
G-Space: A Linear Time Graph Layout

Brian Wylie a, Jeffrey Baumes b, and Timothy M. Shead a*

a Sandia National Laboratories, Albuquerque, NM, USA;
b Kitware, Inc., Clifton Park, NY, USA

ABSTRACT
We describe G-Space, a straightforward linear time layout algorithm that draws undirected graphs based purely on their
topological features. The algorithm is divided into two phases. The first phase is an embedding of the graph into a 2-D
plane using the graph-theoretical distances as coordinates. These coordinates are computed with the same process used
by HDE (High-Dimensional Embedding) algorithms. In our case we do a Low-Dimensional Embedding (LDE), and
directly map the graph distances into a two dimensional geometric space. The second phase is the resolution of the
many-to-one mappings that frequently occur within the low dimensional embedding. The resulting layout appears to
have advantages over existing methods: it can be computed rapidly, and it can be used to answer topological questions
quickly and intuitively.

Keywords: Graph layout, graph drawing, graph visualization, graphs and networks, information visualization

1. INTRODUCTION
Graph drawing is an active area of research and has been well studied for many years. There are many approaches to
graph layout including force-directed, multi-level hierarchies, High Dimensional Embedding (HDE), and topological
feature-based methods. Further, combinations of these techniques have been demonstrated, including the excellent visual
results of [1].

Our proposed approach to graph layout is primarily motivated by the desire to provide a “real time” layout capability
for fluid user interaction and rapid feedback. A specific use case we wish to support is the rapid layout of graphs
produced by interactive database queries, such as “display all the e-mail communication in the Enron database between
September and December”. Terabyte-sized relational databases are now commonplace, and the number of graphs
implicitly embedded in the data can be enormous. The user will likely make many iterative database queries and for
graph layout to be useful in this context the result set must be laid out and displayed within seconds.

A second motivation is to provide more explicit topological information to the user. Traditional layouts of highly
connected graphs often obfuscate the answers to straightforward questions such as:

- Which vertices have a direct connection to a query vertex?

- How many “hops” (topologically) does it take to get from one vertex to another?

- Is a vertex “closer” (graph-theoretical distance) to one vertex or another?

- What is the shortest path between two vertices, or the N shortest paths?

Of course, in the real world the questions asked will be more specific: “Show me anyone with either direct or indirect
contact with Person X in the last 30 days”.

We believe our approach successfully satisfies both motivations and conveys clear topological information about
complex graphs in linear time. We discuss the specific details of the G-Space layout, and compare both the visual quality
and performance of G-Space with other popular layout algorithms. As with any layout algorithm G-Space has its
limitations, particularly the many-to-one mappings that occur within the LDE, so we discuss the approaches used to
mitigate those limitations.

* Further author information:
Brian Wylie: E-mail: bnwylie@sandia.gov
Timothy M. Shead: E-mail: tshead@sandia.gov
Jeffrey Baumes: E-mail: jeff.baumes@kitware.com

mailto:bnwylie@sandia.gov
mailto:tshead@sandia.gov
mailto:jeff.baumes@kitware.com

The G-Space layout algorithm makes extensive use of the Titan Informatics Toolkit [2]. Titan is a Sandia National
Laboratories project that combines information visualization with scientific visualization within the open source VTK
framework.

2. RELATED WORK
Force-directed layouts have become the mainstay of graph layout algorithms [3]. The force-directed algorithm simulates
the forces of a system where adjacent vertices are connected with springs, and the energy of the system is decreased over
time until the system stabilizes. Although it often produces pleasing results on small graphs, simple force-directed
placement is often impractical for large graphs due to its algorithmic complexity. Also, given the nature of the vertex
placement, force-directed layout can be difficult to interpret. Notably, the areas of greatest interest (high vertex or edge
concentration) are often the least interpretable. In spite of its shortcomings, the force-directed approach has been the
foundation on which many graph layout algorithms are built.

Graph Drawing with Intelligent Placement (GRIP) is an algorithm based on the force-directed approach [4]. GRIP
first produces a sequence of vertex sets with decreasing size from V (the set of all vertices) to Vk, where |Vk| = 3. The set
Vk is placed deterministically based on the relative positions among the three vertices. GRIP places additional vertices in
Vk-1 based on their positions relative to each other then performs a force-directed layout on the added vertices. This
process continues until all vertices have been placed. This algorithm has efficient runtimes in practice.

The high-dimensional embedding (HDE) algorithm is a recent advancement in graph layout strategies [5]. HDE first
extracts M graph vertices with high distance from each other. The vertices are given an M-dimensional coordinate, where
each coordinate value represents the distance from one vertex to another. The algorithm extracts the principal
components of this high-dimensional space in order to reduce the dimensionality to two or three dimensions for placing
the vertices. HDE is a very fast algorithm whose core involves only M linear breadth-first searches. A disadvantage of
HDE is the tendency to produce long, thin layouts, particularly when applied to trees or tree-like graphs [1].

The Algebraic multigrid Computation of Eigenvectors (ACE) layout algorithm relies heavily on matrix computations
to produce the layout [6]. This procedure iteratively coarsens the graph, and then projects the graph using the
eigenvectors of the graph’s Laplacian representation. The eigenvectors of the coarse graph are used as the initial
solutions to the coarser graph, resulting in rapid convergence.

FM3 is another algorithm based on force-directed layout [7]. The algorithm reduces the quadratic nature of the force-
directed technique by coarsening the graph into a hierarchy of fixed-diameter graphs. During refinement, the repulsive
forces, which normally take quadratic time to compute, instead are computed in O(N log N) time with an efficient quad
tree structure.

TopoLayout is a new layout approach which combines many of the algorithms described above, along with simple
tree and clique layout strategies [1]. Using detection algorithms including connected components, tree, and clique
detection, TopoLayout is able to classify regions of the graph and apply the best layout algorithm to each region.

 A related problem to graph layout is general data embedding, or dimensionality reduction. Multi-dimensional scaling
(MDS) seeks to find the embedding in k dimensions where distances in the space correspond most closely to measured
distances. Finding the optimal placement has a high complexity, so researchers have sought ways to efficiently
approximate the algorithm. Algorithms termed Landmark MDS and Pivot MDS achieve this by performing MDS on a
subset of the data objects [11, 12]. Remaining objects are placed relative to these landmark (or pivot) objects.

FastMap has a similar approach, but iteratively uses pairs of pivots instead of defining all pivots at once [13]. It finds
a pair of distant objects (the pivots) and embeds the rest of the objects in relation to the distance between them, placing
everything on the line between the pivots. It then repeats this process (picking two new pivots) for each of the k
dimensions in the embedding. G-Space is in some ways similar to a one-dimensional FastMap. However, instead of
placing all objects along a line in one dimension, it expands this into two dimensions, disambiguating the actual distance
to each pivot.

3. APPROACH
Our graph layout approach appears to be suitable for analyzing graph structures on multiple scales under various use
cases; it can be used to visualize extremely large graphs representing a database of relationships in its entirety, or it can
be used to show the results of a targeted point-to-point query (a “Kevin Bacon” query). The first phase of our approach
was originally inspired by the point-to-point case so we’ll begin our explanation there.

3.1 LDE (Low Dimensional Embedding)
Clearly, LDE is a play on the term HDE (High Dimensional Embedding) and we adopted it in homage of the work done
by [5]. When we started our work, we were not yet familiar with HDE and were only interested in two dimensional
embeddings. Our work was motivated by the following use case: given a database containing a large social network, a
user wishes to see the “meta-relationship” (shortest path, types of relationships along the shortest path, identified critical
links, etc) between two individuals. Thus the LDE process is essentially HDE with two pivot points. Assume the graph
shown in Figure 1:

Figure 1. Example email network. Figure 2. Giving coordinates to the graph vertices based on
their shortest path distance from pivot points.

The user wishes to display the meta-relationship between two vertices “Martha” and “Tonk”. The LDE process
selects those two vertices as pivot points and conducts a breadth-first search from each. Every vertex now has an
associated two-tuple containing its shortest-path distance from each of the two pivot points. Using these tuples we
simply map each vertex into two dimensional geometric space as shown in Figure 3:

Figure 3. Direct mapping of graph distance (length of the un-weighted shortest-path) as coordinates into two dimensional space.

You can see from Figures 2 and 3 that the “Jeff” and “Bubbles” vertices both have distance coordinates of 3,1 from
the pivot points (a many-to-one mapping in the embedding process). Where HDE resolves these many-to-one mappings
using higher dimensions and principle components analysis (PCA), LDE accepts the many-to-one mappings and resolves
them using a different technique (see section 3.3). The advantage to this approach is that there is no need to run 50 or
100 breadth-first searches (BFS), embed the graph into a 100 dimensional space, do a PCA, compute projections with
maximal variance and then project down to two dimensions.

The simplicity of the low dimensional embedding exposes many interesting geometric properties within the layout, as
shown in Figures 4 – 7:

Bubbles

Tonk

Flo

Martha

Fred

Clem

Sally Joe

Jeff

Jane

0,4

1,4

1,3

2,3

2,2

4,0

3,1

3,1

3,2

4,2
Jane Flo

Clem Martha

Bubbles

Sally Joe
Fred

Tonk Jeff

Dg2

Dg1

Clem

Sally

Martha Fred

Flo
3

Jane
Joe Bubbles

Jeff Tonk

3

Figure 4. The embedding based on graph-theoretical distance
ensures that the shortest path between the pivot points is

guaranteed to be along the dashed green line. Longer paths form
“arcs” into the positive quadrant.

Figure 5. The dark blue line represents shortest path
equidistance between the pivot points. “Flo” has a shorter path to

“Tonk” than to “Martha” simply based on this geometric
property.

Figure 6. The distance from a vertex to a pivot vertex can
never be greater than its distance to the other pivot vertex + the
shortest path between the pivots. Thus, the two dark blue lines

mark the “boundaries” of the layout.

Figure 7. If the diagram is rotated 135 degrees clockwise, the
shortest path will be along the top and equidistance is the vertical

line in the center.

3.2 Generalizing the LDE Process
The above examples use a point-to-point query where the two pivot points for the LDE were specified by the user. As
mentioned in the HDE work, pivot points can be automatically computed. In our case, we run a total of three BFS
searches. The first BFS begins at a random vertex within the graph, finds a “pseudo-peripheral”† vertex, and passes that
vertex as the starting-point for the second BFS. The second BFS provides vertices with the first component of their
graph distance tuple, and identifies a second pseudo-peripheral vertex. This vertex becomes the starting-point for the
third BFS, which provides each vertex with the second component of the distance tuple. The running time of this phase
is O(V+E).

In our testing the algorithm appeared fairly insensitive to the particular choice of peripheral vertices; initially we had
been more formal about the pivot choices. In fact, the normal procedure for finding pseudo-peripheral vertices is to
conduct a series of BFS passes until the passes give convergence on the two pivot points. Figure 8 demonstrates the
layout resulting from the generalized LDE process with automatic pivot calculation:

† Peripheral vertices have a shortest path equal to the diameter of the graph (the longest shortest path); pseudo-peripheral
vertices have a long short path but are not guaranteed to have the longest.

Martha

Clem

Sally Jeff

Bubbles

Joe

Jane Fred

Flo

Tonk

Clem

Sally Dg2

Dg1

Jeff

Bubbles

Tonk

Joe

Jane

Martha

Fred

Flo

Clem

Sally
Dg2

Dg1

Jeff

Bubbles

Tonk

Joe

Jane

Martha

Fred

Flo Clem

Sally
Dg2

Dg1

Fred

Martha

Jane

Joe
Bubbles

Jeff Tonk

Flo

Figure 8: Automatic LDE layout of the Enron email database (322k edges, 75k vertices) [8].

3.3 Resolving the Many-To-One Mappings
As we investigated the resulting LDE layouts there were immediate reservations about their limited “resolution”.
Although the layouts were intriguing, they contained a high percentage of vertices which had “collided” into the same
distance “bins”. A large graph (50k vertices) with a graph diameter of 6 will have at most 36 “bins” in which to map the
vertices, drastically limiting the value of placing the graph into a two dimensional geometric space. We needed a
systematic way to resolve the many-to-one mappings that occur with LDE.

An initial attempt was made to use the LDE mapping as the starting condition for a force-directed layout, which
would push/pull the vertices apart to achieve finer resolution. The resulting layouts did appear to benefit slightly from a
reduction of large local minima; however the space-filling nature of the repulsive forces made the final layout relatively
indistinguishable from more traditional force-directed layouts. Although this particular test bore no fruit, it did lead to
the observation that filling all available space is not in-and-of-itself a useful goal. In fact, packing vertices with similar
attributes together can provide users with additional insight into their shared natures.

3.3.1 Vertex Bundling
Inspired by the terrific edge bundling technique of [9], we adopted the term “Vertex Bundling” to describe how vertices
can be packed together based on their connectivity attributes. Vertices have edge “obligations” to other vertices; vertices
that share similar obligations can be bundled together to minimize the space they consume. Looking at the small graph in
Figure 9, we see that traditional force-directed layout pushes vertices apart to fill the available space. We suggest the
opposite approach, grouping the vertices together into “semantic bundles” which, like the edge bundling technique,
simplify the layout and bring clarity to the topological relationships within the graph.

Figure 9. Simplifying graph layout, and clarifying topological

relationships with the use of vertex bundles.
Figure 10. Applying the vertex bundling technique to pull

vertices out of the many-to-one bins that occur with LDE.

Typical LDE Mappings with
many vertices falling
into the same bins.

Force-directed
Space Filling

Space Minimizing
Vertex Bundles

Pulling the vertices out
of the bins with the use
of Vertex Bundles

Using the technique of vertex bundling we can now work to resolve the many-to-one mappings that occur in the LDE
of the graph into two dimensional space.

3.3.2 Vertex Bundle Maps
On a large scale, vertex bundling can be used to resolve a significant portion of our many-to-one mapping problem. We
now use the problematic distance bins as an ally to create a “scaffolding” of control points. Each vertex has an edge to
one of more other vertices, at this point all vertices lie within a bin (control point), so we simply traverse the vertex list,
determining which vertices have edges to which control points and bundle all vertices with edges to the same control
points.

After the graph has been through the LDE phase and looks like the layout shown on the left side of Figure 11, we
now pass the graph through the vertex bundling process and in a manner similar to marching cubes, each vertex has its
edges tested against a case table of control points to see which vertex bundle it will be a member of. The entire graph is
processed from first vertex to last, and depending on which case is “matched” the vertex is offset some relative amount
from its current position. The running time of this phase is O(V+E).

Currently we call out 14 different cases (and 11 additional sub-cases) that are split out from the LDE bins (see Figure
12). The 25 defined cases are as follows. For each vertex the following are determined:

1. Edges only go to vertices in one bin: case 0

2. Edges go to vertices of two bins: cases 1 – 11

3. If a vertex falls within case 1-11 and also has edges back to the main bin then they are placed very close to the
bundle but biased toward the main bin (see inset Figure 13): cases 12 – 22

4. If a vertex does not meet any of these 23 cases, but has one or more edge connections within the same bin the
vertex stays in the bin: case 23

5. If none of these apply then the vertex is marked as an “Unresolved Vertex” (see Section 3.4).

The diagram in Figure 12, at first looks oddly biased towards the bottom left corner. When splitting out the vertex
bundles an even distribution seems more effective, until the realization that these bundle maps are applied at every bin
within the LDE layout. So the diagram will need to mesh well when placed next to, above, and below the neighbour bins
who are also applying the diagram to their vertices.

Figure 11. On the left an LDE layout of a subset of the Enron database (1374 Vertices, 2241 Edges). On the right the same layout

after the Vertex “Bundling” pass. Vertex Bundling significantly mitigates the many-to-one mappings and helps convey topological
information.

Figure 12. Vertex Bundle Map. For each distance bin
created by the LDE, the above map is applied to its vertices.

Figure 13. Enlarged image of Figure 10 with insets showing
layout detail.

0 1 2

Main Bin
3 5

3
2

8 1
10 6 9 11

7

4

5

6 7 80

3.4 Unresolved Vertices
As described in section 3.3.2, there are currently 24 cases where the vertices are split out to specific locations based on
topological obligations. If a vertex does not match any of the cases in the vertex bundle table, that may indicate a
“problem” with the layout. In practice we find that synthetic graphs with regular topology can be difficult for G-Space to
resolve. Many example datasets which are variations of 2D grids tend to not fare well in G-Space.

However we do understand the importance of user notification/feedback when potential problems with the layout
may exist, so unresolved vertices are specifically marked, accumulated, and displayed to the user as areas of interest they
may want to investigate further. All figures in the results section of this paper include the percentage of unresolved
vertices within that particular layout.

Figure 14: An example of unresolved vertices (in red) on a 2D grid which folds over on itself.

Figure 15: IMDB 1999 (N=1181 E=31,527): In this IMDB
dataset only 8 vertices were categorized as “unresolved” out of

1181 total.

Figure 16: bi_walsh(N=77,251 E=183,945): G-Space has
marked areas in red where the 2D grids in this dataset fold over

on themselves (10454 unresolved vertices).

3.5 Current Issues with G-Space Layout
As we mentioned G-Space does not fare well when processing input graphs with well structured topology (grids, trees,
etc). The BFS searches are trying to impose structure on the layout, and if the graph already has a well defined structure
the result may be a layout such as the one in Figure 16.

The issue with unresolved vertices in itself is not that horrible; the vertices are tracked, marked, and highlighted so
that the user can see them. By far, the current worst unaddressed issue is the direct descendants of those unresolved
vertices. As demonstrated in Figure 17, the unresolved vertices (4 red vertices top right) all have children that are not
connected anywhere else so those children are mistakenly placed together and not marked as unresolved. Obviously the
layout is misleading to the user and we hope to address this case in the near future.

Figure 17. A dark corner in G-Space. Unresolved vertices can have their children mistakenly placed together.

4. RESULTS

Figure 18: IMDB 1999 (N=1181 E=31,527): The dataset
consists of all actors who are at most 2 hops from the actor Jake

Gyllenhaal in the movie October Sky. Jake is in the cluster
surrounded by the blue circle.

Figure 19: Correlation of a traditional force-directed layout
(left) to a G-Space layout (right). Color matched circles represent
similar sets of vertices between the two layouts. Data: subset of

Enron database (1374 Vertices, 2241 Edges).

The IMDB 1999 dataset provides an excellent demonstration of the G-Space layout. This graph consists of all actors who
are at most 2 hops from the actor Jake Gyllenhaal in the movie October Sky. Two actors are linked if they were in a
movie or TV program together that was released in 1999. G-Space places Jake in the blue cluster, and we can readily see
that the clusters circled in green are one “hop” away, while every other cluster is one hop away from those (feel free to
count “hops” in Figure 18 to confirm this). The small diameter of this graph is obvious in the G-Space layout, unlike
other layout algorithms. Vertex bundles make it easy to see the groups of actors, count the hops between them, and
quickly understand the global topological features of a graph.

In Figure 19, we compare the correlation between a traditional force-directed layout (left) and G-Space (right), for a
subset of the Enron email database (1374 Vertices, 2241 Edges). The angular lines and extremely tight clusters of the G-
Space layout can give the appearance that the layout is displaying a small graph, so we used color to provide a visual
“registration” with the force-directed layout. The color matched circles in Figure 19 enclose the same vertex sets in both
layouts. Note that the force-directed layout was rotated and scaled to match the orientation and aspect ratio of the G-
Space layout.

On a qualitative level, when exploring the two layouts side by side, with linked selection, the G-Space layout conveys
better global graph structure and allows more detailed inspection of topological relationship.

Figures 20 and 21 show the results of the G-Space algorithm on a number of real-world and synthetic graphs. For a
description of these graphs, see [1] and [10]. All runtimes were under a third of a second, and the layout was performed
more quickly than the other algorithms in all cases tested. Note that the G-Space experiments were run on a different
machine than that used in the TopoLayout paper, so G-Space times should be only roughly compared against the other
runtimes.

Both the Spider and Flower layouts suffer from the limitation of only using distance information from two vertices.
Since these datasets contain many long tendrils, all but two of the tendrils will have correlated distance coordinates and
be placed in similar locations. In the Flower dataset, two of the “petals” of the flower protrude from the center to the left
and right, while the other petals are merged into a vertical line. A similar situation occurs in the Spider dataset.

All layout experiments were run on a laptop with an Intel Dual Core 2.0GHz processor, 2GB RAM, running
Windows XP.

5. CONCLUSIONS AND FUTURE WORK
We have shown that the G-Space algorithm is an efficient method for laying out a graph without the use of force-directed
placement. G-Space is a useful technique where the topological relationships between vertices can be seen quickly and
intuitively. Through the use of vertex bundles, we are able to resolve many of the many-to-one mapping issues inherent

in the low dimensional embedding. The speed and clarity of G-Space is particularly useful in scenarios where an analyst
is conducting interactive queries of a large database, requiring rapid, interactive layout.

There are a number of areas in which G-Space can be improved. We would like to decrease the number of unresolved
vertices in the diagram, to separate more vertices from the main bins. This would involve determining the common
topological structures that cause vertices to be placed in the main bin, and pulling these vertices out into separate bundles
in a meaningful way.

Sub-trees are a particular nuisance to the algorithm since they fall along vertical lines, instead of being spread out. By
identifying treelike structures within the graph, we may layout trees using a standard tree layout algorithm. These tree
views could be accessed by either zooming in on the tree, or by clicking on specialized glyphs which brings up a separate
tree view.

G-Space should also be improved in order to make better use of screen space. Currently, vertex bundles are small in
order to ensure that they will not overlap with other bundles, assuming that all types of bundles may exist. It would be
reasonable to spread out vertex bundles when we know there are no other bundles in close proximity. Further, the
roughly-triangular layouts produced by G-Space could be modified to more evenly fill a rectangular viewing area.

ACKNOWLEDGMENTS
We would like to thank Tamara Munzner and Daniel Archambault who developed the TopoLayout algorithm and have
run extensive layout experiments. The TopoLayout team have been extremely helpful in making their algorithms, graph
data sources, and results available, allowing us to do much of our comparative analysis.

Funding was provided by the Accelerated Strategic Computing Initiative’s Visual Interactive Environment for
Weapons Simulations (ASCI/VIEWS) program. The work was performed at Sandia National Laboratories. Sandia is a
multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States
Department of Energy under Contract DE-AC04-94AL85000.

REFERENCES
1. D. Archambault, T. Munzner, D. Auber. “TopoLayout: multi-level graph layout by topological features.” IEEE

Transactions on Visualization and Computer Graphics, 13(2):305-317, 2006.
2. B. Wylie and J. Baumes. “The Titan Informatics Toolkit.” Not yet published.
3. T. Fruchterman and E. Reingold. “Graph drawing by force-directed placement.” Softw. Pract. Exp., 21(11):1129-

1164, 1991.
4. P. Gajer and S. G. Kobourov. “GRIP: Graph drawing with intelligent placement.” Journal of Graph Algorithms

and Applications, 6(3):203-224, 2002.
5. Y. Koren and D. Harel. “Graph drawing by high-dimensional embedding.” In Proc. Graph Drawing (GD'02),

volume 2528 of LNCS, pages 207-219, 2002.
6. Y. Koren, L. Carmel, and D. Harel. “Drawing huge graphs by algebraic multigrid optimization.” Multiscale

Modeling and Simulation, 1(4):645-673, 2003.
7. S. Hachul and M. Jünger. “Drawing large graphs with a potential-field-based multilevel algorithm.” In Proc. 12th

Int. Symp. on Graph Drawing, volume 3383 of LNCS, pages 285-295. Springer-Verlag, 2004.
8. J. Shetty and J. Adibi. The Enron Email Dataset Database Schema and Brief Statistical Report. Available online at

http://www.isi.edu/~adibi/Enron/Enron_Dataset_Report.pdf. Accessed March 30, 2007.
9. D. Holten. “Hierarchical Edge Bundles: Visualization of Adjacency Relations in Hierarchical Data.” IEEE

Transactions on Visualization and Computer Graphics, 12(5):741-748, 2006.
10. S. Hachul and M. Jünger. “An experimental comparison of fast algorithms for drawing general large graphs.” In

Proc. 13th Int. Symp. on Graph Drawing. Springer-Verlag, 2005.
11. V. de Silva, J. B. Tenenbaum. “Sparse multidimensional scaling using landmark points” (Technical Report).

Stanford University.
12. A. Morrison, G. Ross, M. Chalmers. “Fast multidimensional scaling through sampling, springs and interpolation”.

Information Visualization 2(1) March 2003, pp. 68-77.
13. C. Faloutsos, K.-I. Lin. FastMap: “A fast algorithm for indexing, data-mining and visualization of traditional and

multimedia datasets.” In Proceedings of 1995 ACM SIGMOD, SIGMOD RECORD (June 1995), vol.24, no.2, p
163-174.

0.01 (unresolved vertices 0.7%)

A
dd

32
U

B
C

IM
D

B

G-Space

0.04 (unresolved vertices 1.3%)

0.14 (unresolved vertices 0.4%)

Figure 20: Tests on real-world data sets. The runtime is given for each case in seconds. Note that the runtimes
between G-Space and the other algorithms are only a rough comparison since they were run on different machines

(see [1]). The unresolved vertex percentage is the percentage of vertices which had no type, and had no connections
to other vertices in its group.

0.06 (unresolved vertices 22.2%)

C
ra

ck
6-

ar
y

Sn
ow

fla
ke

Sp
id

er
Fl

ow
er

bi
w

al
sh

G-Space

0.02 (unresolved vertices 0.1%)

0.02 (unresolved vertices 0.1%)

0.04 (unresolved vertices 17.4%)

0.09 (unresolved vertices 2.2%)

0.32 (unresolved vertices 15.8%)

Figure 21: Tests on synthetic data sets. The runtime is given for each case in seconds. All layouts using algorithms other than
G-Space were conducted in [1]. Note that the runtimes are only a rough comparison since G-Space was run on a different

machine. The unresolved vertex percentage represents those vertices that were not bundled and did not have connections to other
vertices within the group.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

