsymmetric case. This generalization is equivalent to a model
recently proposed by Trifunovic [20]. We start with the bipartite graph G = (R,C, E)
of the matrix, where R and C correspond to rows and columns, respectively. In 1d
distribution, we partition either the rows (R) or the columns (C). For fine-grain
distribution, we partition both (R, C) and E into k sets. Note that we explicitly
partition the edges E, which distinguishes our approach from previous work. To
balance computation and memory, our primary objective is to balance the edges
(matrix nonzeros). Vertex balance is a secondary objective.

We wish to analyze the communication requirements, so suppose that the ver-
tices and edges have already been partitioned. Again, we assign communication cost
to vertices such that a vertex incurs communication if and only if it has at least one in-
cident edge in a different part. The communication volume will depend on the number
of different parts to which these edges belong. Similar to the symmetric case, we have:

Theorem 5.1. Let G(R,C, E) be the bipartite graph of a sparse matrix. Let E(v)
denote the set of edges incident to vertex v. Let π(v) and π(e) denote the parts to
which v and e belong, respectively. Then the communication volume in matrix-vector
multiplication is

∑
v∈R∪C (|π(v) ∪ π(E(v))| − 1).

In the bisection case, the volume is simply equal to the number of vertices that have
at least one incident edge in a different part (boundary vertices).

Our model is a variation of the bipartite graph model proposed in [20]. One
difference is that while [20] only partitions edges, we partition both edges and vertices.
Second, [20] calls the resulting graph problem edge coloring, which we find confusing
since “coloring” has a specific (and different) meaning in graph theory. Indeed the
problem at hand is a partitioning problem.

Once we have built the bipartite graph for our nonsymmetric matrix, we can apply
our nested dissection algorithm directly to this bipartite graph to partition the matrix.
This procedure is outlined in Figures 5.1 and 5.2. Figure 5.1 shows a nonsymmetric
matrix. The corresponding bipartite graph is shown in Figure 5.2(a). This bipartite
graph is partitioned using our nested dissection partitioning algorithm. The uncolored
vertices form a vertex separator for this bipartite graph. They and the one separator-
separator edge are left for the particular implementation to partition. Figure 5.2(b)
shows the partitioned nonsymmetric matrix corresponding to the partitioned bipartite
graph of Figure 5.2(a).

5.2. Equivalence to Fine-Grain Hypergraph Model. Since our bipartite
graph model is exact, it must be equivalent to the fine-grain hypergraph model. In



NESTED DISSECTION APPROACH TO SPARSE MATRIX PARTITIONING 13

R2

C1

C4R4

R5

C5

C6
C7

R1

R3

C2 C3

(a) Bipartite graph.

1

2

3
4
5

12 3 45 6 7

(b) Partitioned matrix.

Fig. 5.2. Bisection of bipartite graph and resulting partitioned/reordered nonsymmetric matrix
(in DBBD form). (b) is reordered for visualization purposes.

fact, there is a simple and elegant relation between the two models, independently
discovered by Trifunovic [20]. Let the dual of a hypergraph H = (V,E) be another
hypergraph H∗ = (V ∗, E∗), where |V ∗| = |E|, |E∗| = |V |, and hyperedge i in E∗

contains vertex j iff hyperedge j in E contains vertex i. Now let H be the hypergraph
for the fine-grain model.

Theorem 5.2 (Trifunovic (2006)). The dual hypergraph H∗ of the fine-grain
hypergraph is the bipartite graph.

In other words, vertices in the fine-grain hypergraph H are edges in the bipartite graph
G and vice versa. Hence partitioning the vertices of H corresponds to partitioning
the edges in G. In our bipartite graph model, we also explicitly partition the vertices
in G, while the hyperedges in H are partitioned only implicitly in the hypergraph
algorithm.

Given a matrix with z nonzeros, the bipartite graph has z edges while the fine-
grain hypergraph has 2z pins. Thus, algorithms based on the bipartite graph model
may potentially use less memory, though using the standard adjacency list data struc-
ture each edge is stored twice so there is no savings.

5.3. Vector Constraints. For symmetric matrices we use a symmetric parti-
tioning scheme, and this also gives a symmetric vector layout (i.e., the input and
output vectors have the same distribution). For rectangular matrices, the input and
out vectors clearly have different distributions. In the nonsymmetric square case,
vectors layouts may be the same or different; both variations may be useful in ap-
plications. Different layouts is simplest to handle since no special consideration is
required. A symmetric vector layout is a constraint that must be explicitly enforced.
We chose the method used in [7, 21] that artificially adds nonzeros to the diagonal of
A before partitioning. After partitioning, we assign both xi and yi to the part that
owns aii.

5.4. Doubly Bordered Block Form. The nested dissection ordering method
for Cholesky produces a reordered matrix in doubly bordered block diagonal (DBBD)
form, that is, the matrix is block diagonal except for a row and column block “border”.



14 ERIK G. BOMAN AND MICHAEL M. WOLF

For example, with two diagonal blocks we have the structureA11 0 A13

0 A22 A23

A31 A32 A33

 .

A key insight is that communication is limited to these borders, both for Cholesky
and SpMV. Aykanat et al. [1] showed DBBD form for a nonsymmetric matrix can be
obtained by computing a vertex separator in the bipartite graph. We can use this in
the following way. Given a nonsymmetric possibly rectangular matrix (see Figure 5.1),
form the bipartite graph (Figure 5.2(a)). Perform a nonsymmetric nested dissection
ordering where the row and column vertices in the separator are ordered last. This
gives a permuted matrix (Figure 5.2(b)) that can be partitioned according to the same
rules as in the symmetric case. Note that as before, in practice it is not necessary to
do the permutation (but is helpful in the illustration).

6. Results. We compare the partitionings of different methods for a set of 19
sparse matrices. These matrices were derived from different application areas (struc-
tural analysis, information retrieval, linear programming, circuit simulation, chemi-
cal engineering, etc.); 14 (of 19) were used and described in [21]. We replaced the
west0381 matrix (too small to partition into 256 parts) with the Stanford Berkeley
web matrix, obtained from [11]. Since the Mondriaan test set is fairly small by today’s
standards, we complemented the test set with four additional matrices from [11]. We
performed separate experiments for symmetric and nonsymmetric matrices. We sum-
marize the matrix properties in Tables 6.1-6.4. The first five matrices are symmetric
(Table 6.1), the next four are larger symmetric matrices (Table 6.2), the next five are
rectangular (Table 6.3), and the final five are square but structurally nonsymmetric
(Table 6.4). Note that we treat explicit zeros in the sparse matrix storage as nonzeros
so our number of nonzeros may differ slightly (but not significantly) from [11].

Table 6.1
Symmetric Matrix Info

Name N nnz nnz/N application
cage10 11,397 150,645 13.2 DNA electrophoresis
lap200 40,000 200,000 5.0 2-D Laplacian

finan512 74,752 596,992 8.0 portfolio optimization
bcsstk32 44,609 2,014,701 45.2 structural engineering
bcsstk30 28,924 2,043,492 70.7 structural engineering

Table 6.2
Large Symmetric Matrix Info

Name N nnz nnz/N application
c-73 169,422 1,279,274 7.6 non-linear optimization

asic680ks 682,712 2,329,176 3.4 circuit simulation
pkustk04 55,590 4,218,660 75.9 structural engineering
gupta3 16,783 9,323,427 555.5 linear programming

In Subsections 6.1 - 6.2, we compare the communication volume of the result-
ing parallel sparse matrix-vector multiplication for these matrix partitionings. We



NESTED DISSECTION APPROACH TO SPARSE MATRIX PARTITIONING 15

Table 6.3
Nonsymmetric Rectangular Matrix Info

Name rows cols nnz application
dfl001 6,071 12,230 35,632 linear programming
cre b 9,648 77,137 260,785 linear programming

tbdmatlab 19,859 5,979 430,171 information retrieval
nug30 52,260 379,350 1,567,800 linear programming

tbdlinux 112,757 20,167 2,157,675 information retrieval

Table 6.4
Nonsymmetric Square Matrix Info

Name N nnz nnz/N application
gemat11 4,929 33,185 6.7 power flow optimization
memplus 17,758 99,147 5.6 circuit simulation
onetone2 36,057 227,628 6.3 circuit simulation

lhr34 35,152 764,014 21.7 chemical engineering
Stanford Berkeley 683,446 7,583,376 11.1 information retrieval

compare the implementation of our nested dissection algorithm with 1d hypergraph
partitioning and fine-grain hypergraph partitioning. Though NP-hard problems, sev-
eral good codes for graph and hypergraph partitioning are available, all based on the
multilevel method. We used PaToH 3.0 [7] (called via Zoltan 3.0 [12]) as our hyper-
graph partitioner. The imbalance tolerance was set to 3%. Metis and ParMetis are
often used to find nested dissection orderings, but were not suitable for us because
(i) Metis does not return the separators, and (ii) ParMetis runs only in parallel and
quality deteriorates with increasing numbers of processors. Instead we derive our
vertex separators from edge separators produced by hypergraph partitioning. This
choice also enables a fair comparison across methods since the code base is the same.
In Subsection 6.3, we compare the communication volume of our nested dissection
partitioning implementation with that of the Mondriaan implementation. In Subsec-
tion 6.4, we compare the messages sent for our nested dissection implementation with
1d hypergraph partitioning and fine-grain hypergraph partitioning for the symmetric
matrices.

All our experiments were run on a Dell Precision 64-bit workstation with four
dual-core Intel Xeon processors (though only one was used per run) and 16 Gb RAM.
The operating system was Red Hat Enterprise Linux and the compiler gcc 4.1.1.

6.1. Symmetric Matrices. We partition the 5 symmetric matrices shown in
Table 6.1 using 1d, fine-grain, and the nested dissection methods of partitioning for
4, 16, 64, and 256 parts (Note that 256 is larger than previous papers used, reflecting
the greater number of processors and cores in current computers.). We use the nested
dissection implementation outlined in Section 4 to partition the matrices directly. The
average communication volumes are shown in Table 6.5. For 1d partitioning, we list
the total communication volume. For the fine-grain and nested dissection methods,
we list a scaled volume relative to the 1d volumes (as well as in subsequent Tables
6.6 - 6.8) such that scaled volumes less than 1 indicate an improvement over the 1d
method. We see that our nested dissection method performs consistently better than
1d (scaled volumes less than 1). When compared to the fine-graph method, we see for



16 ERIK G. BOMAN AND MICHAEL M. WOLF

most partitionings that the nested dissection method yielded similar or better results
for four of the five matrices. The nested dissection only performed significantly worse
for the cage10 matrix and the 256 part partitioning of the finan512 matrix. Another
important point is that the nested dissection method runtimes were significantly lower
than that of fine-grain (up to a 89% decrease) and only slightly higher than 1d.

Table 6.5
Average (20 runs) communication volume (in words) and runtimes (in seconds) for k-way

partitioning of symmetric matrices using different partitioning methods.

1d fine-grain nested dissection
total scaled scaled

Name k volume runtime volume runtime volume runtime
cage10 4 5379.0 13.1 0.755 28.3 0.822 13.8

16 12874.5 25.0 0.689 46.7 0.887 26.4
64 23463.3 41.3 0.696 68.9 0.980 43.7

256 40830.9 66.7 0.716 101.9 1.030 69.9
lap200 4 1535.1 7.9 1.002 19.0 0.997 8.5

16 3013.9 15.2 1.001 30.2 0.999 16.7
64 5813.0 25.2 0.995 44.4 1.002 27.8

256 11271.8 51.4 0.981 71.9 1.002 56.5
finan512 4 295.7 23.8 0.883 82.8 0.775 24.5

16 1216.7 48.6 0.844 128.3 0.770 50.6
64 9986.0 90.9 0.864 185.4 0.807 95.4

256 38985.4 142.5 0.679 253.0 0.770 152.1
bcsstk32 4 2111.9 58.5 0.763 470.7 0.840 61.5

16 7893.1 102.0 0.802 718.4 0.861 110.3
64 19905.4 152.7 0.938 922.6 0.910 168.5

256 46399.0 215.2 1.002 1133.1 0.944 239.5
bcsstk30 4 1794.4 76.0 1.079 688.6 0.781 78.5

16 8624.7 139.7 1.133 1076.5 0.827 148.4
64 23308.0 205.7 1.102 1381.1 0.902 222.0

256 56100.4 262.4 1.031 1639.8 0.982 287.5

We partition the 4 larger symmetric matrices shown in Table 6.2 using 1d col-
umn, fine-grain, and the nested dissection methods of partitioning for 4, 16, 64, 256,
and 1024 parts. These matrices were chosen to demonstrate instances in which 1d
partitioning is insufficient. We picked these examples based on a comparison of the
1d and fine-grain partitioning methods. The resulting communication volumes for the
partitioning of these matrices is shown in Table 6.6. As expected, our nested dissec-
tion method performs much better than 1d (scaled volumes significantly less than 1).
When compared to the fine-graph method, we see similar but in general not quite as
good results. Again, we see a great improvement over fine-grain in terms of runtime
(up to 96% decrease in the runtime).

6.2. Nonsymmetric Matrices. We partitioned the 10 nonsymmetric matrices
shown in Tables 6.3 and 6.4 using 1d column, 1d row, fine-grain, and the nested
dissection methods of partitioning for 4, 16, 64, and 256 parts. However, in order to
use the nested dissection partition method with the nonsymmetric matrices, we have
to form bipartite graphs as described in Section 5. We can then apply the nested
dissection implementation outlined in Section 4 to partition the bipartite graph, which



NESTED DISSECTION APPROACH TO SPARSE MATRIX PARTITIONING 17

Table 6.6
Average (20 runs) communication volume (in words) and runtimes (in seconds) for k-way

partitioning of symmetric matrices using different partitioning methods. * - designates partitions
that did not meet the 3% load balance tolerance.

1d fine-grain nested dissection
total scaled scaled

Name k volume runtime vol. runtime vol. runtime
c-73 4 42314.2 162.2 0.0381 280.7 0.033 171.1

16 99862.8 358.1 0.051 418.7 0.050 381.8
64 206273.2* 343.1* 0.0730 604.9 0.063 361.8

256 171079.3* 545.0* 0.225 783.9 0.246* 559.6*
1024 216157.1* 430.9* 0.424 894.6 0.427* 444.2*

asic680ks 4 3560.4 78.7 0.509 270.8 0.612 78.7
16 9998.5 107.4 0.463 384.8 0.605 127.7
64 21785.8 146.7 0.439 489.7 0.588 166.5

256 38869.4 193.9 0.492 598.1 0.613 233.8
1024 62482.8 301.2 0.631 854.6 0.678 381.8

pkustk04 4 6610.8 133.4 0.626 1356.4 0.526 141.9
16 27565.4 237.9 0.492 2465.5 0.602 258.7
64 75329.7 346.4 0.416 3471.2 0.623 380.1

256 162105.5 461.6 0.428 3731.1 0.558 485.5
1024 372343.2* 549.2* 0.410 3871.3 0.502* 585.8

gupta3 4 30066.9 379.8 0.285 5291.0 0.186 429.0
16 103475.9 585.5 0.313 14299.8 0.206 653.4
64 332559.5 796.8 0.267 24856.8 0.191 872.2

256 1105498.9* 924.7* 0.165 27766.7 0.181* 1028.9*
1024 3125684.9* 1030.8* 0.107 29565.7 0.198* 1106.8*

gives us a partitioning of the nonsymmetric matrix. In this subsection, we report the
communication volumes of the SpMV resulting from these partitionings.

Table 6.7 shows communication volumes averaged over 20 runs for the 5 rectan-
gular matrices from Table 6.3. The nested dissection method results were consistently
worse than the fine-grain results for these rectangular results and often worse than one
of the 1d methods. Only for the tbdlinux matrix did the nested dissection method
yield significantly lower communication volumes than both 1d methods.

Table 6.8 shows communication volumes for the 5 square matrices from Table
6.4 when the input and output vectors are required to have the same partitioning.
The nested dissection results are very similar to the fine-grain results and the 1d
column results for the gemat11, lhr34, and Stanford Berkeley matrices. For the
memplus and onetone2 matrices, the nested dissection method yields better results
than 1d column (and 1d row for memplus). When compared to the fine-graph
method for these two, we see similar but in general not quite as good results.

6.3. Mondriaan Comparisons. Mondriaan [21] is also a relevant method to
compare against since it produces a 2d matrix partitioning, and as our method, is
quite fast compared to fine-grain (being based on 1d hypergraph partitioning). Here
we compare the results of our nested dissection partitioning implementation with
Mondriaan 1.0.2. It is important to note that this is not a direct comparison of algo-
rithms but also of implementations. Mondriaan uses its own hypergraph partitioner,



18 ERIK G. BOMAN AND MICHAEL M. WOLF

Table 6.7
Average (20 runs) communication volume (in words) for k-way partitioning of rectangular

nonsymmetric matrices using different partitioning methods. ** - for one run, hypergraph partitioner
failed to produce partition after several hours, averaging 19 runs.

1d col. 1d row fine-grain nested diss.
Name k total vol. scaled vol. scaled vol. scaled vol.
dfl001 4 1388.4 2.141 0.996 1.181

16 3575.5 1.631 0.997 1.155
64 6040.2 1.391 0.995 1.119

256 8897.0 1.377 0.990 1.097
cre b 4 1119.6 29.194 1.027 2.312

16 3509.3 15.970 1.011 1.848
64 7952.3 9.315 1.024 1.605

256 17077.8 6.048 0.997 1.409
tbdmatlab 4 14991.2 0.937 0.718 0.681

16 40562.8 1.343 0.778 0.888
64 81468.6 1.661 0.797 1.041

256 144098.2 1.673 0.757 1.093
nug30 4 56796.5 4.746 1.100 1.307

16 115539.4 3.320 1.157 1.507
64 199977.0 2.674 1.172 1.530**

256 307627.1 2.090 1.166 1.494
tbdlinux 4 52021.1 0.813 0.471 0.429

16 146980.9 1.136 0.565 0.594
64 307829.8 1.449 0.610 0.733

256 569152.5 1.600 0.611 0.854

which generally produces worse cut results than PaToH. Comparisons of the symmet-
ric test cases are given in Table 6.9, where a ratio less than one indicates our method
has lower communication volume. We observe that our method was best for all but
two matrices. Looking at only the first five test cases it appears the two methods are
roughly similar in quality. However, Mondriaan suffers some of the same problems
as 1d partitioning methods since it is uses 1d partitioning recursively. Therefore,
the first bisection will sometimes incur a large communication volume. We see our
method produces much better results than Mondriaan on the four large test matrices
(Table 6.2), which are difficult for 1d methods.

6.4. Message Metric. Communication volume is not the only metric that is
important when evaluating the quality of a sparse matrix partitioning in terms of
parallel matrix-vector multiplication. The number of messages communicated can
also be as important or more important if the communication volume is low or the
latency is high. 1d partitioning of the sparse matrix yields a parallel matrix-vector
algorithm with only one phase of communication. This tends to result in a low
number of messages in comparison to 2d partitioning methods such as the fine-grain
method. Table 6.10 shows the average number of messages sent (same as average
number of messages received) per part for the 1d column, fine-grain, and nested
dissection partitionings of the five symmetric matrices shown in Table 6.1 into 16,
64, and 256 parts. As expected, the 1d method has consistently the lowest average
number of messages sent per part of the three methods. The nested dissection results



NESTED DISSECTION APPROACH TO SPARSE MATRIX PARTITIONING 19

Table 6.8
Average (20 runs) communication volume (in words) for k-way partitioning of square non-

symmetric matrices using different partitioning methods. Vectors are partitioned the same. ** -
hypergraph partitioner failed to produce partition after several hours.

1d col. 1d row fine-grain nested diss.
Name k total vol. scaled vol. scaled vol. scaled vol.

gemat11 4 2357.2 1.040 1.033 0.975
16 4578.8 1.033 1.047 1.033
64 6291.4 1.022 1.061 1.041

256 8632.8 1.005 1.010 1.038
memplus 4 3615.7 1.002 0.107 0.227

16 6120.8 1.004 0.217 0.399
64 9696.5 0.999 0.316 0.513

256 16741.6 1.001 0.387 0.547
onetone2 4 1009.7 0.778 0.751 0.752

16 4932.9 0.791 0.723 0.776
64 11934.1 0.876 0.719 0.802

256 26095.9 0.903 0.843 0.878
lhr34 4 6613.6 1.078 1.005 0.918

16 20908.6 1.016 1.053 0.978
64 36937.8 1.005 1.073 1.030

256 61081.2 1.007 1.036 1.057
Stanford Berkeley 4 1383.0 3.536 1.095 1.300

16 5948.8 23.001 0.999 1.283
64 17725.9 ** 0.977 1.087

256 43801.5 ** 0.971 1.026

Table 6.9
Average (20 runs) communication volume ratio nested dissection/Mondriaan for k-way par-

titioning of symmetric matrices. An asterix indicates the desired load-balance tolerance was not
achieved.

Name k=4 k=16 k=64 k=256
cage10 0.876 1.013 1.194 1.303
lap200 1.045 1.101 1.158 1.142

finan512 0.208 0.524 0.865 0.792
bcsstk32 0.757 0.824 0.930 0.978
bcsstk30 0.771 0.836 0.901 0.837

c-73 0.037 0.065 0.092 0.211*
asic680ks 0.375 0.329 0.431 0.459
pkustk04 0.318 0.434 0.678 0.722
gupta3 0.240 0.390 0.643 1.152*

are significantly lower than the fine-grain results for most of the partitionings of the
five matrices.

7. Conclusions. We presented a new graph-oriented approach to sparse matrix
partitioning for sparse matrix-vector multiplication. Although exact hypergraph mod-
els exist, we find our graph model, which is also exact, more intuitive. We presented a
nested dissection partitioning algorithm that approximately solves our communication



20 ERIK G. BOMAN AND MICHAEL M. WOLF

Table 6.10
Average messages sent (same as received) per process for k-way partitioning of symmetric ma-

trices using different partitioning methods. All methods use hypergraph partitioning.

Name k 1d fine-grain nested dissection
cage10 16 11.6 21.4 15.4

64 20.0 35.1 27.7
256 24.2 36.4 33.6

lap200 16 6.0 8.1 6.9
64 6.0 8.2 6.8

256 6.0 8.1 6.7
finan512 16 2.0 4.0 2.0

64 2.1 9.3 2.3
256 6.0 17.4 7.2

bcsstk32 16 4.5 7.7 5.3
64 6.1 10.9 7.6

256 6.7 11.7 8.6
bcsstk30 16 3.6 7.6 4.2

64 5.9 12.2 7.6
256 7.3 16.0 9.9

graph model. We showed our partitioning method is clearly superior to the traditional
1d partitioning method (up to 97% reduction in communication volume), and pro-
duces partitions of similar quality to the fine-grain method for symmetric matrices at
a great reduction in the runtime. For nonsymmetric matrices, the results varied sub-
stantially among problems but for many problems the quality of our nested dissection
algorithm’s partitions was comparable to that of the fine-grain method. Again, there
was a substantial reduction in runtime for the nested dissection algorithm. Therefore,
we believe our approach is well suited as a general sparse matrix partitioning method.
Although nested dissection and recursive substructuring have been previously used
in several contexts, this is (to our knowledge) the first such algorithm and analysis
specifically for sparse matrix-vector multiplication.

There are several directions for improvement of our algorithm and implementa-
tion. First, one could use a better implementation to find vertex separators (e.g.,
Metis or Scotch). We did not do this here to allow a more fair comparison of the
models (not the implementation). Second, one can likely partition the vertices and
edges in and around the separators in a better way. This becomes relatively more
important as the number of parts grow. Third, in the nonsymmetric case, results may
potentially improve by customizing the partitioner (separator routine) for bipartite
graphs [16]. Furthermore, we believe our algorithm can be efficiently implemented
in parallel since the core computational kernel is nested dissection (by vertex separa-
tors), so existing software like ParMetis [17] or PT-Scotch [10] may be used. We plan
to study parallel performance in future work.

Although our work targeted sparse matrix-vector multiplication, the partitioning
algorithm (data distribution) we presented can be used in any sparse matrix computa-
tion, and may also reduce communication in parallel graph algorithms (e.g., coloring,
matching, shortest path).

Acknowledgments. We thank Rob Bisseling, Umit Catalyurek, Michael Heath,
and Bruce Hendrickson for helpful discussions. We thank Florin Dobrian and Ma-



NESTED DISSECTION APPROACH TO SPARSE MATRIX PARTITIONING 21

hantesh Halappanavar for providing a matching code used to produce vertex separa-
tors. This work was funded by the US Dept. of Energy’s Office of Science through
the CSCAPES Institute and the SciDAC program.

REFERENCES

[1] C. Aykanat, A. Pinar, and U. V. Catalyurek. Permuting sparse rectangular matrices into
block-diagonal form. SIAM Journal on Scientific Computing, 25(6):1860–1879, 2004.

[2] C. Berge. Graphs and Hypergraphs, volume 6 of North-Holland Mathematical Library. Elsevier
Science Publishing Company, 1973.

[3] C. Berge. Hypergraphs: Combinatorics of Finite Sets, volume 45 of North-Holland Mathemat-
ical Library. Elsevier Science Publishing Company, 1989.

[4] R. H. Bisseling. Parallel Scientific Computing: A structured approach using BSP and MPI.
Oxford University Press, 2004.

[5] R. H. Bisseling and W. Meesen. Communication balancing in parallel sparse matrix-vector
multiplication. Electronic Transactions on Numerical Analysis, 21:47–65, 2005.

[6] E. G. Boman. A nested dissection approach to sparse matrix partitioning. In Proc. Applied
Math. and Mechanics, volume 7, 2007. Presented at ICIAM07, Zurich, Switzerland, July
2007.

[7] Ü. Çatalyürek and C. Aykanat. Hypergraph-partitioning-based decomposition for parallel
sparse-matrix vector multiplication. IEEE Trans. Parallel Dist. Systems, 10(7):673–693,
1999.

[8] Ü. Çatalyürek and C. Aykanat. A fine-grain hypergraph model for 2d decomposition of sparse
matrices. In Proc. IPDPS 8th Int’l Workshop on Solving Irregularly Structured Problems
in Parallel (Irregular 2001), April 2001.

[9] Ü. Çatalyürek and C. Aykanat. A hypergraph-partitioning approach for coarse-grain decompo-
sition. In Proc. Supercomputing 2001. ACM, 2001.

[10] C. Chevalier and F. Pellegrini. PT-SCOTCH: A tool for efficient parallel graph ordering. Parallel
Computing, 34(6–8):318–331, Jul. 2007.

[11] T. A. Davis. The University of Florida Sparse Matrix Collection, 1994. Matrices found at
http://www.cise.ufl.edu/research/sparse/matrices/.

[12] K. Devine, E. Boman, R. Heaphy, B. Hendrickson, and C. Vaughan. Zoltan data management
services for parallel dynamic applications. Computing in Science and Engineering, 4(2):90–
97, 2002.

[13] A. George. Nested dissection of a regular finite-element mesh. SIAM Journal on Numerical
Analysis, 10:345–363, 1973.

[14] A. George, M. T. Heath, J. W.-H. Liu, and E. G.-Y. Ng. Solution of sparse positive definite
systems on a hypercube. Journal of Computational and Applied Mathematics, 27:129–
156, 1989. Also available as Technical Report ORNL/TM-10865, Oak Ridge National
Laboratory, Oak Ridge, TN, 1988.

[15] A. George, J. W.-H. Liu, and E. G.-Y. Ng. Communication results for parallel sparse Cholesky
factorization on a hypercube. Parallel Computing, 10(3):287–298, May 1989.

[16] B. Hendrickson and T. G. Kolda. Partitioning rectangular and structurally nonsymmetric sparse
matrices for parallel computation. SIAM Journal on Scientific Computing, 21(6):2048–
2072, 2000.

[17] G. Karypis and V. Kumar. Parmetis: Parallel graph partitioning and sparse matrix ordering
library. Technical Report 97-060, Dept. Computer Science, University of Minnesota, 1997.
http://www.cs.umn.edu/~metis.

[18] G. Karypis and V. Kumar. METIS 4.0: Unstructured graph partitioning and sparse matrix
ordering system. Technical report, Dept. Computer Science, University of Minnesota, 1998.
http://www.cs.umn.edu/˜metis.

[19] R. J. Lipton, D. J. Rose, and R. E. Tarjan. Generalized nested dissection. SIAM Journal on
Numerical Ananlysis, 16:346–358, 1979.

[20] A. Trifunovic and W. J. Knottenbelt. A general graph model for representing exact communica-
tion volume in parallel sparse matrix-vector multiplication. In Proc. of 21st International
Symposium on Computer and Information Sciences (ISCIS 2006), pages 813–824, 2006.

[21] B. Vastenhouw and R. H. Bisseling. A two-dimensional data distribution method for parallel
sparse matrix-vector multiplication. SIAM Review, 47(1):67–95, 2005.


