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ABSTRACT 
We describe G-Space, a straightforward linear time layout algorithm that draws undirected graphs based purely on their 
topological features. The algorithm is divided into two phases. The first phase is an embedding of the graph into a 2-D 
plane using the graph-theoretical distances as coordinates. These coordinates are computed with the same process used 
by HDE (High-Dimensional Embedding) algorithms. In our case we do a Low-Dimensional Embedding (LDE), and 
directly map the graph distances into a two dimensional geometric space. The second phase is the resolution of the 
many-to-one mappings that frequently occur within the low dimensional embedding. The resulting layout appears to 
have advantages over existing methods: it can be computed rapidly, and it can be used to answer topological questions 
quickly and intuitively.  
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1. INTRODUCTION 
Graph drawing is an active area of research and has been well studied for many years. There are many approaches to 
graph layout including force-directed, multi-level hierarchies, High Dimensional Embedding (HDE), and topological 
feature-based methods. Further, combinations of these techniques have been demonstrated, including the excellent visual 
results of [1].   

Our proposed approach to graph layout is primarily motivated by the desire to provide a “real time” layout capability 
for fluid user interaction and rapid feedback. A specific use case we wish to support is the rapid layout of graphs 
produced by interactive database queries, such as “display all the e-mail communication in the Enron database between 
September and December”.  Terabyte-sized relational databases are now commonplace, and the number of graphs 
implicitly embedded in the data can be enormous.  The user will likely make many iterative database queries and for 
graph layout to be useful in this context the result set must be laid out and displayed within seconds. 

A second motivation is to provide more explicit topological information to the user. Traditional layouts of highly 
connected graphs often obfuscate the answers to straightforward questions such as: 

- Which vertices have a direct connection to a query vertex?  

- How many “hops” (topologically) does it take to get from one vertex to another?  

- Is a vertex “closer” (graph-theoretical distance) to one vertex or another?  

- What is the shortest path between two vertices, or the N shortest paths?  

Of course, in the real world the questions asked will be more specific: “Show me anyone with either direct or indirect 
contact with Person X in the last 30 days”.  

We believe our approach successfully satisfies both motivations and conveys clear topological information about 
complex graphs in linear time. We discuss the specific details of the G-Space layout, and compare both the visual quality 
and performance of G-Space with other popular layout algorithms. As with any layout algorithm G-Space has its 
limitations, particularly the many-to-one mappings that occur within the LDE, so we discuss the approaches used to 
mitigate those limitations.  
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The G-Space layout algorithm makes extensive use of the Titan Informatics Toolkit [2]. Titan is a Sandia National 
Laboratories project that combines information visualization with scientific visualization within the open source VTK 
framework. 

2. RELATED WORK 
Force-directed layouts have become the mainstay of graph layout algorithms [3]. The force-directed algorithm simulates 
the forces of a system where adjacent vertices are connected with springs, and the energy of the system is decreased over 
time until the system stabilizes. Although it often produces pleasing results on small graphs, simple force-directed 
placement is often impractical for large graphs due to its algorithmic complexity. Also, given the nature of the vertex 
placement, force-directed layout can be difficult to interpret. Notably, the areas of greatest interest (high vertex or edge 
concentration) are often the least interpretable. In spite of its shortcomings, the force-directed approach has been the 
foundation on which many graph layout algorithms are built. 

Graph Drawing with Intelligent Placement (GRIP) is an algorithm based on the force-directed approach [4]. GRIP 
first produces a sequence of vertex sets with decreasing size from V (the set of all vertices) to Vk, where |Vk| = 3.  The set 
Vk is placed deterministically based on the relative positions among the three vertices.  GRIP places additional vertices in 
Vk-1 based on their positions relative to each other then performs a force-directed layout on the added vertices.  This 
process continues until all vertices have been placed.  This algorithm has efficient runtimes in practice. 

The high-dimensional embedding (HDE) algorithm is a recent advancement in graph layout strategies [5]. HDE first 
extracts M graph vertices with high distance from each other. The vertices are given an M-dimensional coordinate, where 
each coordinate value represents the distance from one vertex to another. The algorithm extracts the principal 
components of this high-dimensional space in order to reduce the dimensionality to two or three dimensions for placing 
the vertices. HDE is a very fast algorithm whose core involves only M linear breadth-first searches. A disadvantage of 
HDE is the tendency to produce long, thin layouts, particularly when applied to trees or tree-like graphs [1]. 

The Algebraic multigrid Computation of Eigenvectors (ACE) layout algorithm relies heavily on matrix computations 
to produce the layout [6]. This procedure iteratively coarsens the graph, and then projects the graph using the 
eigenvectors of the graph’s Laplacian representation.  The eigenvectors of the coarse graph are used as the initial 
solutions to the coarser graph, resulting in rapid convergence. 

FM3 is another algorithm based on force-directed layout [7].  The algorithm reduces the quadratic nature of the force-
directed technique by coarsening the graph into a hierarchy of fixed-diameter graphs.  During refinement, the repulsive 
forces, which normally take quadratic time to compute, instead are computed in O(N log N) time with an efficient quad 
tree structure. 

TopoLayout is a new layout approach which combines many of the algorithms described above, along with simple 
tree and clique layout strategies [1].  Using detection algorithms including connected components, tree, and clique 
detection, TopoLayout is able to classify regions of the graph and apply the best layout algorithm to each region. 

 A related problem to graph layout is general data embedding, or dimensionality reduction. Multi-dimensional scaling 
(MDS) seeks to find the embedding in k dimensions where distances in the space correspond most closely to measured 
distances. Finding the optimal placement has a high complexity, so researchers have sought ways to efficiently 
approximate the algorithm. Algorithms termed Landmark MDS and Pivot MDS achieve this by performing MDS on a 
subset of the data objects [11, 12]. Remaining objects are placed relative to these landmark (or pivot) objects. 

FastMap has a similar approach, but iteratively uses pairs of pivots instead of defining all pivots at once [13]. It finds 
a pair of distant objects (the pivots) and embeds the rest of the objects in relation to the distance between them, placing 
everything on the line between the pivots. It then repeats this process (picking two new pivots) for each of the k 
dimensions in the embedding. G-Space is in some ways similar to a one-dimensional FastMap. However, instead of 
placing all objects along a line in one dimension, it expands this into two dimensions, disambiguating the actual distance 
to each pivot. 

 



3. APPROACH 
Our graph layout approach appears to be suitable for analyzing graph structures on multiple scales under various use 
cases; it can be used to visualize extremely large graphs representing a database of relationships in its entirety, or it can 
be used to show the results of a targeted point-to-point query (a “Kevin Bacon” query). The first phase of our approach 
was originally inspired by the point-to-point case so we’ll begin our explanation there. 

3.1 LDE (Low Dimensional Embedding) 
Clearly, LDE is a play on the term HDE (High Dimensional Embedding) and we adopted it in homage of the work done 
by [5].  When we started our work, we were not yet familiar with HDE and were only interested in two dimensional 
embeddings. Our work was motivated by the following use case: given a database containing a large social network, a 
user wishes to see the “meta-relationship” (shortest path, types of relationships along the shortest path, identified critical 
links, etc) between two individuals. Thus the LDE process is essentially HDE with two pivot points. Assume the graph 
shown in Figure 1: 

 
 

Figure 1. Example email network. Figure 2. Giving coordinates to the graph vertices based on 
their shortest path distance from pivot points. 

 

The user wishes to display the meta-relationship between two vertices “Martha” and “Tonk”.  The LDE process 
selects those two vertices as pivot points and conducts a breadth-first search from each. Every vertex now has an 
associated two-tuple containing its shortest-path distance from each of the two pivot points. Using these tuples we 
simply map each vertex into two dimensional geometric space as shown in Figure 3: 

 
Figure 3. Direct mapping of graph distance (length of the un-weighted shortest-path) as coordinates into two dimensional space. 

 

You can see from Figures 2 and 3 that the “Jeff” and “Bubbles” vertices both have distance coordinates of 3,1 from 
the pivot points (a many-to-one mapping in the embedding process). Where HDE resolves these many-to-one mappings 
using higher dimensions and principle components analysis (PCA), LDE accepts the many-to-one mappings and resolves 
them using a different technique (see section 3.3). The advantage to this approach is that there is no need to run 50 or 
100 breadth-first searches (BFS), embed the graph into a 100 dimensional space, do a PCA, compute projections with 
maximal variance and then project down to two dimensions. 

The simplicity of the low dimensional embedding exposes many interesting geometric properties within the layout, as 
shown in Figures 4 – 7: 
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Figure 4. The embedding based on graph-theoretical distance 
ensures that the shortest path between the pivot points is 

guaranteed to be along the dashed green line. Longer paths form 
“arcs” into the positive quadrant.  

Figure 5. The dark blue line represents shortest path 
equidistance between the pivot points. “Flo” has a shorter path to 

“Tonk” than to “Martha” simply based on this geometric 
property. 

  

Figure 6. The distance from a vertex to a pivot vertex can 
never be greater than its distance to the other pivot vertex + the 
shortest path between the pivots. Thus, the two dark blue lines 

mark the “boundaries” of the layout.  

Figure 7. If the diagram is rotated 135 degrees clockwise, the 
shortest path will be along the top and equidistance is the vertical 

line in the center. 

3.2 Generalizing the LDE Process 
The above examples use a point-to-point query where the two pivot points for the LDE were specified by the user. As 
mentioned in the HDE work, pivot points can be automatically computed. In our case, we run a total of three BFS 
searches. The first BFS begins at a random vertex within the graph, finds a “pseudo-peripheral”† vertex, and passes that 
vertex as the starting-point for the second BFS.  The second BFS provides vertices with the first component of their 
graph distance tuple, and identifies a second pseudo-peripheral vertex. This vertex becomes the starting-point for the 
third BFS, which provides each vertex with the second component of the distance tuple. The running time of this phase 
is O(V+E).  

In our testing the algorithm appeared fairly insensitive to the particular choice of peripheral vertices; initially we had 
been more formal about the pivot choices. In fact, the normal procedure for finding pseudo-peripheral vertices is to 
conduct a series of BFS passes until the passes give convergence on the two pivot points. Figure 8 demonstrates the 
layout resulting from the generalized LDE process with automatic pivot calculation: 

                                                           
† Peripheral vertices have a shortest path equal to the diameter of the graph (the longest shortest path); pseudo-peripheral 
vertices have a long short path but are not guaranteed to have the longest. 
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Figure 8: Automatic LDE layout of the Enron email database (322k edges, 75k vertices) [8].   

3.3 Resolving the Many-To-One Mappings 
As we investigated the resulting LDE layouts there were immediate reservations about their limited “resolution”. 
Although the layouts were intriguing, they contained a high percentage of vertices which had “collided” into the same 
distance “bins”.  A large graph (50k vertices) with a graph diameter of 6 will have at most 36 “bins” in which to map the 
vertices, drastically limiting the value of placing the graph into a two dimensional geometric space.  We needed a 
systematic way to resolve the many-to-one mappings that occur with LDE. 

An initial attempt was made to use the LDE mapping as the starting condition for a force-directed layout, which 
would push/pull the vertices apart to achieve finer resolution. The resulting layouts did appear to benefit slightly from a 
reduction of large local minima; however the space-filling nature of the repulsive forces made the final layout relatively 
indistinguishable from more traditional force-directed layouts. Although this particular test bore no fruit, it did lead to 
the observation that filling all available space is not in-and-of-itself a useful goal. In fact, packing vertices with similar 
attributes together can provide users with additional insight into their shared natures. 

3.3.1 Vertex Bundling 
Inspired by the terrific edge bundling technique of [9], we adopted the term “Vertex Bundling” to describe how vertices 
can be packed together based on their connectivity attributes. Vertices have edge “obligations” to other vertices; vertices 
that share similar obligations can be bundled together to minimize the space they consume. Looking at the small graph in 
Figure 9, we see that traditional force-directed layout pushes vertices apart to fill the available space. We suggest the 
opposite approach, grouping the vertices together into “semantic bundles” which, like the edge bundling technique, 
simplify the layout and bring clarity to the topological relationships within the graph. 

  
Figure 9. Simplifying graph layout, and clarifying topological 

relationships with the use of vertex bundles. 
Figure 10. Applying the vertex bundling technique to pull 

vertices out of the many-to-one bins that occur with LDE. 
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Using the technique of vertex bundling we can now work to resolve the many-to-one mappings that occur in the LDE 
of the graph into two dimensional space. 

3.3.2 Vertex Bundle Maps 
On a large scale, vertex bundling can be used to resolve a significant portion of our many-to-one mapping problem. We 
now use the problematic distance bins as an ally to create a “scaffolding” of control points. Each vertex has an edge to 
one of more other vertices, at this point all vertices lie within a bin (control point), so we simply traverse the vertex list, 
determining which vertices have edges to which control points and bundle all vertices with edges to the same control 
points. 

After the graph has been through the LDE phase and looks like the layout shown on the left side of Figure 11, we 
now pass the graph through the vertex bundling process and in a manner similar to marching cubes, each vertex has its 
edges tested against a case table of control points to see which vertex bundle it will be a member of. The entire graph is 
processed from first vertex to last, and depending on which case is “matched” the vertex is offset some relative amount 
from its current position. The running time of this phase is O(V+E).  

Currently we call out 14 different cases (and 11 additional sub-cases) that are split out from the LDE bins (see Figure 
12). The 25 defined cases are as follows. For each vertex the following are determined: 

1. Edges only go to vertices in one bin: case 0 

2. Edges go to vertices of two bins: cases 1 – 11 

3. If a vertex falls within case 1-11 and also has edges back to the main bin then they are placed very close to the 
bundle but biased toward the main bin (see inset Figure 13): cases 12 – 22 

4. If a vertex does not meet any of these 23 cases, but has one or more edge connections within the same bin the 
vertex stays in the bin: case 23 

5. If none of these apply then the vertex is marked as an “Unresolved Vertex” (see Section 3.4). 

The diagram in Figure 12, at first looks oddly biased towards the bottom left corner. When splitting out the vertex 
bundles an even distribution seems more effective, until the realization that these bundle maps are applied at every bin 
within the LDE layout. So the diagram will need to mesh well when placed next to, above, and below the neighbour bins 
who are also applying the diagram to their vertices. 

 
Figure 11. On the left an LDE layout of a subset of the Enron database (1374 Vertices, 2241 Edges). On the right the same layout 

after the Vertex “Bundling” pass. Vertex Bundling significantly mitigates the many-to-one mappings and helps convey topological 
information.



 

 

Figure 12. Vertex Bundle Map. For each distance bin 
created by the LDE, the above map is applied to its vertices.  

Figure 13. Enlarged image of Figure 10 with insets showing 
layout detail. 
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3.4 Unresolved Vertices 
As described in section 3.3.2, there are currently 24 cases where the vertices are split out to specific locations based on 
topological obligations. If a vertex does not match any of the cases in the vertex bundle table, that may indicate a 
“problem” with the layout. In practice we find that synthetic graphs with regular topology can be difficult for G-Space to 
resolve. Many example datasets which are variations of 2D grids tend to not fare well in G-Space.  

However we do understand the importance of user notification/feedback when potential problems with the layout 
may exist, so unresolved vertices are specifically marked, accumulated, and displayed to the user as areas of interest they 
may want to investigate further. All figures in the results section of this paper include the percentage of unresolved 
vertices within that particular layout. 

 

 

 
Figure 14: An example of unresolved vertices (in red) on a 2D grid which folds over on itself.  



 

 

Figure 15: IMDB 1999 (N=1181 E=31,527): In this IMDB 
dataset only 8 vertices were categorized as “unresolved” out of 

1181 total. 

Figure 16: bi_walsh(N=77,251 E=183,945): G-Space has 
marked areas in red where the 2D grids in this dataset fold over 

on themselves (10454 unresolved vertices). 

3.5 Current Issues with G-Space Layout 
As we mentioned G-Space does not fare well when processing input graphs with well structured topology (grids, trees, 
etc). The BFS searches are trying to impose structure on the layout, and if the graph already has a well defined structure 
the result may be a layout such as the one in Figure 16. 

The issue with unresolved vertices in itself is not that horrible; the vertices are tracked, marked, and highlighted so 
that the user can see them. By far, the current worst unaddressed issue is the direct descendants of those unresolved 
vertices. As demonstrated in Figure 17, the unresolved vertices (4 red vertices top right) all have children that are not 
connected anywhere else so those children are mistakenly placed together and not marked as unresolved. Obviously the 
layout is misleading to the user and we hope to address this case in the near future. 

 
Figure 17. A dark corner in G-Space. Unresolved vertices can have their children mistakenly placed together. 



4. RESULTS 

 

 

Figure 18: IMDB 1999 (N=1181 E=31,527): The dataset 
consists of all actors who are at most 2 hops from the actor Jake 

Gyllenhaal in the movie October Sky.  Jake is in the cluster 
surrounded by the blue circle. 

Figure 19: Correlation of a traditional force-directed layout 
(left) to a G-Space layout (right).  Color matched circles represent 
similar sets of vertices between the two layouts. Data: subset of 

Enron database (1374 Vertices, 2241 Edges). 

 

The IMDB 1999 dataset provides an excellent demonstration of the G-Space layout. This graph consists of all actors who 
are at most 2 hops from the actor Jake Gyllenhaal in the movie October Sky.  Two actors are linked if they were in a 
movie or TV program together that was released in 1999.  G-Space places Jake in the blue cluster, and we can readily see 
that the clusters circled in green are one “hop” away, while every other cluster is one hop away from those (feel free to 
count “hops” in Figure 18 to confirm this). The small diameter of this graph is obvious in the G-Space layout, unlike 
other layout algorithms.  Vertex bundles make it easy to see the groups of actors, count the hops between them, and 
quickly understand the global topological features of a graph. 

In Figure 19, we compare the correlation between a traditional force-directed layout (left) and G-Space (right), for a 
subset of the Enron email database (1374 Vertices, 2241 Edges).  The angular lines and extremely tight clusters of the G-
Space layout can give the appearance that the layout is displaying a small graph, so we used color to provide a visual 
“registration” with the force-directed layout.  The color matched circles in Figure 19 enclose the same vertex sets in both 
layouts. Note that the force-directed layout was rotated and scaled to match the orientation and aspect ratio of the G-
Space layout.  

On a qualitative level, when exploring the two layouts side by side, with linked selection, the G-Space layout conveys 
better global graph structure and allows more detailed inspection of topological relationship.  

Figures 20 and 21 show the results of the G-Space algorithm on a number of real-world and synthetic graphs.  For a 
description of these graphs, see [1] and [10].  All runtimes were under a third of a second, and the layout was performed 
more quickly than the other algorithms in all cases tested.  Note that the G-Space experiments were run on a different 
machine than that used in the TopoLayout paper, so G-Space times should be only roughly compared against the other 
runtimes. 

Both the Spider and Flower layouts suffer from the limitation of only using distance information from two vertices.  
Since these datasets contain many long tendrils, all but two of the tendrils will have correlated distance coordinates and 
be placed in similar locations. In the Flower dataset, two of the “petals” of the flower protrude from the center to the left 
and right, while the other petals are merged into a vertical line. A similar situation occurs in the Spider dataset. 

All layout experiments were run on a laptop with an Intel Dual Core 2.0GHz processor, 2GB RAM, running 
Windows XP. 

5. CONCLUSIONS AND FUTURE WORK 
We have shown that the G-Space algorithm is an efficient method for laying out a graph without the use of force-directed 
placement.  G-Space is a useful technique where the topological relationships between vertices can be seen quickly and 
intuitively.  Through the use of vertex bundles, we are able to resolve many of the many-to-one mapping issues inherent 



in the low dimensional embedding. The speed and clarity of G-Space is particularly useful in scenarios where an analyst 
is conducting interactive queries of a large database, requiring rapid, interactive layout. 

There are a number of areas in which G-Space can be improved. We would like to decrease the number of unresolved 
vertices in the diagram, to separate more vertices from the main bins.  This would involve determining the common 
topological structures that cause vertices to be placed in the main bin, and pulling these vertices out into separate bundles 
in a meaningful way. 

Sub-trees are a particular nuisance to the algorithm since they fall along vertical lines, instead of being spread out. By 
identifying treelike structures within the graph, we may layout trees using a standard tree layout algorithm. These tree 
views could be accessed by either zooming in on the tree, or by clicking on specialized glyphs which brings up a separate 
tree view. 

G-Space should also be improved in order to make better use of screen space.  Currently, vertex bundles are small in 
order to ensure that they will not overlap with other bundles, assuming that all types of bundles may exist. It would be 
reasonable to spread out vertex bundles when we know there are no other bundles in close proximity. Further, the 
roughly-triangular layouts produced by G-Space could be modified to more evenly fill a rectangular viewing area. 
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Figure 20: Tests on real-world data sets. The runtime is given for each case in seconds. Note that the runtimes 
between G-Space and the other algorithms are only a rough comparison since they were run on different machines 

(see [1]). The unresolved vertex percentage is the percentage of vertices which had no type, and had no connections 
to other vertices in its group. 



 

0.06 (unresolved vertices 22.2%) 
 
 
 

C
ra

ck
6-

ar
y

Sn
ow

fla
ke

Sp
id

er
Fl

ow
er

bi
w

al
sh

G-Space 

0.02 (unresolved vertices 0.1%) 
 
 
 

0.02 (unresolved vertices 0.1%) 
 
 
 

0.04 (unresolved vertices 17.4%) 

0.09 (unresolved vertices 2.2%) 

0.32 (unresolved vertices 15.8%) 

Figure 21: Tests on synthetic data sets. The runtime is given for each case in seconds. All layouts using algorithms other than 
G-Space were conducted in [1]. Note that the runtimes are only a rough comparison since G-Space was run on a different 

machine.  The unresolved vertex percentage represents those vertices that were not bundled and did not have connections to other 
vertices within the group. 
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